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a  b  s  t  r  a  c  t

Community  detection  in  social  network  analysis  is usually  considered  as  a single  objective  optimization
problem,  in  which  different  heuristics  or approximate  algorithms  are  employed  to  optimize  a  objective
function  that  capture  the  notion  of community.  Due  to  the  inadequacy  of  those  single-objective  solutions,
this  paper  first  formulates  a multi-objective  framework  for community  detection  and  proposes  a multi-
objective  evolutionary  algorithm  for finding  efficient  solutions  under  the  framework.  After  analyzing  and
comparing  a  variety  of  objective  functions  that  have  been  used  or can  potentially  be  used  for  community
detection,  this  paper  exploits  the  concept  of  correlation  between  objective  which  charcterizes  the rela-
tionship  between  any  two  objective  functions.  Through  extensive  experiments  on  both  artifical  and  real
networks,  this  paper  demonstrates  that a combination  of  two negatively  correlated  objectives  under  the
multi-objective  framework  usually  leads  to remarkably  better  performance  compared  with  either  of  the
orignal  single  objectives,  including  even  many  popular  algorithms..

©  2011  Elsevier  B.V.  All rights  reserved.

1. Introduction

In recent years, community detection in complex networks has
attracted a lot of attention. The main reason is that communities
are supposed to play special roles in the structure-function rela-
tionship, and thus detecting communities (or modules) can be a
way to identify substructures which could correspond to impor-
tant functions. For example, the communities in WWW  are sets of
web pages sharing the same topic [12]; the modular structure in
biological networks are widely believed to play important roles in
biological functions [11].

Loosely speaking, communities are groups of nodes that are
densely interconnected but only sparely connected with the rest
of the network [3,14].  In order to extract such groups of nodes, one
typically chooses an objective function that captures the intuition
of a community as a group of nodes with better internal connectiv-
ity than external connectivity. The objective is usually NP-hard to
optimize, so one usually employs heuristics (e.g., betweenness [21])
or approximation algorithms (e.g., spectral method [25], genetic
algorithm [23,28]) to find sets of nodes that approximately opti-
mize the objective function and can be understood as communities.
As a consequence, the conventional community detection can be
considered as a single-objective optimization problem (SOP). That
is, the community detection corresponds to discover a community
structure that is optimal on one single-objective function. Most of
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conventional community detection algorithms are based on this
SOP. Different algorithms have variations of the evaluation function
and optimization method. These single-objective approaches have
been successfully applied to both artificial and real problems. How-
ever, the single-objective community detection also faces some
fundamental difficulties. These single-objective algorithms usually
confine the solution to a particular community structure property
because of only considering one objective function. When the opti-
mization objective is inappropriate, these algorithms may  fail, such
as resolution limit problem [13]. In addition, one single fixed com-
munity partition returned by the single-objective algorithms may
not be suitable for the networks with multiple potential structures
(e.g., hierarchical and overlapping structures).

In this paper, we first formulate the community detection as a
multi-objective optimization problem (MOP). That is, the commu-
nity detection corresponds to discovering community structures
that are optimal on multiple objective functions, instead of one
single-objective function in the single-objective community detec-
tion. In order to effectively solve this problem, we propose a novel
multi-objective community detection algorithm (called MOCD).
The MOCD includes two phases. In the first community detection
phase, MOCD simultaneously optimizes two conflicting objective
functions with evolutionary algorithm (EA) and returns a set of
solutions which are optimal in terms of optimization objectives.
In order to assist decision makers (DMers) in selecting proper
community partitions, in the second model selection phase, two
model selection methods are proposed to select one recommen-
dation solution from the solution set returned by the first phase.
We perform extensive experiments to validate the advantages of
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the multi-objective community detection. Compared to one sin-
gle solution returned by conventional single-objective community
detection algorithms, MOCD returns a set of solutions. These solu-
tions not only can reveal the implicit structure information (e.g.,
hierarchical and overlapping) from different perspectives but also
can provide DMers with the flexibility to select the proper solu-
tion based on other subjective information. Moreover, the solution
recommended by MOCD with the proposed model selection meth-
ods are more accurate than those generated by well-established
community detection algorithms.

This paper is arranged as follows. Section 2 formally pro-
poses the multi-objective community detection problem. Section
3 describes the MOCD in detail. Then the extensive experiments
are done to validate the effectiveness of MOCD in Section 4. We
compare MOCD with those most related work in Section 5. Finally,
Section 6 concludes the paper.

