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ABSTRACT
Promotion recommendation, as a new recommendation paradigm

in recent years, plays an important role in stimulating the purchase

desire of users and maximizing the total revenue. Different from

previous recommendations (e.g., item/group recommendation), pro-

motion recommendation aims to select a set of 𝐾 items based on 𝑎𝑙𝑙

𝑢𝑠𝑒𝑟 𝑝𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝑠 in selection phase and maximize the total revenue

in delivery phase. Although these two phases are closely related

with each other, existing methods usually focus on item selection

in selection phase, largely ignoring the delivery phase and leading

to sub-optimal performance. To solve the promotion recommenda-

tion problem, we propose the comb-𝐾 recommendation model, a

constrained combinatorial optimization model which seamlessly

integrates the selection phase and delivery phase with delicately

designed constraints. When selecting 𝐾 items, the comb-𝐾 recom-

mendation is able to simultaneously search the optimal combination

of item selection and delivery with the full consideration of all user

preferences. Specifically, we propose a novel heterogeneous graph

convolutional network to estimate user preference and propose

the user-level comb-𝐾 recommendation model through solving a

binary combination optimization problem. In order to handle combi-

nation explosion for large-scale users, we furtherly cluster massive

users into limited groups and present a group-level comb-𝐾 recom-

mendation model in which a novel heterogeneous graph pooling

network is proposed to perform user clustering and estimate group

preference. In addition, considering the "long tail" phenomenon in

e-commerce, we design a restricted neighbor heuristic search to ac-

celerate the solving process. Extensive experiments on four datasets
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demonstrate the superiority of comb-𝐾 model for large-scale pro-

motion recommendation. On billion-scale data, when clustering

2.5 × 107 users into 10
3
groups, our model is able to preserve 98.7%

personalized preferences in group-level and significantly improves

the Total Click and Hit Ratio by 9.35% and 7.14%, respectively.
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1 INTRODUCTION
In the era of information explosion, the recommender system has

become the most effective way to help users to discover what they

are interested in enormous data. Many diverse recommendation

paradigms have emerged, such as item recommendation [10], so-

cial recommendation [5], group recommendation [2], and intent

recommendation [4, 33]. These recommendation paradigms focus

on recommending (or ranking) preferred items to 𝑒𝑎𝑐ℎ 𝑢𝑠𝑒𝑟 based

on his personalized preference, widely known as the top-𝐾 recom-

mendation.

With the prosperous development of e-commerce, a new recom-

mendation paradigm, promotion recommendation, has accompa-

nied and attracted enormous attention. The promotion recommen-

dation selects and delivers limited promotional items with lightning

deals or limited-time discounts for 𝑎𝑙𝑙 𝑢𝑠𝑒𝑟𝑠 , stimulating the pur-

chase desire of users and improving the total revenue. Figure 1

shows a promotion recommendation example in Amazon. A typ-

ical promotion recommendation mainly consists of two phases:

(1) Selection Phase. During this phase, a selection model selects

𝐾 promotional items (termed as the 𝐾-𝑠𝑒𝑡 ) via fully considering

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
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𝑎𝑙𝑙 𝑢𝑠𝑒𝑟 𝑝𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝑠 , satisfying the requirements of all users in

most cases. (2) Delivery Phase. During this phase, a delivery model

delivers different subsets of 𝐾-set to different users due to users’

limited attention. These delivered items constitute the real revenue

of 𝐾-set. Selection phase and delivery phase are actually interde-

pendent and deeply influence each other. Specifically, although the

delivery model tries to deliver the whole 𝐾-set to users, each user

can actually only view a subset of the 𝐾-set due to limited attention

(a.k.a., delivery window phenomenon).

Existing methods for promotion recommendation used in in-

dustry, such as Taobao and Amazon, only focus on item selection

in selection phase, largely ignoring the delivery phase. Generally,

they estimate user preferences, rank the items by their accumulated

preferences on all users, and greedy select top-𝐾 items as 𝐾-set

for delivery. These methods usually ignore the delivery window

limitation in real applications. More importantly, they separately

process item selection and delivery, without considering their mu-

tual influence. So the estimated maximum revenue in selection

phase does not lead to the real maximum revenue in delivery phase

(see Section 3.3 for details).

Considering the unique characteristics of promotion recommen-

dation, a good 𝐾-set selection strategy needs to address the follow-

ing requirements.

• How to seamlessly integrate the selection phase and delivery

phase. Considering the reality of the delivery window phe-

nomenon, when selecting 𝐾-set in selection phase, we need

to deeply consider whether the selected items will be suc-

cessfully delivered to users and indeed generate revenue due

to delivery window. Integrating the two phases as a whole

may help us to select a more valuable 𝐾-set and maximize

the real revenue in delivery phase.

• How to estimate the user preferences precisely, taking full

advantage of complex interactions and rich attributes in

the promotion scenario. Preference estimation is the cor-

nerstone of the item selection and directly affects the total

revenue. Both complex interactions and rich attributes pro-

vide valuable information from different aspects, improving

the preference estimation.

• How to handle large-scale users in promotion recommen-

dation. All user preferences should be fully considered for

𝐾 item selection. However, there exist more than ten mil-

lion users in mainstream promotion platform, leading to

unacceptable computioanl cost. Designing an efficient and

effective way to integrate massive users preferences is an

urgent problem that needs to be solved.

In this paper, we are the first to thoroughly investigate the promo-

tion recommendation problem and propose a novel comb-𝐾 rec-

ommendation model to improve the promotion revenue. Comb-𝐾

recommendation model is to solve a binary combinatorial optimiza-

tion problem which considers the constraint of item selection and

the constraint item delivery simultaneously, integrating the selec-

tion phase and delivery phase as a whole and achieving a preferable

promotion effect. Different from traditional top-𝐾 recommendation

models, comb-𝐾 recommendation is able to select a set of 𝐾 items

based on 𝑎𝑙𝑙 𝑢𝑠𝑒𝑟 𝑝𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝑠 with 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 .

Figure 1: Show case of promotion recommendation in Ama-
zon.

Specifically, user-level comb-𝐾 recommendation takes the cumu-

lative users preferences on delivered items as the objective function,

which is an approximation of the total revenue. Then, it takes all

user preferences as constants, searches the optimal combination of

item selection and item delivery simultaneously to maximize the

objective function. Considering the rich heterogeneous information,

we propose a novel heterogeneous graph convolutional network

to estimate user-item preferences precisely. However, user-level

comb-𝐾 recommendation cannot scale for large-scale users due to

combinatorial explosion. Furthermore, we cluster massive users

into limited groups and present a group-level comb-𝐾 recommen-

dation in which a novel heterogeneous graph pooling network is

proposed to perform user clustering based on their preferences and

estimate group-item preference. In addition, considering the "long

tail" phenomenon in e-commerce, we further design a fast strategy

called restricted neighbor heuristic search to further accelerate the

solving process of comb-𝐾 recommendation.

The main contributions are summarized as follows.

• We deeply investigate the problem of promotion recommen-

dation with the full consideration of the selection phase and

the delivery phase, stimulating the purchase desire of users

and improving the total revenue of promotion platform.

• Considering the delivery window phenomenon, we innova-

tively propose the comb-𝐾 recommendation model to solve

the promotion recommendation problem, a constrained com-

binatorial optimization problem which models the item se-

lection and the item delivery simultaneously. We propose

heterogeneous graph convolution and heterogeneous graph

pooling to respectively estimate user preference and group

preference, serving as the cornerstone of user-level and

group-level comb-𝐾 recommendation. In addition, we design

a restricted neighbor heuristic search strategy to accelerate

the solving process.

