Interpreting and Unifying Graph Neural Networks with An Optimization Framework

Meiqi Zhu1, Xiao Wang1, Chuan Shi1, Houye Ji1, Peng Cui2

1Beijing University of Posts and Telecommunications
2Tsinghua University
The propagation mechanism is the most fundamental part of GNNs.

The Propagation Process

\[Z = \text{PROPAGATE}(X; \mathcal{G}; K) = \left(\text{Trans}\left(\text{Agg}\{\mathcal{G}; Z^{(k-1)}\} \right) \right)_K \]

- \(\text{Agg}\{\mathcal{G}; Z^{(k-1)}\} \)
- \(\text{Trans}() \)
- \(\langle \rangle_K \)

SGC, APPNP...

GCN, GIN...

Rethinking the Propagation

- Is there a **unified framework** that essentially governs the **propagation mechanisms** of different GNNs? If so, what is it?

- Can it bring **new insights** for new GNNs **designing**?
The Unified Framework
The Unified Optimization Framework

\[O = \min_Z \left\{ \zeta \| F_1 Z - F_2 H \|^2_F + \xi \text{tr}(Z^T \tilde{L} Z) \right\} \]

- **Feature**
 - **Flexible Feature Fitting Term**
 - **Graph Laplacian Regularization Term**

- **Flexible Graph Convolutional Kernels**
 - \(F_1, F_2 \rightarrow I, \hat{A}, \hat{L} \)
 - \(\zeta = 0 \) or \(\zeta = 1 \)

- **\(\xi \)** is a non-negative coefficient

\[O_{reg} = \frac{\xi}{2} \sum_{i,j} \hat{A}_{i,j} \| Z_i - Z_j \|^2 = \xi \text{tr}(Z^T \tilde{L} Z) \]
Interpreting PPNP and APPNP.

01 PPNP

\[
Z = \text{PROPAGATE}(X; \mathcal{G}; \infty)_{\text{ppnp}} \\
\quad = \alpha (I - (1 - \alpha) \hat{A})^{-1} H, \quad \text{and} \quad H = f_\theta(X),
\]

02 APPNP

\[
Z = \text{PROPAGATE}(X; \mathcal{G}; K)_{\text{appnp}} \\
\quad = \left((1 - \alpha) \hat{A} Z^{(k-1)} + \alpha H\right)_K, \quad \text{and} \quad Z^{(0)} = H = f_\theta(X).
\]

Theorem 3.3. With \(F_1 = F_2 = I, \zeta = 1, \bar{\xi} = 1/\alpha - 1, \alpha \in (0, 1] \) in Eq. (3), the propagation process of PPNP/APPNP optimizes the following objective:

\[
O = \min_Z \left\{ \|Z - H\|_F^2 + \xi \text{tr}(Z^T \tilde{L} Z) \right\},
\]

where \(H = f_\theta(X) \).

Proof.

\[
\frac{\partial \left\{ \|Z - H\|_F^2 + \xi \text{tr}(Z^T \tilde{L} Z) \right\}}{\partial Z} = 0 \quad \Rightarrow \quad Z - H + \bar{\xi} \tilde{L} Z = 0.
\]

\[
Z = \left\{ I + (1/\alpha - 1)(I - \hat{A}) \right\}^{-1} H = \alpha (I - (1 - \alpha) \hat{A})^{-1} H.
\]
Interpreting GCN and SGC.

GCN

\[
Z = \text{PROPAGATE}(X; G; K)_{\text{gc}} = \hat{\Delta} \sigma (\cdots \sigma(\hat{\Delta}XW^{(0)}) \cdots)W^{(K-1)}.
\]

SGC

\[
Z = \text{PROPAGATE}(X; G; K)_{\text{sg}} = \hat{\Delta} \cdots \hat{\Delta}XW^{(0)} \cdots W^{(K-1)} = \hat{\Delta}^K XW^*.
\]

Theorem 3.1. With $\zeta = 0$ and $\xi = 1$ in Eq. (3), the propagation process of SGC/GCN optimizes the following graph regularization term:

\[
O = \min_Z \{tr(Z^T \tilde{L}Z)\},
\]

where Z is initialized as XW^*.