2. Multi-objective community detection

Conventional community detection algorithms can be roughly
classified into two categories. (1) The first type of algorithms
convert community detection into an optimization problem, and
detect the community structure through optimizing an evaluation
criterion. For example, the spectral method [25] formulates com-
munity detection as a quadratic optimization and optimizes a “cut”
function [16]. The modularity optimization methods employ the
optimization technologies (e.g., genetic algorithm [23,28,29],  sim-
ulated annealing [14] and extremal optimization [10]) to optimize
a criterion, such as Q [21]. (2) The second type of algorithms con-
vert community detection into the design of heuristic rules, such
as the edge betweenness [21] and link clustering coefficient [26].
These heuristic methods usually need a criterion to stop the iter-
ation process. For example, the maximum modularity Q is used as
the stopping criterion in GN [21]. In both types of approaches, the
community detection can be regarded as a single-objective opti-
mization problem (!,  P).

Definition 1. Single-objective community detection. It deter-
mines a partition C* for which

P(C∗) = min
C∈!

P(C) (2.1)

where ! is the set of feasible partitions, C is a community structure
of a given network G and P : ! → R is a measure function. With-
out loss of generality, we assume P is to be minimized. Most of
conventional community detection algorithms are based on this
single-objective optimization problem. Different algorithms vary in
the optimization criterion P and optimization technique, such as the
modularity Q in GN [21], the “cut” function in spectral method [16]
and the “description length” in the information-theoretic based
method [18].

The single-objective community detection algorithms have
been widely applied. However, they also have some crucial
disadvantages. (1) These single-objective algorithms attempt to
optimize just one of such criteria and this confines the solution
to a particular community structure property. And thus it often
causes a fundamental discrepancies that different algorithms may
produce distinct solutions on the same networks. (2) The single-
objective algorithms may  fail when the optimization objectives
are inappropriate. An example is the resolution limit problem
existing in the modularity optimization: the modularity optimiza-
tion may  fail to identify modules smaller than a scale which is
determined by the size of the network and the degree of inter-
connectedness of the modules, even in cases where modules are
unambiguously defined [13]. Further researches also reveal that
the optimization on other single-objective has similar resolution
limit [17]. (3) Many single-objective algorithms require some priori

information, such as the number of communities which is usually
unknown for real networks. (4) A single fixed community parti-
tion returned by single-objective algorithms may not be suitable
for the networks with multiple potential structures (e.g., hierarchi-
cal or overlapping). Taking the hierarchical network for example, a
fixed community partition cannot reveal the hierarchical structure.

Although the difficulty in selecting an appropriate criterion in
single-objective community detection can be alleviated through
the application of a criterion with a tuning parameter (e.g., RB [27]
and AFG [2]), a more natural approach may be to consider the com-
munity detection as a multi-objective optimization problem (!, P1,
P2, . . .,  Pm), which can defined as follows.

Definition 2. Multi-objective community detection. It determines
partitions C* for which

P(C∗) = min
C∈!

(P1(C), P2(C), . . . , Pm(C)) (2.2)

where m is the number of criteria and Pi represents the ith criterion.
With the introduce of multiple criteria, there is usually no single
best solution for this optimization task, but instead, the notion of
Pareto optimality should be embraced [8].  For two partitions C1,
C2 ∈ !,  partition C1 is said to dominate partition C2 (denoted as
C1 ≼ C2) if and only if

∀i ∈ {1, . . . , m}  Pi(C1) ≤ Pi(C2)

∧∃i ∈ {1, . . . , m}  Pi(C1) < Pi(C2) (2.3)

A partition C ∈ ! is said to be Pareto optimal if and only if there is no
other partition dominating C. The set of all Pareto optimal partitions
is the Pareto optimal set and the corresponding set in the objective
space is called the non-dominated set, or Pareto front. The objective
function, P1, . . .,  Pm, can be the existing criteria (e.g., the modularity
Q [21], the “cut” function [16], and the “description length” [18]) or
newly designed criteria.

Compared to the single-objective community detection, the
multi-objective community detection has the following advan-
tages.

• The Pareto optimal set obtained by the multi-objective commu-
nity detection defined by (!,  P1, . . .,  Pm) always comprise the
optimal solutions of the single-objective community detection
defined by (!,  P1), . . .,  (!,  Pm). With the assumption that the
single-objective and multi-objective community detection can
respectively identify all globally optimal solutions and the entire
Pareto optimal set, we can deduce that the multi-objective com-
munity detection can always find a partition, which is as good as
or better than those of the single-objective community detection.
In situations where the best partition corresponds to a tradeoff
between different objectives, only the multi-objective commu-
nity detection will be able to find it.

• The multiple objectives can measure characteristics of commu-
nity structure from different perspectives, and thus avoid the risk
that one single-objective may  only be suitable to a certain kind
of networks. Moreover, the multi-objective optimization process
tradeoffs the balance of the multiple objectives, which can effec-
tively avoid being trapped to local optima.

