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ABSTRACT
Graph Neural Networks (GNNs) have drawn considerable attention
in recent years and achieved outstanding performance in many
tasks. Most empirical studies of GNNs assume that the observed
graph represents a complete and accurate picture of node rela-
tionship. However, this fundamental assumption cannot always
be satisfied, since the real-world graphs from complex systems
are error-prone and may not be compatible with the properties
of GNNs. Therefore, GNNs solely relying on original graph may
cause unsatisfactory results, one typical example of which is that
GNNs perform well on graphs with homophily while fail on the
disassortative situation. In this paper, we propose graph estimation
neural networks GEN, which estimates graph structure for GNNs.
Specifically, our GEN presents a structure model to fit the mecha-
nism of GNNs by generating graphs with community structure, and
an observation model that injects multifaceted observations into
calculating the posterior distribution of graphs and is the first to in-
corporate multi-order neighborhood information. With above two
models, the estimation of graph is implemented based on Bayesian
inference to maximize the posterior probability, which attains mu-
tual optimization with GNN parameters in an iterative framework.
To comprehensively evaluate the performance of GEN, we perform
a set of experiments on several benchmark datasets with different
homophily and a synthetic dataset, where the experimental results
demonstrate the effectiveness of our GEN and rationality of the
estimated graph.

CCS CONCEPTS
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1 INTRODUCTION
Graphs are ubiquitous across application domains ranging from
chemo- and bioinformatics to image and social network analysis.
With their prevalence, it is particularly important to learn effective
representations of graphs and apply them to downstream tasks [13].
Recently, there has been a surge of interest in Graph Neural Net-
works (GNNs) [14, 21, 25, 41] for representation learning of graphs,
which broadly follow a recursive message passing scheme [11]
where local neighborhood information is aggregated and passed
on to the neighbors. These GNNs have achieved state-of-the-art
performance in many analytical tasks such as node classification
[47, 48] and recommender systems [44, 49].

Although existing GNNs have been successfully applied in a wide
variety of scenarios, they rely on one fundamental assumption that
the observed topology is ground-truth information and consistent
with the properties of GNNs. But in fact, as graphs are usually
extracted from complex interaction systems, such assumption could
always be violated. One reason is that these interaction systems
usually contain uncertainty or error [27]. For instance, in protein
interaction graphs, traditional laboratory experimental error is a
primary source of inaccuracy. The another reason is that the issue of
missing data is inevitable. As another instance, the graph of Internet
is determined by examining either router tables or collections of
traceroute paths, both of which give only subsets of the edges. It has
been revealed that unreliable error-prone graphs could significantly
limit the representation capability of GNNs [10, 37, 51], one typical
example of which is that the performance of GNNs can greatly
degrade on the disassortative graphs [31] where homophily (i.e.,
nodes within the same community tend to connect with each other)
does not hold. In short, missing, meaningless or even spurious edges
are prevalent in real graphs, which results in inconsistency with
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the properties of GNNs and casts doubts about the accuracy or
correctness of their results. Therefore, it is imperative to explore
an optimal graph for GNNs.

Nevertheless, it is technically challenging to effectively learn an
optimal graph structure for GNNs. Particularly, two obstacles need
to be addressed. (1) The graph generation mechanism should be
taken into consideration. It is well established in network science
literature [34] that the graph generation is potentially governed by
some underlying principles, e.g., the configuration model [33]. Con-
sidering these principles fundamentally drives the learned graph to
maintain a regular global structure and be more robust to noise in
real observations. Unfortunately, the majority of current methods
parameterize each edge locally [5, 10, 18] and do not account for
the underlying generation of graph, so that the resulted graph has a
lower tolerance for noise and sparsity. (2) multifaceted information
should be injected to reduce bias. Learning graph structure from
one information source inevitably leads to bias and uncertainty. It
makes sense that the confidence of an edge would be greater if this
edge exists under multiple measurements. Thus, a reliable graph
structure ought to make allowance for comprehensive information,
although it is complicated to obtain multi-view measurements and
depict their relationship with GNNs. Existing approaches [19, 51]
mainly utilize the feature similarity, making the learned graph more
susceptible to the bias of single view.

To address the aforementioned issues, in this paper, we propose
Graph structure Estimation neural Networks (GEN) to improve the
node classification performance through estimating an appropriate
graph structure for GNNs.We firstly analyze the properties of GNNs
to match proper graph generation mechanism. GNNs, as low-pass
filters [1, 23, 45] which smooth neighborhood to make the repre-
sentations of proximal nodes similar, are suitable to graphs with
community structure [12]. Therefore, we attach a structure model
to the graph generation, hypothesizing that the estimated graph
is drawn from Stochastic Block Model (SBM) [17]. Furthermore,
in addition to the observed graph and node feature, we creatively
inject multi-order neighborhood information to circumvent bias
and present an observation model to jointly treat above multi-view
information as observations of the optimal graph. In order to es-
timate the optimal graph, we construct observations during GNN
training, then apply Bayesian inference based on structure and
observation models to infer the entire posterior distribution over
graph structure. Finally, the estimated graph and the parameters of
GNNs achieve mutual, positive reinforcement through elaborately
iterative optimization.

In summary, the contributions of this paper are three-fold:

• Concerning graph structure learning for GNNs, we are the first
to simultaneously consider the generation of learned graph to
fit the mechanism of GNNs, and comprehensively employ the
multifaceted information to give a more precise and nuanced
picture of the proper graph structure.

• We propose novel graph structure estimation neural networks
GEN, which designs a structure model characterizing the un-
derlying graph generation and an observation model injecting
multi-order neighborhood information to accurately infer the
graph structure based on Bayesian inference.

• We validate the effectiveness of GEN via thorough comparisons
with state-of-the-art methods on several challenging benchmarks.
Additionally, we also analyze the properties of GEN and verify
the rationality of estimated graph on a synthetic dataset.
The rest of the paper is organized as follows. In Section 2, we re-

view some of the related work. In Section 3, we introduce notations
and formally explain our proposed GEN. We report experimental
results in Section 4 and conclude the work in Section 5.

2 RELATEDWORK
In line with the focus of our work, we briefly review the most
related work on GNNs and graph structure learning.

2.1 Graph Neural Networks
Over the past few years, graph neural networks have achieved great
success in solving machine learning problems on graph-structured
data. Most current GNNs can be generally divided into two families,
i.e., spectral methods and spatial methods.

Specifically, the first family learns node representation based on
graph spectral theory. [2] first proposes a spectral graph-based ex-
tension of convolutional networks using the Fourier basis. ChebNet
[6] defines graph convolution based on Chebyshev polynomials to
remove the computationally expensive Laplacian eigendecomposi-
tion. GCN [21] further simplifies ChebNet by using its first-order
approximation. In a follow-up work, SGC [45] reduces the graph
convolution to a linear model but still achieves competitive per-
formance. The second family of methods directly define graph
convolution in the spatial domain as aggregating and transforming
local information. GraphSAGE [14] learns aggregators by sampling
and aggregating neighbor information. GAT [41] assigns differ-
ent edge weights based on node features during aggregation. For
better efficiency, FastGCN [4] performs importance sampling on
each layer to sample a fixed number of nodes and APPNP [22]
uses the relationship between GCN and PageRank [36] to derive
an improved propagation scheme based on personalized PageRank.

