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Graph Neural Networks

D
At
& i
&y
opat lyer K-step Feature Propagation
GCN™ SGCH PPNP®!

Tttt T T o T F=—============- I 0y e e TTTTTT |
' ' 1 Z9) = H = fy(X)
I 5(2) A : 0)\yar(1) | I _ I
| Zion = AReLU (AXW )W) L z2) = AAXWOW | :
| I | I :

Z8, = (1- a)A(u —a)AZO + o:H) +oH
The propagation mechanism is the most fundamental part of GNNs.

[1] T. N. Kipf, and M. Welling. Semi-supervised Classification with Graph Convolutional Networks. ICLR 2017.
[2] Felix Wu et al. 2019. Simplifying Graph Convolutional Networks. ICML 2017
[3] Johannes Klicpera wt al. Predict then Propagate: Graph Neural Networks meet Personalized PageRank. ICLR 2019.
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The Propagation Process

Z = PROPAGATE(X; G: K) = (Trans(Agg{Q;Z(k_l)}» CGCN.GIN... >

K

7 = PROPAGATE(X; G; K) = <Agg{g; 7, (k=1) }) GSGC, APPNP..>

K

O Agg{g;Z(k_l)} ® Trans(-) ® <>K

Rethinking the Propagation

> |Is there a unified framework that essentially governs the propagation
mechanisms of different GNNs? If so, what is it?

» Can it bring new insights for new GNNs designing?
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The Unified Optimization Framework

O = min { {|[F1Z - FH||}, +£tr(2717) }.

W

-~

O i 0?’6
o
Flexible Feature Fitting Term Graph Laplacian Regularization Term

4 )

(> Flexible Graph Convolutional Kernels ) » & 1s a non-negative coefficient

FLF, - LAL Oreg = £ Y As i -7, = trr(Tiz)
U (=0 or (=1 D \ ij )
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Interpreting PPNP and APPNP.

@ PPNP APPNP

Z = PROPAGATE(X; G ) ppnyp Z = PROPAGATE(X; G; K)appnp

=a(l-(1-@)A)'H, and H = fy(X), = {(1 - a)AZ*D 4 “H>K* and 7' = H = fp(X).

TrHEOREM 3.3. WithFi=F =1{(=1,¢(=1/a-1,a € (0,1]
in Eq. (3), the propagation process of PPNP/APPNP optimizes the
following objective:

O = mén {”Z— H”zF + §rr(ZTi.Z)}, (15)

where H = fg(X).

Proof.
o{lz-H|2 + er(z"12)]

. 16)
=0 Z-H LZ = 0. (
5z = +¢&

Z={1+(1/a-1)(I-A)} "H=a(l-(1-a)A)"'H, (18
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Interpreting GCN and SGC.

GCN SGC
Z = PROPAGATE(X; G;K)gcn Z = PROPAGATE(X: G; K)sgc
- fig(. . U(Exw(ﬂ]) e )w(K—l)_ —A---AXWO .. oWwlEK=D — AKxw

THEOREM 3.1. With{ = 0 and ¢ = 1 in Eq. (3), the propagation
process of SGC/GCN optimizes the following graph regularization
term:

O = min {tr(Zz'L2)}. (7)
where Z is initialized as XW™.

L d [ 3 .
Interpretlng GC Operatlon Tueorem 3.2. WithF; = F, = I, { = 1,¢ = 1 in Eq. (3), the I-

M GC Operation layer GC operation optimizes the following objective under first-order
approximation:

Z = PROPAGATE(X; G; 1), = AXW. O = min {||z~ H[; + tr(z" L2)}. (12)

where H = XW is the linear transformation on feature, W is a train-
able weight matrix.
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Interpreting JKNet.
JKNet

Z = PROPAGATE(X: G:K) ;K Net

THEOREM 3.4. WithF, =L F, = A, { =1,and & € (0, ) in Eq.
. . : (3), the propagation process of JKNet optimizes the following objective:
= 0] AXW* + A’XW* + - -+ + ag AN XW* . .

; ? K O = min {|z- AH]], + £r(2"L2)}, (20)

K
- .I[if "
= Z ap A" XW7, here H= XW” is the linear feature transformation after simplifica-
k=1 tions.

Interpreting DAGNN.