• The number of communities can be automatically determined
during the multi-objective optimization process. The well-
established optimization objectives have the potential to balance
each other’s tendency to increase or decrease the number of com-
munities. The interaction of optimization objectives is able to
keep the number of communities dynamic, avoiding the conver-
gence to trivial solutions.

• The multi-objective community detection usually returns a set
of community partitions according to the multiple optimization
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objectives. These community partitions reveal community struc-
ture from different angles, which help to discover complex and
comprehensive community structures.

Some researchers have begun to be aware that enumerating
the modules in a network is a tradeoff among multiple criteria.
Fortunato and Barthelemy believed that finding the maximum
modularity is to look for the ideal tradeoff between the number
of modules and the value of each term [13]. Similarly, Brandes
et al. proposed that the modularity Q is a combination of two con-
flicting components [4].  Rosvall and Bergstrom also thought that
enumerating the modules in a network has an inevitable trade-
off between the amount of the structure information of a network
and its description length [18]. Although these researchers have
been aware of the intrinsic tradeoff, most algorithms still optimize
one single-objective which often simply combines some conflicting
components (e.g., the linear combination of the two components in
modularity Q [21]). On the other hand, the research community in
evolutionary computation has confirmed that evolutionary multi-
objective optimization is a more intrinsic and effective approach to
identify this kind of tradeoffs [8,15].

3. The MOCD algorithm

For the multi-objective community detection problem, both
mathematical programming and heuristic approaches can be
applied to solve it. This paper applies the Evolutionary Algorithm
(EA), a type of heuristic approaches, to solve the problem. Com-
pared to mathematical programming techniques, EA has many
advantages [8],  such as simultaneously generating a set of can-
didate solutions and easily dealing with the discontinuous and
concave Pareto fronts. Thus, in recent years, there has been a grow-
ing effort in applying EA in multi-objective optimization, giving
rise to many successful evolutionary multi-objective optimization
(EMO) algorithms. Conventional EMO  algorithms are designed for
numerical optimization problems. When it is applied to the multi-
objective community detection, many components of EA need to
be redesigned. It is not a trivial task, because the design of these
components directly determine the algorithm performance.

Concretely, the multi-objective community detection with EA
faces following challenges: (1) Selection of optimization objectives.
The objective functions should reflect the structural characteristics
of communities from different aspects. Ideal objective func-
tions had better contain intrinsic conflicts, such that the optimal
community partitions can be obtained through the trade-off of mul-
tiple objectives. (2) Effective genetic representation. The genetic
representation should be delicately designed according to the char-
acteristics of community detection, since it decides the algorithm
performance and scalability to a large extent. (3) Utilization of mul-
tiple community partitions. EMO  methods usually return a set of
solutions. How to make the best of those non-dominated solutions
is a key issue to improve the algorithm performance.

This paper proposes a novel solution, multi-objective com-
munity detection algorithm (MOCD), which includes two  phases:
community detection and model selection. In the detection phase,
MOCD simultaneously optimizes two conflicting yet complemen-
tary objectives and the locus-based adjacency schema is applied
to effectively represent community partition. The output of this
phase is a set of community partitions, which correspond to dif-
ferent tradeoffs among these two objectives and different numbers
of communities. In the model selection phase, MOCD employs two
methods to select the most preferable solution from the partition
set, which provides an estimate of the qualities of the partition set
and determines the recommendation solution. These elaborately
designed components of MOCD effectively solve those challenges.

3.1. Community detection phase

In this phase, MOCD simultaneously optimizes multiple objec-
tives with EA and returns a set of solutions.

3.1.1. Multi-objective optimization mechanism
A good EMO  algorithm needs to generate a set of solutions

that uniformly distributed along the Pareto front [30]. Many EMO
algorithms have designed effective multi-objective optimization
mechanism to realize the essence of EA: survival of the fittest.
In this paper, we  select an existing EMO  algorithm, the Pareto
Envelope-based Selection Algorithm version 2 (PESA-II) [6],  as the
multi-objective optimization mechanism of the MOCD. PESA-II fol-
lows the standard principles of an EA with the difference that two
populations of solutions are maintained: an internal population (IP)
of a fixed size, and an external population (EP). The IP explores new
solutions through the standard EA process of reproduction and vari-
ation. The EP is to exploit good solutions by maintaining a large
and diverse set of the non-dominated solutions discovered during
search. Selection occurs at the interface between the two  popula-
tions, primarily in the update of EP.  The solutions in EP are stored in
“niches”, implemented as a hyper-grid in the objective space. A tally
of the number of solutions that occupy each niche is kept and this
is used to encourage solutions to cover the whole objective space,
rather than bunch together in one region. The detailed implemen-
tation can be seen in Ref. [6].  There are five basic parameters in the
algorithm and their meanings are illustrated here:

• ipsize and epsize are the size of IP and EP.
• pc and pm are the ratio of crossover and mutation.
• gen is the running generation.