Interpreting GC Operation.

GC operation

\[
Z = \text{PROPAGATE}(X; G; 1)_{\text{gc}} = \hat{\Delta}XW.
\]

Theorem 3.2. With $F_1 = F_2 = I$, $\zeta = 1$, $\xi = 1$ in Eq. (3), the 1-layer GC operation optimizes the following objective under first-order approximation:

\[
O = \min_Z \{\|Z - H\|_F^2 + tr(Z^T \tilde{L}Z)\},
\]

where $H = XW$ is the linear transformation on feature, W is a trainable weight matrix.
Interpreting JKNet.

01 JKNet

\[Z = \text{PROPAGATE}(X; G; K)_{JKNet} \]

\[= \alpha_1 \hat{A}XW^* + \alpha_2 \hat{A}^2XW^* + \cdots + \alpha_K \hat{A}^KXW^* \]

\[= \sum_{k=1}^{K} \alpha_k \hat{A}^kXW^*, \]

Theorem 3.4. With \(F_1 = I, F_2 = \hat{A}, \zeta = 1, \) and \(\xi \in (0, \infty) \) in Eq. (3), the propagation process of JKNet optimizes the following objective:

\[O = \min_{Z} \left\{ \|Z - \hat{A}H\|_F^2 + \xi \text{tr}(Z^T \tilde{L}Z) \right\}, \]

where \(H = XW^* \) is the linear feature transformation after simplifications.

Interpreting DAGNN.

02 DAGNN

\[Z = \text{PROPAGATE}(X; G; K)_{DAGNN} \]

\[= s_0 H + s_1 \hat{A}H + s_2 \hat{A}^2H + \cdots + s_K \hat{A}^K H \]

\[= \sum_{k=0}^{K} s_k \hat{A}^kH, \quad \text{and} \quad H = f_\theta(X). \]

Theorem 3.5. With \(F_1 = F_2 = I, \zeta = 1 \) and \(\xi \in (0, \infty) \) in Eq. (3), the propagation process of DAGNN optimizes the following objective:

\[O = \min_{Z} \left\{ \|Z - H\|_F^2 + \xi \text{tr}(Z^T \tilde{L}Z) \right\}, \]

where \(H = f_\theta(X) \) is the non-linear transformation on feature matrix, the retention scores \(s_0, s_1, \cdots, s_K \) are approximated by \(\xi \in (0, \infty) \).
Overall Correspondences.

<table>
<thead>
<tr>
<th>Model</th>
<th>Characteristic</th>
<th>Propagation Mechanism</th>
<th>Corresponding Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCN/SGC [13]</td>
<td>K-layer graph convolutions</td>
<td>$Z = \hat{A}^K X W^*$</td>
<td>$O = \min_{Z} \left{ \text{tr}(Z^T \hat{L} Z), Z^{(0)} = X W^* \right}$</td>
</tr>
<tr>
<td>GC Operation [13]</td>
<td>1-layer graph convolution</td>
<td>$Z = \hat{A} X W$</td>
<td>$O = \min_{Z} \left{ |Z - H|_F^2 + \text{tr}(Z^T \hat{L} Z) \right}, H = X W, (\text{first-order})$</td>
</tr>
<tr>
<td>PPNP/APPNP [14]</td>
<td>Personalized pagerank</td>
<td>$H = f_\theta(X), \begin{cases} \text{PPNP: } Z = \alpha(1 - \alpha \hat{A})^{-1} H \ \text{APPNP: } Z = (1 - \alpha \hat{A} Z^{(k-1)} + \alpha H)_K, Z^{(0)} = H \end{cases}$</td>
<td>$O = \min_{Z} \left{ |Z - H|_F^2 + (1/\alpha - 1)\text{tr}(Z^T \hat{L} Z) \right}$</td>
</tr>
<tr>
<td>JKNNet [38]</td>
<td>Jumping to the last layer</td>
<td>$Z = \sum_{k=1}^{K} \alpha_k \hat{A}^k X W^*$</td>
<td>$O = \min_{Z} \left{ |Z - \hat{A} H|_F^2 + \xi \text{tr}(Z^T \hat{L} Z) \right}, H = X W^*$</td>
</tr>
<tr>
<td>DAGNN [17]</td>
<td>Adaptively incorporating different layers</td>
<td>$H = f_\theta(X), Z = \sum_{k=0}^{K} s_k \hat{A}^k H$</td>
<td>$O = \min_{Z} \left{ |Z - H|_F^2 + \xi \text{tr}(Z^T \hat{L} Z) \right}$</td>
</tr>
</tbody>
</table>

Discussion.

