

Interpreting and Unifying Graph Neural Networks with An Optimization Framework

Meiqi Zhu¹, Xiao Wang¹, Chuan Shi¹, Houye Ji¹, Peng Cui² ¹Beijing University of Posts and Telecommunications ²Tsinghua University

CONTENTS

Experiments Conclusion

Overview

Experiments

Conclusion

Graph Neural Networks

The propagation mechanism is the most fundamental part of GNNs.

[1] T. N. Kipf, and M. Welling. Semi-supervised Classification with Graph Convolutional Networks. ICLR 2017.
 [2] Felix Wu et al. 2019. Simplifying Graph Convolutional Networks. ICML 2017
 [3] Johannes Klicpera wt al. Predict then Propagate: Graph Neural Networks meet Personalized PageRank. ICLR 2019.

Experiments Conclusion

The Propagation Process

$$\mathbf{Z} = \mathbf{PROPAGATE}(\mathbf{X}; \mathcal{G}; K) = \left\langle \mathbf{Trans} \left(\mathbf{Agg} \{ \mathcal{G}; \mathbf{Z}^{(k-1)} \} \right) \right\rangle_{K}$$

$$\mathbf{Z} = \mathbf{PROPAGATE}(\mathbf{X}; \mathcal{G}; K) = \left\langle \mathbf{Agg} \{ \mathcal{G}; \mathbf{Z}^{(k-1)} \} \right\rangle_{K}$$

•
$$Agg\{\mathcal{G}; \mathbf{Z}^{(k-1)}\}$$
 • $Trans(\cdot)$ • $\langle \rangle_K$

Rethinking the Propagation

- Is there a unified framework that essentially governs the propagation mechanisms of different GNNs? If so, what is it?
- Can it bring new insights for new GNNs designing?

Overview

The Unified FrameworkNew GNNs DesignExperiments

Conclusion

The Unified Framework

The Unified Optimization Framework

$$O = \min_{\mathbf{Z}} \left\{ \underbrace{\zeta \| \mathbf{F}_{1} \mathbf{Z} - \mathbf{F}_{2} \mathbf{H} \|_{F}^{2}}_{O_{fit}} + \underbrace{\xi tr(\mathbf{Z}^{T} \tilde{\mathbf{L}} \mathbf{Z})}_{O_{reg}} \right\}.$$
Flexible Feature Fitting Term
Flexible Graph Convolutional Kernels
$$\mathbf{F}_{1}, \mathbf{F}_{2} \rightarrow \mathbf{I}, \widehat{\mathbf{A}}, \widetilde{\mathbf{L}}$$

$$\zeta = 0 \quad \text{or} \quad \zeta = 1$$

$$\bigvee \{ \xi \text{ is a non-negative coefficient} \\ O_{reg} = \underbrace{\xi}_{2} \sum_{i,j}^{n} \widehat{\mathbf{A}}_{i,j} \| \mathbf{Z}_{i} - \mathbf{Z}_{j} \|^{2} = \xi tr(\mathbf{Z}^{T} \tilde{\mathbf{L}} \mathbf{Z}).$$

Interpreting PPNP and APPNP.

01 **PPNP**

$$\mathbf{Z} = \mathbf{PROPAGATE}(\mathbf{X}; \mathcal{G}; \infty)_{ppnp}$$

$$= \alpha \left(\mathbf{I} - (1 - \alpha) \tilde{\mathbf{A}} \right)^{-1} \mathbf{H}, \quad and \quad \mathbf{H} = f_{\theta}(\mathbf{X}),$$

02 APPNP

 $\mathbf{Z} = \mathbf{PROPAGATE}(\mathbf{X}; \mathcal{G}; K)_{appnp}$

$$= \left\langle (1-\alpha)\hat{\tilde{\mathbf{A}}}\mathbf{Z}^{(k-1)} + \alpha \mathbf{H} \right\rangle_{K}, \quad and \quad \mathbf{Z}^{(0)} = \mathbf{H} = f_{\theta}(\mathbf{X}).$$

THEOREM 3.3. With $\mathbf{F}_1 = \mathbf{F}_2 = \mathbf{I}, \zeta = 1, \xi = 1/\alpha - 1, \alpha \in (0, 1]$ in Eq. (3), the propagation process of PPNP/APPNP optimizes the following objective: $O = \min_{\mathbf{Z}} \{ \|\mathbf{Z} - \mathbf{H}\|_F^2 + \xi tr(\mathbf{Z}^T \tilde{\mathbf{L}} \mathbf{Z}) \},$ (15)

where $H = f_{\theta}(X)$.