3.1.2. Objective functions
Objective function (i.e., fitness function), which guides the

search process, is one of the most important components in MOCD.
The objective functions quantify the optimality of a solution, so we
should select optimization objectives that reflect the fundamental
aspects of a good community partition. Modularity is a foundational
quality index for community detection. Given a graph G = (V, E), we
follow Ref. [21] and define the following equation:

Q (C) =
∑

c∈C

[
|E(c)|

m
−

(∑
v∈cdeg(v)

2m

)2
]

(3.4)

where the sum is over the modules of the partition, |E(c)| is the
number of links inside module c, m is the total number of links in
the network, C is a partition result, and deg(v) is the degree of the
node v in module c. Observing the equation, to maximize the mod-
ularity Q, we  should maximize the first term (

∑
c∈C(|E(c)|/m)) and

minimize the second term (
∑

c∈C (
∑

v∈cdeg(v)/2m)2). To maximize
the first term, many edges should be contained in modules (i.e.,
“densely interconnected”). To minimize the second term, the graph
should be split into many modules with small total degrees each
(i.e., “sparely connected with the rest”). These two complementary
terms reflect two  fundamental aspects of a good partition, and the
modularity Q is an intrinsic trade-off between these two objectives
[4,13].

In this paper, we select these two terms as the objective func-
tions. In order to formulate the problem as a minimum optimization
problem, we  revise the first term. The first objective function min-
imizes 1 minus the intra-link strength of a partition, and it is called
intra objective.

intra(C) = 1 −
∑

c∈C

|E(c)|
m

(3.5)

dx.doi.org/10.1016/j.asoc.2011.10.005
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Fig. 1. Illustration of the locus-based adjacency genetic representation. (a) The topology of the graph representing a complex network. (b) One possible genotype. (c) How
(b)  is translated into the graph structure, for example node 0 links to node 3, since gene g0 is 3. (d) The community structure.

The second objective function minimizes the inter-link strength of
a partition, and it is called inter objective.

inter(C) =
∑

c∈C

(∑
v∈cdeg(v)

2m

)2

(3.6)

According to the two definitions, we can deduce that

Q (C) = 1 − intra(C) − inter(C) (3.7)

The motivation of selecting two components of the modular-
ity Q as the objective functions, rather than other criteria, are
stated as follows. (1) These two functions have the potential to
balance each other’s tendency to increase or decrease the num-
ber of communities, which enables the use of a representation
that does not fix the number of communities. With an increasing
number of communities, the fewer edges fall in communities (i.e.,
E(c) becomes smaller), and thus the intra objective value tends to
increase. The opposite trend happens to the inter objective. The
interaction of the two objective functions is crucially important in
order to keep the number of communities dynamic, avoiding the
convergence to trivial solutions. (2) Modularity is a widely used
objective in community detection and many single-objective algo-
rithms are based on the modularity optimization. It is easy and
fair to compare MOCD optimizing over two components of the
modularity with those prevalent single-objective algorithms. The
differences on their performances are more likely caused by the
multi-objective optimization. (3) After many experimentations, we
find these two objective functions are more empirically suitable.
The conflict between two objectives reflects and balances two  dis-
tinct but important aspects of community structure. More objective
functions will not necessarily lead to better solutions, but may
result in some practical difficulties, such as larger search space and
more candidate solutions.

3.1.3. Genetic representation and operators
When EA is applied to community detection, a community parti-

tion should usually be encoded in a character string (i.e., genotype)
with a genetic representation, and inversely a genotype can also be
decoded into a community partition. This paper employs the locus-
based adjacency representation [22] as illustrated in Fig. 1. In this
graph-based representation, each genotype g consists of n genes g1,
g2, . . .,  gn and each gi can take one of the adjacent nodes of node i
(including node i itself). Thus, a value of j assigned to the ith gene,
is then interpreted as a link between node i and j. In the result-
ing solution, they will be in the same community. The decoding of
this representation requires the identification of all connected com-
ponents. All nodes belonging to the same connected component
are then assigned to one community. Using a simple backtracking
scheme, this decoding step can be performed in a linear time [5,28].

Since the encoding schema cannot represent all partitions of
nodes (e.g., a community including disconnected sub-graphs),

someone may  doubt that the solutions with a good community
structure may  be not in the solution space constructed by the
genetic representation. Fortunately, Brandes et al. have analyzed
the basic structural properties of the clustering with maximum
modularity and proposed the following theoretical results [4].

Property 1. There is always a clustering with maximum modu-
larity, in which each cluster consists of a connected sub-graph.

Property 2. A clustering of maximum modularity does not
include disconnected clusters.