There are many other graph neural models, we please refer the
readers to recent surveys [46, 52] for a more comprehensive review.
But almost all these GNNs treat the observed graphs, derived from
noisy data or modelling assumptions, as ground-truth information,
which significantly limits their capability to handle uncertainty in
the graph structure.

2.2 Graph Structure Learning
Graph structure learning is not a newly born topic, and there has
been a considerable body of previous work in network science
[16, 26, 28, 32] dedicated to it. To process raw graph data into more
accurate and nuanced estimates of graph quantities, some meth-
ods learn graph structure from measurements of the evolutional
graphed dynamical systems such as coupled oscillators [43] or
spreading processes [24]. There are also work [3, 15, 42] on error
correction strategies for missing or extraneous nodes. However, the
goal of these work departs from graph representation learning.

As GNNs become the most eye-catching tools for graph rep-
resentation learning, several efforts have been made to combine
graph structure learning and GNNs for boosting performance of
downstream tasks. Bayesian GCNN [51] views the observed graph
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Figure 1: Overall framework of our proposed model GEN, where two rounds of iterative optimization are taken as an example.
Note that the probability matrix Ω is the parameter of structure model, while true-positive rate 𝛼 and false-positive rate 𝛽 are
the parameters of observation model. In the heat maps of matrices Ω and Q, the darker the color, the greater the probability.

as a realization from random graphs and uses its adjacency matrix
in conjunction with features to perform joint optimization. LDS
[10] presents a new approach for jointly learning the graph and the
parameters of GNNs by approximately solving a bilevel program-
ming. Pro-GNN [19] reconstructs the graph by applying low rank,
sparsity and feature smoothness regularizers to reduce the negative
effects of adversarial structure. Geom-GCN [37] utilizes network
geometry to bridge the gap between observed graph and latent
continuous space, then redefines local structure to aggregation.
However, the graphs learned by these methods are not constrained
by generation principles to meet the mechanism of GNNs, and more
unreliable since only a part of available information is injected.

3 GEN: THE PROPOSED MODEL
In this section, we elaborate the proposed graph estimation neural
networks GEN, a novel graph structure learning framework for
GNNs based on Bayesian inference. We first present the problem
statement, then begin with the overview of GEN. Subsequently,
we zoom into the details of graph estimator with our structure
and observation models. Lastly, we illustrate the jointly iterative
optimization of graph structure and GNNs parameters.

3.1 Problem Statement
Before we make the problem statement, we first introduce some
notations and basic concepts.

Let G = (V, E,X) be a graph, where V is the set of 𝑁 nodes
{𝑣1, 𝑣2, · · · , 𝑣𝑁 }, E is the set of edges, X = [x1, x2, · · · , x𝑁 ] ∈
R𝑁×𝐷 represents the node feature matrix and x𝑖 is the feature
vector of node 𝑣𝑖 . The edges describe the relations between nodes
and can be represented by an adjacency matrix A ∈ R𝑁×𝑁 , where
𝐴𝑖 𝑗 denotes the relation between nodes 𝑣𝑖 and 𝑣 𝑗 . Following the
common semi-supervised node classification setting, only a small
part of nodes V𝐿 = {𝑣1, 𝑣2, · · · , 𝑣𝑙 } are associated with correspond-
ing labels Y𝐿 = {𝑦1, 𝑦2, · · · , 𝑦𝑙 }, where 𝑦𝑖 is the label of 𝑣𝑖 .

Given graph G = (V, E,X) and the partial labels Y𝐿 , the goal
of graph structure learning for GNNs is to simultaneously learn a
optimal adjacency matrix S ∈ S = [0, 1]𝑁×𝑁 and the GNN param-
eters Θ to improve node classification performance for unlabeled
nodes. The objective function can be formulated as

min
Θ,S

L(A,X,Y𝐿) =
∑

𝑣𝑖 ∈V𝐿

ℓ (𝑓Θ (X, S)𝑖 , 𝑦𝑖 ) , (1)

where 𝑓Θ : V𝐿 → Y𝐿 is the function learned by GNNs, 𝑓Θ (X, S)𝑖
is the prediction of node 𝑣𝑖 and ℓ (·, ·) is to measure the difference
between prediction and true label, such as cross entropy.

3.2 Overview
Most GNNs process the observed graph as a ground-truth depiction
of the relationship between nodes, but often the data we face is im-
perfect, where spurious edges may be included or other edges with
strong relationship may be missing. Even if the observed graph
is clean, it is not jointly optimized with GNNs thus may not be
compatible with their properties. These defects of the observed
graph can cause the performance of GNNs to drop rapidly. Thus,
one natural strategy is to optimize graph structure and GNNs simul-
taneously. However, the existing graph structure learning methods
for GNNs do not consider the internal graph generation mechanism
and mainly use one-sided feature similarity, resulting in the learned
graph vulnerable to noisy and missing data.

In this work, we aim at estimating appropriate graphs for GNNs
by constructing a probabilistic method GEN that mainly consists of
two modules, i.e., structure and observation models. GEN explicitly
constrains the graph generation by the structure model to meet
the properties of GNNs and utilizes multifaceted information as
observations of the optimal graph structure with observation model
where multi-order neighborhood similarity is innovatively injected.
The illustration of GEN is shown in Figure 1. Though there exist
a number of different GNN methods, we focus on learning graph
structure for Graph Convolutional Networks (GCN) [21]. Please
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note that it is straightforward to extend the proposed framework
to other GNNs [41, 45].

To infer the graph structure for GCN, we have the following
two insights. (1) The underlying graph generation that facilitates
the node classification performance of GCN tends to maintain ho-
mophily among neighbors. (2) The optimal graph might be mea-
sured in multiple ways using observed interactions, feature similar-
ity andmulti-order neighborhood similarity, which are multifaceted
observations that reflect the optimal graph from different views.
These observations may be error-prone when viewed separately,
but can be ensembled to circumvent bias. Therefore, our GEN firstly
utilizes available information to construct an observation set for
the optimal graph, then estimates the graph based on these obser-
vations with explicitly constraining the underlying structure.

Specifically, we feed the original graph A and node feature X
into 𝑙-layer vanilla GCN. In the light of that node representations
in different layers reveal multi-order neighborhood information,
we utilize node representations H(𝑖) of every layer 𝑖 to construct
𝑘-Nearest Neighbor (𝑘NN) graph O(𝑖) as the observation of optimal
graph, as well as the original graph A, to form observation set O =

{A,O(0) ,O(1) , · · · ,O(𝑙) }. Afterwards, we put these observations O,
predictions Z and labelsY𝐿 into graph estimator, which is based on
our proposed structure and observation models to infer adjacency
matrix Q with underlying community structure, where𝑄𝑖 𝑗 denotes
the probability that there is an edge between node 𝑣𝑖 and node
𝑣 𝑗 . The entire framework is implemented by iterative optimization
between GCN parameters and graph estimation. Firstly, we tune
GCN parameters until the cross-entropy loss converges. Secondly,
we hold GCN parameters constant to obtain estimated adjacency
matrix Q based on Expectation-Maximization (EM) algorithm, and
set a threshold 𝜀 on Q to get estimated graph S. Lastly, we feed
the estimated graph S back to the vanilla GCN to perform the next
round of iterative optimization. The better estimated graph would
then force GCN to produce more accurate observations, and the
process is repeated. During such iterations, the learning of GCN
and the inference of graph structure enhance each other.

