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Abstract. Node classification has been substantially improved with the
advent of Heterogeneous Graph Neural Networks (HGNNs). However,
collecting numerous labeled data is expensive and time-consuming in
many applications. Domain Adaptation (DA) tackles this problem by
transferring knowledge from a label-rich domain to a label-scarce one.
However the heterogeneity and rich semantic information bring great
challenges for adapting HGNN for DA. In this paper, we propose a novel
semantic-specific hierarchical alignment network for heterogeneous graph
adaptation, called HGA. HGA designs a sharing-parameters HGNN ag-
gregating path-based neighbors and hierarchical domain alignment strate-
gies with the MMD and L1 normalization term. Extensive experiments
on four datasets demonstrate that the proposed model can achieve re-
markable results on node classification.

Keywords: Heterogeneous graph · Domain adaptation · Graph neural
network.

1 Introduction

Graph Neural Networks (GNNs) have attracted much attention as it can be
applied to many applications where the data can be represented as graphs [10,
22]. Heterogeneous Graphs (HGs), where nodes and edges can be categorized into
multiple types, has also been proven to be effective to model many real-world
applications, such as social networks and recommender systems [17, 1]. In order
to learn representations of HG, there is a surge of Heterogeneous Graph Neural
Networks (HGNNs) in the last few years, which employ graph neural network
for heterogeneous graph to capture features from various types of nodes and
relations. Different from traditional GNNs aggregating adjacent neighbors on
homogeneous graph, HGNNs usually aggregates heterogeneous neighbors along
meta-paths with a two-level attention mechanism [25, 2]. For example, HAN [25]
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designs node-level and semantic-level attention on meta-path based neighbors.
MAGNN [2] employs the intra-metapath aggregation to incorporate intermediate
semantic nodes and the inter-metapath aggregation to combine messages from
multiple metapaths.

Recent advances in HGNNs have achieved remarkable results on node clas-
sification task which usually requires large amounts of labeled data to train a
good network. However, In the real HGs, it is often expensive and laborsome to
collect enough labeled data. A potential solution is to transfer knowledge from
a related HG with rich labeled data (called source graph) to another HG with
the shortage of labeled data (called target graph). Existing HGNNs are mostly
developed for a single graph which has similar distribution in training and test
data. However, different graphs generally have varied data distributions in real
applications, which is usually called domain shift phenomenon [13]. Domain shift
will undermine the generalization ability of learning models. Thus, those single
graph based HGNNs which without addressing domain shift would fail to learn
transferable representations.

Domain Adaptation (DA) [30] has shown promising advances for learning a
discriminative model in the presence of the shift between the training and test
data distributions. Given a target domain short of labels, DA aims to leverage
the abundant labeled data from a source domain to help target domain learning,
which has already attracted a lot of interests from the fields of Computer Vision
[23, 13] and Natural Language Processing [14, 9]. The newest deep domain adap-
tation algorithms learn domain-invariant feature representations to mitigate do-
main shift with the Maximum Mean Discrepancy (MMD) metric [5, 12] or Gen-
erative Adversarial Net (GAN) [4, 21]. In recent years, there have been several
attempts to apply domain adaptation to graph structure data. Some methods
employ stacked autoencoders and MMD to learn network-invariant node repre-
sentations [16, 15], while some methods apply graph convolutional network and
adversarial learning to learn transferable embeddings [29, 26]. However, these
techniques primarily focus on domain adaptation across homogeneous graphs,
which cannot be directly applicable to heterogeneous graph. More recently, a
heterogeneous graph domain adaptation method has been proposed to handle
heterogeneity with multi-channel GCNs and two-level selection mechanisms [27].
But this method is not designed based on HGNN framework, which reduces its
versatility. In addition, its performance improvement could be limited, because
of lacking semantic-specific domain alignment mechanism to align the rich se-
mantics of heterogeneous graphs separately.

