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ABSTRACT
Semi-supervised learning on graphs is an important problem in the
machine learning area. In recent years, state-of-the-art classification
methods based on graph neural networks (GNNs) have shown their
superiority over traditional ones such as label propagation. How-
ever, the sophisticated architectures of these neural models will lead
to a complex prediction mechanism, which could not make full use
of valuable prior knowledge lying in the data, e.g., structurally corre-
lated nodes tend to have the same class. In this paper, we propose a
framework based on knowledge distillation to address the above is-
sues. Our framework extracts the knowledge of an arbitrary learned
GNN model (teacher model), and injects it into a well-designed stu-
dent model. The student model is built with two simple prediction
mechanisms, i.e., label propagation and feature transformation,
which naturally preserves structure-based and feature-based prior
knowledge, respectively. In specific, we design the student model
as a trainable combination of parameterized label propagation and
feature transformation modules. As a result, the learned student
can benefit from both prior knowledge and the knowledge in GNN
teachers for more effective predictions. Moreover, the learned stu-
dent model has a more interpretable prediction process than GNNs.
We conduct experiments on five public benchmark datasets and
employ seven GNN models including GCN, GAT, APPNP, SAGE,
SGC, GCNII and GLP as the teacher models. Experimental results
show that the learned student model can consistently outperform
its corresponding teacher model by 1.4% ∼ 4.7% on average. Code
and data are available at https://github.com/BUPT-GAMMA/CPF
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Figure 1: An overview of our knowledge distillation frame-
work. The two simple prediction mechanisms of our stu-
dent model ensure the full use of structure/feature-based
prior knowledge. The knowledge in GNN teachers will be
extracted and injected into the student during knowledge
distillation. Thus the student can go beyond its correspond-
ing teacher with more effective predictions.
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1 INTRODUCTION
Semi-supervised learning on graph-structured data aims at clas-
sifying every node in a network given the network structure and
a subset of nodes labeled. As a fundamental task in graph analy-
sis [3], the classification problem has a wide range of real-world
applications such as user profiling [15], recommender systems [28],
text classification [1] and sociological studies [2]. Most of these
applications have the homophily phenomenon [16], which assumes
two linked nodes tend to have similar labels. With the homophily
assumption, many traditional methods are developed to propagate
labels by random walks [27, 39] or regularize the label differences
between neighbors [9, 36].

With the success of deep learning, methods based on graph
neural networks (GNNs) [7, 11, 29] have demonstrated their ef-
fectiveness in classifying node labels. Most GNN models adopt
message passing strategy [6]: each node aggregates features from
its neighborhood and then a layer-wise projection function with a
non-linear activation will be applied to the aggregated information.
In this way, GNNs can utilize both graph structure and node feature
information in their models.
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However, the entanglement of graph topology, node features and
projectionmatrices in GNNs leads to a complicated predictionmech-
anism and could not take full advantage of prior knowledge lying in
the data. For example, the aforementioned homophily assumption
adopted in label propagation methods represents structure-based
prior, and has been shown to be underused [14, 30] in graph convo-
lutional network (GCN) [11].

As an evidence, recent studies proposed to incorporate the label
propagation mechanism into GCN by adding regularizations [30] or
manipulating graph filters [14, 24]. Their experimental results show
that GCN can be improved by emphasizing such structure-based
prior knowledge. Nevertheless, these methods have three major
drawbacks: (1) The main bodies of their models are still GNNs and
thus hard to fully utilize the prior knowledge; (2) They are single
models rather than frameworks, and thus not compatible with other
advanced GNN architectures; (3) They ignored another important
prior knowledge, i.e., feature-based prior, which means that a node’s
label is purely determined by its own features.

To address these issues, we propose an effective knowledge dis-
tillation framework to inject the knowledge of an arbitrary learned
GNN (teacher model) into a well-designed student model. The
student model is built with two simple prediction mechanisms,
i.e., label propagation and feature transformation, which naturally
preserves structure-based and feature-based prior knowledge, re-
spectively. In specific, we design the student model as a trainable
combination of parameterized label propagation and feature-based
2-layer MLP (Multi-layer Perceptron). On the other hand, it has
been recognized that the knowledge of a teacher model lies in its
soft predictions [8]. By simulating the soft labels predicted by a
teacher model, our student model is able to further make use of the
knowledge in pretrained GNNs. Consequently, the learned student
model has a more interpretable prediction process and can utilize
both GNN and structure/feature-based priors. An overview of our
framework is shown in Fig. 1.

We conduct experiments on five public benchmark datasets and
employ several popular GNNmodels including GCN [11], GAT [29],
SAGE [7], APPNP [12], SGC [32] and a recent deep GCN model
GCNII [4] as teacher models. Experimental results show that a stu-
dent model is able to outperform its corresponding teacher model
by 1.4% ∼ 4.7% in terms of classification accuracy. It is worth not-
ing that we also apply our framework on GLP [14] which unified
GCN and label propagation by manipulating graph filters. As a
result, we can still gain 1.5% ∼ 2.3% relative improvements, which
demonstrates the potential compatibility of our framework. Fur-
thermore, we investigate the interpretability of our student model
by probing the learned balance parameters between parameter-
ized label propagation and feature transformation as well as the
learned confidence score of each node in label propagation. To con-
clude, the improvements are consistent and significant with better
interpretability.

