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ABSTRACT
Graph convolutional networks (GCNs) have received considerable

research attention recently. Most GCNs learn the node representa-

tions in Euclidean geometry, but that could have a high distortion in

the case of embedding graphs with scale-free or hierarchical struc-

ture. Recently, some GCNs are proposed to deal with this problem

in non-Euclidean geometry, e.g., hyperbolic geometry. Although hy-

perbolic GCNs achieve promising performance, existing hyperbolic

graph operations actually cannot rigorously follow the hyperbolic

geometry, which may limit the ability of hyperbolic geometry and

thus hurt the performance of hyperbolic GCNs. In this paper, we

propose a novel hyperbolic GCN named Lorentzian graph convolu-

tional network (LGCN), which rigorously guarantees the learned

node features follow the hyperbolic geometry. Specifically, we re-

build the graph operations of hyperbolic GCNs with Lorentzian

version, e.g., the feature transformation and non-linear activation.

Also, an elegant neighborhood aggregation method is designed

based on the centroid of Lorentzian distance. Moreover, we prove

some proposed graph operations are equivalent in different types

of hyperbolic geometry, which fundamentally indicates their cor-

rectness. Experiments on six datasets show that LGCN performs

better than the state-of-the-art methods. LGCN has lower distortion

to learn the representation of tree-likeness graphs compared with

existing hyperbolic GCNs. We also find that the performance of

some hyperbolic GCNs can be improved by simply replacing the

graph operations with those we defined in this paper.

CCS CONCEPTS
• Computing methodologies→ Neural networks; • Informa-
tion systems → Data mining; • Theory of computation → So-
cial networks.
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1 INTRODUCTION
Graph Convolutional Networks (GCNs) [10, 19, 25] are powerful

deep representation learningmethods for graphs. The current GCNs

usually follow a message passing manner, where the key steps are

feature transformation and neighborhood aggregation. Specifically,

GCNs leverage feature transformation to transform the features

into higher-level features, and neighborhood aggregation in GCNs

averages the features of its local neighborhood for a given node.

GCNs have aroused considerable attention [10, 19, 25] and are

widely used in many application areas, e.g., natural language pro-

cessing [21, 58], recommendation [47, 59] and disease prediction

[38, 41].

Most GCNs learn the node features in Euclidean spaces. How-

ever, some studies find that compared with Euclidean geometry,

hyperbolic geometry actually can provide more powerful ability to

embed graphs with scale-free or hierarchical structure [8, 9, 34]. As

a consequence, several recent efforts begin to define graph opera-

tions in hyperbolic spaces (e.g., feature transformation, neighbor-

hood aggregation), and propose hyperbolic GCNs in different ways

[2, 6, 30, 60]. For instance, HGCN [6] extends the graph convolution

on the hyperboloid manifold of hyperbolic spaces, while HAT [60]

leverages the Poincaré ball manifold to design hyperbolic graph

operations.

Despite the promising performance of hyperbolic GCNs, ex-

isting hyperbolic message passing rules do not rigorously follow

hyperbolic geometry, which may not fully embody the ability of hy-

perbolic spaces. Specifically, these hyperbolic GCNs suffer from the

following issues: (1) Some hyperbolic graph operations could make

node features out of the hyperbolic spaces. For example, a critical

step of HGCN [6], the feature transformation, is actually conducted

in tangent spaces. However, it ignores the constraint of Lorentzian

scalar product in tangent spaces, which leads to the node features
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deviate from the hyperboloid manifold. (2) The current hyperbolic

neighborhood aggregations do not conform to the same mathemat-

ical meanings with Euclidean one, which could cause a distortion

for the learned node features. Actually, the mathematical meanings

of Euclidean neighborhood aggregation can be considered as the

weighted arithmetic mean or centroid of the representations of

node neighbors. However, the neighborhood aggregation in hy-

perbolic GCN may not obey the similar rules in hyperbolic spaces.

Taking HGCN [6] as an example, it aggregates the node features in

tangent spaces, which can only meet the mathematical meanings

in tangent spaces, rather than hyperbolic spaces. Since we aim to

build a hyperbolic GCN, it is a fundamental requirement to ensure

the basic graph operations rigorously follow the hyperbolic geom-

etry and mathematical meaning, so that we can well possess the

capability of preserving the graph structure and property in the

hyperbolic spaces.

In this paper, we propose a novel Lorentzian Graph Convolutional
Network (LGCN), which designs a unified framework of graph oper-

ations on the hyperboloid model of hyperbolic spaces. The rigorous

hyperbolic graph operations, including feature transformation and

non-linearity activation, are derived from this framework to en-

sure the transformed node features follow the hyperbolic geometry.

Also, based on the centroid of Lorentzian distance, an elegant hy-

perbolic neighborhood aggregation is proposed to make sure the

node features are aggregated to satisfy the mathematical mean-

ings. Moreover, we theoretically prove that some proposed graph

operations are equivalent to those defined in another typical hyper-

bolic geometry, i.e., the Poincaré ball model [13], so the proposed

methods elegantly bridge the relation of these graph operations in

different models of hyperbolic spaces, and also indicates the pro-

posed methods fill the gap of lacking rigorously graph operations

on the hyperboloid model. We conduct extensive experiments to

evaluate the performance of LGCN, well demonstrating the superi-

ority of LGCN in link prediction and node classification tasks, and

LGCN has lower distortion when learning the representation of

tree-likeness graphs compared with existing hyperbolic GCNs. We

also find the proposed Lorentzian graph operations can enhance

the performance of existing hyperbolic GCN in molecular property

prediction task, by simply replacing their operation operations.

2 RELATEDWORK
2.1 Graph neural networks
Graph neural networks [15, 45], which extend the deep neural net-

work to deal with graph data, have achieved great success in solving

machine learning problems. There are two main families of GNNs

have been proposed, i.e., spectral methods and spatial methods.

Spectral methods learn node representation via generalizing con-

volutions to graphs. Bruna et al. [5] extended convolution from

Euclidean data to arbitrary graph-structured data by finding the

corresponding Fourier basis of the given graph. Defferrard et al.

[10] leveraged K-order Chebyshev polynomials to approximate the

convolution filter. Kipf et al. [25] proposed GCN, which utilized a

first-order approximation of ChebNet to learn the node representa-

tions. Niepert et al. [37] normalized each node and its neighbors,

which served as the receptive field for the convolutional operation.

Wu et al. [55] proposed simple graph convolution by converting the

graph convolution to a linear version. Moreover, some researchers

defined graph convolutions in the spatial domain. Li et al. [29] pro-

posed the gated graph neural network by using the Gate Recurrent

Units (GRU) in the propagation step. Veličković et al. [52] stud-

ied the attention mechanism in GCN to incorporate the attention

mechanism into the propagation step. Chen et al. [7] sampled a fix

number of nodes for each graph convolutional layer to improve

its efficiency. Ma et al. [32] obtained the sequential information

of edges to model the dynamic information as graph evolving. A

comprehensive review can be found in recent surveys [56, 61].

2.2 Hyperbolic graph representation learning
Recently, node representation learning in hyperbolic spaces has

received increasing attention. Nickel et al. [35, 36] embedded graph

into hyperbolic spaces to learn the hierarchical node representa-

tion. Sala et al. [43] proposed a novel combinatorial embedding

approach as well as a approach to Multi-Dimensional Scaling in

hyperbolic spaces. To better modeling hierarchical node representa-

tion, Ganea et al. [12] and Suzuki et al. [48] embedded the directed

acyclic graphs into hyperbolic spaces to learn their hierarchical fea-

ture representations. Law et al. [27] analyzed the relation between

hierarchical representations and Lorentzian distance. Also, Balaže-

vić et al. [3] analyzed the hierarchical structure in multi-relational

graph, and embedded them in hyperbolic spaces. Moreover, some

researchers began to study the deep learning in hyperbolic spaces.

Ganea et al. [13] generalized deep neural models in hyperbolic

spaces, such as recurrent neural networks and GRU. Gulcehre et

al. [18] proposed the attention mechanism in hyperbolic spaces.

There are some attempts in hyperbolic GCNs recently. Liu et al.

[30] proposed graph neural networks in hyperbolic spaces which

focuses on graph classification problem. Chami et al. [6] leveraged

hyperbolic graph convolution to learn the node representation in

hyperboloid model. Zhang et al. [60] proposed graph attention

network in Poincaré ball model to embed some hierarchical and

scale-free graphs with low distortion. Bachmann et al. [2] also gen-

eralized graph convolutional in a non-Euclidean setting. Although

these hyperbolic GCNs have achieved promising results, we find

that some basis properties of GCNs are not well preserved. so how

to design hyperbolic GCNs in a principled manner is still an open

question. The detailed of existing hyperbolic GCNswill be discussed

in Section 4.5.

3 PRELIMINARIES
3.1 Hyperbolic geometry
Hyperbolic geometry is a non-Euclidean geometry with a constant

negative curvature. The hyperboloid model, as one typical equiv-

alent model which well describes hyperbolic geometry, has been

widely used [6, 27, 30, 36]. Let x, y ∈ R𝑛+1, then the Lorentzian
scalar product is defined as:

⟨x, y⟩L := −𝑥0𝑦0 +
𝑛∑︁
𝑖=1

𝑥𝑖𝑦𝑖 . (1)

We denote H𝑛,𝛽 as the 𝑛-dimensional hyperboloid manifold with

constant negative curvature −1/𝛽 (𝛽 > 0):

H𝑛,𝛽 := {x ∈ R𝑛+1 : ⟨x, x⟩L = −𝛽, 𝑥0 > 0}. (2)
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Also, for x, y ∈ H𝑛,𝛽 , Lorentzian scalar product satisfies:

⟨x, y⟩L ≤ −𝛽, and ⟨x, y⟩L = −𝛽 iff x = y. (3)

The tangent space at x is defined as a 𝑛-dimensional vector space

approximating H𝑛,𝛽 around x,

TxH𝑛,𝛽 := {v ∈ R𝑛+1 : ⟨v, x⟩L = 0}. (4)

Note that Eq. (4) has a constraint of Lorentzian scalar product.

Also, for v,w ∈ TxH𝑛,𝛽 , a Riemannian metric tensor is given as

𝑔
𝛽
x (v,w) := ⟨v,w⟩L . Then the hyperboloid model is defined as the

hyperboloid manifold H𝑛,𝛽 equipped with the Riemannian metric

tensor 𝑔
𝛽
x .