Motivated by these observations, we make the first attempt to design a
HGNN for DA, which is not a trivial task, due to the following two challenges:
(1) How to adopt existing HGNNs to fully learn the knowledge of source graph
and migrate to the target graph for the category-discriminative representations.
We know that existing HGNNs are designed for single graph, we need to de-
sign an effective HGNN for knowledge transfer when adopting it for multiple
graphs, (2) How to diminish the distribution discrepancy between source and
target graphs to learn domain-invariant representations. Because of the domain



Heterogeneous Graph Adaptation 3

shift among different semantics in source and target graphs, we need to design
diverse domain alignment strategies to align distribution in source and target
graphs intra- and inter-semantics.

In this paper, we propose a semantic-specific hierarchical alignment network
for Heterogeneous Graph Adaptation (called HGA). The basic framework of
HGA is a sharing-parameters HGNN which use hierarchical attentions to aggre-
gate neighbor information via different meta-paths, to transfer knowledge from
source graph to target graph. To be specific, HGA aggregates path-based neigh-
bors with semantic-specific feature extractor and then classify and fuse these
embeddings of different semantics with semantic-specific classifiers. In order to
eliminate the distribution shift, a MMD normalization term is designed to align
the feature distribution of nodes in source and target graph of every semantic
path, and a L1 normalization term is designed to align the class scores of nodes
in target graph.

The contributions of this paper are summarized as follows:

– We study an important but seldom exploited problem of adopting DA to
HGNN. The solution to this problem is crucial for label-absent HG repre-
sentation.

– We design a novel heterogeneous graph adaptation method, called HGA,
which employs a sharing-parameters HGNN with the MMD and L1 normal-
ization terms for domain-invariant and category-discriminative node repre-
sentations.

– Experiments on eight transfer learning tasks show that the proposed HGA
achieves significant performance improvements, compared to other state-of-
the-art baselines.

2 Related Work

In this section, we briefly overview methods that are related to heterogeneous
graph neural network and graph domain adaptation.

2.1 Heterogeneous Graph Neural Network

HGNN is designed to use GNN on heterogeneous graph, it can be divided into
unsupervised and semi-supervised settings [24]. HetGNN [28] is the representa-
tive work of unsupervised HGNNs. It uses type specific RNNs to encode features
for each type of neighbor vertices, followed by another RNN to aggregate the en-
coded neighbor representations of different types. semi-supervised HGNNs prefer
to use attention mechanism to capture the most relevant structural and attribute
information. There are a series of attention-based HGNNs was proposed [2, 25,
7]. HAN [25] uses a hierarchical attention mechanism to capture both node and
semantic importance. MAGNN [2] extends HAN by considering both the meta-
path based neighborhood and the nodes along the meta-path. HGT [7] uses each
edge’s meta relation to parameterize the Transformer-like self-attention archi-
tecture.
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These HGNNs are designed for a single graph, and thus they can not be
directly applied for knowledge transfer among multiple graphs.

2.2 Graph Domain Adaptation

There have been several attempts in the literature to apply domain adaptation
to graph structure data. CDNE [16] incorporate MMD-based domain adapta-
tion technique into deep network embedding to learn label-discriminative and
network-invariant representations. ACDNE [15] integrate deep network embed-
ding with the emerging adversarial domain adaptation technique to address
cross-network node classification. DANE [29] applies graph convolutional net-
work with constraints of adversarial learning regularization to learn transferable
embeddings. UDA-GCN [26] used a dual graph convolutional networks to exploit
both local and global relations of the graphs. However, these methods only con-
sider knowledge transfer among homogeneous graphs. Recently, a heterogeneous
graph domain adaptation method is proposed [27], which utilizes multi-channel
GCNs to project nodes into multiple spaces, and proposes two-level selection
mechanisms to choose the combination of channels and fuse the selected chan-
nels. Unfortunately, this method has limited performance improvement, due to
lack semantic-specific domain alignment strategies.

3 Preliminaries

Definition 1. Heterogeneous Graph [17]. A heterogeneous graph, denoted as
G = (V, E), consists of an object set V and a link set E. Each node v ∈ V and
each link e ∈ E are associated with their node type mapping function φ : V → A
and their link type mapping function ψ : E → R. A and R denote the sets of
predefined object types and link types, where |A|+ |R| > 2.