DAGNN THEOREM 3.5. WithFj =F, =1, { =1and& € (0, c0) in Eq. (3),
Z = PROPAGATE(X; G; K)pAGN N the propagation process of DAGNN optimizes the following objective:
2 A s O = min {||Z- H|> + étr(ZT I . 26
= soH + s;AH + 5,A%H + - -- + sg AKH o (|12 - Hllp + £r(Z'12)) (26)
K where H = fg(X) is the non-linear transformation on feature matrix,
— Z Ski;kH ﬂnd H — f‘g(x) fhe retainment scores Sp, §1, - ,SK are appmximared byg € (0’ D'C')
k=0
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Overall Correspondences.

Experiments Conclusion

Model Characteristic Propagation Mechanism Corresponding Objective
GCN/SGC [13] K-layer graph convolutions Z= f:’LK Xw* 0= n‘%n {Ir[ZT i.Z)}, z0 = xw*
GC Operation [13] 1-layer graph convolution Z= AXW 0= rr%'n {"Z - H||i + Ir(ZTi.Z)}, H = XW, (first-order)
PPNP: Z=a(I-(1-a)A)'H _ ) _
PPNP/APPNP [14] Personalized pagerank H = f3(X), 0 = n‘gn {"Z - H”F +(1/a - l)tr(ZTLZ}}

APPNP: Z = ((1 — a)AZ*D 4 aH)K’ 70 _ g

K &
JKNet [38] Jumping to the last layer Z=3 apAFxw*
k=1

O = min {|z - AH|% + (2T iZ)}, H = XW*

K &
DAGNN [17] Adaptively incorporating different layers | H = fp(X), Z= } siAFH
k=0

0 = min ||z - H||; + er(Z71z)}

Discussion.

Understanding relationships between different GNNs is much easier.

The unified framework opens up new insights for designing novel GNNs.
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GNN-LF: GNN with Low-pass Filtering Kernel
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Z = PROPAGATE(X; G:K)LF-iter

|
|
|
I Z = PROPAGATE(X; G; ) [ F—closed I
| 1+ap—2az Agzk=1) apu a—ap 2 I
— H AH
I ( + + Ki
|
|

g
L=l e DL (2 g 1A} i+ (1 - AV
<

l+ap—-a l+auy—-—a l1+ap—«a

Land H = fy(X). |

Relation :
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GNN-HF: GNN with High-pass Filtering Kernel

[T T T T T s s s e e e e e e T 1
i THEOREM 4.3. WithF; = F, = {I+,6L}1f2,,8€ (0,00), =1 and

1&E=1/a—1,a € (0,1] in Eq. (3), the propagation process considering |
I flexible high-pass convolutional kernel on feature is: |

- . | |
Objective | O = min {|[(1+ pL}'/*(z- B[ + (2" LD)}.  (37)]

whereH=fp(X. |

Closed Solution. G Iterative Approximation.
Z = PROPAGATE(X; G: K)gF—-iter

|

Z = PROPAGATE(X; G; ) g F—closed 2 I
:<aﬁ—a+lﬁz(k_lj+ (74 H + (I,B iH) ) |
K |

|

|

1
|
n I I
={(B + 1/a)l+(1—,B—I/H)A}_I{I"'rgi‘}H* : :
|
L

af +1 af +1 af +1
and H = fp(X).

701 g, P LH, and H= fp(X).

Relati ,  THEOREM 4.4. When K — oo, deep GNN-HF-iter converges to|
elation I GNN-HF-closed with the same propagation result as Eq. (39).

<
25
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Spectral Expressive Power Analysis

The Unified Framework

New GNNs Design
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Conclusion

Over-smoothing

1

K-order polynomial filter on graph signal X € R™¥/: (zf,fzk)x e @essive Power

GNN-LF/HF

1) Filter coefficients for L

_op(1 + oy — 2ex)

(¢ —ap)(1+ap— 2a)K-

1

1+ ay —a)?

a—ap 1+au

- 2a

(1 +ap - )k

_ ap
5“’_{1+a,u

2) Filter coefficients for f.k, ke[l,K-1]

—a l+ap—2a

H

K .
6 = Y, 356-0{1).
j=k

ap N a-—ap }(1+a,u—2a)j_

8 ={

l+au—a

).

l+apuy—a 1+ap-2a

3) Filter coefficients for L":

_ (e—ap)(1+ay— 20)K-1

(1 +ap—a)k

l+apu—a

K K
-1) (K)

(45)

i -

K-1
ZK=a ) (1-a)'(1-1)'X.
i=0

K-1 . ;
O =a ) (1- a)f(-n“(k).
i=k

Fixed Constant

/AN
Flexible
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Datasets.