The mapping between hyperbolic spaces and tangent spaces

can be done by exponential map and logarithmic map. The
exponential map is a map from subset of a tangent space ofH𝑛,𝛽 (i.e.,

TxH𝑛,𝛽 ) to H𝑛,𝛽 itself. The logarithmic map is the reverse map that

maps back to the tangent space. For points x, y ∈ H𝑛,𝛽 , v ∈ TxH𝑛,𝛽 ,
such that v ≠ 0 and x ≠ y, the exponential map exp

𝛽
x (·) and

logarithmic map log
𝛽
x (·) are given as follows:

exp
𝛽
x (v) = cosh

( ∥v∥L√︁
𝛽

)
x +

√︁
𝛽 sinh

( ∥v∥L√︁
𝛽

) v
∥v∥L

, (5)

log
𝛽
x (y) = 𝑑

𝛽

H
(x, y)

y + 1

𝛽
⟨x, y⟩Lx

∥y + 1

𝛽
⟨x, y⟩Lx∥L

, (6)

where ∥v∥L =
√︁
⟨v, v⟩L denotes Lorentzian norm of v and 𝑑

𝛽

H
(·, ·)

denotes the intrinsic distance function between two points x, y ∈
H𝑑,𝛽 , which is given as:

𝑑
𝛽

H
(x, y) =

√︁
𝛽 arcosh

(
− ⟨x, y⟩L/𝛽

)
. (7)

3.2 Hyperbolic graph convolutional networks
Recently, several hyperbolic GCNs have been proposed [2, 6, 30, 60].

Here we use HGCN [6], which extends Euclidean graph convolution

to the hyperboloid model, as a typical example to illustrate the basic

framework of hyperbolic GCN. Let h𝑘,𝛽
𝑖

∈ H𝑘,𝛽 be a 𝑘-dimensional

node feature of node 𝑖 , 𝑁 (𝑖) be a set of its neighborhoods with ag-

gregation weight𝑤𝑖 𝑗 , andM be a (𝑑+1)× (𝑘+1) weight matrix. The

message passing rule of HGCN consists of feature transformation:

h𝑑,𝛽
𝑖

= exp
𝛽

0 (M log
𝛽

0 (h
𝑘,𝛽

𝑖
)), (8)

and neighborhood aggregation:

𝐴𝐺𝐺𝛽 (h𝑑,𝛽
𝑖

) = exp
𝛽

h𝑖

( ∑︁
𝑗 ∈𝑁 (𝑖)∪{𝑖 }

𝑤𝑖 𝑗 log
𝛽

h𝑖
(h𝑑,𝛽

𝑗
)
)
. (9)

As we can see in Eq. (8), the features are transformed from hyper-

bolic spaces to tangent spaces via logarithmic map log
𝛽

0 (·). How-
ever, the basic constraint of tangent spaces in Eq. (4), ⟨v, x⟩L = 0, is

violated, since ⟨M log
𝛽

0 (h
𝑘,𝛽

𝑖
), 0⟩L ≠ 0, 0 = (

√︁
𝛽, 0, · · · , 0) ∈ H𝑘,𝛽 .

As a consequence, the node features would be out of the hyperbolic

spaces after projecting them back to hyperboloid manifold via the

exponential map exp
𝛽

0 , which do not satisfy hyperbolic geometry

rigorously.

On the other hand, in Euclidean spaces, the node feature h𝑑
𝑖
∈R𝑑

aggregates information from its neighborhoods via

∑
𝑗 ∈𝑁 (𝑖)∪{𝑖}𝑤𝑖𝑗h𝑑𝑗 ,

which has the following meaning in mathematics:

Remark 3.1. Given a node, the neighborhood aggregation essen-
tially is the weighted arithmetic mean for features of its local neigh-
borhoods [55]. Also, the feature of aggregation is the centroid of the
neighborhood features in geometry.

Remark 3.1 indicates the mathematical meanings of neighbor-

hood aggregation in Euclidean spaces. Therefore, the neighborhood

aggregation in Eq. (9) should also follow the same meanings with

Euclidean one in hyperbolic spaces. However, we can see that the

Eq. (9) in HGCN only meets these meanings in tangent spaces

rather than hyperbolic spaces, which could cause a distortion for

the features. To sum up, the above issues indicate existing hyper-

bolic graph operations do not follow mathematic fundamentally,

which may cause potential untrustworthy problem.

4 LGCN: OUR PROPOSED MODEL
In order to solve the issues of existing hyperbolic GCNs, we propose

LGCN, which designs graph operations to guarantee the mathe-

matical meanings in hyperbolic spaces. Specifically, LGCN first

maps the input node features into hyperbolic spaces and then con-

ducts feature transformation via a delicately designed Lorentzian

matrix-vector multiplication. Also, the centroid based Lorentzian

aggregation is proposed to aggregate features, and the aggrega-

tion weights are learned by a self attention mechanism. Moreover,

Lorentzian pointwise non-linear activation is followed to obtain

the output node features. Note that the curvature of a hyperbolic

space (i.e., −1/𝛽) is also a trainable parameter for LGCN. Despite

the same expressive power, adjusting curvature of LGCN is im-

portant in practice due to factors of limited machine precision and

normalization. The details of LGCN are introduced in the following.

4.1 Mapping feature with different curvature
The input node features of LGCN could live in the Euclidean spaces

or hyperbolic spaces. For 𝑘-dimensional input features, we denote

them as h𝑘,𝐸 ∈ R𝑘 (
𝐸
indicates Euclidean spaces) and h𝑘,𝛽

′ ∈ H𝑘,𝛽′ ,
respectively. If original features live in Euclidean spaces, we need

to map them into hyperbolic spaces. We assume that the input

features h𝑘,𝐸 live in the tangent space of H𝑘,𝛽 at its origin 0 =

(
√︁
𝛽, 0, · · · , 0) ∈ H𝑘,𝛽 , i.e., T0H𝑘,𝛽 . A “0” element is added at the

first coordinate of h𝑘,𝐸 to satisfy the constraint ⟨(0, h𝑘,𝐸 ), 0⟩L = 0

in Eq. (4). Thus, the input feature h𝑘,𝐸 ∈ R𝑘 can be mapped to the

hyperbolic spaces via exponential map:

h𝑘,𝛽 = exp
𝛽

0
(
(0, h𝑘,𝐸 )

)
. (10)

If the input features h𝑘,𝛽
′
live in a hyperbolic space (e.g., the output

of previous LGCN layer), whose curvature −1/𝛽 ′ might be different

with the curvature of current hyperboloid model. We can transform

it into the hyperboloid model with a specific curvature −1/𝛽 :

h𝑘,𝛽 = exp
𝛽

0 (log
𝛽′

0 (h𝑘,𝛽
′
)) . (11)
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4.2 Lorentzian feature transformation
Hyperbolic spaces are not vector spaces, which means the opera-

tions in Euclidean spaces cannot be applied in hyperbolic spaces.

To ensure the transformed features satisfy the hyperbolic geom-

etry, it is crucial to define some canonical transformations in the

hyperboloid model, so we define:

Definition 4.1 (Lorentzian version). For 𝑓 : R𝑛→R𝑚 (𝑛,𝑚 >

2) and two points x = (𝑥0, · · · , 𝑥𝑛) ∈ H𝑛,𝛽 , v = (𝑣0, · · · , 𝑣𝑛) ∈
T0H𝑛,𝛽 , we define the Lorentzian version of 𝑓 as the map H𝑛,𝛽 →
H𝑚,𝛽 by:

𝑓 ⊗
𝛽

(x) := exp
𝛽

0 ( ˆ𝑓 (log
𝛽

0 (x))), ˆ𝑓 (v) := (0, 𝑓 (𝑣1, · · · , 𝑣𝑛)), (12)

where exp𝛽0 : T0H𝑛,𝛽 → H𝑚,𝛽 and log𝛽0 : H𝑛,𝛽 → T0H𝑚,𝛽 .

Lorentzian version leverages logarithmic and exponential map to

project the features between hyperbolic spaces and tangent spaces.

As the tangent spaces are vector spaces and isomorphic to R𝑛 , the
Euclidean transformations can be applied to the tangent spaces.

Moreover, given a point v = (𝑣0, · · · , 𝑣𝑛) ∈ T0H𝑛,𝛽 , existing meth-

ods [6, 30] directly apply the Euclidean transformations on all

coordinates (𝑣0, · · · , 𝑣𝑛) in tangent spaces. Different from these

methods, Lorentzian version only leverages the Euclidean trans-

formations on the last 𝑛 coordinates (𝑣1, · · · , 𝑣𝑛) in tangent spaces,

and the first coordinate (𝑣0) is set as “0” to satisfy the constraint in

Eq. (4). Thus, this operation can make sure the transformed features

rigorously follow the hyperbolic geometry.

In order to apply linear transformation on the hyperboloid

model, following Lorentzian version, the Lorentzian matrix-vector

multiplication can be derived:

Definition 4.2 (Lorentzian matrix-vector multiplication).

If M : R𝑛 → R𝑚 is a linear map with matrix representation, given
two points x = (𝑥0, · · · , 𝑥𝑛) ∈ H𝑛,𝛽 , v = (𝑣0, · · · , 𝑣𝑛) ∈ T0H𝑛,𝛽 , we
have:

M⊗𝛽

(x) = exp
𝛽

0 (M̂(log𝛽0 (x))), M̂(v) = (0,M(𝑣1, · · · , 𝑣𝑛)) . (13)

Let M be a𝑚 × 𝑛 matrix, M′ be a 𝑙 ×𝑚 matrix, x ∈ H𝑛,𝛽 , M⊗𝛽x :=

M⊗𝛽 (x), we have matrix associativity as: (M′M)⊗𝛽x = M′ ⊗𝛽

(M⊗𝛽x).
A key difference between Lorentzian matrix-vector multiplica-

tion and other matrix-vector multiplications on the hyperboloid

model [6, 30] is the size of the matrixM. Assuming a 𝑛-dimensional

feature needs to be transformed into a𝑚-dimensional feature. Nat-

urally, the size of matrixM should be𝑚 × 𝑛, which is satisfied by

Lorentzianmatrix-vectormultiplication. However, the size ofmatrix

M is (𝑚 +1) × (𝑛 +1) for other methods [6, 30] (as shown in Eq. (8)),

which leads to the constraint of tangent spaces cannot be satisfied,

i.e., ⟨M log
𝛽

0 (h
𝑘,𝛽

𝑖
), 0⟩L ≠ 0 in Eq. (4), so the transformed features

would be out of the hyperbolic spaces. Moreover, the Lorentzian

matrix vector multiplication has the following property:

Theorem 4.1. Given a point in hyperbolic space, which is rep-
resented by x𝑛,𝛽 ∈ H𝑛,𝛽 using hyperboloid model or x𝑛,𝛼 ∈ D𝑛,𝛼
using Poincaré ball model [13], respectively. Let M be a𝑚 × 𝑛 ma-
trix, Lorentzian matrix-vector multiplication M⊗𝛽x𝑛,𝛽 used in hy-
perboloid model is equivalent to Möbius matrix-vector multiplication
M⊗𝛼x𝑛,𝛼 used in Poincaré ball model.