The contributions of this paper are summarized as follows:
•We propose an effective knowledge distillation framework to

extract the knowledge of an arbitrary pretrained GNN model and
inject it into a student model for more effective predictions.

• We design the student model as a trainable combination of
parameterized label propagation and feature-based 2-layer MLP.

Hence the student model has a more interpretable prediction pro-
cess and naturally preserves the structure/feature-based priors.
Consequently, the learned student model can utilize both GNN and
prior knowledge.

• Experimental results on five benchmark datasets with seven
GNN teacher models demonstrate the effectiveness of our frame-
work. Extensive studies by probing the learned weights in the
student model also illustrate the potential interpretability of our
method.

2 RELATEDWORK
This work is most relevant to graph neural network models and
knowledge distillation methods.

2.1 Graph Neural Networks
The concept of GNNwas proposed [21] before 2010 and has become
a rising topic since the emergence of GCN [11]. During the last
five years, graph neural network models have achieved promising
results in many research areas [33, 37]. Now we will briefly intro-
duce some representative GNN methods in this section and employ
them as our teacher models in the experiments.

As one of the most influential GNN models, Graph Convolu-
tional Network (GCN) [11] targeted on semi-supervised learning
on graph-structured data through layer-wise propagation of node
features. GCN can be interpreted as a variant of convolutional
neural networks that operates on graphs. Graph Attention Net-
work (GAT) [29] further employed attention mechanism in the
aggregation of neighbors’ features. SAGE [7] sampled and aggre-
gated features from a node’s local neighborhood and is more space-
efficient. Approximate personalized propagation of neural predic-
tions (APPNP) [12] studied the relationship between GCN and
PageRank, and incorporated a propagation scheme derived from
personalized PageRank into graph filters. Simple Graph Convo-
lution (SGC) [32] simplified GCN by removing non-linear activa-
tions and collapsing weight matrices between layers. Graph Con-
volutional Network via Initial residual and Identity mapping (GC-
NII) [4] was a very recent deep GCN model which alleviates the
over-smoothing problem.

Recently, several works show that the performance of GNNs can
be further improved by incorporating traditional prediction mecha-
nisms, i.e., label propagation. For example, Generalized Label Prop-
agation (GLP) [14] modified graph convolutional filters to generate
smooth features with graph similarity encoded. UniMP [24] fused
feature aggregation and label propagation by a shared message-
passing network. GCN-LPA [30] employed label propagation as
regularization to assist GCN for better performances. Note that
the label propagation mechanism was built with simple structure-
based prior knowledge. Their improvements indicate that such
prior knowledge is not fully explored in GNNs. Nevertheless, these
advanced models still suffer from several drawbacks as illustrated
in the Introduction section.

2.2 Knowledge Distillation
Knowledge distillation [8] was proposed for model compression
where a small light-weight student model is trained to mimic the
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soft predictions of a pretrained large teacher model. After the dis-
tillation, the knowledge in the teacher model will be transferred
into the student model. In this way, the student model can reduce
time and space complexities without losing prediction qualities.
Knowledge distillation is widely used in the computer vision area,
e.g., a deep convolutional neural network (CNN) will be compressed
into a shallow one to accelerate the inference.

In fact, there are also a few studies combining knowledge distilla-
tion with GCN. However, their motivation and model architecture
are quite different from ours. Yang et al. [34] which was proposed
in the computer vision area, compressed a deep GCN with large
feature maps into a shallow one with fewer parameters using a local
structure preserving module. Reliable Data Distillation (RDD) [35]
trained multiple GCN students with the same architecture and then
ensembled them for better performance in a manner similar to
BAN [5]. Graph Markov Neural Networks (GMNN) [19] can also
be viewed as a knowledge distillation method where two GCNs
with different reception sizes learn from each other. Note that both
teacher and student models in these works are GCNs.

Compared with them, the goal of our framework is to extract
the knowledge of GNNs and go beyond it. Our framework is very
flexible and can be applied on an arbitrary GNNmodel besides GCN.
We design a student model with simple prediction mechanisms
and thus are able to benefit from both GNN and prior knowledge.
As the output of our framework, the student model also has a
more interpretable prediction process. In terms of training details,
our framework is simpler and requires no ensembling or iterative
distillations between teacher and student models for improving
classification accuracies.

3 METHODOLOGY
In this section, we will start by formalizing the semi-supervised
node classification problem and introducing the notations. Then
we will present our knowledge distillation framework to extract
the knowledge of GNNs. Afterwards, we will propose the archi-
tecture of our student model, which is a trainable combination of
parameterized label propagation and feature-based 2-layer MLP.
Finally, we will discuss the potential interpretability of the student
model and the computation complexity of our framework.

3.1 Semi-supervised Node Classification
We begin by outlining the problem of node classification. Given a
connected graph𝐺 = (𝑉 , 𝐸) with a subset of nodes 𝑉𝐿 ⊂ 𝑉 labeled,
where 𝑉 is the vertex set and 𝐸 is the edge set, node classification
targets on predicting the node labels for every node 𝑣 in unlabeled
node set𝑉𝑈 = 𝑉 \𝑉𝐿 . Each node 𝑣 ∈ 𝑉 has label 𝑦𝑣 ∈ 𝑌 where 𝑌 is
the set of all possible labels. In addition, node features 𝑋 ∈ R |𝑉 |×𝑑

are usually available in graph data and can be utilized for better
classification accuracy. Each row 𝑋𝑣 ∈ R𝑑 of matrix 𝑋 denotes a
𝑑-dimensional feature vector of node 𝑣 .