• Extensive experiments on large-scale datasets show the supe-

riority of the comb-𝐾 recommendation. The comparisons of
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user-level and group-level preference demonstrate the effec-

tiveness of heterogeneous graph pooling. When clustering

2.5 × 107 users into 10
3
groups, the proposed heterogeneous

graph pooling is able to preserve 98.7% personalized pref-

erences. On billion-scale data, group-level comb-𝐾 recom-

mendation improves Total Click and Hit ratio by 9.35% and

7.14%, respectively. The superiority of restricted neighbor

heuristic search is also confirmed on synthetic datasets.

2 RELATEDWORK
2.1 Recommender System
Recommender systems mainly focus on how to recommend items

to users based on their preferences, including item recommendation

[10, 25], social recommendation [5], group recommendation [2],

and intent recommendation [4, 33]. [10] first models item recom-

mendation system with deep neural network and [5] further lever-

ages social information to improve item recommendation. Several

works [25, 27] adopt graph neural networks to capture structural

information and further improve the item recommendation. [2]

generalizes item recommendation to group recommendation which

recommends top-𝐾 items to a group, considering the preference

of a whole group. [4, 12, 33] aim to recommend the intent to the

user, rather than the specific items. On the other hand, list-wise

models [1, 8, 14] recommend a whole list to users via minimizing

the ranking loss and achieve whole-list ranking optimization.

Some works [13, 23, 31] focus on designing diverse accelerate

strategies for large-scale recommender systems. Fast graph encoder

[31] directly applies small world graph on all items and navigates to

derive recommended items. [13] reduces the candidate items based

on the user clusters and accelerates the top-𝐾 item recommendation.

And, [23] proposes Preference Hash which represents all the users

with limited hash buckets to handle large-scale users.

2.2 Graph Neural Network
Graph neural networks (GNNs) [9, 17, 24] generalize deep learning

to graph-structured data. [17] proposes GCN via a localized approx-

imation of spectral graph convolutions. GraphSAGE [9] leverages

neighbor sampling to perform inductive prediction. [18, 24, 28] de-

sign diverse aggregators to improve node embedding. Some works

[4, 6, 11, 26, 30, 32, 34] extend GNNs to the heterogeneous graph

with more delicate aggregators and [4, 8, 12, 20, 25, 33] leverage

graph convolutional network to learn user and item embedding for

diverse recommendation tasks.

In addition to graph convolution, some studies tried to extend

pooling operations to graphs [7, 16, 19, 29], which aims to coarsen

and reduce the size of the graph with differentiable pooling net-

work, analogous to image downsampling in CNNs. DiffPool [29]

computes soft clustering assignments of nodes from the original

graph to nodes in the pooled graph. [19] leverages self-attention

for hierarchical pooling, considering both node features and graph

topology. [16] adopts memory mechanism to jointly learn node

representations and coarsen the graph in a hierarchical manner.

Table 1: Notations and Explanations.

Notation Explanation

{𝑢𝑖 |𝑖 ≤ 𝑀} User set with size𝑀

{𝑣 𝑗 | 𝑗 ≤ 𝑀} Item set with size 𝑁

{𝑔𝑝 |𝑝 ≤ 𝑃} Group set with size 𝑃

𝐾 Number of selected items

𝑊 Size of delivery window

S 𝐾-set containing K selected items

𝑅 Total revenue of 𝐾-set

hi Embedding of user 𝑢𝑖
hj Embedding of item 𝑣 𝑗
zp Embedding of group 𝑔𝑝
𝑟𝑖, 𝑗 Preference of user 𝑢𝑖 on item 𝑣 𝑗
𝑟𝑝,𝑗 Preference of group 𝑔𝑝 on item 𝑣 𝑗
𝑎𝑝 Size of group 𝑔𝑝

𝐼𝑖,𝑝 ∈ {0, 1} User 𝑢𝑖 is assigned to group 𝑔𝑝 or not

𝑋 𝑗 ∈ {0, 1} Item 𝑣 𝑗 is selected or not

𝑌𝑖, 𝑗 ∈ {0, 1} Item 𝑣 𝑗 is delivered to user 𝑢𝑖 or not

𝑌𝑝,𝑗 ∈ {0, 1} Item 𝑣 𝑗 is delivered to group 𝑔𝑝 or not

3 PROBLEM MODELING
In this section, we first model the promotion scenario as the at-

tributed heterogeneous graph. Then, we define the promotion rec-

ommendation and introduce naive top-𝐾 based methods to solve

it. Then, we propose the comb-𝐾 recommendation model in both

user-level and group-level. The notations we will use throughout

the article are summarized in Table 1.

3.1 Preliminary
The promotion scenario which contains complex interactions and

rich attributes can be unified modeled as an attributed heteroge-

neous graph G.
Definition 1. Attributed Heterogeneous Graph. An attrib-

uted heterogeneous graph, denoted as G = (V, E, F), where V =

V𝑈 ∪ V𝐼 is the node sets, E = E𝑈𝑈 ∪ E𝑈 𝐼 is the edge sets, F ∈
R |V |×|𝐹 | is an attribute matrix of nodes. Here V𝑈 = {𝑢𝑖 }1≤𝑖≤𝑀
and V𝐼 = {𝑣 𝑗 }1≤𝑖≤𝑁 are the sets of 𝑀 users and 𝑁 items, respec-
tively. E𝑈𝑈 = ⟨V𝑈 ,V𝑈 ⟩ denotes𝑈𝑠𝑒𝑟 -𝑈𝑠𝑒𝑟 interaction and E𝑈 𝐼 =
⟨V𝑈 ,V𝐼 ⟩ denotes𝑈𝑠𝑒𝑟 -𝐼𝑡𝑒𝑚 interaction.

Given a promotion scenario, we define the promotion recom-

mendation and its objective function 𝑂𝑏 𝑗 , as follows:

Definition 2. Promotion Recommendation. Given a promo-
tion scenario G, promotion recommendation aims to select a set of 𝐾
items S = {𝑣 𝑗 |𝑋 𝑗 = 1} ⊂ VI (termed as the 𝐾-set) which maximizes
the total revenue 𝑅 on all usersVU , as follows:

𝑂𝑏 𝑗 = max𝑋 𝑅(S|G;𝜃 ),
𝑠 .𝑡 . 𝑋 𝑗 ∈ {0, 1},

∑
𝑗≤𝑁 𝑋 𝑗 = 𝐾,

(1)

where 𝜃 is the parameters for function of generating S from G, 𝑋 𝑗 ∈
{0, 1} is a binary selection indicator which indicates whether the item
𝑣 𝑗 is selected or not. The constraint

∑
𝑗≤𝑁 𝑋 𝑗 = 𝐾 restricts the size of

𝐾-set.
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When selecting 𝐾 items in selection phase, we can only estimate

the total revenue of 𝐾 items. For example, we can use the CTR
1

or user-item preference to estimate the revenue of single item and

then estimate the total revenue of 𝐾 items. When delivering 𝐾

items in delivery phase, we can get the real revenue of 𝐾 items. For

example, we can use the Total Click or GMV
2
as the real revenue.

It is worth noting that the delivery model only delivers a subset

of 𝐾-set to each user and only the delivered items constitute the

real revenue. The unique workflow including item selection and

delivery in the promotion recommendation leads to such phenom-

enon. We call it as the delivery window phenomenon and define

the size of the subset delivered to each user as the 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑤𝑖𝑛𝑑𝑜𝑤

𝑊 . Intuitively, the delivery window is highly related to the real

revenue and potentially influences the item selection in the promo-

tion recommendation. Considering the delivery window for items

selection may improve the real revenue of 𝐾 items in the delivery

phase.