The proof is in Appendix B.1. This property elegantly bridges the

relation between the hyperboloid model and Poincaré ball model

w.r.t. matrix-vector multiplication. We use the Lorentzian matrix-

vector multiplication to conduct feature transformation on the

hyperboloid model as:

h𝑑,𝛽 = M⊗𝛽h𝑘,𝛽 . (14)

4.3 Lorentzian neighborhood aggregation
As in Remark 3.1, in Euclidean spaces, the neighborhood aggrega-

tion is to compute the weight arithmetic mean or centroid (also

called center of mass) of its neighborhood features (see Fig. 1(a)).

Therefore, we aim to aggregate neighborhood features in hyper-

bolic spaces to follow these meanings. Fréchet mean [11, 22, 23]

provides a feasible way to compute the centroid in Riemannian

manifold. Also, the arithmetic mean can be interpreted as a kind of

Fréchet mean. Thus, Fréchet mean meets the meanings of neighbor-

hood aggregation. The main idea of Fréchet mean is to minimize

an expectation of (squared) distances with a set of points. How-

ever, Fréchet mean does not have a closed form solution w.r.t. the

intrinsic distance 𝑑
𝛽

H
in hyperbolic spaces, and it has to be ineffi-

ciently computed by gradient descent. Therefore, we propose an

elegant neighborhood aggregation method based on the centroid

of the squared Lorentzian distance, which can well balance the

mathematical meanings and efficiency:

Theorem 4.2 (Lorentzian aggregation via centroid of sq-

ared Lorentzian distance). For a node feature h𝑑,𝛽
𝑖

∈ H𝑑,𝛽 , a
set of its neighborhoods 𝑁 (𝑖) with aggregation weights𝑤𝑖 𝑗 > 0, the
neighborhood aggregation consists in the centroid c𝑑,𝛽 of nodes, which
minimizes the problem:

arg min

c𝑑,𝛽 ∈H𝑑,𝛽

∑︁
𝑗 ∈𝑁 (𝑖)∪{𝑖 }

𝑤𝑖 𝑗𝑑
2

L (h𝑑,𝛽
𝑗

, c𝑑,𝛽 ), (15)

where 𝑑2L (·, ·) denotes squared Lorentzian distance, and this problem
has closed form solution:

c𝑑,𝛽 =
√︁
𝛽

∑
𝑗 ∈𝑁 (𝑖)∪{𝑖 }𝑤𝑖 𝑗h

𝑑,𝛽

𝑗

|∥∑𝑗 ∈𝑁 (𝑖)∪{𝑖 }𝑤𝑖 𝑗h
𝑑,𝛽

𝑗
∥L |

. (16)

The proof is given in Appendix B.2. For points x𝑛,𝛽 , y𝑛,𝛽 ∈ H𝑛,𝛽 ,
the squared Lorentzian distance is defined as [40]:

𝑑2L (x𝑛,𝛽 , y𝑛,𝛽 ) = −2𝛽 − 2⟨x𝑛,𝛽 , y𝑛,𝛽 ⟩L . (17)

Fig. 1(b) illustrates Lorentzian aggregation via centroid. Sim-

ilar to Fréchet/Karcher means, the node features computed by

Lorentzian aggregation are the minimum of an expectation of

squared Lorentzian distance. Also, the features of aggregation in

Lorentzian neighborhood aggregation are the centroids in the hy-

perboloid model in geometry [27, 40]. On the other hand, some

hyperbolic GCNs [6, 30, 60] aggregate neighborhoods in tangent

spaces (as shown in Fig. 1(c)), that can only be regarded as cen-

troid or arithmetic mean in the tangent spaces, rather than hyper-

bolic spaces. Thus Lorentzian aggregation via centroid of squared
Lorentzian distance is a promising method, which satisfies more ele-

gant mathematical meanings compared to other hyperbolic GCNs.
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Figure 1: Three types of neighborhood aggregation. The three types of aggregation can be considered as computing centroids
in Euclidean spaces, hyperbolic spaces, tangent spaces, respectively.

As shown in Eq. (16), there is an aggregation weight 𝑤𝑖 𝑗 indi-

cating the importance of neighborhoods for a center node. Here

we propose a self-attention mechanism to learn the aggregation

weights𝑤𝑖 𝑗 . For two node features h𝑑,𝛽
𝑖

, h𝑑,𝛽
𝑖

∈ H𝑑,𝛽 , the attention
coefficient 𝜇𝑖 𝑗 , which indicates the importance of node 𝑗 to node 𝑖 ,

can be computed as:

𝜇𝑖 𝑗 = 𝐴𝑇𝑇 (h𝑑,𝛽
𝑖

, h𝑑,𝛽
𝑗

,M𝑎𝑡𝑡 ), (18)

where 𝐴𝑇𝑇 (·) indicates the function of computing the attention

coefficient and the 𝑑 × 𝑑 matrix M𝑎𝑡𝑡 is to transform the node

features into attention-based ones. Considering a large attention

coefficient 𝜇𝑖 𝑗 represents a high similarity of nodes 𝑗 and 𝑖 , we

define 𝐴𝑇𝑇 (·) based on squared Lorentzian distance, as

𝜇𝑖 𝑗 = −𝑑2L (M𝑎𝑡𝑡 ⊗𝛽 h𝑑,𝛽
𝑖

,M𝑎𝑡𝑡 ⊗𝛽 h𝑑,𝛽
𝑗

) . (19)

For all the neighbors 𝑁 (𝑖) of node 𝑖 (including itself), we normal-

ize them using the softmax function to compute the aggregation

weight:

𝑤𝑖 𝑗 =
exp(𝜇𝑖 𝑗 )∑

𝑡 ∈𝑁 (𝑖)∪{𝑖 } exp(𝜇𝑖𝑡 )
. (20)

4.4 Lorentzian pointwise non-linear activation
Non-linear activation is an indispensable part of GCNs. Similar

to feature transformation, existing non-linear activations on the

hyperboloid model [6] also make features out of the hyperboloid

model. Here, we derive the Lorentzian pointwise non-linear activa-

tion following the Lorentzian version:

Definition 4.3 (Lorentzian pointwise non-linear activa-

tion). If 𝜎 : R𝑛 → R𝑛 is a pointwise non-linearity map, given two
points x = (𝑥0, · · · , 𝑥𝑛) ∈ H𝑛,𝛽 and v = (𝑣0, · · · , 𝑣𝑛) ∈ T0H𝑛,𝛽 , the
Lorentzian version 𝜎⊗𝛽

is:

𝜎⊗𝛽

(x) = exp
𝛽

0 (�̂�
⊗𝛽

(log𝛽0 (x))), �̂�
⊗𝛽

(v) = (0, 𝜎 (𝑣1), · · · , 𝜎 (𝑣𝑛))) .
(21)

The Lorentzian pointwise non-linear activation not only ensures

the transformed features still live in the hyperbolic spaces, but also

has the following property.

Theorem 4.3. Given a point in hyperbolic space, it is modeled
by x𝑛,𝛽 ∈ H𝑛,𝛽 using hyperboloid model and x𝑛,𝛼 ∈ D𝑛,𝛼 using
Poincaré ball model, respectively. Lorentzian pointwise non-linearity
𝜎⊗𝛽 (x𝑛,𝛽 ) in the hyperboloid model is equivalent to Möbius pointwise
non-linearity 𝜎⊗𝛼 (x𝑛,𝛼 ) in the Poincaré ball model [13], when 𝜎 (·)
indicates some specific non-linear activation, e.g., Relu, leaklyRelu.

The proof is in Appendix B.3. This property also bridges the

pointwise non-linearity in the twomodels. Following the Lorentzian

pointwise non-linear activation, the output of the LGCN layer is:

u𝑑,𝛽 = 𝜎⊗𝛽

(c𝑑,𝛽 ), (22)

which can be used to downstream tasks, e.g., link prediction and

node classification.

4.5 Discussion on related works
4.5.1 Hyperbolic graph operations. We compare LGCN with some

existing hyperbolic GCNs regarding the properties of graph oper-

ations. A rigorous hyperbolic graph operation should make sure
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Table 1: Hyperbolic graph operations.

Method Manifold inside𝑓 inside𝑛 except-agg

HGNN𝑃 ! ! ✗

HAT Poincaré ball ! ! ✗

𝜅GCN ! ! ✗

HGNN𝐻 ✗ - ✗

HGCN Hyperboloid ✗ ✗ ✗

LGCN ! ! !

Table 2: Hyperbolic centroids.