Edges Features Train/Val/Test

Dataset Classes Nodes

Cora 7 2708 5429
Citeseer 6 3327 4732
Pubmed 3 19717 44338
ACM 3 3025 13128
Wiki-CS$S 10 11701 216123
MS Academic 15 18333 81894

1433
3703
500
1870
300
6305

140/500/1000
120/500/1000
60/500/1000
60/500/1000
200/500/1000
300/500/1000

Metrics.

ACC = uncertainties

New GNNs Design Experiments Conclusion

Baselines.
Traditional graph learning methods

MLP, LP

Spectral methods
ChebNet, GCN

Spatial methods
SGC, GAT, GraphSAGE, PPNP

Deep GNN methods
JKNet, APPNP, IncepGCN
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Node Classification
Model Dataset
Cora Citeseer Pubmed ACM Wiki-CS | MS Academic
MLP 57.79+0.11 61.20+0.08 73.23+0.05 77.39+0.11 65.66+0.20 87.79+0.42
LP 71.50+0.00 50.80+0.00 72.70+0.00 63.30+0.00 34.90+0.00 74.10+0.00
ChebNet 79.92+0.18 70.90+0.37 76.98+£0.16 79.53+1.24 63.24+1.43 90.76+£0.73
GAT 82.48+0.31 72.08+£0.41 79.08+0.22 88.24+0.38 74.27+0.63 91.58+0.25
GraphSAGE 8§2.14+0.25 71.80+0.36 79.20+0.27 87.57+0.65 73.17+0.41 91.53+0.15
IncepGCN 8§1.94+0.94 69.66+0.29 78.88+0.35 87.75+0.61 60.54+1.06 75.45+0.49
GCN 82.41+0.25 70.72+0.36 79.40+0.15 88.38+0.51 71.97+0.51 92.17+0.11
SGC 81.90+0.23 72.21+0.22 78.30+0.14 87.56+0.34 72.43+0.28 88.35+0.36
PPNP 83.34+0.20 71.73+£0.30 80.06£0.20 89.12+0.17 74.53+0.36 02.27+0.23
APPNP 83.32+0.42 71.67+0.48 80.05+0.27 89.04+0.21 74.30+0.50 92.25+0.18
JKNet 8§1.19+0.49 70.69+0.88 78.60+0.25 88.11+0.36 60.90+£0.92 87.26+0.23
GNN-LF-closed | 83.70+0.14 71.98+0.33 80.34+0.18 89.43+0.20 | 75.50+0.56 92.79+0.15
GNN-LF-iter 83.531£0.24 71.92+0.24 80.33+£0.20 89.37+0.40 75.35+0.24 92.69+0.20
GNN-HF-closed | 83.96+0.22 | 72.30+0.28 | 80.41+0.25 89.46+0.30 74.92+0.45 92.47+0.23
GNN-HF-iter 83.79+0.29 72.03£0.36 | 80.54+0.25 | 89.59+0.31 | 74.90+0.37 92.51+£0.16

Conclusion
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Propagation Depth Analysis

SGC =%=GCN =@ IncepGCN —8— JKNet S5GC  —v—GCN —#— IncepGUCN —8— JKNet S5GC ——GCN —i— IncepGCN —8— JKNet
—E—APPNP —%— GNN-LF —e— GNN-HF —E— APPNP —%— GNN-LF —e— GNN-HF —E&— APPNP —#—GNN-LF —e— GNN-HF

I L M i B L L i L L N . . . , . . | ?‘“ 1 i i i i i i i
2 4 8 16 32 64 2 1 8 16 32 64 2 4 8 16 32 64
Propagation Depth Propagation Depth Propagation Depth

(a) Cora (b) Citeseer (c) Pubmed
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@ A unified optimization framework.

We propose a unified objective optimization framework and
theoretically prove that this framework is able to unify a series of
GNNs propagation mechanisms.

A new insight for designing GNNs.

Within the proposed optimization framework, we design two
novel deep GNNs with flexible low-frequency and high-
frequency filters which can well alleviate over-smoothing.

Extensive experiments verify the feasibility.

Our extensive experiments clearly show that the proposed two
GNNs outperform the state-of-the-art methods. This further
verifies the feasibility for designing GNNs under the unified
framework.
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