Although the modularity optimization has the resolution limit
[13], the community partition with a large modularity is usu-
ally a good solution. Since the genetic representation contains all
possibility of connected sub-graphs, it guarantees that the good
community partitions can be represented with the genetic repre-
sentation.

The locus-based adjacency encoding scheme has three major
advantages for community detection. (1) There is no need to fix the
number of communities in advance, as it is automatically deter-
mined in the decoding step. (2) The representation is well-suited for
the design of genetic operators. The standard crossover and muta-
tion operations will not generate any invalid genotypes. (3) More
importantly, the search space constructed by the representation is
reduced distinctly. The popular cluster center genetic representa-
tion [29], which uses a number ranging from 1 to n to represent the
community a node belonging to, has the nn space complexity. Bran-
des et al. [4] cast the modularity optimization into an integer linear
program with the complexity 2n2 in the search space. In contrast,
the space complexity of the locus-based adjacency representation
is

∏n
i=1di (n is the number of nodes, di is the degree of node i). For

most real problems, di ≪ n.
We choose the uniform two-point crossover because it is unbi-

ased with respect to the ordering of genes and is able to generate
any combination of alleles from the two  parents. Thus the crossover
operator will not generate any invalid solutions. In the mutation
operation, we  randomly select some genes and assign them with
other randomly selected adjacent nodes.

In the initialization process, we randomly generate some indi-
viduals. For each individual, each gene gi randomly takes one of the
adjacent nodes of node i.

3.2. Model selection phase

As noted previously, MOCD does not return a single solution, but
a set of solutions. These solutions correspond to different tradeoffs
between the two  objectives and consist of the communities with
different sizes. This provides the DMers with the opportunities to
incorporate their domain knowledge into the community detec-
tion process. It is crucial for the problem with unknown structure.
In addition, the DMers may  desire that the set of candidate solutions
could be narrowed down to those of most interest. In this sec-
tion, we  therefore propose two automated methods for assessing

dx.doi.org/10.1016/j.asoc.2011.10.005
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the quality of solutions. These methods can identify one promis-
ing solution in the candidate set, and then automatically deliver
an estimate of the actual number of communities in the network.
In addition, these two model selection methods provide an con-
venient way to compare MOCD with single-objective algorithms,
since those algorithms return only one solution.

Max  Q. The criterion selects the solution with the maximum
modularity Q. Because of the relationship between Q and these
two objective functions (see Eq. (3.7)), we can directly select the
solution with maximum Q by aggregating the two objective values.

SMax−Q = argmax
C∈SF

{1 − intra(C) − inter(C)} (3.8)

where SF is the candidate solution set (i.e., the Pareto front).
Max–Min Distance. We  know that the physical meaning of Q

is the fraction of edges that falls within communities, minus the
expected value of the same quantity if the edges fall at random
without regard for the community structure, so the Q evaluates
the extent to which the community structure deviates from ran-
domness [21]. The similar principle can also be used in our model
selection. Concretely, MOCD first runs on the real network and a
randomly generated network with the same scale. Thus, the real
candidate solution set (called real Pareto front) and the random
control solution set (called random Pareto front) can be obtained,
respectively. And then from the real Pareto front we select the solu-
tion that mostly deviates from the solutions in the random Pareto
front as the recommendation solution. Because there are multiple
solutions in both the real and random Pareto fronts, we propose a
max–min rule to quantitatively evaluate the deviation.

Firstly, the distance between a solution in the real Pareto front
and one in the random Pareto front is defined in Eq. 3.9.

dis(C, C ′) =
√

(intra(C) − intra(C ′))2 + (inter(C) − inter(C ′))2 (3.9)

where C and C′ represent the solutions in the real and random
Pareto fronts, respectively. Then the deviation of a solution in the
real Pareto front from the whole random Pareto front is quantified
by the minimum distance between this solution and any solutions
in the random Pareto front. The deviation is defined in Eq. 3.10.

dev(C, CF)  = min{dis(C, C ′)|C ′ ∈ CF}  (3.10)

where CF represents the random Pareto front. Finally we select the
solution in the real Pareto front with the maximum deviation. The
model selection process is formulated in Eq. (3.11).