- **Understanding relationships** between different GNNs is much easier.
- The unified framework opens up **new insights** for designing novel GNNs.
New GNNs Design
GNN-LF: GNN with Low-pass Filtering Kernel

Theorem 4.1. With \(F_1 = F_2 = \{ \mu I + (1 - \mu)\hat{A} \}^{1/2}, \mu \in [1/2, 1], \) \(\zeta = 1 \) and \(\xi = 1/\alpha - 1, \alpha \in (0, 2/3) \) in Eq. (3), the propagation process considering flexible low-pass filtering kernel on feature is:

\[
O = \min \{ \| \{ \mu I + (1 - \mu)\hat{A} \}^{1/2} (Z - H) \|_F^2 + \xi \text{tr}(Z^T \hat{L}Z) \},
\]

where \(H = f_0(X) \).

Objective

Closed Solution.

\[
Z = \text{PROPAGATE}(X; G; \infty)_{\text{LF-closed}} = \left\{ \mu + 1/\alpha - 1 \right\}I + \left\{ 2 - \mu - 1/\alpha \right\}\hat{A}^{-1} \{ \mu I + (1 - \mu)\hat{A} \}H,
\]

and \(H = f_0(X) \).

Iterative Approximation.

\[
Z^{(0)} = \frac{\mu}{1 + \alpha \mu - \alpha} H + \frac{1 - \mu}{1 + \alpha \mu - \alpha} \hat{A} H, \quad \text{and} \quad H = f_0(X).
\]

Model

Theorem 4.2. With \(K \to \infty \), deep GNN-LF-iter converges to GNN-LF-closed with the same propagation result as Eq. (31).
GNN-HF: GNN with High-pass Filtering Kernel

Objective

\[
O = \min_{Z} \left\| \frac{1}{2}(Z - H) \right\|_F^2 + \xi \text{tr}(Z^T \tilde{L} Z),
\]

where \(H = f_\theta(X) \).

Closed Solution.

\[
Z = \text{PROPAGATE}(X; G; \infty)_{HF-closed}
= \{(\beta + 1/\alpha)I + (1 - \beta - 1/\alpha)\hat{\Delta}\}^{-1}(I + \beta\hat{L})H,
\]

and \(H = f_\theta(X) \).

Iterative Approximation.

\[
Z_{\text{iter}} = \text{PROPAGATE}(X; G; K)_{HF-iter}
= \left\{ \frac{\alpha\beta - \alpha + 1}{\alpha\beta + 1} \hat{Z}^{(k-1)} + \frac{\alpha}{\alpha\beta + 1} H + \frac{\alpha\beta}{\alpha\beta + 1} \hat{L}H \right\}_K,
\]

\[
Z^{(0)} = \frac{1}{\alpha\beta + 1} H + \frac{\beta}{\alpha\beta + 1} \hat{L}H, \quad \text{and} \quad H = f_\theta(X).
\]

Theorem 4.4. When \(K \to \infty \), deep GNN-HF-iter converges to GNN-HF-closed with the same propagation result as Eq. (39).
Spectral Expressive Power Analysis

K-order polynomial filter on graph signal \(\mathbf{X} \in \mathbb{R}^{n \times f} \):

\[
\left(\sum_{k=0}^{K} \theta_k \hat{L}^k \right) \mathbf{X}
\]

\(\hat{L} \) is the normalized Laplacian matrix.