It is worth noting that the estimated graph is not only generated
by the original graph, but also by prior knowledge and multifaceted
information. Thus the proposed GEN alleviates the problem of
missing or erroneous data from three aspects. (1) Structure model
introduces prior knowledge to constrain community structure of
the estimated graph, thereby prompting the completion of missing
edges inside communities and the deletion of erroneous edges
between communities. (2)We construct kNN graphs as observations
to infer the optimal graph, and different kNN graphs capture local
structures with different orders. Even original graph (first-order
structure) may be erroneous, other structures can provide auxiliary
information. Based on these multifaceted observations, informative
edges may appear multiple times, while erroneous edges are only
observed accidentally. (3) With the iterative optimization of GEN,
updated node embeddings are learned from the estimated graph.
Therefore, the optimization of graph structure and GNN parameters
achieve mutual reinforcement, which further resolves the problem.

3.3 Observation Construction
Without loss of generality, we choose representative GCN as back-
bone. To begin with, we feed the original graph G = (V, E,X) into
vanilla GCN to construct the initial observation set O for subse-
quent graph estimation.

Specifically, GCN follows a neighborhood aggregation strategy,
which iteratively updates the presentation of a node by aggregating
representations of its neighbors. Formally, the 𝑘𝑡ℎ layer aggregation
rule of GCN is

H(𝑘) = 𝜎

(
D̃− 1

2 ÃD̃− 1
2 H(𝑘−1)W(𝑘)

)
. (2)

Here, Ã is the normalized adjacency matrix and �̃�𝑖𝑖 =
∑

𝑗 �̃�𝑖 𝑗 . W(𝑘)

is a layer-wise trainable weight matrix, and 𝜎 denotes an activation
function. H(𝑘) ∈ R𝑁×𝑑 is the matrix of node representations in the
𝑘𝑡ℎ layer, and H(0) = X. In terms of 𝑙-layer GCN, the activation
function of the last layer 𝑙 is row-wise softmax and predictions
Z = H(𝑙) . The GCN parameters Θ = (W(1) ,W(2) , · · · ,W(𝑙) ) can
be trained via gradient descent.

The current GCN acts directly on the observed graph A which
is extracted from the real-world complex systems and is usually
noisy. To estimate an optimal graph structure for GCN, we need
to construct multifaceted observations that could be ensembled to
resist bias. Fortunately, after 𝑘 iterations of aggregation, node rep-
resentation captures the structural information within its 𝑘-order
graph neighborhood which provides local to global information. On
the other hand, node pairs with similar neighborhood are possibly
far away in the graph but apt to the same communities. If these in-
formative node pairs are employed, they could provide useful clues
for downstream classification. Therefore, we attempt to connect
these distant but similar nodes in our estimated graph to enhance
the classification performance of GCN.

Specifically, we fix the GCN parameters Θ and take out the
node representationsH = {H(0) ,H(1) , · · · ,H(𝑙) } to construct 𝑘NN
graphs {O(0) ,O(1) , · · · ,O(𝑙) } as observations of the optimal graph,
where O(𝑖) is the adjacency matrix of 𝑘NN graph generated by H(𝑖)

and characterizes the similarity of 𝑖-order neighborhood. Obviously,
the original graph A is also an important external observation of
the optimal graph, thus we combine it with 𝑘NN graphs to form
the complete observation set O = {A,O(0) ,O(1) , · · · ,O(𝑙) }. These
observations reflect the optimal graph structure from varied views
and can be ensembled to infer a more reliable graph structure.

As preliminary preparations, these observations O, predictions Z
and labelsY𝐿 will be fed into estimator to accurately infer the poste-
rior distribution of the graph structure. In the following subsection,
we will introduce the inference in detail.

3.4 Graph Estimator
Until now, the question we would like to answer is: given these
available observations O, what is the best estimated graph for GCN?
These observations reveal the optimal graph structure from differ-
ent perspectives, but they may be unreliable or incomplete, and
we do not have a priori that how accurate any of the information
is. Under this daunting circumstance, it is not straightforward to
answer this question directly, but it is relatively easy to answer the
reverse question. Imagining that a graph with community structure
has been generated, we could calculate the probability of mapping
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this graph to these observations. If we can do this, Bayesian infer-
ence allows us to invert the calculation and compute the posterior
distribution of graph structure, hence our goal is achieved. The
procedure is formalized as follows.

3.4.1 Structure Model. Let us denote the optimal graph which we
are trying to estimate, as a symmetric adjacency matrix G, and
we firstly propose a structure model to represent the underlying
structure generation of optimal graph G.

Considering the local smoothing nature of GCN, a good choice is
Stochastic Block Model (SBM) which is widely used for community
detection and applicable to model a graph that has relatively strong
community structure [20, 38]. The values of within- and between-
community parameters in the fitted block model can constrain the
homophily of the estimate. Although there are also other SBM
variants, e.g., degree-corrected SBM [20]. But in this paper, the
effectiveness of vanilla SBM as structure model has been verified.
We leave more complex structure models as future work and believe
it will further improve performance.

Particularly, this process of generating optimal graph G takes the
form of a probability distribution 𝑃 (G|Ω,Z,YL). Here, Ω represents
the parameters of SBM which assumes that the probability of an
edge between nodes depends only on their communities. For in-
stance, the probability of an edge between node 𝑣𝑖 with community
𝑐𝑖 and node 𝑣 𝑗 with community 𝑐 𝑗 is Ω𝑐𝑖𝑐 𝑗 . Therefore, Ω indicates
the probabilities of within- and between-community connections.
Given parameters Ω, predictions Z and labels Y𝐿 , the probability
of generating graph G is formalized as

𝑃 (G|Ω,Z,Y𝐿) =
∏
𝑖< 𝑗

Ω
𝐺𝑖 𝑗

𝑐𝑖𝑐 𝑗 (1 − Ω𝑐𝑖𝑐 𝑗 )1−𝐺𝑖 𝑗 , (3)

where

𝑐𝑖 =

{
𝑦𝑖 if 𝑣𝑖 ∈ V𝐿,

𝑧𝑖 otherwise, (4)

which means that generating an edge between node 𝑣𝑖 and 𝑣 𝑗 in
optimal graph G depends only on the probability Ω𝑐𝑖𝑐 𝑗 related to
community identifications 𝑐𝑖 and 𝑐 𝑗 . Here, in order to obtain more
accurate community identifications, we use the label-corrected
predictions that replace the community identifications of nodes in
training set directly with labels.