Proof.

$$\frac{\partial \left\{ \|\mathbf{Z} - \mathbf{H}\|_{F}^{2} + \xi tr(\mathbf{Z}^{T}\tilde{\mathbf{L}}\mathbf{Z}) \right\}}{\partial \mathbf{Z}} = 0 \implies \mathbf{Z} - \mathbf{H} + \xi \tilde{\mathbf{L}}\mathbf{Z} = 0.$$
⁽¹⁶⁾
$$\mathbf{Z} = \left\{ \mathbf{I} + (1/\alpha - 1)(\mathbf{I} - \hat{\tilde{\mathbf{A}}}) \right\}^{-1} \mathbf{H} = \alpha \left(\mathbf{I} - (1 - \alpha)\hat{\tilde{\mathbf{A}}} \right)^{-1} \mathbf{H},$$
⁽¹⁸⁾

Interpreting GCN and SGC.

01 GCN

 $\mathbf{Z} = \mathbf{PROPAGATE}(\mathbf{X}; \mathcal{G}; K)_{gcn}$

 $= \hat{\tilde{\mathbf{A}}} \sigma(\cdots \sigma(\hat{\tilde{\mathbf{A}}} \mathbf{X} \mathbf{W}^{(0)}) \cdots) \mathbf{W}^{(K-1)}.$

02 **SGC**

 $\mathbf{Z} = \mathbf{PROPAGATE}(\mathbf{X}; \mathcal{G}; K)_{sgc}$

 $= \hat{\tilde{\mathbf{A}}} \cdots \hat{\tilde{\mathbf{A}}} \mathbf{X} \mathbf{W}^{(0)} \cdots \mathbf{W}^{(K-1)} = \hat{\tilde{\mathbf{A}}}^K \mathbf{X} \mathbf{W}^*,$

THEOREM 3.1. With $\zeta = 0$ and $\xi = 1$ in Eq. (3), the propagation process of SGC/GCN optimizes the following graph regularization term:

$$O = \min_{\mathbf{Z}} \left\{ tr(\mathbf{Z}^T \tilde{\mathbf{L}} \mathbf{Z}) \right\},\tag{7}$$

where Z is initialized as XW^* .

Interpreting GC Operation.

GC operation

$$\mathbf{Z} = \mathbf{PROPAGATE}(\mathbf{X}; \mathcal{G}; 1)_{gc} = \hat{\mathbf{A}}\mathbf{X}\mathbf{W}.$$

THEOREM 3.2. With $F_1 = F_2 = I$, $\zeta = 1$, $\xi = 1$ in Eq. (3), the 1layer GC operation optimizes the following objective under first-order approximation:

$$O = \min_{\boldsymbol{Z}} \left\{ \left\| \boldsymbol{Z} - \boldsymbol{H} \right\|_{F}^{2} + tr(\boldsymbol{Z}^{T} \, \tilde{\boldsymbol{L}} \boldsymbol{Z}) \right\},$$
(12)

where H = XW is the linear transformation on feature, W is a trainable weight matrix.

tions.

Interpreting JKNet.

JKNet

 $\mathbf{Z} = \mathbf{PROPAGATE}(\mathbf{X}; \mathcal{G}; K)_{JKNet}$

$$= \alpha_1 \hat{\tilde{\mathbf{A}}} \mathbf{X} \mathbf{W}^* + \alpha_2 \hat{\tilde{\mathbf{A}}}^2 \mathbf{X} \mathbf{W}^* + \dots + \alpha_K \hat{\tilde{\mathbf{A}}}^K \mathbf{X} \mathbf{W}^*$$
$$= \sum_{k=1}^K \alpha_k \hat{\tilde{\mathbf{A}}}^k \mathbf{X} \mathbf{W}^*,$$

THEOREM 3.4. With $\mathbf{F}_1 = \mathbf{I}$, $\mathbf{F}_2 = \tilde{\mathbf{A}}$, $\zeta = 1$, and $\xi \in (0, \infty)$ in Eq. (3), the propagation process of JKNet optimizes the following objective: $O = \min_{\mathbf{Z}} \left\{ \left\| \mathbf{Z} - \hat{\mathbf{A}} \mathbf{H} \right\|_F^2 + \xi tr(\mathbf{Z}^T \tilde{\mathbf{L}} \mathbf{Z}) \right\},$ (20) here $\mathbf{H} = \mathbf{X} \mathbf{W}^*$ is the linear feature transformation after simplifica-

Conclusion

Interpreting DAGNN.