In the following sections, we first introduce naive top-𝐾 based

methods, which ignore the delivery window limitation and sepa-

rately process item selection and delivery without considering their

mutual influence. Then, we introduce the comb-𝐾 based methods,

which seamlessly integrate both item selection and delivery for 𝐾

items selection.

3.2 Naive Top-K based Methods
In this section, we introduce two naive top-𝐾 based methods for

promotion recommendation including CTR based method and pref-

erence based method.

CTR based Top-K Method. Considering that higher CTR usu-

ally implies the item is popular with users, a naive top-𝐾 based

method for promotion recommendation is to rank all items based

on their CTRs and selects top-𝐾 items as the 𝐾-set. It is a greedy

method whichmaximizes the estimated revenue of𝐾-set via finding

the optimal selection indicator 𝑋 𝑗 , as follows:

max𝑋
∑
𝑗≤𝑁 ˆ𝑙 𝑗 · 𝑋 𝑗 ,

𝑠 .𝑡 . 𝑋 𝑗 ∈ {0, 1},
∑
𝑗≤𝑁 𝑋 𝑗 = 𝐾,

(2)

where
ˆ𝑙 𝑗 is the constant which denotes the estimated CTR of item

𝑣 𝑗 and we use it as the estimated revenue of item 𝑣 𝑗 .

Preference based Top-K Method. Another naive top-𝐾 based

method for promotion recommendation is to rank all items based on

all user preferences and selects top-𝐾 items as the𝐾-set. It explicitly

considers all user preferences to maximize the estimated revenue

via finding the optimal selection indicator 𝑋 𝑗 , as follows:

max𝑋
∑
𝑖≤𝑀,𝑗≤𝑁 𝑟𝑖, 𝑗 · 𝑋 𝑗 ,

𝑠 .𝑡 . 𝑋 𝑗 ∈ {0, 1},
∑
𝑗≤𝑁 𝑋 𝑗 = 𝐾,

(3)

where 𝑟𝑖, 𝑗 denotes the estimated user-item preference, and we use

it as the estimated revenue of item 𝑣 𝑗 on user 𝑢𝑖 .

Both CTR based method and preference based method only con-

sider the selection phase with the selection indicator 𝑋 𝑗 to select

𝐾 items in the top-𝐾 manner, largely ignoring the reality of the

delivery window and leading to sub-optimal performance.

1
Click-through Rate (CTR) is formulated as: CTR =

Number of click-throughs

Number of impressions
× 100(%)

2
Gross Merchandise Volume

Figure 2: An illustrative example of item selection via top-𝐾
recommendation and comb-𝐾 recommendation.

3.3 User-level Comb-K Recommendation
To seamlessly integrate the selection phase and delivery phase in

promotion recommendation, we propose the comb-𝐾 recommen-

dation, a binary combinatorial optimization model with delicately

designed constraints.

Comparing to naive top-𝐾 based methods, the comb-𝐾 recom-

mendation further considers an additional delivery indicator 𝑌𝑖, 𝑗 ∈
{0, 1}, indicating whether item 𝑣 𝑗 will be delivered to user 𝑢𝑖 in

delivery phase. The user-level comb-𝐾 recommendation aims to

maximize the estimated revenue of 𝐾-set on all users via finding

the optimal combination of two decision variables: item selection

𝑋 𝑗 and item delivery 𝑌𝑖, 𝑗 , as follows:

max𝑋,𝑌
∑
𝑖≤𝑀,𝑗≤𝑁 𝑟𝑖, 𝑗 · 𝑋 𝑗 · 𝑌𝑖, 𝑗 ,

𝑠 .𝑡 . 𝑋 𝑗 ∈ {0, 1}, 𝑌𝑖, 𝑗 ∈ {0, 1},
𝑌𝑖, 𝑗 ≤ 𝑋 𝑗 ,∑

𝑗≤𝑁 𝑋 𝑗 = 𝐾,
∑
𝑗≤𝑁 𝑌𝑖, 𝑗 =𝑊,

(4)

where the constraint

∑
𝑗≤𝑁 𝑌𝑖, 𝑗 =𝑊 means each user can only view

𝑊 items in 𝐾-set (a.k.a, delivery window), the constraint 𝑌𝑖, 𝑗 ≤ 𝑋 𝑗
means only the selected item 𝑣 𝑗 will be delivered to user 𝑢𝑖 . For

example, 𝑋 𝑗 = 1, 𝑌𝑖, 𝑗 = 0 means although item 𝑣 𝑗 is selected in

selection phase but it would not be delivered to user 𝑢𝑖 in delivery

phase.

Why the constraint of delivery window𝑊 works? In Fig-

ure 2, we give an illustrative example to show the superiority of

the delivery window (a.k.a., top-𝐾 v.s. comb-𝐾 ). Given a promotion

scenariowith 2 users {𝑢1, 𝑢2}, 4 items {𝑣1, 𝑣2, 𝑣3, 𝑣4} and correspond-
ing user preference 𝑟𝑖, 𝑗 , we show how the item selection changes

with/without the constraint of delivery window. Here we assume

𝐾 = 2,𝑊 = 1 which means each user can only view one of the two

selected items.

• Without the constraint of delivery window𝑊 . Top-𝐾 based

method selects {𝑣3, 𝑣4} as the 𝐾-set S = {𝑣3, 𝑣4}, since the
set has the maximum estimated revenue 2.2. However, in

delivery phase, the top-𝐾 recommendation can only select

one optimal item due to delivery window𝑊 = 1, and thus

the real revenue of 𝐾-set is actually 1.2.

• With the constraint of delivery window𝑊 . User-level comb-

𝐾 recommendation selects {𝑣1, 𝑣2} as the 𝐾-set S = {𝑣1, 𝑣2},
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since the set has the maximum estimated revenue 1.8. More

importantly, the real revenue of {𝑣1, 𝑣2} in delivery phase is

still 1.8, which is consistent with the estimated revenue in

delivery phase.

Although the estimated revenue of top-𝐾 based 𝐾-set (e.g., 2.2)

is higher than comb-𝐾 based 𝐾-set (e.g., 1.8), but the real revenue

in delivery phase is opposite. As can be seen, the real revenue of

comb-𝐾 based 𝐾-set (e.g., 1.8) is higher than top-𝐾 based 𝐾-set

(e.g., 1.2). The reason is that comb-𝐾 recommendation takes full

consideration of the delivery window for 𝐾 items selection in the

selection phase, so the real revenue in delivery phase could be

maximum.

In summary, the user-level comb-𝐾 recommendation shows the

superiority over traditional top-𝐾 recommendation via seamlessly

integrating item selection and delivery for 𝐾 items selection.

3.4 Group-level Comb-K Recommendation
For large-scale users, the complexity of user-level comb-𝐾 recom-

mendation is combinatorial explosion and unsolvable. It motivates

us to reduce the complexity of comb-𝐾 recommendation and makes

it scalable for large-scale users. Intuitively, different users sharing

similar preferences and may belong to the same group. For example,

people who like doing some sports belong to sports buff. Since the

number of groups is significantly less than the number of users,

if we can cluster 𝑀 users into 𝑃 groups (𝑃 ≪ 𝑀) and conduct

comb-𝐾 recommendation in group-level, the complexity of comb-𝐾

recommendation could be significantly reduced.