In heterogeneous graph, two objects can be connected via different semantic
paths, which are called meta-paths.

Definition 2. Meta-path [19]. A meta-path Φ is defined as a path in the form

of A1
R1−→ A2

R2−→ · · · Rl−→ Al+1 (simplified to A1A2 · · ·Al+1), which describes a
composite relation R = R1 ◦R2 ◦ · · · ◦Rl between objects A1 and Al+1, where ◦
denotes the composition operator on relations.

Definition 3. Domain Adaptation (DA) [30]. Given a labeled source do-
main DS and a unlabeled target domain DT , assume that their feature spaces
and their class spaces are the same, i.e. XS = XT , YS = YT . The goal of domain
adaptation is to use labeled data DS to learn a classifier f : xT 7→ yT to predict
the label yT ∈ YT of the target domain DT .

Definition 4. Heterogeneous Graph Domain Adaptation. Given a source
heterogeneous graph GS = (VS , ES ,XS ,YS), and a target heterogeneous graph
GT = (VT , ET ,XT ), where AS ∩ AT 6= � and RS ∩ RT 6= �. X represents the
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features of V, Y indicates the labels of V. The goal of heterogeneous graph domain
adaptation is to build a classifier f to predict the labels on VT through reducing
the domain shifts in different graphs and utilizing the structural information on
both graphs, as well as YS.

Figure 1(a) demonstrates HGs on bibliographic data, where two authors can
be connected via multiple meta-paths, e.g., Author-Paper-Author (APA) and
Author-Paper-Conference-Paper-Author (APCPA). The meta-path APA depicts
the co-author relation, whereas the APCPA depicts the co-conference relation. A
task on heterogeneous graph domain adaptation is to predict the label of nodes
in the target graph, with the help of the labeled source graph.

4 The Proposed Model

a2

a3

a1

p1

p2

c1

c2

Author Paper Conf.

Source HG

a2

a1
p1

p2

p3

c1

c2

Target HG
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(b) Semantic-specific Feature Extractor (c) Semantic-specific Classifier(a) HG

Fig. 1. An overview of the proposed hierarchical alignment network for Heterogeneous
Graph domain Adaptation (HGA). HGA receives source graph instances with anno-
tated ground truth and adapts to classifying the target samples. There are semantic-
specific feature extractor and classifier for each meta-path.

In this paper, we propose a novel semantic-specific hierarchical alignment
network for Heterogeneous Graph domain Adaptation (called HGA), whose ba-
sic idea is to adopt DA to HGNNs. As we know, existing HGNNs are designed
for learning category-discriminative embeddings for node classification in single
graph. That is, the learned embeddings can distinguish the category of nodes in
a graph. Most HGNNs (e.g., HAN and MAGNN) employ node-level (also called
intra-metapath) and semantic-level (also called inter-metapath) attention mech-
anism to aggregate node embeddings along different meta-paths. Unfortunately,
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these HGNNs cannot be directly applied to transfer knowledge among multiple
graphs, because of domain shift.

In order to solve this obstacle, the proposed HGA adopts DA to HGNN
with the goal of learning domain-invariant representations, as well as category-
discriminative representations. HGA designs a shared parameters HGNN for
source graph and target graph to aggregate path-based neighbors with semantic-
specific feature extractor and then classify and fuse these embeddings of different
meta-paths with semantic-specific classifiers. Furthermore, two normalized terms
in HGA (i.e., mmd and l1 terms) are proposed to hierarchically align the domain
distribution of nodes intra- and inter-metapaths for domain-invariant represen-
tations. Concretely, the mmd term aligns the feature distribution of nodes in
source and target graph of every semantic path, while the l1 term aligns the
class scores of nodes in target graph. The overall architecture of HGA is shown
in Figure 1.