Centroid Manifold sum-dis closed-form literature

Fréchet mean [11, 22] - ! ✗ [31, 44, 54]

Einstein gyromidpoint [50] Klein ball ✗ ! [18]

Möbius gyromidpoint [51] Poincaré ball ✗ ! [2]

Lorentzian centroid [40] Hypreboloid ! ! [27]

the features still live in the hyperbolic spaces after applying the

graph operation. We analyze this property about feature transfor-

mation and pointwise non-linearity activation, denoted as inside𝑓
and inside𝑛 , respectively. Also, as mentioned in Theorem 4.2, similar

with Fréchet means, the neighborhood aggregation to minimize

an expectation of distances could better satisfy the mathematical

meanings, and this property is denoted as expect-agg.
The current hyperbolic GCNs can be classified into two classes:

Poincaré ball GCNs, including HGNN𝑃 [30], HAT [60] and 𝜅GCN

[2]; Hyperboloid GCNs, i.e., HGCN [6], HGNN𝐻 [30] and LGCN.We

summarize the properties of graph operations of these hyperbolic

GCNs in Table 1. It can be seen that: (1) The existing hyperbolic

GCNs do not have all of the three properties except LGCN. More

importantly, none of the existing hyperbolic neighborhood aggrega-

tion satisfy expect-agg. (2) All the Poincaré ball GCNs satisfy inside𝑓
and inside𝑛 , while existing hyperboloid GCNs cannot make sure

these properties. That is because they do not consider the constrain

of tangent spaces and the transformed features will be outside of the

hyperboloid. Note that because of lacking non-linear activation on

the hyperboloid model, HGNN𝐻 avoids this problem by conducting

non-linear activation on the Poincaré ball, which is implemented

via projecting node representations between the Poincaré ball and

hyperboloid model. That brings extra computing cost, and also

indicates a principle definition of graph operations is needed for

the hyperboloid model. On the other hand, LGCN fills this gap of

lacking rigorously graph operations on the hyperboloid model to

ensure the features can be transformed following hyperbolic ge-

ometry. (3) Only LGCN satisfies expect-agg. Most hyperbolic GCNs

[6, 30, 60] leverage aggregation in the tangent spaces (as shown in

Fig. 1(c)), which satisfies expect-agg in the tangent spaces, instead

of the hyperbolic spaces.

4.5.2 Hyperbolic centroids. There are some works exploit hyper-

bolic centroids. Actually, the centroid in metric spaces is to find

a point which minimizes the sum of squared distance w.r.t. given

points [11], and we denote this property as sum-dis. Also, the effi-

ciency of computing centroid is important, so we concern whether

Table 3: Dataset statistic

Dataset Nodes Edges Label Node features

Cora 2708 5429 7 1433

Citeseer 3327 4732 6 3703

Pubmed 19717 44338 3 500

Amazon 13381 245778 10 767

USA 1190 13599 4 -

Disease 1044 1043 2 1000

a centroid has a closed-form solution, and this property is denoted

as closed-form.

We summarize hyperbolic centroids as well as some related

works in Table 2. Fréchet mean [11, 22] is a generalization of

centroids to metric spaces by minimizing the sum of squared dis-

tance. Some works [31, 44, 54] use Fréchet mean in hyperbolic

spaces, which do not have closed-form solution, so they have to

compute them via gradient descent. Moreover, Einstein [50] and

Möbius gyromidpoint [51] are centroids with close-form solution

for two different kind of hyperbolic geometry, i.e., the Klein ball

and Poincaré ball model, respectively. Some researchers [2, 18]

exploit Einstein/Möbius gyromidpoint in representation learning

problem. One limitation of Einstein and Möbius gyromidipoint is

they cannot be seen as minimizing the sum of squared distances.

Furthermore, Lorentzian centroid [40] is the centroid for the hy-

perboloid model, which can be seen as a sum of squared distance

and has closed-form solution. The relations between Lorentzian

centroid and hierarchical structure data are analyzed in representa-

tions learning problem [27]. To sum up, only Lorentzian centroid

satisfies the two properties, and we are the first one to leverage it

in hyperbolic GCN.

5 EXPERIMENTS
5.1 Experimental setup
5.1.1 Dataset. We utilize six datasets in our experiments: Cora,

Citeseer, Pubmed, [57]Amazon [33, 46],USA [42],and Disease [6].

Cora, Citeseer and Pubmed are citation networks where nodes

represent scientific papers, and edges are citations between them.

The Amazon is a co-purchase graph, where nodes represent goods

and edges indicate that two goods are frequently bought together.

The USA is a air-traffic network, and the nodes corresponding

to different airports. We use one-hot encoding nodes in the USA

dataset as the node features. The Disease dataset is a graph with

tree structure, where node features indicate the susceptibility to

the disease. The details of data statistics are shown in the Table 3.

We compute 𝛿𝑎𝑣𝑔-hyperbolicity [1] to quantify the tree-likeliness

of these datasets. A low 𝛿𝑎𝑣𝑔-hyperbolicity of a graph indicates

that it has an underlying hyperbolic geometry. The details about

𝛿𝑎𝑣𝑔-hyperbolicity are shown in Appendix C.1.

5.1.2 Baselines. We compare our method with the following state-

of-the-art methods: (1) A Euclidean network embedding model i.e.,

DeepWalk [39] and a hyperbolic network embedding model i.e.,

PoincaréEmb [35]; (2) Euclidean GCNs i.e., GraphSage [19], GCN
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Table 4: AUC (%) for link prediction task. The best results are marked by bold numbers.

Dataset dimension deepwalk poincaréEmb GraphSage GCN GAT HGCN 𝜅GCN HAT LGCN

8 57.3±1.0 67.9±1.1 65.4±1.4 76.9±0.8 73.5±0.8 84.1±0.7 85.3±0.8 83.9±0.7 89.2±0.7
Disease 16 55.2±1.7 70.9±1.0 68.1±1.0 78.2±0.7 73.8±0.6 91.2±0.6 92.0±0.5 91.8±0.5 96.6±0.6

𝛿𝑎𝑣𝑔 = 0.00 32 49.1±1.3 75.1±0.7 69.5±0.6 78.7±0.5 75.7±0.3 91.8±0.3 94.5±0.6 92.3±0.5 96.3±0.5
64 47.3±0.1 76.3±0.3 70.1±0.7 79.8±0.5 77.9±0.3 92.7±0.4 95.1±0.6 93.4±0.4 96.8±0.4

8 91.5±0.1 92.3±0.2 82.4±0.8 89.0±0.6 89.6±0.9 91.6±0.8 92.0±0.6 92.7±0.8 95.3±0.2
USA 16 92.3±0.0 93.6±0.2 84.4±1.0 90.2±0.5 91.1±0.5 93.4±0.3 93.3±0.6 93.6±0.6 96.3±0.2

𝛿𝑎𝑣𝑔 = 0.16 32 92.5±0.1 94.5±0.1 86.6±0.8 90.7±0.5 91.7±0.5 93.9±0.2 93.2±0.3 94.2±0.6 96.5±0.1
64 92.5±0.1 95.5±0.1 89.3±0.3 91.2±0.3 93.3±0.4 94.2±0.2 94.1±0.5 94.6±0.6 96.4±0.2

8 96.1±0.0 95.1±0.4 90.4±0.3 91.1±0.6 91.3±0.6 93.5±0.6 92.5±0.7 94.8±0.8 96.4±1.1
Amazon 16 96.6±0.0 96.7±0.3 90.8±0.5 92.8±0.8 92.8±0.9 96.3±0.9 94.8±0.5 96.9±1.0 97.3±0.8

𝛿𝑎𝑣𝑔 = 0.20 32 96.4±0.0 96.7±0.1 92.7±0.2 93.3±0.9 95.1±0.5 97.2±0.8 94.7±0.5 97.1±0.7 97.5±0.3
64 95.9±0.0 97.2±0.1 93.4±0.4 94.6±0.8 96.2±0.2 97.1±0.7 95.3±0.2 97.3±0.6 97.6±0.5

8 86.9±0.1 84.5±0.7 87.4±0.4 87.8±0.9 87.4±1.0 91.4±0.5 90.8±0.6 91.1±0.4 92.0±0.5
Cora 16 85.3±0.8 85.8±0.8 88.4±0.6 90.6±0.7 93.2±0.4 93.1±0.4 92.6±0.4 93.0±0.3 93.6±0.4

𝛿𝑎𝑣𝑔 = 0.35 32 82.3±0.4 86.5±0.6 88.8±0.4 92.0±0.6 93.6±0.3 93.3±0.3 92.8±0.5 93.1±0.3 94.0±0.4
64 81.6±0.4 86.7±0.5 90.0±0.1 92.8±0.4 93.5±0.3 93.5±0.2 93.0±0.7 93.3±0.3 94.4±0.2

8 81.1±0.1 83.3±0.5 86.1±1.1 86.8±0.7 87.0±0.8 94.6±0.2 93.5±0.5 94.4±0.3 95.4±0.2
Pubmed 16 81.2±0.1 85.1±0.5 87.1±0.4 90.9±0.6 91.6±0.3 96.1±0.2 94.9±0.3 96.2±0.3 96.6±0.1

𝛿𝑎𝑣𝑔 = 0.36 32 76.4±0.1 86.5±0.1 88.2±0.5 93.2±0.5 93.6±0.2 96.2±0.2 95.0±0.3 96.3±0.2 96.8±0.1
64 75.3±0.1 87.4±0.1 88.8±0.5 93.6±0.4 94.6±0.2 96.5±0.2 94.9±0.5 96.5±0.1 96.9±0.0

8 80.7±0.3 79.2±1.0 85.3±1.6 90.3±1.2 89.5±0.9 93.2±0.5 92.6±0.7 93.1±0.3 93.9±0.6
Citeseer 16 78.5±0.5 79.7±0.7 87.1±0.9 92.9±0.7 92.2±0.7 94.3±0.4 93.8±0.4 93.6±0.5 95.4±0.5

𝛿𝑎𝑣𝑔 = 0.46 32 73.1±0.4 79.8±0.6 87.3±0.4 94.3±0.6 93.4±0.4 94.7±0.3 93.5±0.5 94.2±0.5 95.8±0.3
64 72.3±0.3 79.6±0.6 88.1±0.4 95.4±0.5 94.4±0.3 94.8±0.3 93.8±0.5 94.3±0.2 96.4±0.2

[25], GAT [52]; (3) Hyperbolic GCNs i.e., HGCN [6], 𝜅GCN [2]
1
,

HAT [60].