3.4.2 Observation Model. Please note that the structure model rep-
resents our prior knowledge or constrain about the underlying
structure before observing any data. In fact, in what form the opti-
mal graph structure exists is a mystery, and the things that can be
done are to combine its external observations to infer it.

Therefore, we introduce an observation model to describe how
the optimal graph G maps onto observations, which assumes that
the observations of edges are independent identically distributed
Bernoulli random variables, conditional on the presence or absence
of an edge in the optimal graph. This assumption is well accepted
in literature, e.g., community detection [30] and graph generation
[39, 50], which has been proven to be feasible.

𝑃 (O|G, 𝛼, 𝛽) is the probability of these observations O given the
optimal graph G and model parameters 𝛼 and 𝛽 . Specifically, we
parameterize the possible observations by two probabilities: the
true-positive rate 𝛼 , which is the probability of observing an edge
where one truly exists in the optimal graph G, and the false-positive

rate 𝛽 , which is the probability of observing an edge where none
exists in the optimal graph G. The remaining possibilities of true-
negative and false-negative rates are 1−𝛽 and 1−𝛼 , respectively. Let
us suppose that out of the𝑀 (i.e., |O|) observations, we observe an
edge on 𝐸𝑖 𝑗 of them, and no edge on the remaining𝑀−𝐸𝑖 𝑗 . Plugging
these definitions, we can write the specific form of 𝑃 (O|G, 𝛼, 𝛽) as

𝑃 (O |G, 𝛼, 𝛽) =
∏
𝑖< 𝑗

[
𝛼𝐸𝑖 𝑗 (1−𝛼)𝑀−𝐸𝑖 𝑗]𝐺𝑖 𝑗 ×

[
𝛽𝐸𝑖 𝑗 (1−𝛽)𝑀−𝐸𝑖 𝑗 ]1−𝐺𝑖 𝑗

. (5)

If there is truly an edge in optimal graph G, the probability of
observing 𝐸𝑖 𝑗 edges between node 𝑣𝑖 and 𝑣 𝑗 out of total𝑀 observa-
tions is succinctly written as 𝛼𝐸𝑖 𝑗 (1−𝛼)𝑀−𝐸𝑖 𝑗 . If not, the probability
is 𝛽𝐸𝑖 𝑗 (1 − 𝛽)𝑀−𝐸𝑖 𝑗 .

3.4.3 Graph Estimation. Having clearly clarified our models for
structure and observation, we now present our graph estimation
process based on Bayesian inference.

It is difficult to calculate posterior probability 𝑃 (G,Ω, 𝛼, 𝛽 |O,Z,Y𝐿)
for optimal graph directly. However, combining our above models
and applying Bayes rule, we then have

𝑃(G,Ω, 𝛼, 𝛽 |O,Z,Y𝐿) =
𝑃(O |G, 𝛼, 𝛽)𝑃(G |Ω,Z,Y𝐿)𝑃(Ω)𝑃(𝛼)𝑃(𝛽)

𝑃 (O,Z,Y𝐿)
, (6)

where 𝑃 (Ω), 𝑃 (𝛼), 𝑃 (𝛽) and 𝑃 (O,Z,Y𝐿) are the probabilities of the
parameters and available data, which we assume to be independent.

We get an expression for the posterior probability of the param-
eters Ω, 𝛼 and 𝛽 , by summing all possible values of optimal graph
G:

𝑃 (Ω, 𝛼, 𝛽 |O,Z,Y𝐿) =
∑
G

𝑃 (G,Ω, 𝛼, 𝛽 |O,Z,Y𝐿). (7)

Maximizing this posterior probability w.r.t. Ω, 𝛼 and 𝛽 will give
maximum-a-posteriori (MAP) estimates for these parameters. Based
on these MAP estimates, we can calculate the estimated adjacency
matrix Q for optimal graph G

𝑄𝑖 𝑗 =
∑
G

𝑞(G)𝐺𝑖 𝑗 , (8)

where quantity 𝑄𝑖 𝑗 is the posterior probability that there is an
edge between nodes 𝑣𝑖 and 𝑣 𝑗 , representing our confidence about
whether the edge exists.

3.5 Iterative Optimization
Jointly optimizing GCN parameters Θ and estimated adjacency
matrix Q is challenging. And the dependence between them exacer-
bates the difficulty. In this work, we use an alternating optimization
schema to iteratively update Θ and Q.

3.5.1 Update Θ. For semi-supervised node classification, we eval-
uate the cross-entropy error over all labeled examples Y𝐿

min
Θ

L(A,X,Y𝐿) = −
∑

𝑣𝑖 ∈V𝐿

y𝑖 ln z𝑖 , (9)

which is a typical GCN optimization problem and we can learn
parameters Θ via stochastic gradient descent.

3.5.2 Update Q. To update the estimated adjacency matrix Q, we
maximize the Eq. (7) with Expectation-Maximization (EM) algo-
rithm [7, 29, 30].
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E-step. Since it is convenient to maximize not the probability
itself but its logarithm, we apply Jensen’s inequality to the log of
Eq. (7)

log 𝑃 (Ω, 𝛼, 𝛽 |O,Z,Y𝐿) ≥
∑
G
𝑞(G) log 𝑃 (G,Ω, 𝛼, 𝛽 |O,Z,Y𝐿)

𝑞(G) , (10)

where 𝑞(G) is any nonnegative function of G satisfying
∑

G 𝑞(G) =
1, which can be seen as a probability distribution over G.

The right-hand side of the inequality Eq. (10) is maximized when
the exact equality is achieved

𝑞(G) = 𝑃 (G,Ω, 𝛼, 𝛽 |O,Z,Y𝐿)∑
G 𝑃 (G,Ω, 𝛼, 𝛽 |O,Z,Y𝐿)

. (11)

Substituting Eq. (3) and Eq. (5) into Eq. (11), and eliminating the
constants in fraction, we find the following expression for 𝑞(G):

𝑞 (G) =

∏
𝑖< 𝑗

[
Ω𝑐𝑖𝑐 𝑗

𝛼
𝐸𝑖 𝑗 (1−𝛼)𝑀−𝐸𝑖 𝑗

]𝐺𝑖 𝑗
[
(1−Ω𝑐𝑖𝑐 𝑗

)𝛽𝐸𝑖 𝑗 (1−𝛽)𝑀−𝐸𝑖 𝑗
]1−𝐺𝑖 𝑗

∑
G
∏

𝑖< 𝑗

[
Ω𝑐𝑖𝑐 𝑗

𝛼
𝐸𝑖 𝑗 (1−𝛼)𝑀−𝐸𝑖 𝑗

]𝐺𝑖 𝑗
[
(1−Ω𝑐𝑖𝑐 𝑗

)𝛽𝐸𝑖 𝑗 (1−𝛽)𝑀−𝐸𝑖 𝑗
]1−𝐺𝑖 𝑗

=
∏
𝑖< 𝑗

[
Ω𝑐𝑖𝑐 𝑗

𝛼
𝐸𝑖 𝑗 (1−𝛼)𝑀−𝐸𝑖 𝑗

]𝐺𝑖 𝑗
[
(1−Ω𝑐𝑖𝑐 𝑗

)𝛽𝐸𝑖 𝑗 (1−𝛽)𝑀−𝐸𝑖 𝑗
]1−𝐺𝑖 𝑗

Ω𝑐𝑖𝑐 𝑗
𝛼
𝐸𝑖 𝑗 (1−𝛼)𝑀−𝐸𝑖 𝑗 + (1−Ω𝑐𝑖𝑐 𝑗

)𝛽𝐸𝑖 𝑗 (1−𝛽)𝑀−𝐸𝑖 𝑗
.