4.1 Semantic-specific GNN for DA

HGA adopts DA to a shared parameters HGNN for source graph and target
graph, so the source graph can share the knowledge stored in the HGNN with
target graph. Similar to typical HGNN architectures (e.g., HAN and MAGNN),
HGA learns embeddings of nodes in source and target graphs through aggre-
gating neighbors along a meta-path with a node-level attention in the semantic-
specific feature extractor. However, different from existing HGNNs, the semantic-
specific classifier in HGA first classifies these learned embeddings with linear
classifiers to get class scores, and then fuse these scores with a semantic-level
attention for node classification in source and target graphs. The classify-fuse
mechanism in HGA has two benefits: (1) It makes full use of label information in
source graph through constructing different node classification tasks for differ-
ent meta-paths, which is helpful to learn category-discriminative representations.
(2) It is convenient to align the class scores of nodes in target graph (i.e., the l1
term).

Semantic-specific Feature Extractor Given a meta-path Φ, similar to typi-
cal HGNN architectures, the embedding of node i can aggregated from its meta-
path based neighbors NΦ

i = {i}∪{j|j connects with i via the meta-path Φ} like
HAN[25]:

zΦi = attΦnode
(
hj , j ∈ NΦ

i

)
, (1)

where zΦi denotes the learned embedding of node i based on meta-path Φ, while
attΦnode is the feature extractor of meta-path Φ which is a general component
to aggregate neighbors. For example, attΦnode can be the node-level attention
in HAN which simply aggregates meta-path based neighbors, as well as the
intra-metapath aggregation in MAGNN which also considers the nodes along
the meta-path instances.
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Semantic-specific Classifier Given an embedding zΦi of node i based on meta-
path Φ, the class scores pΦi of node i in meta-path Φ can be obtained by a classifier
clfΦ, such as linear classifier or softmax classifier:

pΦi = clfΦ
(
zΦi
)
. (2)

As we know, semantic-specific embedding of nodes under a meta-path only reflect
node characteristics from one aspect, while nodes contain multiple aspects of
semantic information under different meta-paths. To learn a more comprehensive
node embeddings, we need to fuse multiple semantics which can be revealed by
meta-paths. To address the challenge of meta-path selection and semantic fusion
in a heterogeneous graph, we adopt a semantic attention to automatically learn
the importance of different meta-paths and fuse them for the specific task.

Given a set of meta-paths {Φ0, Φ1, · · · , ΦN}, after feeding the feature of node
i into semantic-specific feature extractors and semantic-specific classifiers, it has

N semantic-specific node embeddings
{

pΦ0
i ,pΦ1

i , · · · ,pΦNi
}

. To effectively ag-

gregate different semantic embeddings, we use a semantic fusion mechanism:

pi = attsem

(
p
Φj
i

)
=

N∑
j=1

βj · p
Φj
i , (3)

where

βj =
exp

(
1
|V|
∑
i∈V qT · tanh

(
M · pΦi + b

))
∑N
i=1 exp

(
1
|V|
∑
i∈V qT · tanh

(
M · pΦi + b

)) (4)

can be interpreted as the contribution of meta-path Φj for the specific task.
Respectively, q is the semantic attention vector; M and b denote the weight
matrix and bias vector; pi denotes the final embedding of node i, and attsem
denotes the semantic aggregator which aggregates embeddings of different meta-
paths. Then we can apply the final embeddings to specific tasks and design
different loss functions.

In order to obtain category-discriminative representations and facilitate knowl-
edge transfer between graphs, we optimize three different loss functions as follows
to reduce the domain discrepancy and enable efficient domain adaptation, and
thus our model can differentiate class labels in the source graph and target graph,
respectively.

– Semantic-specific source classifier minimizes the cross-entropy loss for the
source graph in a mate-path Φ:

LΦ,Scls
(
PΦS ,YS

)
= − 1

NS

NS∑
i=1

ySi log
(
ŷSi
)
, (5)

– Source classifier minimizes the cross-entropy loss for the source graph after
semantic fusion:

LScls (PS ,YS) = − 1

NS

NS∑
i=1

ySi log
(
ŷSi
)
, (6)
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– Target classifier minimizes the entropy loss for target graph information
absorption. Here we employ the predicted labels of target nodes obtained by
the shared classifiers:

LTcls (PT ) = − 1

NT

NT∑
i=1

ŷTi log
(
ŷTi
)
, (7)

where ySi denotes the label of the i-th node in the source graph, ŷSi is the
classification prediction for the i-th node in source graph, ŷTi is the classification
prediction for the i-th node in target graph, NS is the node number of source
graph and NT is the node number of target graph.