Group-level comb-𝐾 recommendation aims to maximize the

estimated revenue of 𝐾-set on all groups via finding the optimal

combination of two decision variables: item selection 𝑋 𝑗 and item

delivery 𝑌𝑝,𝑗 , as follows:

max𝑋,𝑌
∑
𝑝≤𝑃,𝑗≤𝑁 𝑎𝑝 · 𝑟𝑝,𝑗 · 𝑋 𝑗 · 𝑌𝑝,𝑗 ,

𝑠 .𝑡 . 𝑋 𝑗 ∈ {0, 1}, 𝑌𝑝,𝑗 ∈ {0, 1},
𝑌𝑝,𝑗 ≤ 𝑋 𝑗 ,∑

𝑗 𝑋 𝑗 = 𝐾,
∑
𝑗≤𝑁 𝑌𝑝,𝑗 =𝑊,

(5)

where 𝑟𝑝,𝑗 is the constant which denotes the estimated preference

of group 𝑔𝑝 on item 𝑣 𝑗 , 𝑎𝑝 denotes the size of group 𝑔𝑝 ,𝑌𝑝,𝑗 denotes

whether item 𝑣 𝑗 will be delivered to group 𝑔𝑝 in delivery phase,∑
𝑗≤𝑁 𝑌𝑝,𝑗 = 𝑊 denotes users in group 𝑔𝑝 are able to view 𝑊

items in delivery phase, 𝑌𝑝,𝑗 ≤ 𝑋 𝑗 means only the selected item

𝑣 𝑗 will be delivered to group 𝑔𝑝 . Note that group-level comb-𝐾

recommendation not only considers group-item preference 𝑟𝑝,𝑗 but

also considers the size of group 𝑎𝑝 . It makes sense because the

group with more users (the majority) should have more votes than

the minority. And we can take 𝑎𝑝 · 𝑟𝑝,𝑗 as the estimated revenue of

item 𝑣 𝑗 on group 𝑔𝑝 .

Group-level comb-𝐾 recommendation also considers all users

preferences in the group manner, but its complexity is significantly

reduced because we only need to consider the preferences of 𝑃

groups rather than 𝑀 users (𝑃 ≪ 𝑀). That is to say, group-level

comb-𝐾 recommendation can be applied to large-scale users. The

only remaining question for group-level comb-𝐾 recommendation

is how to cluster massive users into limited groups and estimate

the group-item preference.

4 COMB-K RECOMMENDATION SOLUTION
In this section, we give the solutions to both user-level and group-

level comb-𝐾 recommendation. The solving process of the comb-𝐾

recommendation mainly consists of two steps: (1) Preference es-

timation. We estimate user preference 𝑟𝑖, 𝑗 and group preference

𝑟𝑝,𝑗 via heterogeneous graph convolution and heterogeneous graph

pooling, respectively. (2) Combinatorial optimization solution. We

propose a fast solving strategy called restricted neighbor heuristic

search to accelerate the solving process of the comb-𝐾 recommen-

dation.

4.1 Preference Estimation
4.1.1 User Preference Estimation. User preference is the corner-
stone of user-level comb-𝐾 recommendation and directly affects

the quality of the 𝐾-set, so we need to precisely estimate the user

preference. Considering the rich heterogeneous information in the

promotion scenario, we design a heterogeneous graph convolu-

tional network to learn user and item embedding and then estimate

user preference.

Specifically, we initialize user embedding via concatenating its

feature embedding, as follows:

e𝑖 =
|𝐹 |
∥
𝑓 =1

e𝑓
𝑖
, (6)

where | | denotes the vector concatenation, e𝑖 and e𝑓
𝑖
denote the

initial embedding and the 𝑓 -th feature embedding of user𝑢𝑖 , respec-

tively. The same process can be done for the initial item embedding

e𝑗 .
Then, we aggregate different types of neighbors and then fuse

them to learn comprehensive node embedding. Specifically, given

one user 𝑢𝑖 and 𝑘1 user-related relations {Φ𝑈
1
,Φ𝑈

2
, · · · ,Φ𝑈

𝑘1
}, user-

related heterogeneous graph convolutional network (termed as

𝐻𝑒𝑡𝑒𝐺𝑁𝑁𝑈 ) is able to get 𝑘1 relation-specific user embeddings, as

follows:

h
Φ𝑈
1

𝑖
, h

Φ𝑈
2

𝑖
, · · · , h

Φ𝑈
𝑘
1

𝑖
= 𝐻𝑒𝑡𝑒𝐺𝑁𝑁𝑈 (𝑢𝑖 ;Φ𝑈1 ,Φ

𝑈
2
, · · · ,Φ𝑈

𝑘1
) . (7)

Herewe simply average the neighbor embeddings to get the relation-

specific user embedding, as follows:

h
Φ𝑈
𝑘
1

𝑖
= Average

({
e𝑛 | ∀𝑛 ∈ N

Φ𝑈
𝑘
1

𝑖

})
, (8)

where N
Φ𝑈
𝑘
1

𝑖
denotes the relation Φ𝑈

𝑘1
based neighbors of user 𝑢𝑖 .

The final user embedding is the concatenation of multiple relation-

specific embeddings, as follows:

h𝑖 = h
Φ𝑈
1

𝑖
| |hΦ

𝑈
2

𝑖
| | · · · | |h

Φ𝑈
𝑘
1

𝑖
. (9)

The same process can be done for items and the final embedding of

item 𝑣 𝑗 is denoted as h𝑗 .
Taking user embedding h𝑖 and item embedding h𝑗 as inputs, we

can estimate the user preference 𝑟𝑖, 𝑗 via MLP𝑈−𝐼 , shown as follows:

𝑟𝑖, 𝑗 = 𝑀𝐿𝑃𝑈−𝐼 (h𝑖 | |h𝑗 ). (10)

After precisely estimating user preference 𝑟𝑖, 𝑗 , we can perform

user-level comb-𝐾 recommendation via solving Eq. 4.
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4.1.2 Group Preference Estimation. When applying comb-𝐾 recom-

mendation to large-scale users, we need to clustermassive users into

limited groups and estimate group preference, facing the following

challenges: (1) Clustering evaluation. In promotion recommenda-

tion, we do not have the ground-truth of user clustering. So even if

we cluster users into groups, we cannot directly evaluate the clus-

tering results. (2) Task-specific clustering. Traditional clustering

models (e.g., K-Means) are usually unsupervised models and may

not suit for specific-task (e.g., promotion recommendation). How

to find the optimal user clustering for promotion recommendation

is still an open problem.

To tackle the above challenges, we propose a novel heteroge-

neous graph pooling network which clusters users into groups

based on their preferences in an end-to-end manner via minimizing

the recommendation loss. So the clustering result is special opti-

mized for recommendation task and the users in the same group

trend to share similar preferences. More importantly, we can di-

rectly evaluate the clustering results via comparing the performance

of user-item recommendation and group-item recommendation. For

example, if the AUC of group-item recommendation is close to the

AUC of user-item recommendation (i.e., AUC𝐺−𝐼 /AUC𝑈−𝐼 ≈ 1),

then we can conclude the proposed heterogeneous graph pooling

clusters the users who share similar preferences into the same

group.

Specifically, taking 𝑀 user embeddings {h1, h2, · · · , h𝑀 } as in-
puts, the proposed heterogeneous graph pooling network is able

to cluster them into 𝑃 groups {𝑔1, 𝑔2, · · · , 𝑔𝑃 } and generate corre-

sponding 𝑃 group embeddings {z1, z2, · · · , z𝑃 }, shown as follows:

z1, z2, · · · , z𝑃 = C(h1, h2, · · · , h𝑀 ), (11)

where C denotes neural network performing the heterogeneous

graph pooling.