(12)
Then further maximizing the right-hand side of Eq. (10) will give
us the MAP estimates.

M-step. We can find the maximum over the parameters by differ-
entiating. Taking derivatives of the right-hand side of Eq. (10) while
holding 𝑞(G) constant, and assuming that the priors are uniform,
we have ∑

G
𝑞(G)

∑
𝑖< 𝑗

[
𝐺𝑖 𝑗

Ω𝑐𝑖𝑐 𝑗

−
1 −𝐺𝑖 𝑗

1 − Ω𝑐𝑖𝑐 𝑗

]
= 0, (13)

∑
G

𝑞(G)
∑
𝑖< 𝑗

𝐺𝑖 𝑗

[
𝐸𝑖 𝑗

𝛼
−
𝑀 − 𝐸𝑖 𝑗

1 − 𝛼

]
= 0, (14)

∑
G

𝑞(G)
∑
𝑖< 𝑗

(
1 −𝐺𝑖 𝑗

) [𝐸𝑖 𝑗
𝛽

−
𝑀 − 𝐸𝑖 𝑗

1 − 𝛽

]
= 0. (15)

The solution of these equations gives us MAP estimates for Ω, 𝛼
and 𝛽 . Note that Eq. (13) depends only on the SBM and its solution
gives the parameter values for structure model. Similarly, Eq. (14)
and Eq. (15) depend only on the observation model.

For specific calculations, we swap the order of the summations
and find that

Ω𝑟𝑠 =


𝑀𝑟𝑠

𝑛𝑟𝑛𝑠
if 𝑟 ≠ 𝑠,

2𝑀𝑟𝑟

𝑛𝑟 (𝑛𝑟−1) otherwise,
(16)

where 𝑛𝑟 =
∑
𝑖 𝛿𝑐𝑖 ,𝑟 and 𝑀𝑟𝑠 =

∑
𝑖< 𝑗 𝑄𝑖 𝑗𝛿𝑐𝑖 ,𝑟𝛿𝑐 𝑗 ,𝑠 . Thus Eq. (16)

has the simple interpretation that the probability Ω𝑟𝑠 of an edge
between community 𝑟 and 𝑠 is the average probabilities of the indi-
vidual edges between all nodes in these two communities. Similar
calculations are done for 𝛼 and 𝛽

𝛼 =

∑
𝑖< 𝑗 𝑄𝑖 𝑗𝐸𝑖 𝑗

𝑀
∑
𝑖< 𝑗 𝑄𝑖 𝑗

, (17)

𝛽 =

∑
𝑖< 𝑗

(
1 −𝑄𝑖 𝑗

)
𝐸𝑖 𝑗

𝑀
∑
𝑖< 𝑗

(
1 −𝑄𝑖 𝑗

) . (18)

Algorithm 1:Model training for GEN
Input :adjacency matrix A, feature matrix X, labels Y𝐿

𝑘 in 𝑘NN, tolerance 𝜆, threshold 𝜀, iterations 𝜏
Output :estimated graph S, GCN parameters Θ

1 Initialize Θ, Ω, 𝛼 and 𝛽 ;
2 for 𝑖 = 1 to 𝜏 do
3 Update Θ with Eq. (9);
4 Construct the observation set O with 𝑘NN graph;
5 while |𝛼 − 𝛼𝑜𝑙𝑑 | > 𝜆 or |𝛽 − 𝛽𝑜𝑙𝑑 | > 𝜆 do
6 Ω𝑜𝑙𝑑 = Ω, 𝛼𝑜𝑙𝑑 = 𝛼 , 𝛽𝑜𝑙𝑑 = 𝛽 ;
7 Calculate Ω, 𝛼 and 𝛽 with Eq. (16), (17) and (18);
8 Update Q with Eq. (19);

9 Extract S(𝑖) from Q by threshold 𝜀 with Eq. (21);
A = S(𝑖) ;

10 return S(𝜏) and Θ;

To calculate the value of 𝑄𝑖 𝑗 , we substitute Eq. (12) into Eq. (8):

𝑄𝑖 𝑗 =
Ω𝑐𝑖𝑐 𝑗𝛼

𝐸𝑖 𝑗 (1 − 𝛼)𝑀−𝐸𝑖 𝑗

Ω𝑐𝑖𝑐 𝑗𝛼
𝐸𝑖 𝑗 (1−𝛼)𝑀−𝐸𝑖 𝑗 + (1−Ω𝑐𝑖𝑐 𝑗 )𝛽𝐸𝑖 𝑗 (1−𝛽)𝑀−𝐸𝑖 𝑗

. (19)

The posterior distribution 𝑞(G) can be conveniently rewritten in
terms of 𝑄𝑖 𝑗 as

𝑞(G) =
∏
𝑖< 𝑗

𝑄
𝐺𝑖 𝑗

𝑖 𝑗

(
1 −𝑄𝑖 𝑗

)1−𝐺𝑖 𝑗 . (20)

To put that another way, the probability distribution over optimal
graph is the product of independent Bernoulli distributions of the
individual edges, with Bernoulli parameters𝑄𝑖 𝑗 which capture both
the graph structure itself and the uncertainty in that structure.

This leads to a natural EM algorithm for determining the values
of the parameters and posterior distribution over possible graph
structures. We perform the E-step by maximizing first over 𝑞(G)
with the parameters held constant; then go to the M-step over
parameters Ω, 𝛼 and 𝛽 with 𝑞(G) held constant; and repeat these
iterations until convergence.

Sparsification. Note that the elements in estimated adjacency
matrix Q range between [0, 1]. However, a fully connected graph
structure is not only computationally expensive but also makes
little sense for most applications. We hence proceed to extract a
sparse adjacency matrix S from G, by masking off those elements
smaller than certain non-negative threshold 𝜀:

𝑆𝑖 𝑗 =

{
𝑄𝑖 𝑗 if 𝑄𝑖 𝑗 > 𝜀,

0 otherwise. (21)

3.5.3 Training Algorithm. With the aforementioned updating and
inference rules, the training algorithm is shown in Algorithm 1.
Specifically, we first randomly initialize all the parameters for GEN.
Then we update Θ to form observations, and estimate S based
on observations to boost the optimization of Θ in turn. Through
such alternative and iterative updates, the more accurate estimated
graph S leads to better optimized parameters Θ, while the better Θ
produces more precise observations for estimating S.
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Table 1: Description of datasets.