The total classification loss of HGA can be represented by Eq.8, which can
learn category-discriminative embeddings for source and target graph.

LC (GS ,GT ) = LΦ,Scls
(
PΦS ,YS

)
+ LScls (PS ,YS) + LTcls (PT ) . (8)

4.2 Hierarchical Domain Alignment

Although the target graph can share knowledge from source graph with the
shared parameters HGNN, the above model cannot solve the domain shift prob-
lem in domain adaptation. In order to learn domain-invariant representations,
we furtherly propose semantic-specific hierarchical alignment mechanism, which
includes intra-semantic feature alignment and inter-semantic label alignment.
The intra-semantic feature alignment aims to map each pair of semantic between
source and target graph into multiple different feature spaces and align semantic-
specific distributions to learn multiple semantic-invariant representations. Since
the target samples near semantic-specific decision boundary predicted by dif-
ferent classifiers might get different labels, the inter-semantic label alignment is
designed to align the classifiers’ output for the target nodes.

Intra-semantic Feature Alignment To learn domain-invariant representa-
tions, we need to match the distributions of source graph and target graph. In
domain adaptation, the MMD [6] is a widely adopted nonparametric metric. We
use the following term as the estimate of the discrepancy between source graph
and target graph:

Lmmd (GS ,GT ) =

∥∥∥∥ 1

NS

∑
φ
(
zΦS
)
− 1

NT

∑
φ
(
zΦT
)∥∥∥∥2
H
, (9)

where φ (·) denotes some feature projection function to map the original samples
to reproducing kernel hilbert space. Through minimizing the Eq.9, the specific-
semantic feature extractor could align the domain distributions between source
domain and target domain under meta-path Φ.
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Inter-semantic Label Alignment The classifiers are trained based on dif-
ferent meta-paths, hence they might have a disagreement on the prediction for
target samples. Intuitively, the same target node predicted by different classifiers
should get the same prediction. Hence, we need to minimize the classification
discrepancy of nodes in target graph among all classifiers. Here we define the
discrepancy loss as the differences of classification probability of nodes under
different meta-paths with l1 normalization.

Ll1 (GT ) =
2

N × (N − 1)

N−1∑
j=1

N∑
i=j+1

E
[
|pΦiT − p

Φj
T |
]
, (10)

where N is the number of meta-path. By minimizing the Eq.10, the probabilistic
outputs of all classifiers tend to be similar, which enforces the domain alignment
under different semantic paths.

4.3 Optimization Objective

For HGA, a label prediction function f is trained by minimizing the overall
objective as shown in Eq.11:

L (GS ,GT ) = LC (GS ,GT ) + λ (Lmmd (GS ,GT ) + Ll1 (GT )) , (11)

where λ is the balance parameters. Lmmd and Ll1 represent the intra-semantic
feature alignment loss and the inter-semantic label alignment loss, respectively.

4.4 Discussion of the Proposed Model

Here we give the discussion of the proposed HGA as follows:

– From the optimization objective function Eq.11, we can find that HGA pro-
vides a general framework to adopt DA to HGNN. If we do not consider
target graph GT , HGA degrades into tradition HGNNs for single graph. If
we do not consider multiple meta-paths, HGA can be used for homogeneous
graph domain adaptation. If ignoring the mmd and l1 normalization terms,
HGA becomes a simple DA-version of HGNN without considering domain
shift. What’s more, the Lmmd could be replaced by other adaptation meth-
ods, such as adversarial loss [3], coral loss [18]. And the Ll1 could be replaced
by other loss, such as l2 regularization.

– Compared to traditional HGNNs, the additional complexity of HGA mainly
lies on the mmd and l1 normalization term. The complexity of mmd term
is linear to the size of nodes in graphs, while the complexity of l1 term is
the square of the number of meta-paths, which is very small. And thus HGA
has the same complexity with traditional HGNNs. Experiments also validate
this point.
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– The proposed HGA is highly efficient and can be easily parallelized. In the
shared parameters HGNNs, the complexity is linear to the number of nodes
and meta-path based node pairs. HGA can be easily parallelized, because
attΦnode and attsem can be parallelized across node pairs and meta-paths,
respectively. The overall complexity is linear to the number of nodes and
meta-path based node pairs.