3.2 The Knowledge Distillation Framework
Node classification approaches including GNNs can be summarized
as a black box that outputs a classifier 𝑓 given graph structure 𝐺 ,
labeled node set 𝑉𝐿 and node feature 𝑋 as inputs. The classifier
𝑓 will predict the probability 𝑓 (𝑣,𝑦) that unlabeled node 𝑣 ∈ 𝑉𝑈

has label 𝑦 ∈ 𝑌 , where ∑𝑦′∈𝑌 𝑓 (𝑣,𝑦′) = 1. For labeled node 𝑣 , we
set 𝑓 (𝑣,𝑦) = 1 if 𝑣 is annotated with label 𝑦 and 𝑓 (𝑣,𝑦′) = 0 for
any other label 𝑦′. We use 𝑓 (𝑣) ∈ R |𝑌 | to denote the probability
distribution over all labels for brevity.

In this paper, the teacher model employed in our framework
can be an arbitrary GNN model such as GCN [11] or GAT [29].
We denote the pretrained classifier in a teacher model as 𝑓𝐺𝑁𝑁 .
On the other hand, we use 𝑓𝑆𝑇𝑈 ;Θ to denote the student model
parameterized by Θ and 𝑓𝑆𝑇𝑈 ;Θ (𝑣) ∈ R |𝑌 | represents the predicted
probability distribution of node 𝑣 by the student.

In knowledge distillation [8], the student model is trained to
mimic the soft label predictions of a pretrained teacher model. As a
result, the knowledge lying in the teacher model will be extracted
and injected into the learned student. Therefore, the optimization
objective which aligns the outputs between the student model and
pretrained teacher model can be formulated as

min
Θ

∑︁
𝑣∈𝑉

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑓𝐺𝑁𝑁 (𝑣), 𝑓𝑆𝑇𝑈 ;Θ (𝑣)), (1)

where 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (·, ·) measures the distance between two predicted
probability distributions. Specifically, we use Euclidean distance in
this work1.

3.3 The Architecture of Student Model
We hypothesize that a node’s label prediction follows two simple
mechanisms: (1) label propagation from its neighboring nodes and
(2) a transformation from its own features. Therefore, as shown in
Fig. 2, we design our student model as a combination of these two
mechanisms, i.e., a Parameterized Label Propagation (PLP) module
and a Feature Transformation (FT) module, which can naturally
preserve the structure/feature-based prior knowledge, respectively.
After the distillation, the student will benefit from both GNN and
prior knowledge with a more interpretable prediction mechanism.

In this subsection, we will first briefly review the conventional
label propagation algorithm. Then we will introduce our PLP and
FT modules as well as their trainable combinations.

3.3.1 Label Propagation. Label propagation (LP) [38] is a classical
graph-based semi-supervised learning model. This model simply
follows the assumption that nodes linked by an edge (or occupying
the same manifold) are very likely to share the same label. Based
on this hypothesis, labels will propagate from labeled nodes to
unlabeled ones for predictions.

Formally, we use 𝑓𝐿𝑃 to denote the final prediction of LP and 𝑓 𝑘
𝐿𝑃

to denote the prediction of LP after 𝑘 iterations. In this work, we
initialize the prediction of node 𝑣 as a one-hot label vector if 𝑣 is a
labeled node. Otherwise, we will set a uniform label distribution
for each unlabeled node 𝑣 , which indicates that the probabilities of
all classes are the same at the beginning. The initialization can be
formalized as:

𝑓 0
𝐿𝑃

(𝑣) =
{
(0, ...1, ...0) ∈ R |𝑌 |, ∀𝑣 ∈ 𝑉𝐿
( 1
|𝑌 | , ...

1
|𝑌 | , ...

1
|𝑌 | ) ∈ R

|𝑌 |, ∀𝑣 ∈ 𝑉𝑈
(2)

where 𝑓 𝑘
𝐿𝑃

(𝑣) is the predicted probability distribution of node 𝑣
at iteration 𝑘 . In the 𝑘 + 1-th iteration, LP will update the label
1We also tried to minimize KL-divergence or maximize cross entropy as alternatives.
But we find that Euclidean distance performs best and is more numerically stable.
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Figure 2: An illustration of the architecture of our proposed student model. Taking the center node 𝑣 as an example, the
studentmodel starts fromnode 𝑣 ’s raw features and a uniform label distribution as soft labels. Then at each layer, the soft label
prediction of 𝑣 will be updated as a trainable combination of Parameterized Label Propagation (PLP) from 𝑣 ’s neighbors and
Feature Transformation (FT) of 𝑣 ’s features. Finally, the distance between the soft label predictions of student and pretrained
teacher will be minimized.

predictions of each unlabeled node 𝑣 ∈ 𝑉𝑈 as follows:

𝑓 𝑘+1𝐿𝑃 (𝑣) = (1 − 𝜆) 1
|𝑁𝑣 |

∑︁
𝑢∈𝑁𝑣

𝑓 𝑘𝐿𝑃 (𝑢) + 𝜆𝑓
𝑘
𝐿𝑃 (𝑣), (3)

where 𝑁𝑣 is the set of node 𝑣 ’s neighbors in the graph and 𝜆 is a
hyper-parameter controlling the smoothness of node updates.