5.1.3 Parameter setting. We perform a hyper-parameter search on

a validation set for all methods. The grid search is performed over

the following search space: Learning rate: [0.01, 0.008, 0.005, 0.001];

Dropout probability: [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]; 𝐿2 regulariza-

tion strength: [0, 1e-1, 5e-2, 1e-2, 5e-3, 1e-3, 5e-4, 1e-4]. The results

are reported over 10 random parameter initializations. For all the

methods, we set 𝑑 , i.e., the dimension of latent representation as 8,

16, 32, 64 in link prediction and node classification tasks for a more

comprehensive comparison. In case studies, we set the dimension

of latent representation as 64. Note that the experimental setting in

molecular property prediction task is same with [30]. We optimize

DeepWalk with SGD while optimize PoincaréEmb with Riemanni-

anSGD [4]. The GCNs are optimized via Adam [24]. Also, LGCN

leverages DropConnect [53] which is the generalization of Dropout

and can be used in the hyperbolic GCNs [6]. Moreover, although

LGCN and the learned node representations are hyperbolic, the

trainable parameters in LGCN live in the tangent spaces, which

can be optimized via Euclidean optimization [13], e.g., Adam [24].

Furthermore, LGCN uses early stopping based on validation set

performance with a patience of 100 epochs. The Hardware used in

our experiments is: Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz,

GeForce @ GTX 1080Ti.

1
We only consider the 𝜅GCN in the hyperbolic setting since we focus on hyperbolic

GCNs.

5.2 Link prediction
We compute the probability scores for edges by leveraging the

Fermi-Dirac decoder [6, 26, 35]. For the output node features u𝑑,𝛽
𝑖

and u𝑑,𝛽
𝑗

, the probability of existing the edge 𝑒𝑖 𝑗 between u𝑑,𝛽
𝑖

and

u𝑑,𝛽
𝑗

is given as: 𝑝 (u𝑑,𝛽
𝑖

, u𝑑,𝛽
𝑖

) = 1/(𝑒 (𝑑
2

L (u𝑑,𝛽
𝑖

,u𝑑,𝛽
𝑖

)−𝑟 )/𝑡 + 1), where
𝑟 and 𝑡 are hyper-parameters. We then minimize the cross-entropy

loss to train the LGCN model. Following [6], the edges are split into

85%, 5%, 10% randomly for training, validation and test sets for all

datasets, and the evaluation metric is AUC.

The results are shown in Table 4.We can see that LGCN performs

best in all cases, and its superiority is more significant for the

low dimension setting. Suggesting the graph operations of LGCN

provide powerful ability to embed graphs. Moreover, hyperbolic

GCNs perform better than Euclidean GCNs for datasets with lower

𝛿𝑎𝑣𝑔 , which further confirms the capability of hyperbolic spaces in

modeling tree-likeness graph data. Furthermore, compared with

network embedding methods, GCNs achieve better performance in

most cases, which indicates GCNs can benefit from both structure

and feature information in a graph.

5.3 Node classification
Here we evaluate the performance of LGCN on the node classifi-

cation task. We split nodes in Disease dataset into 30/10/60% for

training, validation and test sets [6]. For the other datasets, we

use only 20 nodes per class for training, 500 nodes for validation,
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Table 5: Accuracy (%) for node classification task. The best results are marked by bold numbers.

Dataset dimension deepwalk poincaréEmb GraphSage GCN GAT HGCN 𝜅GCN HAT LGCN

8 59.6±1.6 57.0±0.8 73.9±1.5 75.1±1.1 76.7±0.7 81.5±1.3 81.8±1.5 82.3±1.2 82.9±1.2
Disease 16 61.5±2.2 56.1±0.7 75.3±1.0 78.3±1.0 76.6±0.8 82.8±0.8 82.1±1.1 83.6±0.9 84.4±0.8

𝛿𝑎𝑣𝑔 = 0.00 32 62.0±0.3 58.7±0.7 76.1±1.7 81.0±0.9 79.3±0.7 84.0±0.8 82.8±0.9 84.9±0.9 86.8±0.8
64 61.8±0.5 60.1±0.8 78.5±1.0 82.7±0.9 80.4±0.7 84.3±0.8 83.0±1.0 85.1±0.8 87.1±0.8

8 44.3±0.6 38.9±1.1 46.8±1.4 50.5±0.5 47.8±0.7 50.5±1.1 49.1±0.9 50.7±1.0 51.6±1.1
USA 16 42.3±1.3 38.3±1.0 47.5±0.8 50.9±0.6 49.5±0.7 51.1±1.0 50.5±1.2 51.3±0.9 51.9±0.9

𝛿𝑎𝑣𝑔 = 0.16 32 39.0±1.0 39.0±0.8 48.0±0.7 50.6±0.5 49.1±0.6 51.2±0.9 50.9±1.0 51.5±0.8 52.4±0.9
64 42.7±0.8 39.2±0.8 48.2±1.1 51.1±0.6 49.6±0.6 52.4±0.8 51.8±0.8 52.5±0.7 52.8±0.8

8 66.7±1.0 65.3±1.1 71.3±1.6 70.9±1.1 70.0±0.9 71.7±1.3 70.3±1.2 71.0±1.0 72.0±1.3
Amazon 16 67.5±0.8 67.0±0.7 72.3±1.6 70.9±1.1 72.7±0.8 72.7±1.3 71.9±1.1 73.3±1.0 75.0±1.1

𝛿𝑎𝑣𝑔 = 0.20 32 70.0±0.5 68.1±0.3 73.4±1.2 71.5±0.8 72.5±0.7 75.3±1.0 72.9±0.6 74.9±0.8 75.5±0.9
64 70.3±0.7 67.3±0.4 74.1±1.2 73.0±0.6 72.9±0.8 75.5±0.6 73.5±0.4 75.4±0.7 75.8±0.6

8 64.5±1.2 57.5±0.6 74.5±1.3 80.3±0.8 80.4±0.8 80.0±0.7 81.0±0.5 82.8±0.7 82.6±0.8

Cora 16 65.2±1.6 64.4±0.3 77.3±0.8 81.9±0.6 81.7±0.7 81.3±0.6 80.8±0.6 83.1±0.6 83.3±0.7
𝛿𝑎𝑣𝑔 = 0.35 32 65.9±1.5 64.9±0.4 78.8±1.2 81.5±0.4 82.6±0.7 81.7±0.7 81.8±0.5 83.2±0.6 83.5±0.6

64 66.5±1.7 68.6±0.4 79.2±0.6 81.6±0.4 83.1±0.6 82.1±0.7 81.5±0.7 83.1±0.5 83.5±0.5

8 73.2±0.7 66.0±0.8 75.9±0.4 78.6±0.4 71.9±0.7 77.9±0.6 78.5±0.7 78.5±0.6 78.8±0.5
Pubmed 16 73.9±0.8 68.0±0.4 77.3±0.3 79.1±0.5 75.9±0.7 78.4±0.4 78.3±0.6 78.6±0.5 78.6±0.7

𝛿𝑎𝑣𝑔 = 0.36 32 72.4±1.0 68.4±0.5 77.7±0.3 78.7±0.5 78.2±0.6 78.6±0.6 78.8±0.6 78.8±0.6 78.9±0.6
64 73.5±1.0 69.9±0.6 78.0±0.4 79.1±0.5 78.7±0.4 79.3±0.5 79.0±0.5 79.0±0.6 79.6±0.6

8 47.8±1.6 38.6±0.4 65.8±1.6 68.9±0.7 69.5±0.8 70.9±0.6 70.3±0.6 71.2±0.7 71.8±0.7
Citeseer 16 46.2±1.5 40.4±0.5 67.8±1.1 70.2±0.6 71.6±0.7 71.2±0.5 70.7±0.5 71.9±0.6 71.9±0.7

𝛿𝑎𝑣𝑔 = 0.46 32 43.6±1.9 43.5±0.5 68.5±1.3 70.4±0.5 72.6±0.7 71.9±0.4 71.2±0.5 72.4±0.5 72.5±0.5

64 46.6±1.4 43.6±0.4 69.2±0.8 70.8±0.4 72.4±0.7 71.7±0.5 71.0±0.3 72.2±0.5 72.5±0.6

1000 nodes for test. The settings are same with [6, 25, 52, 57]. The

accuracy is used to evaluate the results.

Table 5 reports the performance. We can observe similar results

to Table 4. That is, LGCN preforms better than the baselines in

most cases. Also, hyperbolic GCNs outperform Euclidean GCNs for

datasets with lower 𝛿𝑎𝑣𝑔 , and GCNs perform better than network

embedding methods. Moreover, we notice that hyperbolic GCNs do

not have an obvious advantage compared with Euclidean GCNs on

Citeseer dataset, which has the biggest 𝛿𝑎𝑣𝑔 . We think no obvious

tree-likeness structure of Citeseer makes those hyperbolic GCNs

do not work well on this task. In spite of this, benefiting from the

well-defined Lorentzian graph operations, LGCN also achieves very

competitive results.

5.4 Analysis
5.4.1 Ablations study. Here we evaluate the effectiveness of some

components in LGCN, including self attention (𝑎𝑡𝑡 ) and trainable

curvature (𝛽). We remove these two components from LGCN and

obtain two variants LGCN\𝑎𝑡𝑡 and LGCN\𝛽 , respectively. To further
validate the performance of the proposed centroid-based Lorentzian

aggregation, we exchange the aggregation of HGCN and LGCN\𝑎𝑡𝑡 ,
denoted as HGCN𝑐 and LGCN\𝑎𝑡𝑡\𝑐 , respectively. To better analyze
the ability of modeling graph with underlying hyperbolic geometry,

we conduct the link prediction (LP) and node classification (NC)

tasks on three datasets with lower 𝛿𝑎𝑣𝑔 , i.e., Disease, USA, and

Amazon datasets. The results are shown in Table 6. Comparing

LGCN to its variants, we observe that LGCN always achieves best

performances, indicating the effectiveness of self attention and

trainable curvature. Moreover, HGCN𝑐 achieves better results than

HGCN, while LGCN\𝑎𝑡𝑡 performs better than LGCN\𝑎𝑡𝑡\𝑐 in most

cases, suggesting the effectiveness of the proposed neighborhood

aggregation method.