5 Experiments

5.1 Datasets

We evaluate all the models on three academic attributed networks constructed
from AMiner[20], DBLP[8] and ACM[11], and the detailed description is shown
in Table 1. First, we adopt the constructed datasets from the work [27], i.e.,
ACM A vs. ACM B, DBLP A vs. DBLP B, AMiner A vs. AMiner B. For each
pair of graphs, e.g., ACM A vs. ACM B, the density of meta-path edges is quite
different between each other, which means they have domain discrepancy. (More
statistics can be found in [27]).

Furthermore, we construct another pair of much larger graphs, i.e., ACM
vs. DBLP. For ACM, we collected the papers published in SIGMOD, KDD,
COLT and WWW, and divided them into four classes (Database, data mining,
machine learning, information retrieval). The attributes of each paper in ACM
are extracted from the paper title and abstract. For DBLP, we collected the
papers published in ICDE, ICDM, PAKDD, PKDD, AAAI and SIGIR, and also
divided them into the same classes. The attributes of each paper in DBLP are
extracted from the paper title. Note that, DBLP has no overlapping nodes with
ACM, and it is sparser than ACM. Finally, we have four pairs of datasets.

Dataset # Nodes
# Meta-path

Dataset # Nodes
# Meta-path

Edges Edges

ACM A 1,500
4,960

ACM B 1,500
759

6,691 3,996
26,748 75,180

DBLP A 1,496
2,602

DBLP B 1,496
3,460

673,730 744,994
977,348 1,068,250

AMiner A 1,500
4,360

AMiner B 1,500
462

554 3,740
89,274 67,116

ACM 4,177
34,638

DBLP 4,154
38,966

15,115,590 1,496,938

Table 1. Statistics of the experimental datasets.
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5.2 Baselines and Implementation Details

Baselines In order to make a fair comparison and demonstrate the effectiveness
of our proposed model, we compare our approach with both state-of-the-art
single-domain methods as well as some domain adaptation methods on graphs.

State-of-the-art single-domain methods:

– GCN [10]: a typical deep convolutional network designed for homogeneous
graphs.

– HAN [25]: a heterogeneous graph embedding method uses meta-paths as
edges to augment the graph, and maintains different weight matrices for each
meta-path-defined edge. And uses semantic-level attention to differentiate
and aggregate information from different meta-paths.

– MAGNN [2]: a heterogeneous graph embedding method uses intra-metapath
aggregation to sample some meta-path instances surrounding the target node
and use an attention layer to learn the importance of different instances. And
uses inter-metapath aggregation to learn the importance of different meta-
paths.

Domain adaptation methods on graphs:

– UDAGCN [26] : a homogeneous graph domain adaptation method uses a
dual graph convolutional networks to exploit both local and global relations
of the graphs. And uses a domain adversarial loss for domain discrimination.

– MuSDAC [27]: a heterogeneous graph domain adaptation method uses
multi-channel shared weight GCNs and a Two-level Selection strategy to
aggregate embedding spaces to ensure both domain similarity and distin-
guishability.

– HAN+MMD: The feature generator is a shared parameters HAN archi-
tecture [25] for source and target graph. And a MMD[5, 12] regularization
term is added on the final embedding.

– MAGNN+MMD: The feature generator is a shared parameters MAGNN
architecture [2] for source and target graph. And a MMD[5, 12] regularization
term is added on the final embedding.

– HGA-HAN: The attΦnode and attsem in HGA framework is using the node-
level attention and semantic-level attention in HAN [25].

– HGA-MAGNN: The attΦnode and attsem in HGA framework is using the
Intra-metapath aggregation and Inter-metapath aggregation in MAGNN [2].