SMax–Min = maxarg
C∈SF

{dev(C, CF)} (3.11)

where SF represents the real Pareto front.
Fig. 2 illustrates an example of the Max–Min Distance model

selection method. From the figure, we can observe that the num-
ber of communities corresponds to the tradeoff between the intra
and inter objectives and the solution with the correct commu-
nity structure has the largest deviation from random solutions.
In fact, the purpose of the random control solution set is to
obtain an estimate of the values of intra and inter that would be
expected for unstructured networks and the Max–Min Distance
criterion evaluates the difference between the real objective val-
ues and the expected ones from unstructured networks. So the
solution selected by the Max–Min Distance method has the most
obvious community structure compared to random networks. In
order to avoid the random factors, multiple random networks are
applied (three random Pareto fronts are generated in the following
experiments).
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Fig. 2. Illustration of the Max–Min Distance model selection method. The candi-
date solutions and random control solutions are obtained by runs of MOCD on the
symmetric artificial network with zout = 6 in Section 4.2.1. The solution with the Max-
Min Distance to the random control fronts is indicated, which correctly identifies 4
communities. k is the number of communities.

4. Experiments

This section will validate the effectiveness of MOCD through
experiments on artificial and real networks. The first experiments
will illustrate the advantages of multiple solutions returned by
MOCD, and the second experiments will validate the quality of the
solution recommended by the model selection methods. The exper-
iments are carried out on a 3GHz and 1G RAM computer running
Windows XP.

4.1. Analysis of multiple candidate solutions

This section demonstrates the advantages of multiple solutions
returned by MOCD in revealing the implicit and comprehensive
community structures through both artificial hierarchical and over-
lapping networks.

4.1.1. Hierarchical network
The artificial network example is the H13-4 network with 256

nodes [1,2]. Each node in the network has 13 links with the most
internal community (formed by 16 nodes), 4 links with the most
external community (formed by 64 nodes), and 1 more link with
any other node at random in the network. Fig. 3(b) and (c) represent
the network’s modular structures at two different scales: Fig. 3(b)
shows the first hierarchical level consisting of 4 communities, each
with 64 nodes and Fig. 3(c) shows the second level consisting of 16
communities, each with 16 nodes (each community in the second
level is called a unit community).

This experiments run MOCD with the following parameters: the
ipsize and epsize both are 100, the gen is 800, pc and pm are 0.6 and
0.4, respectively. The average running time is 223 seconds. All the
100 solutions in EP are illustrated in Fig. 3(a) (note that some solu-
tions are same). Observing the community structure of solutions,
we find that the solution with the maximum Q (labeled I in Fig. 3(a))
represents the hierarchical structure in the first level, and another
solution labeled II reveals the second level. The solutions between
the solutions I and II are called the “strong” community solutions
[26]. That is, in each community of these solutions, each node has
more connections within the community than the rest of the net-
work. These strong community solutions usually combine two or
more connected unit communities into one community. According
to the structure of the network, these community partitions all are
correct. As for the other solutions (i.e., the solutions on the right
side of solution II), although most communities in those solutions
are correctly partitioned, a small portion of unit communities are
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Fig. 3. Multiple resolution of modular structure in the artificial hierarchical network. (a) The Pareto front found by MOCD. (b) The first level real community structure which
is  the result of the solution labeled I in (a). (c) The second level real community structure which is the result of the solution labeled II in (a).

broken. This results in some solutions with the number of commu-
nities being larger than 16.

Using the experimental data, we further analyze the relation-
ship of the objective values and the number of communities (NC)
as shown in Fig. 4(a). It is obvious that with the increase of NC, the
intra values increase, whereas the inter values decrease. It confirms
that the modularity Q is a trade-off between these two objectives.
The Q values are close to 0.7 when NC ranges from 4 to 16. When
NC is larger than 16, the Q value rapidly decreases, and it seems
to decrease with the increase of NC. It is reasonable to confine NC
to be between 4 and 16, and thus their corresponding community
partitions all are correct. So their Q values are large. When NC is
larger than 16, some unit communities may  be broken. In this situ-
ation, some nodes will be mis-partitioned, thus the Q values become
small. This is also the reason why the solution labeled II, whose NC
is 16, is the inflexion in the Pareto front in Fig. 3(a).

We then show the relationship between NC and the Q values
of those strong community solutions (i.e., their NC are between
4 and 16) in Fig. 4(b). Their Q values are very close in general.
But it still can be observed that, with the increase of NC, the Q
value tends to become small. When the modularity Q is used as
the optimization objective in a single-objective community detec-
tion algorithm, the algorithm tends to the solution labeled I, since it
has the largest Q value. Thus it not only fails to reveal the hierarchi-
cal structure, but also cannot discover a finer community structure
(e.g., the solution labeled II). The experiment further illustrates
that the single-objective community detection has the resolution
limit problem [13,17]: methods based on optimizing a modular-
ity measure or other single criterion may  fail to identify modules
smaller than some thresholds. Compared to single-objective algo-
rithms which may  fail to identify small modules, the MOCD, in one
run, can find a set of valuable community partitions which include
both large and small modules. This trait is especially useful for
hierarchical networks, where multiple levels of partitions exist.