GNN-LF/HF

1) Filter coefficients for \(\hat{L}^0 \):

\[
\theta_0 = \frac{\alpha \mu (1 + \alpha \mu - 2 \alpha)}{(1 + \alpha \mu - \alpha)^2} + \frac{(\alpha - \alpha \mu) (1 + \alpha \mu - 2 \alpha)^{K-1}}{(1 + \alpha \mu - \alpha)^K} + \sum_{j=1}^{K-1} \delta_j \left(\begin{array}{c} K \\ j \end{array} \right).
\]

2) Filter coefficients for \(\hat{L}^1 \), \(k \in [1, K-1] \):

\[
\theta_k = \sum_{j=k}^{K} \delta_j (-1)^j \left(\begin{array}{c} K \\ j \end{array} \right).
\]

3) Filter coefficients for \(\hat{L}^K \):

\[
\theta_K = \frac{(\alpha - \alpha \mu) (1 + \alpha \mu - 2 \alpha)^{K-1}}{(1 + \alpha \mu - \alpha)^K} (-1)^K \left(\begin{array}{c} K \\ K \end{array} \right).
\]

SGC

\[
\mathbf{Z}^{(K)} = \hat{\mathbf{A}}^K \mathbf{X} = (I - \hat{L})^K \mathbf{X}.
\]

\[
\theta_k = (-1)^k \binom{K}{k}
\]

PPNP/APPNP

\[
\mathbf{Z}^{(K)} = \alpha \sum_{i=0}^{K-1} (1 - \alpha)^i (I - \hat{L})^i \mathbf{X}.
\]

\[
\theta_k = \alpha \sum_{i=k}^{K-1} (1 - \alpha)^i (-1)^k \binom{i}{k}
\]

Over-smoothing → Expressive Power

- **Fixed Constant**
- **Flexible**
Experiments
Datasets.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Classes</th>
<th>Nodes</th>
<th>Edges</th>
<th>Features</th>
<th>Train/Val/Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cora</td>
<td>7</td>
<td>2708</td>
<td>5429</td>
<td>1433</td>
<td>140/500/1000</td>
</tr>
<tr>
<td>Citeseer</td>
<td>6</td>
<td>3327</td>
<td>4732</td>
<td>3703</td>
<td>120/500/1000</td>
</tr>
<tr>
<td>Pubmed</td>
<td>3</td>
<td>19717</td>
<td>44338</td>
<td>500</td>
<td>60/500/1000</td>
</tr>
<tr>
<td>ACM</td>
<td>3</td>
<td>3025</td>
<td>13128</td>
<td>1870</td>
<td>60/500/1000</td>
</tr>
<tr>
<td>Wiki-CS</td>
<td>10</td>
<td>11701</td>
<td>216123</td>
<td>300</td>
<td>200/500/1000</td>
</tr>
<tr>
<td>MS Academic</td>
<td>15</td>
<td>18333</td>
<td>81894</td>
<td>6805</td>
<td>300/500/1000</td>
</tr>
</tbody>
</table>

Metrics.

\[\text{ACC} \pm \text{uncertainties} \]

BaseLines.