02 DAGNN

$$Z = PROPAGATE(X; \mathcal{G}; K)_{DAGNN}$$

= $s_0 H + s_1 \hat{\tilde{A}} H + s_2 \hat{\tilde{A}}^2 H + \dots + s_K \hat{\tilde{A}}^K H$
= $\sum_{k=0}^{K} s_k \hat{\tilde{A}}^k H$, and $H = f_{\theta}(X)$.

THEOREM 3.5. With $F_1 = F_2 = I$, $\zeta = 1$ and $\xi \in (0, \infty)$ in Eq. (3), the propagation process of DAGNN optimizes the following objective:

$$O = \min_{\boldsymbol{Z}} \left\{ \left\| \boldsymbol{Z} - \boldsymbol{H} \right\|_{F}^{2} + \xi tr(\boldsymbol{Z}^{T} \, \tilde{\boldsymbol{L}} \boldsymbol{Z}) \right\},$$
(26)

where $H = f_{\theta}(X)$ is the non-linear transformation on feature matrix, the retainment scores s_0, s_1, \dots, s_K are approximated by $\xi \in (0, \infty)$.

Experiments

Conclusion

Overall Correspondences.

Model	Characteristic	Propagation Mechanism	Corresponding Objective	
GCN/SGC [13]	K-layer graph convolutions	$\mathbf{Z} = \hat{\tilde{\mathbf{A}}}^K \mathbf{X} \mathbf{W}^*$	$O = \min_{\mathbf{Z}} \left\{ tr(\mathbf{Z}^T \tilde{\mathbf{L}} \mathbf{Z}) \right\}, \mathbf{Z}^{(0)} = \mathbf{X} \mathbf{W}^*$	
GC Operation [13]	1-layer graph convolution	$\mathbf{Z} = \hat{\tilde{\mathbf{A}}} \mathbf{X} \mathbf{W}$	$O = \min_{\mathbf{Z}} \{ \ \mathbf{Z} - \mathbf{H}\ _{F}^{2} + tr(\mathbf{Z}^{T}\tilde{\mathbf{L}}\mathbf{Z}) \}, \mathbf{H} = \mathbf{X}\mathbf{W}, (first-order)$	
PPNP/APPNP [14]	Personalized pagerank	$\mathbf{H} = f_{\theta}(\mathbf{X}), \begin{cases} \mathbf{PPNP:} \mathbf{Z} = \alpha \left(\mathbf{I} - (1 - \alpha) \hat{\tilde{\mathbf{A}}} \right)^{-1} \mathbf{H} \\ \mathbf{APPNP:} \mathbf{Z} = \left\langle (1 - \alpha) \hat{\tilde{\mathbf{A}}} \mathbf{Z}^{(k-1)} + \alpha \mathbf{H} \right\rangle_{K}, \mathbf{Z}^{(0)} = \mathbf{H} \end{cases}$	$O = \min_{\mathbf{Z}} \left\{ \left\ \mathbf{Z} - \mathbf{H} \right\ _{F}^{2} + (1/\alpha - 1)tr(\mathbf{Z}^{T}\tilde{\mathbf{L}}\mathbf{Z}) \right\}$	
JKNet [38]	Jumping to the last layer	$\mathbf{Z} = \sum_{k=1}^{K} \alpha_k \hat{\tilde{\mathbf{A}}}^k \mathbf{X} \mathbf{W}^*$	$O = \min_{\mathbf{Z}} \left\{ \left\ \mathbf{Z} - \hat{\tilde{\mathbf{A}}} \mathbf{H} \right\ _{F}^{2} + \xi tr(\mathbf{Z}^{T} \tilde{\mathbf{L}} \mathbf{Z}) \right\}, \mathbf{H} = \mathbf{X} \mathbf{W}^{*}$	
DAGNN [17]	Adaptively incorporating different layers	$\mathbf{H} = f_{\theta}(\mathbf{X}), \mathbf{Z} = \sum_{k=0}^{K} s_k \hat{\mathbf{A}}^k \mathbf{H}$	$O = \min_{\mathbf{Z}} \left\{ \left\ \mathbf{Z} - \mathbf{H} \right\ _{F}^{2} + \xi tr(\mathbf{Z}^{T} \tilde{\mathbf{L}} \mathbf{Z}) \right\}$	

Discussion.

Understanding relationships between different GNNs is much easier.

The unified framework opens up **new insights** for designing novel GNNs.