Note that LP has no parameters to be trained, and thus can not fit
the output of a teacher model through end-to-end training. There-
fore, we retrofit LP by introducing more parameters to increase its
capacity.

3.3.2 Parameterized Label Propagation Module. Now we will intro-
duce our Parameterized Label Propagation (PLP) module by further
parameterizing edge weights in LP. As shown in Eq. 3, LP model
treats all neighbors of a node equally during the propagation. How-
ever, we hypothesize that the importance of different neighbors
to a node should be different, which determines the propagation
intensities between nodes. To be more specific, we assume that the
label predictions of some nodes are more “confident” than others:
e.g., a node whose predicted label is similar to most of its neigh-
bors. Such nodes will be more likely to propagate their labels to
neighbors and keep themselves unchanged.

Formally, we will assign a confidence score 𝑐𝑣 ∈ R to each node
𝑣 . During the propagation, all node 𝑣 ’s neighbors and 𝑣 itself will
compete to propagate their labels to 𝑣 . Following the intuition that
a larger confidence score will have a larger edge weight, we rewrite
the prediction update function in Eq. 3 for 𝑓𝑃𝐿𝑃 as follows:

𝑓 𝑘+1𝑃𝐿𝑃 (𝑣) =
∑︁

𝑢∈𝑁𝑣∪{𝑣 }
𝑤𝑢𝑣 𝑓

𝑘
𝑃𝐿𝑃 (𝑢), (4)

where𝑤𝑢𝑣 is the edge weight between node 𝑢 and 𝑣 computed by
the following softmax function:

𝑤𝑢𝑣 =
𝑒𝑥𝑝 (𝑐𝑢 )∑

𝑢′∈𝑁𝑣∪{𝑣 } 𝑒𝑥𝑝 (𝑐𝑢′)
. (5)

Similar to LP, 𝑓 0
𝑃𝐿𝑃

(𝑣) is initialized as Eq. 2 and 𝑓 𝑘
𝑃𝐿𝑃

(𝑣) remains
the one-hot ground truth label vector for every labeled node 𝑣 ∈ 𝑉𝐿
during the propagation.

Note that we can further parameterize confidence score 𝑐𝑣 for
inductive setting as an optional choice:

𝑐𝑣 = 𝑧
𝑇𝑋𝑣, (6)

where 𝑧 ∈ R𝑑 is a learnable parameter that projects node 𝑣 ’s feature
into the confidence score.

3.3.3 Feature TransformationModule. Note that PLPmodulewhich
propagates labels through edges emphasizes the structure-based
prior knowledge. Thus we also introduce Feature Transformation
(FT) module as a complementary prediction mechanism. The FT
module predicts labels by only looking at the raw features of a node.
Formally, denoting the prediction of FT module as 𝑓𝐹𝑇 , we apply
a 2-layer MLP2 followed by a softmax function to transform the
features into soft label predictions:

𝑓𝐹𝑇 (𝑣) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑀𝐿𝑃 (𝑋𝑣)) . (7)

2We find that 2-layer MLP is necessary for increasing the model capacity of our student,
though a single layer logistic regression is more interpretable.
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3.3.4 A Trainable Combination. Now we will combine the PLP and
FT modules as the full model of our student. In detail, we will learn
a trainable parameter 𝛼𝑣 ∈ [0, 1] for each node 𝑣 to balance the
predictions between PLP and FT. In other words, the prediction
from FT module will be incorporated into that from PLP at each
propagation step. We name the full student model as Combination
of Parameterized label propagation and Feature transformation
(CPF) and thus the prediction update function for each unlabeled
node 𝑣 ∈ 𝑉𝑈 in Eq. 4 will be rewritten as

𝑓 𝑘+1𝐶𝑃𝐹 (𝑣) = 𝛼𝑣
∑︁

𝑢∈𝑁𝑣∪{𝑣 }
𝑤𝑢𝑣 𝑓

𝑘
𝐶𝑃𝐹 (𝑢) + (1 − 𝛼𝑣) 𝑓𝐹𝑇 (𝑣), (8)

where edge weight𝑤𝑢𝑣 and initialization 𝑓 0𝐶𝑃𝐹 (𝑣) are the same with
PLP module. Whether parameterizing confidence score 𝑐𝑣 as Eq. 6
or not will lead to inductive/transductive variants CPF-ind/CPF-tra.

3.4 The Overall Algorithm and Details
Assuming that our student model has a total of 𝐾 layers, the distil-
lation objective in Eq. 1 can be detailed as:

min
Θ

∑︁
𝑣∈𝑉𝑈

∥ 𝑓𝐺𝑁𝑁 (𝑣) − 𝑓 𝐾𝐶𝑃𝐹 ;Θ (𝑣)∥2, (9)

where ∥ · ∥2 is the L2-norm and the parameter set Θ includes the
balancing parameters between PLP and FT {𝛼𝑣,∀𝑣 ∈ 𝑉 }, confidence
parameters in PLP module {𝑐𝑣,∀𝑣 ∈ 𝑉 } (or parameter 𝑧 for induc-
tive setting), and the parameters of MLP in FT moduleΘ𝑀𝐿𝑃 . There
is also an important hyper-parameter in the distillation framework:
the number of propagation layers 𝐾 . Alg. 1 shows the pseudo code
of the training process.

We implement our framework based on Deep Graph Library
(DGL) [31] and Pytorch [18], and employ an Adam optimizer [10]
for parameter training. Dropout [25] is also applied to alleviate
overfitting.