Intuitively, when performing user clustering, we need to con-

sider the similarities between the users and the groups, because

different users should make different contributions in different

groups. Inspired by recent self-attention mechanism [16, 24], we

design a self-attentive clustering model which is able to learn the

user-group similarity and then updates the group embedding via

attentive user aggregation. Specifically, we initialize 𝑃 center em-

beddings {v1, v2, · · · , v𝑃 } which denote the center of each group

and calculate the similarity between user 𝑢𝑖 and group 𝑔𝑝 , denoted

as 𝑠𝑖𝑝 , as follows:

𝑠𝑖𝑝 = h𝑖 · v⊤𝑝 . (12)

Larger 𝑠𝑖𝑝 means user 𝑢𝑖 is closer to the center of group 𝑔𝑝 . Then,

we can obtain the probability of user 𝑢𝑖 belonging to group 𝑔𝑝 via

softmax function,

𝑤𝑖𝑝 =
exp(𝑠𝑖𝑝 )∑

𝑝′≤𝑃 exp(𝑠𝑖𝑝′)
. (13)

With the learned𝑤𝑖𝑝 as coefficients, we aggregate user embed-

dings and get the group embedding z𝑝 , as follows:

z𝑝 = z′𝑝 +
∑
𝑖≤𝑀

𝑤𝑖𝑝 · h𝑖 , (14)

where z′𝑝 denotes the bias vector for group 𝑔𝑝 . However, Eq. 14

needs to conduct sum operator over𝑀 users where is not practica-

ble on large-scale users. Inspired by web-scale 𝐾-Means [21], we

design an incremental update strategy to approximate

∑
𝑖≤𝑀 𝑤𝑖𝑝 ·h𝑖 ,

which aggregates batched user embeddings in a moving average

manner,

var← (1 − 𝛾) · var + 𝛾 ·
∑
𝑖∈𝐵

𝑤𝑖𝑝 · h𝑖 , (15)

where var is an approximation of

∑
𝑖≤𝑀 𝑤𝑖𝑝 · h𝑖 , 𝐵 denotes mini-

batch data, 𝛾 is an increment factor (e.g., 0.01). Experimentally,

we find that Eq. 15 often provides satisfactory results and can be

applied to group-level comb-𝐾 recommendation.

Taking group embedding z𝑝 and item embedding h𝑗 as inputs,
we can estimate the group preference 𝑟𝑝,𝑗 , as follows:

𝑟𝑝,𝑗 = 𝑀𝐿𝑃𝐺−𝐼 (z𝑝 | |h𝑗 ). (16)

Lastly, we can get the clustering assignment 𝐼𝑖,𝑝 via argmax

operator, as follows:

𝐼𝑖,𝑝 ← argmax

𝑝
(h𝑖 · v⊤𝑝 ). (17)

Here 𝐼𝑖,𝑝 = 1 means user 𝑢𝑖 is assigned to group 𝑔𝑝 . It makes

sense because the user should be assigned to the group with the

largest similarity. After that, the size of group 𝑎𝑝 can be obtained

via

∑
𝑖≤𝑀 𝐼𝑖,𝑝 .

4.1.3 Loss Functions. After obtaining estimated user preference

𝑟𝑖, 𝑗 and estimated group preference 𝑟𝑝,𝑗 , we need to optimize the

model via minimizing the loss function. The loss function of user

preference L𝑈−𝐼 is shown as follows:

L𝑈−𝐼 =
∑
(𝑖, 𝑗) ∈D

(
𝑟𝑖, 𝑗 log 𝑟𝑖, 𝑗 +

(
1 − 𝑟𝑖, 𝑗

)
log

(
1 − 𝑟𝑖, 𝑗

) )
, (18)

where D denotes the dataset, 𝑟𝑖, 𝑗 denotes the ground truth of user

preference (a.k.a., whether user 𝑢𝑖 will click item 𝑣 𝑗 ).

The loss function of group preference is similar to Eq. 18. How-

ever, the ground truths of group preferences do not exist in dataset.

Inspired by 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛 [35], we use the ground truths

of user preferences to substitute the ground truths of group pref-

erences based on the clustering assignment 𝐼𝑖,𝑝 . For example, if

𝐼𝑖,𝑝 = 1, then 𝑟𝑝,𝑗 = 𝑟𝑖, 𝑗 . Based on the above substitution operation,

we can obtain the loss function of group-item recommendation

L𝐺−𝐼 , as follows:

L𝐺−𝐼 =
∑
(𝑖, 𝑗) ∈D

𝐼𝑖,𝑝
(
𝑟𝑖, 𝑗 log 𝑟𝑝,𝑗 +

(
1 − 𝑟𝑖, 𝑗

)
log

(
1 − 𝑟𝑝,𝑗

) )
. (19)

4.1.4 Optimization Strategies. To estimate user preference, we can

directly minimize L𝑈−𝐼 and optimize the model parameters. To

estimate group preference, we try two training strategies:

Pretrain & Fine-tuning. Deep neural network and clustering

model are rather sensitive to initialization. To stabilize the training

process, we first pretrain the user/item embedding via minimizing

L𝑈−𝐼 . Then, we minimize L𝐺−𝐼 to fine-tune them and learn group

embedding. If we directly optimize L𝐺−𝐼 without pretrain, the
proposed model cannot converge correctly.

Interval Training. Another training strategy is to minimize

L𝑈−𝐼 and L𝐺−𝐼 intervally. Specifically, for each training step, we

first optimize parameters via minimizing L𝑈−𝐼 and then optimize

parameters via minimizing L𝐺−𝐼 . It is actually the multi-task learn-

ing with the shared user/item embedding, so they can mutually

reinforce each other and improve the performance. And experimen-

tally, we found interval training is able to improve the effectiveness
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Table 2: The statistics of the datasets.

Dataset Split #Users #Items #Samples

1-day

Training 119,988 3,888 13,217,835

Val & Sel. 96,680 2,924 7,219,181

Eval. 61,205 1,849 3,042,656

2-day

Training 119,988 3,888 13,217,835

Val & Sel. 96,680 2,924 7,219,181

Eval. 88,668 2,398 5,990,529

3-day

Training 119,988 3,888 13,217,835

Val & Sel. 96,680 2,924 7,219,181

Eval. 109,441 3,362 10,311,133

Large

Training 24,564,098 16,801 503,814,664

Val & Sel. 3,357,660 7,292 63,701,395

Eval. 22,867,517 11,696 356,650,383

of group-item prediction and generates more precise clustering

assignment (details are shown in Section 5.5).

4.2 Combinatorial Optimization Solution
Taking the estimated preferences (e.g., 𝑟𝑖, 𝑗 and 𝑟𝑝,𝑗 ) as the constants,

we can solve the comb-𝐾 recommendation via finding the optimal

combination of two decision variables: item selection (e.g., 𝑋 𝑗 ) and

item delivery (e.g., 𝑌𝑖 𝑗 and 𝑌𝑝,𝑗 ). We have tried to use commercial

integer programming solver (e.g., Gurobi
3
) as the comb-𝐾 recom-

mendation solver, but it is not special designed for the promotion

recommendation and fails to solve the comb-𝐾 recommendation in

the limited time. It inspires us to design a fast search strategy to

accelerate the solving process of comb-𝐾 recommendation. Here we

propose a fast search strategy called restricted neighbor heuristic

search (RNHS) which is special designed for the promotion sce-

nario and significantly faster than classical integer programming

(IP) with high precision.