5.4.2 Extension to graph-level task: molecular property prediction.
Most existing hyperbolic GCNs focus on node-level tasks, e.g., node

classification [2, 6, 60] and link prediction [6] tasks. We also notice

that HGNN [30], as a hyperbolic GCN, achieves good results on

graph-level task, i.e., molecular property prediction. Here we pro-

vide a Lorentzian version of HGNN named HGNN𝐿 , which keeps

the model structure of HGNN and replaces its graph operations

with those operations defined in this paper, i.e., feature transfor-

mation, neighborhood aggregation, and non-linear activation. Fol-

lowing HGNN [30], we conduct molecular property prediction task

on ZINC dataset. The experiment is a regression task to predict

molecular properties: the water-octanal partition coefficient (logP),

qualitative estimate of drug-likeness (QED), and synthetic accessi-

bility score (SAS). The experimental setting is same with HGNN

for a fair comparison, and we reuse the metrics already reported in

HGNN for state-of-the-art techniques. HGNN implemented with

Poincaré ball, hyperboloid model is denoted as HGNN𝑃 , HGNN𝐻 ,

respectively. The results of mean absolute error (MAE) are shown

in Table 7. HGNN𝐿 achieves best performance among all the base-

lines. Also, HGNN𝐿 can further improve the performance of HGNN,

which verifies the effectiveness of the proposed graph operations.

Moreover, as HGNN𝐿 is obtained by simply replacing the graph

operation of HGNN𝐻 , the proposed Lorentzian operations provide

an alternative way for hyperbolic deep learning.
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Table 6: The variants of LGCN and HGCN.

Dataset Disease USA Amazon

Task LP NC LP NC LP NC

HGCN 92.7±0.4 84.3±0.8 94.2±0.2 52.4±0.8 97.1±0.7 75.5±0.6
HGCN𝑐 94.3±0.5 86.2±1.0 95.6±0.1 52.5±0.8 97.3±0.3 75.8±0.4
LGCN\𝛽 96.3±0.4 86.3±0.7 96.1±0.3 52.5±0.7 96.5±0.7 75.6±0.5
LGCN\𝑎𝑡𝑡 95.9±0.3 86.6±0.8 95.9±0.2 52.2±0.7 97.0±0.6 74.6±0.5
LGCN\𝑎𝑡𝑡\𝑐 92.6±0.6 83.2±0.6 94.6±0.4 52.2±0.9 96.6±0.9 74.3±0.6

LGCN 96.8±0.4 87.1±0.8 96.4±0.2 52.8±0.8 97.6±0.5 75.8±0.6

Table 7: MAE (scaled by 100) of predict-
ing molecular properties logP, QED and
SAS on ZINC dataset.

Property logP QED SAS

MPNN[14] 4.1±0.02 8.4±0.05 9.2±0.07

GGNN[29] 3.2±0.20 6.4±0.20 9.1±0.10

HGNN𝑃 3.1±0.01 6.0±0.04 8.6±0.02

HGNN𝐻 2.4±0.02 4.7±0.00 7.7±0.06

HGNN𝐿 2.2±0.03 3.3±0.05 5.8±0.05

Figure 2: Distortion of
different methods on
Disease.
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5.4.3 Distortion analysis. We have mentioned that some existing

hyperbolic GCNs could cause a distortion to the learned graph struc-

ture, since their graph operations do not rigorously follow the hy-

perbolic geometry. Thus, here we evaluate the distortions of GCNs

on the Disease dataset. Following [17], we define the average dis-

tortion to evaluate the ability of GCNs to preserve graph structures.

The average distortion is defined as:
1

𝑛2

∑
𝑖, 𝑗

( (𝑑 (u𝑖 ,u𝑗 )/𝑑𝑎𝑣𝑔
𝑑𝐺 (𝑖, 𝑗)/𝑑𝐺𝑎𝑣𝑔

)
2−1

)
2

,

where𝑑 (u𝑖 , u𝑗 ) is the intrinsic distance between the output features
of nodes 𝑖 and 𝑗 , and 𝑑𝐺 (𝑖, 𝑗) is their graph distance. Both of the

distances are divided by their average values, i.e., 𝑑𝑎𝑣𝑔 and 𝑑𝐺𝑎𝑣𝑔 , to

satisfy the scale invariance. The results of the link prediction are

shown in Fig. 2, and a lower average distortion indicates a better

preservation of the graph structure. We can find that LGCN has the

lowest average distortion among these GCNs, which is benefited

from the well-defined graph operations. Also, all the hyperbolic

GCNs have lower average distortion compared with Euclidean

GCNs. That is also reasonable, since hyperbolic spaces is more

suitable to embed tree-likeness graph than Euclidean spaces.

5.4.4 Attention analysis. In addition, we examine the learned at-

tention values in LGCN. Intuitively, important neighbors tend to

have large attention values. We take a node in the Disease dataset

for node classification task as an illustrative example. As shown in

Fig. 3, the nodes are marked by their indexes in the dataset, and

the node with a red outline is the center node. The color of a node

indicates its label, and the attention value for a node is visualized

by its edge width. We observe that the center node 3 pays more

attention to nodes with the same class, i.e., nodes 0, 3, 14, 15, 16, sug-

gesting that the proposed attention mechanism can automatically

distinguish the difference among neighbors and assign the higher

weights to the meaningful neighbors.

5.4.5 Efficiency comparison. We further analyze the efficiency of

some GCNs. To better analyze the aggregation in Theorem 4.2, we

provide a variant of LGCN named LGCN𝐹 , which minimizes Eq. (15)

w.r.t. the intrinsic distance, i.e., Eq. (7). Note that the aggregation of

LGCN𝐹 is a kind of Fréchet mean which dose not have closed-form

solutions, so we compute it via a state-of-the-art gradient descent

based method [31]. Here we report the link prediction performance

and training time per 100 epochs of GCNs on Disease dataset in

Fig. 4. One can see that GCN is the fastest. Most hyperbolic GCNs,

e.g., 𝜅GCN, HAT, LGCN, are on the same level with GAT. HGCN is

slower than above methods, and LGCN𝐹 is the slowest. Although

hyperbolic GCNs are slower than Euclidean GCNs, they have better

performance. Moreover, HGCN is significantly slower than LGCN,

since HGCN aggregates different nodes in different tangent spaces,

and this process cannot be computed parallelly. HAT addresses this

problem by aggregating all the nodes in the same tangent space.

Despite the running time of HAT and 𝜅GCN are on par with LGCN,

LGCN achieves better results. Furthermore, both LGCN and LGCN𝐹

aggregate nodes byminimizing an expectation of distance. However,

the aggregation in LGCN has a closed-form solution while LGCN𝐹

has not. Despite LGCN𝐹 has a little improvement with LGCN, it is

not cost-effective. To sum up, LGCN can learn more effective node

representations with acceptable efficiency.

5.4.6 Parameter sensitivity. We further test the impact of attention

matrix size of LGCN.We change the horizontal dimension of matrix

from 4 to 256. The results on the link prediction task are shown

in Fig. 5. We can see that with the growth of the matrix size, the

performance raises first and then starts to drop slowly. The results

indicate that the attention matrix needs a suitable size to learn the

attention coefficient. Also, LGCN has a stable perofmance when

the horizontal dimension ranges from 32 to 128.
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6 CONCLUSION
Existing hyperbolic GCNs cannot rigorously follow the hyperbolic

geometry, which might limit the ability of hyperbolic geometry.

To address this issue, we propose a novel Lorentzian graph neural

network, called LGCN, which designs rigorous hyperbolic graph

operations, e.g., feature transformation and non-linear activation.

An elegant neighborhood aggregation method is also leveraged in

LGCN, which conforms to themathematical meanings of hyperbolic

geometry. The extensive experiments demonstrate the superiority

of LGCN, compared with the state-of-the-art methods.
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A HYPERBOLIC GEOMETRY
Hyperbolic geometry is a non-Euclidean geometry with a constant

negative curvature. There are some equivalent hyperbolic models

to describe hyperbolic geometry, including the hyperboloid model,

the Poincaré ball model, and the Klein ball model, etc. Since we have

introduced the hyperboloid model in Section 3.1, here we introduce

the Poincaré ball model. More rigorous and in-depth introduction

of differential geometry and hyperbolic geometry can be found in

[20, 28, 40].

Poincaré ball. We consider a specific Poincaré ball model D𝑛,𝛼

[13], which is defined by an open 𝑑-dimensional ball of radius

1/
√
𝛼 (𝛼 > 0): D𝑛,𝛼 := {x ∈ R𝑛 : 𝛼 ∥x∥2 < 1}, equipped with the

Riemannian metric:𝑔Dx = (𝜆𝛼x )2𝑔R, where 𝜆𝛼x = 2/(1−𝛼 ∥x∥2),𝑔R =

I𝑑 . When x = 0 ∈ D𝑛,𝛼 , the exponential map exp
𝛼
0 : T0D𝑛,𝛼 →

D𝑛,𝛼 and the logarithmic map log
𝛼
0 : D𝑛,𝛼 → T0D𝑛,𝛼 are given for

v∈T0D𝑛,𝛼\{0} and y ∈ D𝑛,𝛼\{0}:

exp
𝛼
0 (v) = tanh(

√
𝛼 ∥v∥) v

√
𝛼 ∥v∥

, (23)

log
𝛼
0(y) = tanh

−1(
√
𝛼 ∥y∥) y

√
𝛼 ∥y∥

. (24)

The Poincaré ball model and the hyperboloid model are isomorphic,

and the diffeomorphism maps one space onto the other as shown

in following [6]:

𝑝H𝑛,𝛽→D𝑛,𝛼 (𝑥0, 𝑥1, · · · , 𝑥𝑛) =
√︁
𝛽 (𝑥1, · · · , 𝑥𝑛)√︁

𝛽 + 𝑥𝑜
, (25)

𝑝D𝑛,𝛼→H𝑛,𝛽 (𝑥1, · · · , 𝑥𝑛) =
(1/

√
𝛼 +

√
𝛼 ∥x∥2

2
, 2𝑥1, · · · , 2𝑥𝑛)

1 − 𝛼 ∥x∥2
.

(26)

B PROOFS OF RESULTS
B.1 Proof of Theorem 3.1
Proof. Let x𝑛,𝛽 ∈ H𝑛,𝛽 , v = (𝑣0, 𝑣1, · · · , 𝑣𝑛) ∈ T0H𝑛,𝛽 , and M be a

𝑚 × 𝑛 matrix, Lorentzian matrix-vector multiplication is shown as

following:

M⊗𝛽x𝑛,𝛽 : = M⊗𝛽

(x𝑛,𝛽 ) = exp
𝛽

0

(
M̂
(
log

𝛽

0 (x
𝑛,𝛽 )

) )
= y𝑚,𝛽 ,

M̂(v) =
(
0,M(𝑣1, · · · , 𝑣𝑛)

)
,

(27)

Let x𝑛,𝛼 ∈ D𝑛,𝛽 , Möbius matrix-vector multiplication has the for-

mulation as [13]:

M ⊗𝛼 x𝑛,𝛼 :

=(1/
√
𝛼) tanh

( ∥Mx𝑛,𝛼 ∥
∥x𝑛,𝛼 ∥ tanh

−1 (
√
𝛼 ∥x𝑛,𝛼 ∥)

) Mx𝑛,𝛼

∥Mx𝑛,𝛼 ∥ = y𝑚,𝛼 .