Algorithm 1 The proposed knowledge distillation framework.
Input: Graph𝐺 = (𝑉 , 𝐸), labeled node set𝑉𝐿 ⊂ 𝑉 , unlabeled node

set 𝑉𝑈 ⊂ 𝑉 , node features 𝑋 and pretrained GNN classifier
𝑓𝐺𝑁𝑁 .

Output: The learned student model 𝑓𝐶𝑃𝐹 .
1: Initialize the label prediction 𝑓 0

𝐶𝑃𝐹
(𝑣) for each node 𝑣 by Eq. 2;

2: while not converge do
3: if inductive setting then
4: Compute confidence score 𝑐𝑣 for each node 𝑣 ∈ 𝑉 by Eq. 6;
5: end if
6: Compute edge weight𝑤𝑢𝑣 for each edge (𝑢, 𝑣) ∈ 𝐸 by Eq. 5;
7: for all node 𝑣 ∈ 𝑉𝑈 do
8: Compute the prediction of FT module 𝑓𝐹𝑇 (𝑣) by Eq. 7;
9: for k=1,2. . .K do
10: Update the prediction after 𝑘 layers 𝑓 𝑘

𝐶𝑃𝐹
(𝑣) by Eq. 8;

11: end for
12: end for
13: Update parameters by optimizing Eq. 9;
14: end while

3.5 Discussions on Interpretability and
Complexity

In this subsection, we will discuss the interpretability of the learned
student model and the complexity of our algorithm.

After the knowledge distillation, our student model CPF will
predict the label of a specific node 𝑣 as a weighted average be-
tween the predictions of label propagation and feature-based MLP.
The balance parameter 𝛼𝑣 indicates whether structure-based LP
or feature-based MLP is more important for node 𝑣 ’s prediction.
LP mechanism is almost transparent and we can easily find out
node 𝑣 is influenced by which neighbor to what extent at each
iteration. On the other hand, the understanding of feature-based
MLP can be derived by existing works [20] or directly looking at
the gradients of different features. Therefore, the learned student
model has better interpretability than GNN teachers.

The time complexity of each iteration (line 3 to 13 in Alg. 1)
and the space complexity of our algorithm are both 𝑂 ( |𝐸 | + 𝑑 |𝑉 |),
which is linear to the scale of datasets. In fact, the operations can
be easily implemented in matrix form and the training process can
be finished in seconds on real-world benchmark datasets with a
single GPU device. Therefore, our proposed knowledge distillation
framework is very time/space-efficient.

4 EXPERIMENTS
In this section, we will start by introducing the datasets and teacher
models used in our experiments. Then we will detail the experi-
mental settings of teacher models and student variants. Afterwards,
we will present quantitative results on evaluating semi-supervised
node classification. We also conduct experiments under different
numbers of propagation layers and training ratios to illustrate the
robustness of our algorithm. Finally, we will present qualitative
case studies and visualizations for better understandings of the
learned parameters in our student model CPF.

4.1 Datasets

Table 1: Dataset statistics.

Dataset # Nodes # Edges # Features # Classes
Cora 2,485 5,069 1,433 7
Citeseer 2,110 3,668 3,703 6
Pubmed 19,717 44,324 500 3
A-Computers 13,381 245,778 767 10
A-Photo 7,487 119,043 745 8

We use five public benchmark datasets for experiments and the
statistics of the datasets are shown in Table 1. As previous works [13,
23, 26] did, we only consider the largest connected component and
regard the edges as undirected. The details about the datasets are
as follows:

• Cora [22] is a benchmark citation dataset composed of ma-
chine learning papers, where each node represents a docu-
ment with a sparse bag-of-words feature vector. Edges rep-
resent citations between documents, and labels specify the
research field of each paper.
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Table 2: Classification accuracies with teacher models as GCN [11] and GAT [29].

Datasets Teacher Student variants +Impv. Teacher Student variants +Impv.GCN PLP FT CPF-ind CPF-tra GAT PLP FT CPF-ind CPF-tra
Cora 0.8244 0.7522 0.8253 0.8576 0.8567 4.0% 0.8389 0.7578 0.8426 0.8576 0.8590 2.4%

Citeseer 0.7110 0.6602 0.7055 0.7619 0.7652 7.6% 0.7276 0.6624 0.7591 0.7657 0.7691 5.7%
Pubmed 0.7804 0.6471 0.7964 0.8080 0.8104 3.8% 0.7702 0.6848 0.7896 0.8011 0.8040 4.4%

A-Computers 0.8318 0.7584 0.8356 0.8443 0.8443 1.5% 0.8107 0.7605 0.8135 0.8190 0.8148 1.0%
A-Photo 0.9072 0.8499 0.9265 0.9317 0.9248 2.7% 0.8987 0.8496 0.9190 0.9221 0.9199 2.6%

Table 3: Classification accuracies with teacher models as APPNP [12] and SAGE [7].