Recall a well-known heuristic search strategy for combinatorial

optimization, called 2-opt [3], which swaps elements between ini-

tial set and candidate set until initial set achieves the maximum

objective function. As discussed in Section 3.2, the 𝐾-set S selected

by top-𝐾 based methods achieves sub-optimal performance. Here

we take the 𝐾-set selected by Eq. 3 as the initial set S𝑖𝑛𝑖𝑡 and the

rest as the candidate set S𝑐𝑎𝑛𝑑 = V𝐼 −S𝑖𝑛𝑖𝑡 , |S𝑐𝑎𝑛𝑑 | = 𝑁 −𝐾 . Then,
we can apply 2-opt to swap elements between S𝑖𝑛𝑖𝑡 and S𝑐𝑎𝑛𝑑 un-

til initial set achieves the maximum objective function of comb-𝐾

recommendation. We take the latest initial set S𝑖𝑛𝑖𝑡 as the 𝐾-set S
for comb-𝐾 recommendation.

However, the previous 2-opt is still not fast enough to address

the requirement of large-scale comb-𝐾 recommendation because

|S𝑐𝑎𝑛𝑑 | = 𝑁 − 𝐾 remains vary large. Considering the "long tail" of

items in e-commerce which means only a few items attract a great

deal of consumer interest, we only need to focus on "head" items

and construct a much smaller candidate set. Here we propose the

restricted neighbor heuristic search, which restricts the size of the

candidate set S𝑐𝑎𝑛𝑑 and significantly reduces the size of solution

space. The proposed RNHS mainly consists of three steps: (1) rank

all items based on user preference or group preference; (2) select

3
http://www.gurobi.com/

top-𝐾 items as the initial set S𝑖𝑛𝑖𝑡 and select the top 𝐾+1∼2·𝐾
items as the candidate set S𝑐𝑎𝑛𝑑 , |S𝑐𝑎𝑛𝑑 | = 𝐾 ; (3) swap items in

S𝑖𝑛𝑖𝑡 and S𝑐𝑎𝑛𝑑 until maximizing the objective function of comb-𝐾

recommendation. We take the latest initial set S𝑖𝑛𝑖𝑡 as the 𝐾-set S
for comb-𝐾 recommendation.

5 EXPERIMENTS
We conduct experiments on large-scale promotion recommendation

to evaluate the proposed method and answer the following research

questions:

• RQ1: Does the proposed comb-𝐾 recommendation outper-

form top-𝐾 recommendation in the promotion scenario?

• RQ2: How does the delivery window affect the performance

of comb-𝐾 recommendation?

• RQ3: How well are the user-level preferences preserved in

group-level with different training strategies?

• RQ4: Does the proposed RNHS solve the comb-𝐾 recom-

mendation efficiently?

5.1 Datasets
We extract four datasets with different scales from the promotion

scenario in Taobao platform
4
to verify the effectiveness of the

proposed comb-𝐾 recommendation. Here we split each dataset into

three parts, shown as follows:

• Training. We train the preference estimation model (e.g.,

heterogeneous graph convolution and heterogeneous graph

pooling) to estimate user/group preference.

• Validation & Selection. We test the preference estimation

model and compare the effectiveness of user preference 𝑟𝑖, 𝑗
and group preference 𝑟𝑝,𝑗 (RQ3). Then, we select a set of 𝐾
items S via different methods (e.g., top-𝐾 v.s. comb-𝐾 ).

• Evaluation. We evaluate the performance (e.g., total rev-

enue) of a set of 𝐾 items S selected by different methods

(RQ1).
Specifically, we collect samples in 2020/04/28-2020/04/30 for

training, 2020/05/01-2020/05/02 for validation & selection, and

the next 1,2,3 days for evaluation, marked as 1-day, 2-day, and
3-day, respectively. Meanwhile, we also extract a billion-scale

dataset (marked as Large), which uses 2020/05/25-2020/05/31 for

training, 2020/06/01-2020/06/03 for validation & selection, and

2020/06/04-2020/06/06 for evaluation. For the Large dataset, we

extract 200+ features for both user and item, such as 𝑢𝑠𝑒𝑟_𝐼𝐷 ,

𝑢𝑠𝑒𝑟_𝑎𝑔𝑒 , 𝑢𝑠𝑒𝑟_𝑔𝑒𝑛𝑑𝑒𝑟 , 𝑖𝑡𝑒𝑚_𝐼𝐷 , 𝑖𝑡𝑒𝑚_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦, 𝑖𝑡𝑒𝑚_𝑏𝑟𝑎𝑛𝑑 , and

so on. For the rest datasets, we only select 𝑢𝑠𝑒𝑟_𝐼𝐷 and 𝑖𝑡𝑒𝑚_𝐼𝐷

as features. Each sample contains an interaction ⟨𝑢𝑖 , 𝑣 𝑗 ⟩ and cor-

responding label 𝑟𝑖, 𝑗 ∈ {0, 1} which indicates whether user 𝑢𝑖 will

click the item 𝑣 𝑗 . Here we select User-User (UU) and User-Item (UI)

to extract different neighbor information. The statistics of datasets

are summarized in Table 2.

5.2 Baselines and Metrics
We compare the proposed comb-𝐾 recommendation with tradi-

tional top-𝐾 recommendation, especially state-of-the-art heteroge-

neous GNN based models, to show its superiority in the promotion

4
https://www.taobao.com
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Table 3: The comparisons of comb-𝐾 recommendation v.s. top-𝐾 recommendation. Best results are indicated in bold.

Paradigms Models

Datasets

1-day 2-day 3-day

TC@K HR@K TC@K HR@K TC@K HR@K

Top-K

(Previous)

CTR 26883 0.462 50062 0.462 75393 0.408

GREE 39000 0.576 66691 0.526 101069 0.454

IntentGC 39121 0.576 65912 0.528 101212 0.458

IntentGC+Avg 39005 0.574 65432 0.524 100682 0.450

IntentGC+Att 38605 0.574 65554 0.526 100850 0.452

MEIRec 38992 0.574 65912 0.530 99541 0.458

MEIRec+Avg 38224 0.570 65573 0.526 99076 0.450

MEIRec+Att 38743 0.572 65795 0.528 99239 0.454

HGRec 38921 0.574 66231 0.528 100213 0.456

HGRec+Avg 38815 0.568 65868 0.518 98993 0.448

HGRec+Att 38873 0.572 65830 0.526 99717 0.452

Comb-K

(Our)

User-level 39798 0.594 68069 0.558 104664 0.490
Group-level 40088 0.588 68543 0.548 103926 0.482

recommendation. For traditional top-𝐾 based recommendation, we

first estimate the item CTR or user/group preference (i.e.,
ˆ𝑙 𝑗 , 𝑟𝑖, 𝑗 ,

and 𝑟𝑝,𝑗 ) and then greedy select top-𝐾 items as the𝐾-set. The previ-

ous top-𝐾 based methods which find the optimal selection indicator

𝑋 𝑗 , are shown as follows:

• DNN: We leverage 3-layers DNN to estimate the item CTR

ˆ𝑙 𝑗 based on its features and then select top-𝐾 items with the

highest CTRs as the 𝐾-set.

• GREE[2]: GREE is a classical group recommendation model

which recommends items to the group in the top-𝐾 manner.

Here we take all users as one group, estimate group pref-

erence 𝑟𝑝,𝑗 , and select top-𝐾 items with the highest group

preference as the 𝐾-set.

• MEIRec[4]/IntentGC[33]/HGRec[22]: They are heteroge-

neous GNN based recommendation models. We use them to

estimate user preference 𝑟𝑖, 𝑗 , rank the items by their accu-

mulated preferences on all users, and select top-𝐾 items as

the 𝐾-set.