4.1.2. Overlapping network
We further explore the advantages of a set of solutions returned

by MOCD through an overlapping network. The network consists
of two large communities A and B, each containing 128 nodes. Each
node has on average 12 internal links. In addition, communities A
and B each contains a subgroup of 32 nodes, which are denoted by
a and b, respectively. Each node within a subgroup has six of its 12
intra community links with the rest 31 nodes of the subgroup. The
two subgroups a and b have on average three links per node con-
nected with each other within the subgroups. Additionally, each
node has one link with a randomly chosen node from the whole
network. It is clear that, besides two large communities (i.e., A and
B), the overlapping part between A and B results in one overlap-
ping community which is denoted by a & b. A similar network has

been used by Reichardt and Bornholdt to discover the overlapping
structure [27].

MOCD settles the following parameters: the ipsize and epsize
both are 200, the gen is 500, pc and pm are 0.6 and 0.4, respectively.
We also run two  representative algorithms on the network: the
betweenness-based heuristic algorithm proposed by Newman and
Girvan [21] (called GN) and the EA-based modularity optimization
algorithm [28] (called GACD). GN and GACD both reveal two large
communities A and B accurately. However, they fail to discover
the overlapping structure. MOCD obtains 200 solutions which are
illustrated in Fig. 5(a). Two  special partition models are selected
from these solutions. As shown in Fig. 5(b), the solution labeled I
in Fig. 5(a) reveals the same communities partition (i.e., two  large
communities A and B) as that obtained with GN and GACD. How-
ever, in Fig. 5(c), we  can see that the solution labeled II consists
of three communities: two  large communities and an overlapping
community that is constituted by the nodes in a and b. The result
shows that MOCD not only finds the obvious large community
structure as what the single-objective algorithms can do, but also
reveals the implicit overlapping community in one run.

4.2. Analysis of model selection

This section will evaluate the quality of the solutions recom-
mended by the proposed model selection methods through both
artificial and real networks.

Six algorithms are tested in the experiments. Besides GN and
GACD that have been described in Section 4.1.2, the information-
theoretic framework based algorithm [18] (called INFO) is included.
We also include a multi-objective community detection algorithm
MOGA-Net [24]. In order to obtain one single recommendation
solution, MOGA-Net also employs the Max–Min Distance model
selection method to select a partition from the Pareto front. As for
MOCD, we consider both the two  proposed model selection meth-
ods, i.e., MOCD with Max − Q model selection (called MOCD-Q) and
MOCD with Max–Min Distance model selection (called MOCD-D).

4.2.1. Artificial networks
The artificial networks with a known community structure have

128 nodes grouped in four communities of 32 nodes [18,21]. Each
node has on average zin edges to nodes in the same community
and zout edges to nodes in other communities, keeping an aver-
age degree zin + zout = 16. Since the multiple communities within the
network have the same properties, the network is called the sym-
metric network in the paper. In order to validate the effectiveness
of the algorithms for different kinds of networks, the experiments
vary the network structures in the following ways. The first vari-
ation, called the node asymmetric network, merges three of the
four groups in the benchmark test to form a series of test networks
each with one large group of 96 nodes and one small group with
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Fig. 5. Multiple resolutions of modular structure in the overlapping network. (a) Pareto front found by MOCD. (b) The partition result of the solution labeled I with a gray
graph. (c) The partition result of the solution labeled II. The gray graph records whether two nodes are in the same community. The rows and columns of the matrix both
correspond to the indices of the nodes and a black color means two  nodes are in the same community.

32 nodes. In the second variation, the benchmark network, called
the edge asymmetric network, composes two groups each with 64
nodes, but with different average degrees of edges (8 and 24) per
node. As the average number of edges zout increases, it becomes
harder and harder to identify the community structure. According
to the scale of the problem, four EA-based algorithms (i.e., GACD,
MOGA-Net, MOCD-Q, and MOCD-D) set the uniform parameters:
the population size is 100 (for MOCD, ipsize = epsize = 100), gen is
200, and pc and pm are 0.6 and 0.4, respectively. Note that, in the
comparison experiments, the EA-based algorithms evaluate the
same number of individuals.

To compare the quality of solutions, the experiments use the
fraction of vertices identified correctly (FVIC) criterion, which has
been used in many researches [7,10,21]. The larger the FVIC is the
better the partition is. The FVIC can be calculated as follows.

olSet(c, c′) = {v|v ∈ c ∧ v ∈ c′}

maxOlSet(c, CK ) = max
c′∈CK

{|olSet(c, c′)|}

FVIC =
∑

c∈CF

maxOlSet(c, CK )
N

(4.12)

where CF and CK represent the found and known community
partition, respectively; c and c′ are a community in CF and CK,
respectively. N is the number of nodes in the network.