To further validate the effectiveness of mmd loss and l1 loss, we also evaluate
several variants of HGA: (1) HGA¬l1 , only considers mmd loss; (2) HGA¬mmd,
only considers l1 loss; (3) HGA¬mmd∧¬l1 , only has the shared weight architecture
of HGNN.

Implementation Details All deep learning algorithms are implemented in
Pytorch and trained with Adam optimizer. In the experiment we employ linear
classifier. The learning rate is using the following formula: ηp = η0

(1+αp)β
, where
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p is the training progress linearly changing from 0 to 1, η0 = 0.01, α = 10 and
β = 0.75, which is optimized to promote convergence and low error on the source
domain. To suppress noisy activations at the early stages of training, instead of
fixing the adaptation factor λ, we gradually change it from 0 to 1 by a progressive
schedule: λp = 2

exp(−θp) − 1, and θ = 10 is fixed throughout the experiments [3].

This progressive strategy significantly stabilizes parameter sensitivity and eases
model selection for HGA. As for single-domain network methods, we take the
data from source graph as training set and the one from target graph as test set.
As for domain adaptation method which acts on homogeneous graph, we ignore
multiple semantics in HGs.

5.3 Results

We compare HGA with the baselines on four pairs of datasets and the results
are shown in Table 2. From these results, we have the following insightful obser-
vations:

Source ACM DBLP ACM B ACM A AMiner B AMiner A DBLP B DBLP A
AVG

Target DBLP ACM ACM A ACM B AMiner A AMiner B DBLP A DBLP B

GCN 0.472 0.517 0.580 0.698 0.755 0.481 0.357 0.459 0.540
HAN 0.632 0.694 0.687 0.686 0.676 0.698 0.768 0.812 0.707
MAGNN 0.678 0.702 0.713 0.693 0.703 0.717 0.772 0.817 0.724

UDAGCN 0.673 0.696 0.654 0.687 0.792 0.712 0.693 0.723 0.704
MuSDAC 0.704 0.764 0.788 0.730 0.810 0.761 0.795 0.819 0.771
HAN+MMD 0.724 0.712 0.727 0.706 0.832 0.745 0.774 0.817 0.755
MAGNN+MMD 0.735 0.728 0.739 0.721 0.843 0.749 0.781 0.820 0.765

HGA-HAN 0.785 0.759 0.791 0.757 0.929 0.83 0.828 0.835 0.814
HGA-MAGNN 0.793 0.771 0.798 0.765 0.937 0.838 0.833 0.840 0.822

Table 2. Performance comparison on classification accuracy.

– Because MAGNN not only considers the meta-path based neighborhood, but
also consider the nodes along the meta-path. So the effect of HGA-MAGNN
is better than that of HGA-HAN.

– HGA-MAGNN (or HGA-HAN) outperforms all compared baseline methods
over all tasks. These encouraging results indicate that the proposed intra-
semantic feature alignment mechanism can learn semantic-invariant repre-
sentations for each pair of source and target graphs effectively, and inter-
semantic label alignment mechanism can control all the classifiers to learn a
consensus label for each target node.

– HAN+MMD and MAGNN+MMD are the simplest way to apply DA to
HGNN. By comparing HAN+MMD (or MAGNN+MMD) and HAN (or
MAGNN), we can see that traditional HGNNs cannot deal with the prob-
lem of domain shift. By comparing HAN+MMD (or MAGNN+MMD) and
HGA-MAGNN (or HGA-HAN), we can observe that HGA is more effectively
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in transfering the knowledge of the source domain to the target domain by
intra-semantic feature alignment mechanism and inter-semantic label align-
ment mechanism.

– Compared to HAN and MAGNN which do not consider the domain discrep-
ancy between different graphs, HGA achieves better performance, especially
on the pair of AMiner A vs. AMiner B where the density of meta-path edges
is significantly different between them.

– For single-domain methods, HAN and MAGNN perform better GCN on
most of tasks, which implies the superiority of considering heterogeneous
graphs rather than homogeneous ones. The similar conclusion also can be
concluded for domain adaptation methods.