(28)

For 𝑝H𝑛,𝛽→D𝑛,𝛼 (x𝑛,𝛽 ) = x𝑛,𝛼 and a shared𝑚 × 𝑛 matrixM, we aim

to prove 𝑝H𝑛,𝛽→D𝑛,𝛼 (y𝑛,𝛽 ) = y𝑛,𝛼 .
For x𝑛,𝛽 = (𝑥 (𝛽)

0
, 𝑥

(𝛽)
1

, · · ·, 𝑥 (𝛽)𝑛 ) ∈ H𝑛,𝛽 , let x̂(𝛽) = (𝑥 (𝛽)
1

, · · ·, 𝑥 (𝛽)𝑛 ),
and the logarithmic map of x at 0𝑛,𝛽 = (

√︁
𝛽, 0, · · · , 0) ∈ H𝑛,𝛽 , i.e.,

is shown as following:

log
𝛽

0 (x
𝑛,𝛽 ) =

√︁
𝛽 cosh−1

(𝑥 (𝛽)
0√︁
𝛽

) (0, x̂(𝛽) )
∥x̂(𝛽) ∥

. (29)

Let 𝑞 =
√︁
𝛽 cosh−1 (𝑥𝛽

0
/
√︁
𝛽)/∥x̂(𝛽) ∥, log𝛽0 (x

𝑛,𝛽 ) = 𝑞(0, x̂(𝛽) ), so we
have:

M̂
(
log

𝛽

0 (x
𝑛,𝛽 )

)
= (0, 𝑞Mx̂(𝛽) ) = m. (30)

The Lorentzian matrix-vector multiplication is given as following:

M⊗𝛽x𝑛,𝛽=cosh(
∥m∥L√︁

𝛽
) · 0𝑛,𝛽 +

√︁
𝛽 sinh(

∥m∥L√︁
𝛽

) m
∥m∥L

=

(√︁
𝛽 cosh

( ∥m∥L√︁
𝛽

)
,

√︁
𝛽 sinh

( ∥m∥L√
𝛽

)
𝑞

∥m∥L
·Mx̂(𝛽)

)
=y𝑚,𝛽 .

(31)

Then we map y𝑚,𝛽
to the Poincaré ball via Eq. (25),

𝑝H𝑛,𝛽→D𝑛,𝛼 (y
𝑚,𝛽 ) =

sinh

( ∥m∥L√
𝛽

)
1 + cosh

( ∥m∥L√
𝛽

) · √︁
𝛽

∥Mx̂(𝛽) ∥
·Mx̂(𝛽)

= tanh

( ∥Mx̂(𝛽) ∥
2∥x̂(𝛽) ∥

· cosh−1
(√︄ 𝛽 + ∥x̂(𝛽) ∥2

𝛽

) )
·

√︁
𝛽

∥Mx̂(𝛽) ∥
·Mx̂(𝛽) .

(32)

Note that ∥m∥L=
√︁
⟨m,m⟩L=∥𝑞Mx̂(𝛽) ∥ and 𝑥

(𝛽)
0

=

√︃
𝛽 + ∥x̂(𝛽) ∥2 .

Moreover, the point x𝑛,𝛼 = (𝑥 (𝛼)
1

, · · · , 𝑥 (𝛼)𝑛 ) ∈ D𝑛,𝛼 can be mapped

into the hyperboloid model via Eq. (26) as following:

𝑝D𝑛,𝛼→H𝑛,𝛽 (x
𝑛,𝛼 ) =

(1/
√
𝛼 +

√
𝛼 ∥x𝑛,𝛼 ∥2

2
, 2𝑥

(𝛼)
1

, · · · , 2𝑥 (𝛼)𝑛 )
1 − 𝛼 ∥x𝑛,𝛼 ∥2

= (𝑥 (𝛽)
0

, 𝑥
(𝛽)
1

, · · · , 𝑥 (𝛽)𝑛 ) .
(33)

Thus, the squared norm of x̂(𝛽) is given as:

∥x̂(𝛽) ∥2 =
𝑛∑︁
𝑖=1

(𝑥 (𝛽)
𝑖

)2 =
(

2∥x𝑛,𝛼 ∥
1 − 𝛼 ∥x𝑛,𝛼 ∥2

)
2

. (34)

Moreover, the curvature of the Poincaré ball model D𝑛,𝛼 is −𝛼 ,
while the curvature of the hyperboloid model H𝑛,𝛽 is −𝛽 . The maps

between the two models in Eq. (25) and Eq. (26) ensure they have a

same curvature, i.e., −𝛼 = −1/𝛽 , 𝛼 = 1/𝛽 . Therefore, combining Eq.

(32) and Eq. (34), we have:

𝑝H𝑚,𝛽→D𝑚,𝛼 (y𝑚,𝛽 )

=
1

√
𝛼
tanh

(
∥Mx𝑛,𝛼 ∥
2∥x𝑛,𝛼 ∥ · cosh−1

(
1 + 𝛼 ∥x𝑛,𝛼 ∥2
1 − 𝛼 ∥x𝑛,𝛼 ∥2

))
· Mx𝑛,𝛼

∥Mx𝑛,𝛼 ∥

=
1

√
𝛼
tanh

(
∥Mx𝑛,𝛼 ∥
∥x𝑛,𝛼 ∥ ·tanh−1 (

√
𝛼 ∥x𝑛,𝛼 ∥)

)
· Mx𝑛,𝛼

∥Mx𝑛,𝛼 ∥ =y
𝑚,𝛼 .

(35)

Therefore, Lorentzian matrix-vector multiplication is equivalence

to Möbius matrix-vector multiplication. □
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B.2 Proof of Theorem 3.2
Proof. Combining Eq. (15) and Eq. (17), we have following equality:

arg min

c𝑑,𝛽 ∈H𝑑,𝛽

∑︁
𝑗 ∈𝑁 (𝑖)∪{𝑖 }

𝑤𝑖 𝑗𝑑
2

L (h𝑑,𝛽
𝑗

, c𝑑,𝛽 )

= arg max

c𝑑,𝛽 ∈H𝑑,𝛽

∑︁
𝑗 ∈𝑁 (𝑖)∪{𝑖 }

𝑤𝑖 𝑗 ⟨h𝑑,𝛽𝑗 , c𝑑,𝛽 ⟩L

= arg max

c𝑑,𝛽 ∈H𝑑,𝛽
⟨𝜇

∑︁
𝑗 ∈𝑁 (𝑖)∪{𝑖 }

𝑤𝑖 𝑗h
𝑑,𝛽

𝑗
, c𝑑,𝛽 ⟩L ,

(36)

where 𝜇 > 0 is a scaling factor to satisfy 𝜇
∑

𝑗 ∈𝑁 (𝑖)∪{𝑖 }𝑤𝑖 𝑗h
𝑑,𝛽

𝑗
∈

H𝑛,𝛽 . Also, we can infer from Eq. (3), ⟨𝜇∑𝑗 ∈𝑁 (𝑖)∪{𝑖 }𝑤𝑖 𝑗h
𝑑,𝛽

𝑗
,c𝑑,𝛽 ⟩L

≤ −𝛽 and ⟨𝜇∑𝑗 ∈𝑁 (𝑖)∪{𝑖}𝑤𝑖 𝑗h
𝑑,𝛽

𝑗
,c𝑑,𝛽 ⟩L=−𝛽 iff 𝜇

∑
𝑗 ∈𝑁 (𝑖)∪{𝑖}𝑤𝑖 𝑗h

𝑑,𝛽

𝑗
=

c𝑑,𝛽 , we need to find a 𝜇 to satisfy 𝜇
∑

𝑗 ∈𝑁 (𝑖)∪{𝑖 }𝑤𝑖 𝑗h
𝑑,𝛽

𝑗
= c𝑑,𝛽 .

Assuming that 𝜇0 > 0 satisfies 𝜇0
∑

𝑗 ∈𝑁 (𝑖)∪{𝑖 }𝑤𝑖 𝑗h
𝑑,𝛽

𝑗
= c𝑑,𝛽 , so

𝜇0
∑

𝑗 ∈𝑁 (𝑖)∪{𝑖 }𝑤𝑖 𝑗h
𝑑,𝛽

𝑗
∈ H𝑛,𝛽 . Thus the Lorentzian scalar product

of it and itself should equal to −𝛽 , and we have:

𝜇2
0
⟨

∑︁
𝑗 ∈𝑁 (𝑖)∪{𝑖 }

𝑤𝑖 𝑗h
𝑑,𝛽

𝑗
,

∑︁
𝑗 ∈𝑁 (𝑖)∪{𝑖 }

𝑤𝑖 𝑗h
𝑑,𝛽

𝑗
⟩L = −𝛽

|𝜇2
0
∥

∑︁
𝑗 ∈𝑁 (𝑖)∪{𝑖 }

𝑤𝑖 𝑗h
𝑑,𝛽

𝑗
∥2L | = | − 𝛽 |

𝜇2
0
|∥

∑︁
𝑗 ∈𝑁 (𝑖)∪{𝑖 }

𝑤𝑖 𝑗h
𝑑,𝛽

𝑗
∥2L | = 𝛽.

(37)

We have 𝜇2
0
=

𝛽

| ∥∑𝑗∈𝑁 (𝑖 )∪{𝑖}𝑤𝑖 𝑗h
𝑑,𝛽

𝑗
∥2L|

, and 𝜇0=

√
𝛽

| ∥∑𝑗∈𝑁 (𝑖 )∪{𝑖}𝑤𝑖 𝑗h
𝑑,𝛽

𝑗
∥L|

>

0. Therefore, we have result: c𝑑,𝛽 =
√︁
𝛽

∑
𝑗∈𝑁 (𝑖 )∪{𝑖} 𝑤𝑖 𝑗h

𝑑,𝛽

𝑗

| ∥∑𝑗∈𝑁 (𝑖 )∪{𝑖} 𝑤𝑖 𝑗h
𝑑,𝛽

𝑗
∥L |

.