• MEIRec+Avg/Att: It is the extend version of MEIRec. We

aggregate all user embeddings learned by MEIRec as one

group embedding via average/attention aggregator, estimate

group preference 𝑟𝑝,𝑗 , and then greedy select top-𝐾 items

with the highest group preference. Note that the attention

aggregator is actually the proposed heterogeneous graph

pooling in Section 4.1.2.

• IntentGC+Avg/Att: It is the extend version of IntentGC.

The setting is the same as MEIRec+Avg/Att.

• HGRec+Avg/Att: It is the extend version of HGRec. The

setting is the same as MEIRec+Avg/Att.

For the comb-𝐾 recommendation, we first estimate preference and

then find the optimal 𝐾-set in the combinatorial optimization man-

ner. The proposed comb-𝐾 based methods which find the optimal

combination of item selection (e.g., 𝑋 𝑗 ) and item delivery (e.g., 𝑌𝑖, 𝑗
and 𝑌𝑝,𝑗 ) simultaneously are shown as follows:

• User-level: It is the user-level comb-𝐾 recommendation.

We use heterogeneous graph convolution to estimate user

preference 𝑟𝑖, 𝑗 and select 𝐾 items via solving Eq. 4.

• Group-level: It is the group-level comb-𝐾 recommendation.

We use heterogeneous graph pooling to estimate group pref-

erence 𝑟𝑝,𝑗 and select 𝐾 items via solving Eq. 5.

Parameter Settings. All models are implemented with Tensor-

flow 1.8 on PAI
5
with Tesla P100 Cluster. For fair comparison, we

randomly initialize model parameters with Gaussian distribution

and optimize the model with Adam, and set the batch size to 1024,

the learning rate to 0.001, the feature embedding to 8, the node em-

bedding to 128, the regularization to 0.001, and the dropout rate to

0.6. For heterogeneous GNNs (e.g., MEIRec, IntentGC, HGRec, and

our model), we sample 5 neighbors via both UU and UI to ensure

fairness. And we uniformly set 𝐾 = 500 and𝑊 = 40 to satisfy the

requirements of Taobao promotion scenario.

Since the proposed comb-𝐾 recommendation needs to find the

optimal combination of item selection 𝑋 𝑗 and item delivery 𝑌𝑖, 𝑗
with more decision variables, we only leverage the proposed fast

search strategy RNHS to solve it. Note that we only present the

performance of group-level comb-𝐾 recommendation on the Large

data because user-level comb-𝐾 recommendation with RNHS still

cannot be solved in the limited time.

To evaluate the effectiveness of the selected 𝐾 items in the pro-

motion scenario, we select the following metrics:

Total Click. Total click (TC) measures how many times the

selected items will be click in delivery phase, which is the core

KPI
6
of promotion recommendation. Specially,𝑇𝐶@𝐾 is defined as

follows:

𝑇𝐶@𝐾 =
∑
𝑣𝑗 ∈S

𝑐𝑙𝑘 𝑗 , (20)

where 𝑐𝑙𝑘 𝑗 denotes the click time of item 𝑣 𝑗 in delivery phase.

Hit Ratio. Hit ratio (HR) is a recall-based metric, measuring

how many the testing ground-truth 𝐾 items S′ are in the selected

5
https://www.aliyun.com/product/bigdata/product/learn

6
Key Performance Indicator
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𝐾 items S via different recommendation models. Here we use the

𝐾 items with the highest click-through count in delivery phase as

the ground truth. Specially, 𝐻𝑅@𝐾 is defined as follows:

𝐻𝑅@𝐾 =
|S ∩ S′ |

𝐾
. (21)

5.3 Recommendation Evaluation (RQ1)
We start by evaluating the effectiveness of 𝐾 items selected by

different models and show the superiority of comb-𝐾 recommenda-

tion over top-𝐾 recommendation in the promotion scenario. The

comparison results on 1-day, 2-day, and 3-day datasets are reported

in Table 3.

The major findings from the experimental results are summa-

rized as follows:

• The proposed comb-𝐾 recommendation consistently outper-

forms all top-𝐾 based models on all datasets. The results

indicate the superiority of comb-𝐾 recommendation over

top-𝐾 recommendation, providing a more principled way to

seamlessly integrate item selection and delivery for maxi-

mizing the real revenue in the promotion scenario.

• Comb-𝐾 recommendation usually performs better in user

level because it fully considers the personalized preferences

of𝑀 users rather than 𝑃 group preferences (𝑃 ≪ 𝑀). How-

ever, the gap is not significant, which demonstrates the ef-

fectiveness of group-level modeling. For large-scale users,

user-level comb-𝐾 recommendation is unsolvable due to the

combinatorial explosion, so we can only solve group-level

comb-𝐾 recommendation with acceptable revenue loss. It

implies that group-level comb-𝐾 recommendation is a more

practical way for large-scale promotion recommendation,

which balances the trade-off between effectiveness and effi-

ciency.

• When aggregating user embedding to update group em-

bedding, attentive group embedding usually outperforms

the averaged group embedding. For example, HGRec+Att

usually outperforms HGRec+Avg on both TC and HR. It

demonstrates that the different users indeed make different

contributions in different groups and shows the necessity of

self-attentive user clustering in the proposed heterogeneous

graph pooling.

5.4 Effect of Delivery Window (RQ2)
The key idea of comb-𝐾 recommendation is to seamlessly inte-

grate item selection and delivery with the crucial constraint of

delivery window. In this section, we study how different delivery

windows affect the performance of comb-𝐾 recommendation. Here

we use RNHS to solve both user-level and group-level comb-𝐾 rec-

ommendation with different delivery windows (e.g., 10-50), and

show how the relative improvements (e.g., 𝐻𝑅𝐶𝑜𝑚𝑏−𝐾/𝐻𝑅𝑇𝑜𝑝−𝐾 )

change in Figure 3. To ensure fairness, we use the same user/group

preferences (i.e., 𝑟𝑖, 𝑗 and 𝑟𝑝,𝑗 ) for both top-𝐾 recommendation and

comb-𝐾 recommendation.

Based on Figure 3, we have the following observations:

• With the growth of the delivery window, the relative im-

provements on TC and HR both raise first and then start

to drop. The comb-𝐾 recommendation usually achieves the

best performance when the delivery window is set to 30∼40,
which is consistent with the real user behavior. For exam-

ple, on the Large dataset, comb-𝐾 recommendation with

𝑊 =30∼40 improves TC and HR significantly by 9.35% and

7.14%, respectively. Note that an inappropriate setting of

the delivery window may drop the performance of comb-𝐾

recommendation. On 3-day dataset, group-level comb-𝐾 rec-

ommendation cannot outperform top-𝐾 recommendation

when the delivery window𝑊 is set to 50. It demonstrates

that the delivery window indeed improves the performance

of comb-𝐾 recommendation.

• The delivery window phenomenon exists in both user-level

and group-level. When varying the size of the delivery win-

dow, the performances of both user-level and group-level

comb-𝐾 recommendations show similar trends, which both

raise first and then start to drop. It demonstrates the delivery

window phenomenon is also exists in group-level and also

verifies the effectiveness of the group-level comb-𝐾 recom-

mendation.

Note that we do not show user-level comparison on the Large

dataset because the large-scale comb-𝐾 recommendation in user

level is unsolvable even with RNHS. This further confirms the

necessity of group-level comb-𝐾 recommendation in large-scale

promotion recommendation.