Datasets Teacher Student variants +Impv. Teacher Student variants +Impv.APPNP PLP FT CPF-ind CPF-tra SAGE PLP FT CPF-ind CPF-tra
Cora 0.8398 0.7251 0.8379 0.8581 0.8562 2.2% 0.8178 0.7663 0.8201 0.8473 0.8454 3.6%

Citeseer 0.7547 0.6812 0.7580 0.7646 0.7635 1.3% 0.7171 0.6641 0.7425 0.7497 0.7575 5.6%
Pubmed 0.7950 0.6866 0.8102 0.8058 0.8081 1.6% 0.7736 0.6829 0.7717 0.7948 0.8062 4.2%

A-Computers 0.8236 0.7516 0.8176 0.8279 0.8211 0.5% 0.7760 0.7590 0.7912 0.7971 0.8199 5.7%
A-Photo 0.9148 0.8469 0.9241 0.9273 0.9272 1.4% 0.8863 0.8366 0.9153 0.9268 0.9248 4.6%

• Citeseer [22] is another benchmark citation dataset of com-
puter science publications, holding similar configuration to
Cora. Citeseer dataset has the largest number of features
among all five datasets used in this paper.

• Pubmed [17] is also a citation dataset, consisting of articles
related to diabetes in the PubMed database. The node features
are TF/IDF weighted word frequency, and the label indicates
the type of diabetes discussed in this article.

• A-Computers and A-Photo [23] are extracted from Amazon
co-purchase graph, where nodes represent products, edges
represent whether two products are frequently co-purchased
or not, features represent product reviews encoded by bag-
of-words, and labels are predefined product categories.

Following the experimental settings in previous work [23], we
randomly sample 20 nodes from each class as labeled nodes, 30
nodes for validation and all other nodes for test.

4.2 Teacher Models and Settings
For a thorough comparison, we consider seven GNN models as
teacher models in our knowledge distillation framework:

• GCN [11] is a classic semi-supervised model which learns
node representations by defining convolution operators on
graph-structured data. GCN is sensitive to the number of
layers and we employ the most widely-used 2-layer setting
in this work.

• GAT [29] improves GCN by incorporating attention mecha-
nism which assigns different weights to each neighbor of a
node. We use a 2-layer GAT with 8 attention heads as our
teacher model.

• APPNP [12] improves GCN by balancing the preservation
of local information and the use of a wide range of neighbor
information. We employ 2 layers and 10 power iteration
steps for APPNP.

• SAGE [7] learns node embeddings by sampling and aggre-
gating information from a node’s local neighborhood. We
employ the SAGE-GCN variant as a teacher model.

• SGC [32] reduces the extra complexity of GCN by remov-
ing the non-linearity between GCN layers and compressing
the weight matrices. Similar to GCN, we also use a 2-layer
setting.

• GCNII [4] is a deep model which uses initial residual and
identity mapping to avoid oversmoothing of GCN model.
Here we use 16 layers GCNII as a teacher.

• GLP [14] is a label-efficient model which combines label
propagation with graph convolution operations by a graph
filtering framework. GLP has two model variants: GLP-RNM
and GLP-AR, and we use the better one for each dataset as
our teacher.

The detailed training settings of teacher models are listed in
Appendix A.

4.3 Student Variants and Experimental Settings
For each dataset and teacher model, we test the following student
variants:

• PLP: The student variant with only the Parameterized Label
Propagation (PLP) mechanism;

• FT: The student variant with only the Feature Transforma-
tion (FT) mechanism;

• CPF-ind: The full model CPF with inductive setting;
• CPF-tra: The full model CPF with transductive setting.

We randomly initialize the parameters and employ early stopping
with a patience of 50, i.e., we will stop training if the classification ac-
curacy on validation set does not increase for 50 epochs. For hyper-
parameter tuning, we conduct heuristic search by exploring # lay-
ers 𝐾 ∈ {5, 6, 7, 8, 9, 10}, hidden size in MLP 𝑑𝑀𝐿𝑃 ∈ {8, 16, 32, 64},
dropout rate 𝑑𝑟 ∈ {0.2, 0.5, 0.8}, learning rate and weight decay of
Adam optimizer 𝑙𝑟 ∈ {0.001, 0.005, 0.01},𝑤𝑑 ∈ {0.0005, 0.001, 0.01}.
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Table 4: Classification accuracies with teacher models as SGC [32] and GCNII [4].

Datasets Teacher Student variants +Impv. Teacher Student variants +Impv.SGC PLP FT CPF-ind CPF-tra GCNII PLP FT CPF-ind CPF-tra
Cora 0.8052 0.7513 0.8173 0.8454 0.8487 5.4% 0.8384 0.7382 0.8431 0.8581 0.8590 2.5%

Citeseer 0.7133 0.6735 0.7331 0.7470 0.7530 5.6% 0.7376 0.6724 0.7564 0.7635 0.7569 3.5%
Pubmed 0.7892 0.6018 0.8098 0.7972 0.8204 4.0% 0.7971 0.6913 0.7984 0.7928 0.8024 0.7%

A-Computers 0.8248 0.7579 0.8391 0.8367 0.8407 1.9% 0.8325 0.7628 0.8411 0.8467 0.8447 1.7%
A-Photo 0.9063 0.8318 0.9303 0.9397 0.9347 3.7% 0.9230 0.8401 0.9263 0.9352 0.9300 1.3%

Table 5: Classification accuracies with teacher model as
GLP [14].