Dataset Homophily Nodes Edges Classes Features Val/Test nodes

Cora 0.83 2, 708 5, 429 7 1, 433 500/1, 000
Citeseer 0.71 3, 327 4, 732 6 3, 703 500/1, 000
Pubmed 0.79 19, 717 44, 338 3 500 500/1, 000

Chameleon 0.25 2, 277 36, 101 5 2, 325 500/1, 000
Squirrel 0.22 5, 201 217, 073 5 2, 089 500/1, 000
Actor 0.24 7, 600 33, 544 5 931 500/1, 000

The complexity of each iteration inside GEN mainly involves
the update of Θ, the construction of 𝑘NN graphs and the inference
of S. We implement an efficient GPU-based two-layer GCN using
sparse-dense matrix multiplication. Therefore, the computational
complexity for Θ optimization is O(|E|𝐷𝑑𝑐), where 𝑐 represents
the number of classes. Regarding 𝑘NN graph construction, since
both the calculation of all nodes and the construction of different
𝑘NN graphs can be paralleled, the complexity is O(𝑁𝑑 + 𝑁 log𝑁 ).
It is worth noting that it could be optimized to O(𝑑 log𝑁 ) using
Ball-Tree [35] which we leave for future work. In terms of infer-
ence, we implement EM algorithm using array matrix in Numpy
library to achieve acceleration, and its complexity is O(𝑁𝑖), where
𝑖 denotes the number of steps. In practice, the value of 𝑖 is always
small. In summary, the complexity of 𝜏-iteration GEN is around
O(𝜏 ( |E |𝐷𝑑𝑐 + 𝑁 (𝑑 + log𝑁 + 𝑖))), while the complexity of existing
graph structure learning methods [10, 19] is O(𝜏𝑁 2).

4 EXPERIMENTS
In this section, we evaluate the effectiveness of GEN via exten-
sive experiments. Particularly, we compare GEN with the-state-of-
the-art methods on semi-supervised node classification task, and
present the change of prediction confidence and iterative optimiza-
tion process. We further analyze the mechanism and properties of
GEN. Lastly, we investigate the hyper-parameter sensitivity.

4.1 Experimental Setup
4.1.1 Datasets. We validate the proposed GEN on six open graph
datasets. The statistics of the datasets are summarized in Table 1.

• Citation networks [21]. Cora, Citeseer and Pubmed are bench-
mark citation networks datasets. In these networks, nodes rep-
resent papers, and edges denote the citation relationship. Node
features are bag-of-words representation of papers, and labels
are academic fields.

• Wikipedia networks [37]. Chameleon and Squirrel are two
page-page networks in Wikipedia with specific topics. In those
datasets, nodes are web pages, and edges represent hyper-links.
Node features are informative nouns in pages, and labels corre-
spond to the monthly traffic of the pages.

• Actor co-occurrence network [37]. This dataset is the actor-
only induced subgraph of the fim-director-actor-writer network.
Each node represents an actor, and edges denote the collabora-
tions. Node features are keywords in Wikipedia and labels are
the types of actors.

Note that according to homophily, these benchmark datasets are
divided into assortative graphs (i.e., Cora, Citeseer and Pubmed)
and disassortative graphs (i.e., Chameleon, Squirrel and Actor). For
challenging disassortative Chameleon, Squirrel and Actor datasets,
we transform the supervised setting in original paper [37] into the
typical semi-supervised train/val/test split.

4.1.2 Baselines. To evaluate the effectiveness of GEN, we compare
it with three categories of representative GNNs, including three
spectral-based methods (i.e., SGC [45], GCN [21] and ChebNet
[6]), three spatial-based methods (i.e., GAT [41], APPNP [22] and
GraphSAGE [14]) and three graph structure learning based methods
(i.e., LDS [10], Pro-GNN [19] and Geom-GCN [37]).

4.1.3 Implementation. We implement the proposed GENwith deep
learning library PyTorch1. All experiments are conducted on a Linux
server with GPU (NVIDIA Tesla M40) and CPU (Intel Xeon E5-2680).
The Python and PyTorch versions are 3.6.8 and 1.5.0, respectively.

For all datasets, we utilize two-layer GCN as backbone of our
model, and train it for 200 epochs using Adam optimizer with an
initial learning rate of 0.01 and a weight decay of 5e-4. We set ReLU
as the activation function and apply a dropout rate of 0.5 to further
prevent overfitting. For the grid search space of hyper-parameters,
embedding dimension 𝑑 is chosen from {8, 16, 32, 64, 128}, 𝑘 of 𝑘NN
is tuned from 3 to 15, tolerance 𝜆 is searched in {0.1, 0.01, 0.001}
and threshold 𝜀 is tuned amongst {0.1, 0.2, · · · , 0.9}. Note that we
fix the optimization iterations 𝜏 to 50, and choose the model with
highest validation accuracy for test.

We adopt the implementations of SGC, GCN, GAT, APPNP and
GraphSAGE from the PyTorch Geometric library [8] in all experi-
ments. For the remaining baselines ChebNet, LDS, Pro-GNN and
Geom-GCN, we use the source codes provided by the authors. And
we perform a hyper-parameter search for all models on validation
set. For fairness, the size of search space for their common hyper-
parameters is the same, including embedding dimension, initial
learning rate, weight decay and dropout rate. In terms of other
hyper-parameters, we follow the settings in their original papers,
and carefully tune them to achieve optimal performance.

4.2 Node Classification
4.2.1 Performance Comparison. We evaluate the semi-supervised
node classification performance of GEN against state-of-the-art
baselines. In addition to the 20 labels per class training explored
in previous work, we also evaluate the performance under more

1https://pytorch.org/
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Table 2: Quantitative results (%±𝜎) on node classification. (L/C: the number of labels per class; bold: best)

Datasets L/C SGC GCN ChebNet GAT APPNP GraphSAGE LDS Pro-GNN Geom-GCN GEN

Cora
20 80.9±0.4 81.7±0.8 81.9±0.4 82.3±1.0 83.3±1.0 80.1±0.5 82.5±1.2 80.9±0.9 63.7±0.3 83.6±0.4
10 75.5±0.7 74.6±0.7 72.5±1.0 76.9±0.9 75.6±2.4 72.9±1.1 77.1±3.1 76.9±0.8 47.1±0.6 77.8±0.7
5 72.8±1.0 71.0±0.7 66.6±2.3 75.0±0.7 72.9±2.4 68.4±1.7 75.7±2.9 75.1±0.5 22.5±1.4 76.2±1.3

Citeseer
20 71.9±0.8 70.9±0.6 70.0±0.9 72.0±0.9 72.0±0.5 71.8±0.7 72.3±1.1 68.8±0.8 65.6±0.8 73.8±0.6
10 68.6±1.0 66.6±1.0 67.3±1.1 68.4±1.4 70.2±0.8 68.0±1.0 70.4±1.6 69.1±0.6 48.8±0.6 72.4±0.5
5 61.3±1.9 53.5±0.8 51.7±2.3 61.8±1.9 54.2±0.5 55.4±1.0 68.1±0.5 56.6±1.5 28.3±3.6 70.4±2.7