Overview

The Unified Framework

New GNNs Design

Experiments

Conclusion

New GNNs Design

Conclusion

GNN-LF: GNN with Low-pass Filtering Kernel \bigstar

Conclusion

GNN-HF: GNN with High-pass Filtering Kernel

Overview The

The Unified Framework

New GNNs Design

Experiments

Conclusion

Experiments

Conclusion

Datasets.

Dataset	Classes	Nodes	Edges	Features	Train/Val/Test
Cora	7	2708	5429	1433	140/500/1000
Citeseer	6	3327	4732	3703	120/500/1000
Pubmed	3	19717	44338	500	60/500/1000
ACM	3	3025	13128	1870	60/500/1000
Wiki-CS	10	11701	216123	300	200/500/1000
MS Academic	15	18333	81894	6805	300/500/1000

Metrics.

ACC ± uncertainties

BaseLines.

Traditional graph learning methods

MLP, LP

- Spectral methods
 ChebNet, GCN
- **D3** Spatial methods
 - SGC, GAT, GraphSAGE, PPNP
- **Deep GNN methods**

JKNet, APPNP, IncepGCN

Experiments

Conclusion

Node Classification

Model	Dataset						
Model	Cora	Citeseer	Pubmed	ACM	Wiki-CS	MS Academic	
MLP	57.79±0.11	61.20 ± 0.08	73.23±0.05	77.39±0.11	65.66 ± 0.20	87.79±0.42	
LP	71.50 ± 0.00	50.80 ± 0.00	72.70 ± 0.00	63.30 ± 0.00	34.90 ± 0.00	74.10 ± 0.00	
ChebNet	79.92±0.18	70.90 ± 0.37	76.98 ± 0.16	79.53±1.24	63.24±1.43	90.76 ± 0.73	
GAT	82.48±0.31	72.08 ± 0.41	79.08±0.22	88.24±0.38	74.27 ± 0.63	91.58 ± 0.25	
GraphSAGE	82.14±0.25	71.80 ± 0.36	79.20 ± 0.27	87.57±0.65	73.17 ± 0.41	91.53 ± 0.15	
IncepGCN	81.94±0.94	69.66±0.29	78.88 ± 0.35	87.75±0.61	60.54 ± 1.06	75.45 ± 0.49	
GCN	82.41±0.25	70.72 ± 0.36	79.40±0.15	88.38±0.51	71.97±0.51	92.17±0.11	
SGC	81.90±0.23	72.21 ± 0.22	78.30 ± 0.14	87.56±0.34	72.43 ± 0.28	88.35±0.36	
PPNP	83.34±0.20	71.73 ± 0.30	80.06±0.20	89.12±0.17	74.53 ± 0.36	92.27 ± 0.23	
APPNP	83.32±0.42	71.67 ± 0.48	80.05±0.27	89.04±0.21	74.30 ± 0.50	92.25 ± 0.18	
JKNet	81.19±0.49	70.69 ± 0.88	78.60 ± 0.25	88.11±0.36	60.90±0.92	87.26 ± 0.23	
GNN-LF-closed	83.70±0.14	71.98 ± 0.33	80.34±0.18	89.43±0.20	75.50±0.56	92.79±0.15	
GNN-LF-iter	83.53±0.24	71.92 ± 0.24	80.33±0.20	89.37±0.40	75.35 ± 0.24	92.69 ± 0.20	
GNN-HF-closed	83.96±0.22	72.30±0.28	80.41±0.25	89.46±0.30	74.92±0.45	92.47±0.23	
GNN-HF-iter	83.79±0.29	72.03 ± 0.36	80.54±0.25	89.59±0.31	74.90 ± 0.37	92.51 ± 0.16	

Conclusion

Propagation Depth Analysis

Experiments

Conclusion

Model Analysis

The Unified Framework New GNNs Design Experiments **Overview**

Conclusions

Conclusions

Experiments

Conclusions

A unified optimization framework.

We propose a unified objective optimization framework and theoretically prove that this framework is able to unify a series of GNNs propagation mechanisms.

A new insight for designing GNNs.

Within the proposed optimization framework, we design two novel deep GNNs with flexible low-frequency and highfrequency filters which can well alleviate over-smoothing.

Extensive experiments verify the feasibility.

Our extensive experiments clearly show that the proposed two GNNs outperform the state-of-the-art methods. This further verifies the feasibility for designing GNNs under the unified framework.

Resources

公众号:北邮GAMMA Lab

公众号: 图与推荐

论文链接: <u>https://arxiv.org/pdf/2101.11859.pdf</u>

石川老师主页: <u>http://shichuan.org/</u>

Thanks! Q&A