Datasets Teacher Student variants +Impv.GLP PLP FT CPF-ind CPF-tra
Cora 0.8365 0.7616 0.8314 0.8557 0.8539 2.3%

Citeseer 0.7536 0.6630 0.7597 0.7696 0.7696 2.1%
Pubmed 0.8088 0.6215 0.7842 0.8133 0.8210 1.5%

4.4 Analysis of Classification Results
Experimental results on five datasets with seven GNN teachers and
four student variants are presented in Table 2, 3, 4 and 53. We have
the following observations:

• The proposed knowledge distillation framework accompa-
nying with the full architecture of student model CPF-ind
and CPF-tra, is able to improve the performance of the cor-
responding teacher model consistently and significantly. For
example, the classification accuracy of GCN on Cora dataset
is improved from 0.8244 to 0.8576. This is because the knowl-
edge of GNN teachers can be extracted and injected into our
student model which also benefits from structure/feature-
based prior knowledge introduced by its simple prediction
mechanism. This observation demonstrates our motivation
and the effectiveness of our framework.

• Note that the teacher model Generalized Label Propagation
(GLP) [14] has already incorporated the label propagation
mechanism in their graph filters. As shown in Table 5, we
can still gain 1.5% ∼ 2.3% relative improvements by applying
our knowledge distillation framework, which demonstrates
the potential compatibility of our algorithm.

• Among the four student variants, the full model CPF-ind
and CPF-tra always perform best (except APPNP teacher
on Pubmed dataset) and give competitive results. Thus both
structure-based PLP and feature-based FT modules will con-
tribute to the overall improvements. PLP itself performs
worst because PLP which has few parameters to learn has a
small model capacity and can not fit the soft predictions of
teacher models.

• The average relative improvements of the seven teachers
GCN/GAT/APPNP/SAGE/SGC/GCNII/GLP are 3.9/3.2/1.4/
4.7/4.1/1.9/2.0%, respectively. The improvement over APPNP
is the smallest. A possible reason is that APPNP preserves a

3We omit the results of GLP on A-Computer/A-Photo because GLP performs much
worse than other GNN models on these two datasets in our experiments.

node’s own features during the message passing and thus
also utilizes the feature-based prior as our FT module does.

• The average relative improvements on the five datasets Cora/
Citeseer/Pubmed/A-Computers/A-Photo are 2.9/4.2/2.7/2.1/
2.7%, respectively. Citeseer dataset benefits most from our
knowledge distillation framework. A possible reason is that
Citeseer has the largest number of features and thus the
student model also has more trainable parameters to increase
its capacity.

4.5 Analysis of Different Numbers of
Propagation Layers

In this subsection, we will investigate the influence of a key hyper-
parameter in the architecture of our student model CPF, i.e., the
number of propagation layers 𝐾 . In fact, popular GNN models
such as GCN and GAT are very sensitive to the number of layers.
A larger number of layers will cause the over-smoothing issue
and significantly harm the model performance. Hence we conduct
experiments on Cora dataset for further analysis of this hyper-
parameter.

(a) The CPF-ind student. (b) The CPF-tra student.

Figure 3: Classification accuracies of CPF-ind and CPF-
tra with different numbers of propagation layers on Cora
dataset. The legends indicate the teacher model by which a
student is guided.

Fig. 3 shows the classification results of student CPF-ind and CPF-
trawith different numbers of propagation layers𝐾 ∈ {5, 6, 7, 8, 9, 10}.
We can see that the gaps among different 𝐾 are relatively small:
For each teacher, we compute the gap between the best and worst
performed accuracies of its corresponding student and the maxi-
mum gaps are 0.56% and 0.84% for CPF-ind and CPF-tra, respec-
tively. Moreover, the accuracy of CPF under the worst choice of
𝐾 ∈ {5, 6, 7, 8, 9, 10} has already outperformed the corresponding
teacher. Therefore, the gains from our framework are very robust
when the number of propagation layers 𝐾 varies within a reason-
able range.
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(a) GCN (b) GAT (c) APPNP (d) SAGE

(e) SGC (f) GCNII (g) GLP

Figure 4: Classification accuracies under different numbers of labeled nodes on Cora dataset. The subcaptions indicate the
corresponding teacher models.

Besides changing the number of propagation layers, another
model variant we test is replacing the 2-layer MLP in feature trans-
formation module with a single-layer linear regression, which can
also improve the performance with a smaller ratio (the average
improvements over the seven teachers are 0.3% ∼ 2.3%). Linear re-
gression may have better interpretability, but at the cost of weaker
performance, which can be seen as a trade-off.

4.6 Analysis of Different Training Ratios
To further demonstrate the effectiveness of our framework, we
conduct additional experiments under different training ratios. In
specific, we take Cora dataset as an example and vary the number
of labeled nodes per class from 5 to 50. Experimental results are
presented in Fig. 4. Note that we omit the results of PLP since its
performance is poor and can not be fit into the figures.

We can see that the learned CPF-ind and CPF-tra students con-
sistently outperform the pretrained GNN teachers under different
numbers of labeled nodes per class, which illustrates the robustness
of our framework. FT module, however, has enough model capacity
to overfit the predictions of a teacher but gains no further improve-
ments. Therefore, as a complementary prediction mechanism, the
PLP module is also very important in our framework.

Another observation is that the students’ improvements over
corresponding teacher models are more significant for the few-
shot setting, i.e., only 5 nodes are labeled for each class. As evi-
dence, the relative improvements on classification accuracy are
4.9/4.5/3.2/2.1% on average for 5/10/20/50 labeled nodes per class.
Thus our algorithm also has the ability to handle the few-shot set-
ting which is an important research problem in semi-supervised
learning.