Moreover, since for any 𝑗 , ⟨h𝑑,𝛽
𝑗

, h𝑑,𝛽
𝑗

⟩L = −𝛽 , it satisfies that

⟨∑𝑗 ∈𝑁 (𝑖)∪{𝑖 }𝑤𝑖 𝑗h
𝑑,𝛽

𝑗
,
∑

𝑗 ∈𝑁 (𝑖)∪{𝑖 }𝑤𝑖 𝑗h
𝑑,𝛽

𝑗
⟩L < 0, so it is easy to

check that ⟨
√︁
𝛽

∑
𝑗∈𝑁 (𝑖 )∪{𝑖}𝑤𝑖 𝑗h

𝑑,𝛽

𝑗

| ∥∑𝑗∈𝑁 (𝑖 )∪{𝑖}𝑤𝑖 𝑗h
𝑑,𝛽

𝑗
∥L |

,
√︁
𝛽

∑
𝑗∈𝑁 (𝑖 )∪{𝑖}𝑤𝑖 𝑗h

𝑑,𝛽

𝑗

| ∥∑𝑗∈𝑁 (𝑖 )∪{𝑖}𝑤𝑖 𝑗h
𝑑,𝛽

𝑗
∥L |

⟩L=

−𝛽 , and c𝑑,𝛽 ∈ H𝑛,𝛽 . □

B.3 Proof of Theorem 3.3
Proof. Here we prove the theorem in the case of leveraging Leak-

lyRelu activation function, as an example. Let x𝑛,𝛽 ∈ H𝑛,𝛽 , v =

(𝑣0, 𝑣1, · · · , 𝑣𝑛) ∈ T0H𝑛,𝛽 , 𝜎 (·) be the LeaklyRelu activation func-

tion, and Lorentzian non-linear activation is given as following:

𝜎⊗𝛽

(x𝑛,𝛽 ) = exp
𝛽

0

(
�̂�⊗𝛽 (

log
𝛽

0 (x
𝑛,𝛽 )

) )
= y𝑛,𝛽 , (38)

�̂�⊗𝛽

(v) =
(
0, 𝜎 (𝑣1), · · · , 𝜎 (𝑣𝑛)

)
, (39)

where 𝜎 (𝑣𝑖 ) = max(𝑘𝑣𝑖 , 𝑣𝑖 ) for 𝑘 ∈ (0, 1). Let x𝑛,𝛼 ∈ D𝑛,𝛽 , Möbius

non-linear activation has the formulation as [13]:

𝜎⊗𝛼

(x𝑛,𝛼 ) = exp
𝛼
0

(
𝜎
(
log

𝛼
0 (x

𝑛,𝛼 )
) )

= y𝑛,𝛼 . (40)

For 𝑝H𝑛,𝛽→D𝑛,𝛼 (x𝑛,𝛽 ) = x𝑛,𝛼 and the LeaklyRelu activation func-

tion 𝜎 (·), we aim to prove 𝑝H𝑛,𝛽→D𝑛,𝛼 (y𝑛,𝛽 ) = y𝑛,𝛼 .
For Möbius non-linear activation, we first map the features

x𝑛,𝛼 ∈ D𝑛,𝛼 into the tangent space T0D𝑛,𝛼 via logarithmic map

exp
𝛼
0 (·): log

𝛼
0 (x𝑛,𝛼 ) = tanh

−1 (
√
𝛼 ∥x𝑛,𝛼 ∥) x𝑛,𝛼√

𝛼 ∥x𝑛,𝛼 ∥ . Let 𝑙 = tanh
−1 (

√
𝛼 ∥x𝑛,𝛼 ∥)/(

√
𝛼 ∥x𝑛,𝛼 ∥), we have log

𝛼
0 (x𝑛,𝛼 ) = 𝑙x𝑛,𝛼 . Also, note

that the LeaklyRelu activation function satisfies: 𝜎 (log𝛼0 (x𝑛,𝛼 )) =
𝑙𝜎 (x𝑛,𝛼 ). Möbius pointwise non-linear activation in Eq. (40) is

equivalent to:

exp
𝛼
0
(
𝑙𝜎(x𝑛,𝛼)

)
=

1

√
𝛼
tanh

(
∥𝜎 (x𝑛,𝛼 )∥
∥x𝑛,𝛼∥ tanh

−1 (√𝛼 ∥x𝑛,𝛼∥)) · 𝜎 (x𝑛,𝛼 )
∥𝜎 (x𝑛,𝛼 )∥ .

(41)

Moreover, for Lorentzian pointwise non-linear activation, similar

to Eq. (29), we also map the feature x𝑛,𝛽 = (𝑥 (𝛽)
0

, 𝑥
(𝛽)
1

, · · · , 𝑥 (𝛽)𝑛 )
to the tangent space T0D𝑛,𝛽 via log

𝛽

0 :

log
𝛽

0 (x
𝑛,𝛽 ) =

√︁
𝛽 cosh−1

(𝑥 (𝛽)
0√︁
𝛽

) (0, x̂(𝛽) )
∥x̂(𝛽) ∥

= 𝑞(0, x̂(𝛽) ), (42)

where x̂(𝛽) = (𝑥 (𝛽)
1

, · · · , 𝑥 (𝛽)𝑛 ), and𝑞 =
√︁
𝛽 cosh−1 (𝑥𝛽

0
/
√︁
𝛽)/∥x̂(𝛽)∥.

Thus, the results of Eq. (39) for LeaklyRelu is given as: �̂�⊗𝛽(
log

𝛽

0(x
𝑛,𝛽)

)
= 𝑞

(
0, 𝜎 (x̂(𝛽) )

)
= m. Also the Lorentzian norm ofm also satisfies as:

∥m∥L = ∥𝑞𝜎 (x̂)∥ = 𝑞∥𝜎 (x̂)∥. The Lorentzian non-linear activation

is given as:

𝜎⊗𝛽

(x𝑛,𝛽 )=
(√︁
𝛽 cosh

( ∥m∥L√︁
𝛽

)
,

√︁
𝛽 sinh

( ∥m∥L√
𝛽

)
𝑞

∥m∥L
· 𝜎 (x̂(𝛽) )

)
. (43)

Furthermore, according to Eq. (33), we project the 𝜎⊗𝛽 (x𝑛,𝛽 ) = y𝑛,𝛽

into the Poincaré ball model as following: 𝑝H𝑛,𝛽→D𝑛,𝛼 (y𝑛,𝛽 ) =

sinh

( ∥m∥L√
𝛽

)
1+cosh

( ∥m∥L√
𝛽

) · √𝛽

∥m∥L ·𝑞𝜎(x̂
(𝛽))= 1√

𝛼
tanh

(
∥𝜎 (x𝑛,𝛼 ) ∥
∥x𝑛,𝛼 ∥ ·tanh−1(

√
𝛼 ∥x𝑛,𝛼∥)

)
·

𝜎 (x𝑛,𝛼 )
∥𝜎 (x𝑛,𝛼 ) ∥ = y𝑛,𝛼 .
Therefore, Lorentzian pointwise non-linear activation is equiva-

lence to Möbius pointwise non-linear activation. □

C EXPERIMENTAL DETAILS
C.1 𝛿-hyperbolicity
Here we introduce the hyperbolicity measurements originally pro-

posed by Gromov [16]. Considering a quadruple of distinct nodes

𝑣1, 𝑣2, 𝑣3, 𝑣4 in a graph𝐺 , and let 𝜋 = (𝜋1, 𝜋2, 𝜋3, 𝜋4) be a rearrange-
ment of 1, 2, 3, 4, which satisfies: 𝑆𝑣1,𝑣2,𝑣3,𝑣4=𝑑

𝐺(𝑣𝜋1
,𝑣𝜋2

) +𝑑𝐺(𝑣𝜋3
, 𝑣𝜋4

) ≤
𝑀𝑣1,𝑣2,𝑣3,𝑣4 =𝑑

𝐺(𝑣𝜋1
, 𝑣𝜋3

) +𝑑𝐺 (𝑣𝜋2
, 𝑣𝜋4

) ≤ 𝐿𝑣1,𝑣2,𝑣3,𝑣4 =𝑑
𝐺(𝑣𝜋1

, 𝑣𝜋4
) +

𝑑𝐺 (𝑣𝜋2
, 𝑣𝜋3

), where 𝑑𝐺 (·, ·) denotes the graph distance, i.e., the

shortest path length, and let 𝛿+𝑣1,𝑣2,𝑣3,𝑣4= (𝐿𝑣1,𝑣2,𝑣3,𝑣4−𝑀𝑣1,𝑣2,𝑣3,𝑣4 )/2.
The worst case hyperbolicity is to find four nodes in graph 𝐺 to

maximize 𝛿+𝑣1,𝑣2,𝑣3,𝑣4 , i.e., 𝛿𝑤𝑜𝑟𝑠𝑡 (𝐺) = max𝑣1,𝑣2,𝑣3,𝑣4 𝛿
+
𝑣1,𝑣2,𝑣3,𝑣4

, and

the average hyperbolicity is to average all combinations of four

nodes as: 𝛿𝑎𝑣𝑔 (𝐺) = 1

( |𝑉 |
4
)
∑

𝑣1,𝑣2,𝑣3,𝑣4 𝛿
+
𝑣1,𝑣2,𝑣3,𝑣4

, where |𝑉 | indicates
the number of nodes in the graph. Note that 𝛿𝑤𝑜𝑟𝑠𝑡 , used in [6], is a

worst case measurement, which focuses on a local quadruple nodes,

and does not reflect the hyperbolicity of the whole graph [49]. More-

over, both time complexity of 𝛿𝑤𝑜𝑟𝑠𝑡 and 𝛿𝑎𝑣𝑔 are 𝑂 ( |𝑉 |4). Since
𝛿𝑎𝑣𝑔 is robust to adding/removing an edge from the graph, it can

be approximated via sampling, while 𝛿𝑤𝑜𝑟𝑠𝑡 cannot. Therefore we

leverage 𝛿𝑎𝑣𝑔 as the measurement.
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