5.5 User Preference v.s. Group Preference(RQ3)
The user clustering and group preferences serve as the basis of

group-level comb-𝐾 recommendation and directly affect its per-

formance. In this section, we compare the performance of user

preference 𝑟𝑖, 𝑗 with group preference 𝑟𝑝,𝑗 to verify the effectiveness

of user clustering and group preferences simultaneously. Specifi-

cally, we take the AUC ratio (=AUC𝐺−𝐼 /AUC𝑈−𝐼 ) as the evaluation
metric. If the AUC ratio ≈ 1, then we can conclude the proposed het-

erogeneous graph pooling is able to cluster users into proper groups

and personalized user preferences are well-preserved in group level.

We also show how different training strategies and the number of

groups affect the heterogeneous graph pooling. Specifically, we vary

the number of groups and train the heterogeneous graph pooling

to estimate the group preference via Pretrain & Fine-tuning and In-

terval Training. We also use compression ratios (=#Users/#Groups)

to measure the degree of preference compression.

The experimental details are shown in Figure 4 and we have the

following findings:

• Benefitted from the proposed heterogeneous graph pooling,

the AUC ratios are close to 1 with high compress ratios,

which means users are clustered into proper groups and the

major user preferences are well-preserved in group prefer-

ence. For example, on the Large dataset with around 2.5×107
users, if we cluster all users into 10

3
groups, the AUC ra-

tio is up to 98.7% even when the compression ratio is up to

2.5 × 104, indicating both effectiveness and efficiency of the

proposed heterogeneous graph pooling.

• With the growth of the number of groups, the AUC ratios

first raise up and then keep stable. The optimal number of

groups is related to the number of users. For example, we
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(c) User-level comparison on 2-day.
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(d) Group-level comparison on 2-day.
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(e) User-level comparison on 3-day.
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(f) Group-level comparison on 3-day.
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(g) Group-level comparison on the Large

dataset.

Figure 3: Effect of delivery window.We select𝑇𝐶𝐶𝑜𝑚𝑏−𝐾/𝑇𝐶𝑇𝑜𝑝−𝐾 and𝐻𝑅𝐶𝑜𝑚𝑏−𝐾/𝐻𝑅𝑇𝑜𝑝−𝐾 to show how comb-𝐾 recommenda-
tion with different delivery windows is superior to top-𝐾 recommendation. Note that we only show group-level comparison
on the Large dataset because large-scale comb-𝐾 recommendation in user-level is unsolvable.
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(a) The comparison on 1-day dataset.

Interval Training

Pretrain and Fine-tuning

Compression Ratio

0.94

0.96

0.98

104

105

106

107

A
U

C
 R

a
ti

o

C
o
m

p
ressio

n
 R

a
tio

# Groups

1 2 10 100
1000

5000

(b) The comparison on the Large dataset.

Figure 4: User preference v.s. Group preference. We show
how the AUC ratios change with regard to the training
strategies and the number of groups.

only need 10
2
groups to preserve all users preferences on 1-

day dataset, while the Large dataset shows the highest AUC

ratio when the number of group is set to 10
3
. It makes sense

becausewe need enough groups (e.g., 10
3
) to preserve diverse

users preferences and too many groups may introduce some

redundancies.

• Different training strategies affect the performance of user

clustering and interval training shows its superiority over

pretrain & fine-tuning. The reason is that interval training

is similar to multi-task training, making user preference

and group preference mutually reinforce each other and

improving the performance.
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Figure 5: Test AUC of user-item recommendation and group-
item recommendation on the Large dataset.

We also show the test AUC of user-item recommendation and group-

item recommendation on the Large dataset in Figure 5. Obviously,

group-item preference is a good approximation of user-item prefer-

ence because their performances are largely consistent with little

inevitable information loss. In summary, user preferences are well-

preserved in group level via the proposed heterogeneous graph

pooling.

5.6 RNHS Evaluation (RQ4)
Following the prior work [15], we random synthesize datasets with

different scales 𝑆𝑐 (e.g., 𝑆𝑐={3, 6, · · · , 1536}) for comb-𝐾 recommen-

dation and compare the proposed RNHSwith traditional integer pro-

gramming (IP). We do not synthesize larger datasets (e.g., 𝑆𝑐=3072)
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Figure 6: Comparing the efficiency and effectiveness of the
proposed RNHS with integer programming on synthetic
datasets with different scales. The higher approximation ra-
tio, the better RNHS is. The higher speed-up ratio, the faster
RNHS is.

because integer programming is too slow to solve it. For each syn-

thetic dataset with scale 𝑆𝑐 , we mock up 𝑆𝑐 users, 𝑆𝑐 items, and

randomize user-item preferences via uniform distribution𝑈∼[0, 1].
Then, we run RNHS to solve comb-𝐾 recommendation with the

constraints 𝐾 =
√
𝑆𝑐,𝑂 =

√
𝐾 on all synthetic datasets and use

the approximation ratio (=𝑂𝑏 𝑗𝑅𝑁𝐻𝑆/𝑂𝑏 𝑗𝐼𝑃 ) and speed-up ratio

(=𝑇𝑖𝑚𝑒𝐼𝑃/𝑇𝑖𝑚𝑒𝑅𝐻𝑁𝑆 ) to show its superiority over traditional inte-

ger programming.

The comparison results are shown in Figure 6 and we have the

following observations:

• For all datasets with different scales,𝑂𝑏 𝑗𝑅𝑁𝐻𝑆 is always very

close to 𝑂𝑏 𝑗𝐼𝑃 (a.k.a., 𝑂𝑏 𝑗𝑅𝑁𝐻𝑆/𝑂𝑏 𝑗𝐼𝑃 ≈ 1) which means

the proposed RNHS is able to ensure sufficiently accurate

solutions. For example, on synthetic dataset with 𝑆𝑐=1536,

the approximation ratio 𝑂𝑏 𝑗𝑅𝑁𝐻𝑆/𝑂𝑏 𝑗𝐼𝑃 is up to 0.999 and

the gap is negligible.

• With the growth of the scale of the dataset, the speed-up

ratio grows exponentially, indicating the efficiency of the pro-

posed RNHS. For example, on synthetic dataset with 𝑆𝑐=96,

the speed-up ratio is just 1.2x. But, on synthetic dataset with

𝑆𝑐=1536, RNHS achieves 434x speedup for solving comb-𝐾

recommendation with approximation ratio 0.999.

6 CONCLUSION
In this paper, we deeply investigate the problem of promotion rec-

ommendation, which aims to select a set of𝐾 items based on𝑎𝑙𝑙 𝑢𝑠𝑒𝑟

𝑝𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝑠 in selection phase and maximize the total revenue in

delivery phase. To solve it, we present the comb-𝐾 recommendation

model, a constrained combinatorial optimization model integrating

the selection phase and delivery phase seamlessly with delicately

designed constraints, which searches the optimal combination of

item selection and delivery simultaneously. Specifically, we pro-

pose a heterogeneous graph convolution to estimate user prefer-

ences and present a user-level comb-𝐾 recommendation model

with the full consideration of all user preferences. For large-scale

users, we furtherly cluster massive users into limited groups via

a novel heterogeneous graph pooling and present a group-level

comb-𝐾 recommendation model with the full consideration of all

group preferences. In addition, we design a restricted neighbor

heuristic search (RNHS) to accelerate the search process of comb-𝐾

recommendation. Extensive experiments on four datasets show the

superiority of the comb-𝐾 recommendation over top-𝐾 recommen-

dation in large-scale promotion recommendation. On billion-scale

data, when clustering 2.5 × 107 users into 10
3
groups, our model is

able to preserve 98.7% user preferences in group level and signifi-

cantly improves the Total Click and Hit Ratio by 9.35% and 7.14%,

respectively.
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