Pubmed
20 77.1±2.6 79.4±0.4 78.2±1.0 77.9±0.6 79.6±0.2 73.6±2.2 78.2±1.8 78.0±0.8 77.2±0.3 80.9±0.9
10 71.9±2.3 73.7±0.4 71.5±0.8 71.1±1.4 73.5±0.9 70.6±1.4 74.4±1.5 72.7±0.6 69.3±0.3 75.6±1.1
5 68.7±0.4 73.0±1.4 69.4±1.4 70.2±0.7 73.8±1.1 70.2±1.2 72.8±1.3 70.6±1.7 68.4±0.4 74.9±2.0

Chameleon
20 49.1±0.9 49.1±1.1 37.0±0.5 46.4±1.4 46.1±0.7 43.7±2.0 49.4±1.1 50.3±0.6 35.7±0.5 50.4±0.9
10 44.4±1.0 44.2±0.7 32.5±0.8 45.0±2.0 39.4±0.7 41.7±1.9 44.9±1.3 45.5±1.2 31.6±0.4 45.6±1.1
5 39.3±1.2 39.5±0.7 33.2±0.8 39.9±1.8 36.9±1.0 35.9±0.8 40.5±1.5 41.0±1.8 28.5±0.5 41.4±2.3

Squirrel
20 34.7±1.5 35.0±0.6 21.2±2.0 27.2±2.9 33.6±1.1 28.3±2.0 30.1±0.4 33.4±2.4 25.4±0.6 35.5±1.1
10 31.8±1.3 33.0±0.4 18.8±1.2 27.1±1.2 31.4±2.2 25.9±2.9 29.4±0.9 32.9±0.4 21.6±0.3 33.4±1.1
5 29.1±0.7 31.3±1.3 18.1±0.7 24.1±2.5 27.0±2.4 24.9±2.9 27.1±1.4 28.2±1.9 22.6±0.3 32.7±2.7

Actor
20 22.0±1.3 21.7±1.6 26.7±1.1 23.8±3.6 29.7±0.7 28.9±1.1 27.0±1.4 21.5±1.7 20.7±0.5 35.3±0.6
10 22.0±2.8 20.8±1.0 22.3±1.1 22.7±3.6 28.0±0.8 22.2±2.5 25.7±1.3 22.2±0.7 20.7±0.5 31.3±2.2
5 24.2±2.3 21.8±2.0 21.4±1.0 21.4±2.4 22.4±2.0 23.1±3.6 23.8±0.8 20.9±0.5 24.1±0.4 30.5±2.7

severely limited data scenarioswhere only 10 or 5 labels per class are
available. In 5 and 10 labels per class cases, we construct the training
set by using the first 5 or 10 labels in the original partition, while
keeping the validation and testing sets unchanged. In Table 2, we
report the mean and standard deviation results over 10 independent
trials with different random seeds.

Based on the results, we make the following observations.

• GEN consistently outperforms other baselines on six datasets,
especially under reduced-label and disassortative settings, which
demonstrates that our ingeniously designed graph estimation
framework can boost node classification performance in a robust
manner. We find that as the label rate and homophily decrease,
the performance of GNNs drops quickly and the improvement
of GEN becomes more pronounced. These phenomena are in
line with our expectations that noisy or sparse observed graphs
prevent GNNs from aggregating effective information, and our
estimated graphs alleviate this issue.

• The overwhelming performance superiority of GEN over back-
bone GCN implies that GEN is capable of estimating suitable
structure, so that the graph structure estimation and the parame-
ter optimization of GCN reinforce each other.

• In comparison with other graph structure learning based meth-
ods, our performance improvement illustrates that explicitly con-
straining the community structure and making full use of multi-
faceted information help learn better graph structure and more
robust GCN parameters. Note that Geom-GCN does not perform
well in most cases. One feasible reason is that it may fit the su-
pervised settings in its original papers, where more supervised
information is injected into parameter learning, and may not
adapt well to the semi-supervised setting.
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Figure 2: Boxplots of the prediction confidence w.r.t nodes
in training and test set for GCN and GEN on (a) Cora and
(b) Chameleon datasets. The box indicates 25-75 percentiles;
the median is shown by a blue horizontal line; the star rep-
resents the mean value. The whiskers extend to the small-
est and largest data points that are not outliers. To explain
more intuitively, for each box we visualize the prediction
confidence of 50 nodes with pink circles.

4.2.2 Prediction Confidence. To provide further insight to the per-
formance improvement of GEN over backbone GCN, we analyze
the change of prediction confidence. Specifically, for every training
and test set node 𝑣𝑖 in Cora and Chameleon datasets, we select the
values with the true class 𝑦𝑖 from the final prediction vectors of
GCN and GEN, and plot them as boxes in Figure 2.

From plots, we find that for Cora or more challenging Chameleon
datasets, the prediction confidence obtained on the estimated graphs
is much higher than original graphs. We conjecture that injecting
multi-order neighborhood similarity into graph structure learning
makes the learned graph portray more informative node pairs, so
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(a) Original graph (b) Neighbors in original graph (c) Estimated graph (d) Neighbors in estimated graph

Figure 3: Visualization of the graph structures for (a) original graph and (c) estimated graph, where color indicates the com-
munities of nodes and the node diameter is proportional to the PageRank score. We fade the remaining nodes and edges to
emphasize the neighbors of selected node in (b) original graph and (d) estimated graph.
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Figure 4: Curves of parameter change during estimation on
(a) Cora and (b) Chameleon datasets. The coordinate of X-
axis represents the alternate step of expectation and maxi-
mization in EM algorithm, and the pink dashed lines sepa-
rate the different iterations of GEN.

that the classification distribution becomes more peaked and arm
the vanilla GCN with the ability to correct misclassified nodes.

4.2.3 Optimization Analysis. To understand the iterative estima-
tion process of GEN, we present the value change curves of true-
positive rate 𝛼 and false-positive rate 𝛽 in Eq. (5) on Cora and
Chameleon datasets. Particularly, we fix the tolerance 𝜆 to 0.001
and show the value change of several successive iterations in Figure
4. We observe that the deduced EM algorithm always meets the
convergence condition within 6 steps, illustrating an extremely
efficient optimization. In addition, during the iterative process, the
true-positive rate 𝛼 gradually increases, implying that the observa-
tions built by backbone GCN become more and more accurate.

We further compare the convergence speed of GEN and other
graph structure learning baselines, as shown in Figure 5. Please note
that Geom-GCN is outside the scope of comparison, since it does
not follow an iterative framework. It can be observed that GEN
has faster convergence speed and better validation accuracy on
both datasets, demonstrating the efficiency and effectiveness of our
proposed GEN. Moreover, for disassortative Chameleon dataset,
the validation accuracy of LDS and Pro-GNN fluctuates greatly
while GEN improves accuracy steadily, which once again confirms
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Figure 5: Curves of validation accuracy w.r.t. the number of
iterations on (a) Cora and (b) Chameleon datasets.

the robustness of considering the graph generation principles and
multifaceted information.

4.3 Analysis of Estimated Graph
In the previous subsection, we have demonstrated the effectiveness
of the proposed framework on real-world datasets. In this section,
we aim at understanding the mechanism of GEN and the properties
of estimated graph.