01 Traditional graph learning methods
 - MLP, LP

02 Spectral methods
 - ChebNet, GCN

03 Spatial methods
 - SGC, GAT, GraphSAGE, PPNP

04 Deep GNN methods
 - JKNet, APPNP, IncepGCN
Node Classification

<table>
<thead>
<tr>
<th>Model</th>
<th>Cora</th>
<th>Citeseer</th>
<th>Pubmed</th>
<th>ACM</th>
<th>Wiki-CS</th>
<th>MS Academic</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLP</td>
<td>57.79±0.11</td>
<td>61.20±0.08</td>
<td>73.23±0.05</td>
<td>77.39±0.11</td>
<td>65.66±0.20</td>
<td>87.79±0.42</td>
</tr>
<tr>
<td>LP</td>
<td>71.50±0.00</td>
<td>50.80±0.00</td>
<td>72.70±0.00</td>
<td>63.30±0.00</td>
<td>34.90±0.00</td>
<td>74.10±0.00</td>
</tr>
<tr>
<td>ChebNet</td>
<td>79.92±0.18</td>
<td>70.90±0.37</td>
<td>76.98±0.16</td>
<td>79.53±1.24</td>
<td>63.24±1.43</td>
<td>90.76±0.73</td>
</tr>
<tr>
<td>GAT</td>
<td>82.48±0.31</td>
<td>72.08±0.41</td>
<td>79.08±0.22</td>
<td>88.24±0.38</td>
<td>74.27±0.63</td>
<td>91.58±0.25</td>
</tr>
<tr>
<td>GraphSAGE</td>
<td>82.14±0.25</td>
<td>71.80±0.36</td>
<td>79.20±0.27</td>
<td>87.57±0.65</td>
<td>73.17±0.41</td>
<td>91.53±0.15</td>
</tr>
<tr>
<td>IncepGCN</td>
<td>81.94±0.94</td>
<td>69.66±0.29</td>
<td>78.88±0.35</td>
<td>87.75±0.61</td>
<td>60.54±1.06</td>
<td>75.45±0.49</td>
</tr>
<tr>
<td>GCN</td>
<td>82.41±0.25</td>
<td>70.72±0.36</td>
<td>79.40±0.15</td>
<td>88.38±0.51</td>
<td>71.97±0.51</td>
<td>92.17±0.11</td>
</tr>
<tr>
<td>SGC</td>
<td>81.90±0.23</td>
<td>72.21±0.22</td>
<td>78.30±0.14</td>
<td>87.56±0.34</td>
<td>72.43±0.28</td>
<td>88.35±0.36</td>
</tr>
<tr>
<td>PPNP</td>
<td>83.34±0.20</td>
<td>71.73±0.30</td>
<td>80.06±0.20</td>
<td>89.12±0.17</td>
<td>74.53±0.36</td>
<td>92.27±0.23</td>
</tr>
<tr>
<td>APPNP</td>
<td>83.32±0.42</td>
<td>71.67±0.48</td>
<td>80.05±0.27</td>
<td>89.04±0.21</td>
<td>74.30±0.50</td>
<td>92.25±0.18</td>
</tr>
<tr>
<td>JKNNet</td>
<td>81.19±0.49</td>
<td>70.69±0.88</td>
<td>78.60±0.25</td>
<td>88.11±0.36</td>
<td>60.90±0.92</td>
<td>87.26±0.23</td>
</tr>
<tr>
<td>GNN-LF-closed</td>
<td>83.70±0.14</td>
<td>71.98±0.33</td>
<td>80.34±0.18</td>
<td>89.43±0.20</td>
<td>75.50±0.56</td>
<td>92.79±0.15</td>
</tr>
<tr>
<td>GNN-LF-iter</td>
<td>83.53±0.24</td>
<td>71.92±0.24</td>
<td>80.33±0.20</td>
<td>89.37±0.40</td>
<td>75.35±0.24</td>
<td>92.69±0.20</td>
</tr>
<tr>
<td>GNN-HF-closed</td>
<td>83.96±0.22</td>
<td>72.30±0.28</td>
<td>80.41±0.25</td>
<td>89.46±0.30</td>
<td>74.92±0.45</td>
<td>92.47±0.23</td>
</tr>
<tr>
<td>GNN-HF-iter</td>
<td>83.79±0.29</td>
<td>72.03±0.36</td>
<td>80.54±0.25</td>
<td>89.59±0.31</td>
<td>74.90±0.37</td>
<td>92.51±0.16</td>
</tr>
</tbody>
</table>
Propagation Depth Analysis

(a) Cora
(b) Citeseer
(c) Pubmed
Model Analysis

(a) GNN-LF

(b) GNN-HF
Conclusions
A unified optimization framework.

We propose a unified objective optimization framework and theoretically prove that this framework is able to unify a series of GNNs propagation mechanisms.

A new insight for designing GNNs.

Within the proposed optimization framework, we design two novel deep GNNs with flexible low-frequency and high-frequency filters which can well alleviate over-smoothing.

Extensive experiments verify the feasibility.

Our extensive experiments clearly show that the proposed two GNNs outperform the state-of-the-art methods. This further verifies the feasibility for designing GNNs under the unified framework.
Resources

公众号：北邮GAMMA Lab
公众号：图与推荐

石川老师主页：http://shichuan.org/

图与推荐交流QQ群
Thanks!
Q&A