Source ACM DBLP ACM B ACM A AMiner B AMiner A DBLP B DBLP A
AVG

Target DBLP ACM ACM A ACM B AMiner A AMiner B DBLP A DBLP B

HGA-HAN¬mmd∧¬l1 0.667 0.676 0.752 0.746 0.835 0.814 0.813 0.824 0.766
HGA-HAN¬mmd 0.774 0.742 0.790 0.749 0.931 0.819 0.820 0.830 0.807
HGA-HAN¬l1 0.765 0.739 0.784 0.751 0.920 0.822 0.826 0.833 0.805
HGA-HAN 0.785 0.759 0.791 0.757 0.929 0.830 0.828 0.835 0.814

HGA-MAGNN¬mmd∧¬l1 0.681 0.698 0.744 0.748 0.837 0.820 0.819 0.821 0.771
HGA-MAGNN¬mmd 0.782 0.764 0.788 0.752 0.935 0.827 0.825 0.832 0.813
HGA-MAGNN¬l1 0.784 0.770 0.791 0.761 0.932 0.834 0.829 0.838 0.817
HGA-MAGNN 0.793 0.771 0.798 0.765 0.937 0.838 0.833 0.840 0.822

Table 3. Performance comparison on classification accuracy between HGA variants.

The ablation study results are shown in Table 3, From Table 3, we can
easily observe that both HGA-MAGNN¬l1 and HGA-MAGNN¬mmd (or HGA-
HAN¬l1 and HGA-HAN¬mmd) outperform HGA-MAGNN¬mmd∧¬l1 (or HGA-
HAN¬mmd∧¬l1), which verifies that on one hand the effectiveness of aligning the
intra-semantic distributions of each pair of semantic in the source and target
domains, and on the other hand the consideration of the inter-semantic label
alignment to reduce the gap between all classifiers can help each classifier learn
the knowledge from other classifiers.

(a) MP 1 (b) MP 2 (c) MP 3 (d) Fusion

Fig. 2. The visualization of classifier’s output and after fusion in target domain (’MP’
means meta-path)
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5.4 Analysis

Classification Output Visualization We visualize the outputs of each clas-
sifier and the output after meta-path fusion on the target domain of the task
Aminer B→ Aminer A with the model of HGA-HAN. From Figure 2, we can ob-
serve that the results in Figure 2(d) are better than the ones in Figure 2(a)(b)(c),
which show that by fusing more information from meta-paths can lead to per-
formance improvement. What’s more, we can see that the target nodes near the
class boundaries are more likely to be misclassified by the classifiers learned from
single meta-path of source graph, while we can minimize the discrepancy among
all classifiers by using inter-semantic label alignment.

Algorithm Convergence To investigate the convergence of our algorithm, we
record the performance of target domain over all meta-path classifiers and the
fusion one during the iterating on the task Aminer B → Aminer A. The results
are shown in Figure 3(a). We can find that all algorithms can converge very fast,
e.g., less than 20 iterations. Particularly, the fusion one is more stable with better
accuracy, which illustrates the benefits of fusing multiple meta-paths again.

(a) Convergence (b) Accuracy w.r.t λ

Fig. 3. Algorithm convergence and parameter sensitivity.

Parameter Sensitivity To study the sensitivity of λ, which controls the im-
portance of mmd loss and l1 loss. We sample the values in {0.001, 0.01, 0.1, 1,
10, 20}, and perform the experiments on tasks DBLP B→ DBLP A, AMiner B
→ AMiner A, and ACM B→ ACM A. All the results are shown in Figure 3(b),
and we find that the accuracy first increases and then decreases, and displays as a
bell-shaped curve. The results further illustrate the necessity of proper constraint
of domain alignments. Finally, we set λ = 0.1 to achieve good performance.
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6 Conclusion

Most previous heterogeneous graph neural networks focus on a single graph and
fail to consider the knowledge transfer across graphs. In this paper, we study
the problem of HGNN for domain adaptation, and propose a semantic-specific
hierarchical alignment network for heterogeneous graph adaptation, called HGA.
The HGA employs a shared parameters HGNN with the mmd and l1 normal-
ization terms for domain-invariant and category-discriminative node representa-
tions. Experiments on eight transfer learning tasks validate the effectiveness of
the proposed HGA.
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