To better explore the mechanism of our GEN, we perform studies
on a synthetic graph using an attributed stochastic block model,
which has been used extensively to benchmark graph clustering
methods [9, 40]. For better visualization and analysis, in our version
of SBM there are 5 communities and each with 20 nodes. We ran-
domly initialize the symmetric probability matrix to generate edges,
and the diagonal element is the largest in corresponding row under
most circumstances to ensure a certain degree of homophily. The
8-dimensional features of nodes are generated using a multivariate
normal distribution, where nodes in different communities share
the random covariance matrix but have different means according
to their own communities. In terms of train/val/test split, we uti-
lize 5 nodes per class for training, 5 nodes for validation and the
remaining as test.

4.3.1 Graph Visualization. To examine the graph structure changes
brought by GEN intuitively, we visualize the original graph and
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(a) Original graph (b) Estimated graph

Figure 6: Heat maps for the probability matrices of the (a)
original graph and (b) estimated graph. Note that the color
shades of two maps represent different scales, as shown by
bars on the right.

estimated graph using Gephi tool in Figure 3 (a) and (c). Meanwhile,
we zoom into the local details of above graphs, and select one
specific node to highlight the changes of its neighborhood in Figure
3 (b) and (d). As shown in Figure 3, the original graph is a bit
chaotic, and there exist lots of between-community connections
which can be seen more clearly by the neighborhood of selected
node. In this case, the node classification accuracy of GCN is only
60%. After applying our proposed graph estimation framework,
the community structure of estimated graph is crisp, where many
spurious edges are removed and strong relationships are preserved.
And the classification accuracy of GEN increases to 84%.

In order to quantify the transformation of community structure
before and after estimation, we calculate the probability matrix
between communities, and draw them as heat maps in Figure 6.
We observe that in Figure 6 (a), the off-diagonal color blocks are
also dark and even darker than the diagonal ones, indicating that
the original graph does not maintain a good homophily and high
probabilities of between-community connections could bring dif-
ficulties to the GCN optimization. But for the probability matrix
of estimated graph, GEN widens the gaps between the diagonal
and off-diagonal elements, where the former is usually significantly
larger than the latter, interpreting the reason for the performance
improvement of classification.

4.3.2 Edge Confidence. Recall that the estimated adjacency matrix
Q in GEN is the posterior probability of graph structure, where𝑄𝑖 𝑗

represents our confidence in the existence of that edge. To inves-
tigate the meaning of estimated edge, we present the relationship
between edge confidence 𝑄𝑖 𝑗 and number of observations 𝐸𝑖 𝑗 . In
terms of the synthetic dataset, there are three observations in total,
thus the range of 𝐸𝑖 𝑗 is 0 to 3. For each possible value of 𝐸𝑖 𝑗 , we
accumulate the corresponding number of nodes pairs and calculate
average edge confidence for these nodes pairs in Figure 7. We find
that most node pairs are in the “zero observation” bar, since the
graph is sparse and a large majority of node pairs never meet. And
from the relationship between the number of observation 𝐸𝑖 𝑗 and
average edge confidence, it can be found that an edge observed
only zero or one time implies a low 𝑄𝑖 𝑗 (less than 0.1), so a single
observation is probably a false alarm. But there is a relatively sharp
transition between 𝐸𝑖 𝑗 = 1 and 𝐸𝑖 𝑗 = 2, indicating that two or more
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Figure 7: The bar chart (a) shows the number of node pairs
with each possible value of 𝐸𝑖 𝑗 , and the polyline (b) repre-
sents the average edge confidence for every value of 𝐸𝑖 𝑗 .
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(c) Test set

Figure 8: Normalized histograms of edge confidence for
(a) training, (b) validation and (c) test set nodes w.r.t. the
same/different communities.

observations of the same edge result in a much larger 𝑄𝑖 𝑗 which is
a strong inference that the edge exists in the optimal graph.

To show the distribution of edge confidence, we divide the edges
in two groups: edges between nodes of the same communities and
different communities. And we report the normalized histograms
of these optimized edge confidence on training, validation and test
set in Figure 8, respectively. We observe that the confidence of
edges between same communities is concentrated on the last bin
(more than 0.9), while the confidence of edges between different
communities is more skewed towards the first bin (less than 0.1).
This phenomenon is extremely obvious on the training set, and also
prominent on validation and test set, illustrating that GEN captures
useful edge confidence, i.e., higher confidence for edges between
the same communities.

4.4 Hyper-parameter Sensitivity
In this subsection, we explore the sensitivity of hyper-parameters:
𝑘 in 𝑘NN, threshold 𝜀 in Eq. (21) and tolerance 𝜆 in EM algorithm.
More specifically, we alter the value of 𝑘 , 𝜀 and 𝜆 to see how they
affect the performance of our model. We vary 𝑘 from 2 to 12, 𝜀
from 0.1 to 0.9, and 𝜆 from 1e-5 to 0.1 in a log scale of base 10. We
only report the node classification results on Cora and Chameleon
datasets in Figure 9 and 10, since similar observations are made in
other datasets.

𝑘 in𝑘NN graph. The change trend of accuracyw.r.t.𝑘 is roughly
increases first then starts to decrease. It is probably because the
sparsity of 𝑘NN graphs reduces the number of observed edges
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Figure 9: Impact of hyper-parameters on Cora.
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Figure 10: Impact of hyper-parameters on Chameleon.

which results in information loss and ineffective inference, while
too large 𝑘 would introduce more noise.

Threshold 𝜀. As for threshold 𝜀, if we set 𝜀 so high that there are
few edges above the threshold in estimated graph, GEN is unable
to aggregate enough information, while too low 𝜀 makes estimated
graph including lots of spurious edges. We note that the accuracy
curves of 𝜀 are very different on two datasets, and the optimal
value on Cora is much larger than that on Chameleon. This is
also consistent with the actual situations of these two datasets,
where noisy Chameleon dataset leads to large difference between
observations thus the edge confidences are generally lower.

Tolerance 𝜆. Tolerance 𝜆 controls the convergence speed of our
proposed EM algorithm. GEN achieves optimal performance at
around 𝜆 = 0.01, and too small or large values harm the model.

5 CONCLUSION
Graph Neural Networks rely heavily on a reasonable graph struc-
ture, while an incompatible graph will hurt their performance seri-
ously. In this paper, we propose a novel graph estimation neural
networks GEN that estimates the graph structure for GNNs to boost
their performance. Specifically, we introduce a structure model to
consider underlying community structure in graph generation, and
present an observation model that novelly treats multi-view infor-
mation, e.g., multi-order neighborhood similarity, as observations
of optimal graph. Based on these models, we finally attain the
estimated graph in Bayesian inference framework. Extensive ex-
perimental results verify the effectiveness of GEN and its ability to
estimate meaningful graph structure.

An interesting direction for future work is to extend GEN into
dynamic graphs. From an intuitive point of view, the observation
set could be constructed at varied time slices. However, the obser-
vation set cannot reflect the time sequence, and additional nodes
during graph evolution would require retraining the entire model
from scratch. Therefore, these considerations motivate a more so-
phisticated inference strategy to adaption.
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