4.7 Analysis of Interpretability
Now we will analyze the potential interpretability of the learned
student model CPF. Specifically, we will probe into the learned
balance parameter 𝛼𝑣 between PLP and FT, as well as the confi-
dence score 𝑐𝑣 of each node. Our goal is to figure out what kind
of nodes has the largest/smallest values of 𝛼𝑣 and 𝑐𝑣 . We use the
CPF-ind student guided by GCN or GAT teachers on Cora dataset
for illustration in this subsection.

Balance parameter 𝛼𝑣 . Recall that the balance parameter 𝛼𝑣
indicates whether structure-based LP or feature-based MLP con-
tributes more for node 𝑣 ’s prediction. As shown in Fig. 5, we analyze
the top-10 nodes with the largest/smallest 𝛼𝑣 and select four repre-
sentative nodes for case study. We plot the 1-hop neighborhood of
each node and use different colors to indicate different predicted la-
bels. We find that a node with a larger 𝛼𝑣 will be more likely to have
the same predicted neighbors. In contrast, a node with a smaller 𝛼𝑣
will probably have more neighbors with different predicted labels.
This observation matches our intuition that the prediction of a node
will be confused if it has many neighbors with various predicted
labels and thus can not benefit much from label propagation.

Confidence score 𝑐𝑣 . On the other hand, a node with a larger
confidence score 𝑐𝑣 in our student architecture will have larger
edge weights to propagate its labels to neighbors and keep itself
unchanged. Similarly, as shown in Fig. 6, we also investigate the top-
10 nodes with the largest/smallest confidence score 𝑐𝑣 and select
four representative nodes for case study.We can see that nodes with
high confidences will also have a relatively small degree and the
same predicted neighbors. In contrast, nodes with low confidences
𝑐𝑣 will have an even more diverse neighborhood than nodes with
small 𝛼𝑣 . Intuitively, a diverse neighborhood of a node will lead to
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(a) Large-𝛼𝑣-GCN (id 1812) (b) Large-𝛼𝑣-GAT (id 1720) (c) Small-𝛼𝑣-GCN (id 2381) (d) Small-𝛼𝑣-GAT (id 1298)

Figure 5: Case studies of balance parameter 𝛼𝑣 for interpretability analysis. Here the subcaption indicates the node is selected
by large/small 𝛼𝑣 value with GCN/GAT as teachers.

(a) Large-𝑐𝑣-GCN (id 1828) (b) Large-𝑐𝑣-GAT (id 1450) (c) Small-𝑐𝑣-GCN (id 1238) (d) Small-𝑐𝑣-GAT (id 1160)

Figure 6: Case studies of confidence score 𝑐𝑣 for interpretability analysis. Here the subcaption indicates the node is selected
by large/small 𝑐𝑣 value with GCN/GAT as teachers.

lower confidence to propagate its labels. This finding validates our
motivation for modeling node confidences.

5 CONCLUSION
In this paper, we propose an effective knowledge distillation frame-
work which can extract the knowledge of an arbitrary pretrained
GNN (teacher model) and inject it into a well-designed student
model. The student model CPF is built as a trainable combination of
two simple prediction mechanisms: label propagation and feature
transformation which emphasize structure-based and feature-based
prior knowledge, respectively. After the distillation, the learned
student is able to take advantage of both prior and GNN knowledge
and thus go beyond the GNN teacher. Experimental results on five
benchmark datasets show that our framework can improve the clas-
sification accuracies of all seven GNN teacher models consistently
and significantly with a more interpretable prediction process. Ad-
ditional experiments on different numbers of training ratios and
propagation layers demonstrate the robustness of our algorithm.
We also present case studies to understand the learned balance
parameters and confidence scores in our student architecture.

For future work, we will explore the adoption of our framework
for other graph-based applications besides semi-supervised node
classification. For example, the unsupervised node clustering task
would be interesting since the label propagation scheme can not be
applied without labels. Another direction is to refine our framework
by encouraging the teacher and student models to learn from each
other for better performances.
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A DETAILS FOR REPRODUCIBILITY
In the appendix, we provide more details of experimental settings
of teacher models for reproducibility.

The training settings of 5 classical GNNs come from the paper
[23]. For the two recent ones (GCNII and GLP), we follow the
settings in their original papers. The details are as follows:

• GCN [11]: we use 64 as hidden-layer size, 0.01 as learning
rate, 0.8 as dropout probability and 0.001 as learning rate
decay.

• GAT [29]: we use 64 as hidden-layer size, 0.01 as learning
rate, 0.6 as dropout probability, 0.3 as attention dropout prob-
ability, and 0.01 as learning rate decay.

• APPNP [12]: we use 64 as hidden-layer size, 0.01 as learning
rate, 0.5 as dropout probability and 0.01 as learning rate
decay.

• SAGE [7]: we use 128 as hidden-layer size, 0.01 as learning
rate, 5 as sample number, 256 as batch size and 0.0005 as
learning rate decay.

• SGC [32]: we use 0.1 as learning rate and 0.001 as learning
rate decay.

• GCNII [4]: we use 16 as layer number, 64 as hidden-layer
size, 0.01 as learning rate, 0.6 as dropout probability, 256 as
batch size and 0.1/0.0005 as learning rate decays.

• GLP [14]: we use 16 as hidden-layer size, 0.01 as learning
rate, 0.5 as dropout probability, 0.0005 as learning rate decay,
k=2 for rnm setting and alpha=10 for ar setting.
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