Fig. 6 presents the distribution of the FVIC results of the six
algorithms over 100 graph realizations. When zout is small, all
algorithms find the correct community partition. As zout increases,
these six algorithms have different performances, and their differ-
ences become more distinct. We  can observe that two versions of
MOCD (i.e., MOCD-Q and MOCD-D) have the highest FVIC in most

situation, compared to not only those single-objective algorithms
(i.e., INFO, GN and GACD) but also the multi-objective algorithm
MOGA-Net. Comparing the results in the symmetric networks with
those in the asymmetric networks, we can find that it is more dif-
ficult for all algorithms to discover the community structure in the
asymmetric networks, especially for GN. However, the asymmet-
ric networks have less impact on the MOCD. In other words, the
MOCD still can obtain fairly good solutions for the asymmetric net-
works. The NCs found by these six algorithms are illustrated in
Fig. 7. Similar to the results of FVIC, the NCs obtained with different
algorithms are correct in all problems when zout is small. The NCs
deviate more and more from the correct values as zout increases.
It can be observed that the NCs found by MOCD-D are the closest
ones to the correct values in most cases. When zout becomes large,
GN divides the network into so many communities that its results
are not included in the figures. It also explains why GN’s FVIC val-
ues decline rapidly as shown in Fig. 6. In both Figs. 6 and 7, we
can observe that, with the increase of zout, the Confidence Intervals
(CIs) become broader, whereas they are still very tight for all algo-
rithms. It reveals that the solution distributions of all algorithms
have very small variances and the algorithms are all stable in this
example. The experiments also show that GN and GACD are more
effective for symmetric networks, whereas INFO is more effective
for asymmetric networks. The results are consistent with those in
Ref. [18].

4.2.2. Real networks
In order to further compare the performance of different algo-

rithms, we  use 10 real social networks which all are from Ref. [20].
These test problems are widely used as benchmarks in commu-
nity detection [4,13,14,18], and they have different scales with the
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Fig. 7. The number of communities found by different algorithms for the artificial networks. Both the means and 90% confidence intervals are calculated based on the results
of  100 graph realizations. The broken lines are the correct number of communities.

Table 1
Test problems and parameters settings in GACD, MOGA-Net, and MOCD.

Karate
(P1)

Lesmis
(P2)

Polbooks
(P3)

Adjnoun
(P4)

Football
(P5)

Celegansnearal
(P6)

Celegansmetabolic
(P7)

Netscience
(P8)

Power
(P9)

Hepth
(P10)

Number of nodes 34 77 105 112 115 297 453 1589 4941 8361
Number of edges 78 254 441 425 613 2345 2025 2742 6594 15,751
GACD  pop 50 50 50 50 50 100 100 200 300 400
MOGA-Net gen 50 50 100 100 100 100 100 200 300 400
MOCD ep 50 50 50 50 50 100 100 100 100 100

ip 50 50 50 50  50 100 100 200 300 400
gen  50 50 100 100 100 100 100 200 300 400

number of nodes ranging from 34 to 8361. These test problems and
the corresponding parameters of GACD, MOGA-Net, and MOCDs
are illustrated in Table 1 (pc and pm are 0.6 and 0.4 for these four
EA based algorithms, respectively). Note that we do not make any
effort in setting good parameters for MOCD and the appropriate
parameters are settled according to the scale of problems. Only
one random Pareto front is generated in the Max–Min Distance
model selection in the experiments. Moreover, the same numbers
of individuals are evaluated in those EA based algorithms.

Since the actual community structures of most networks are
unknown, we can only evaluate the qualities of solutions from the
structural characteristics. Here we use two popular criteria to mea-
sure the qualities. According to the strong and weak community
definition given by Radicchi et al. [26], each community c is vali-
dated based on whether satisfying the strong (or weak) community
definition. The ratio of strong (or weak) communities is the fraction
of communities in a partition C that satisfy the strong (or weak)
community definition.

strRatio(C) =
|{c|kin

i (c) > kout
i (c) ∀i ∈ c ∧ ∀c ∈ C}|

|C|

weakRatio(C) =
|{c|

∑
i∈ckin

i (c) >
∑

i∈ckout
i (c)∀c ∈ C}|

|C|

(4.13)

where c is a community in the partition C; kin
i (c) is the number

of edges connecting node i to the other nodes belonging to c, and
kout

i (c) is the number of edges connecting node i to the nodes in
the rest of the network. These two  criteria quantitatively evaluate
how obvious the community structure is. The larger the value, the
better the partition. According to the definitions, a strong commu-
nity is also a weak community, whereas the reverse is not correct.
So the weakRatio(C) is usually larger than the strRatio(C) for a given
partition C. The results are the average of 10 runs.

The experimental results are shown in Fig. 8. MOCD-D discov-
ers the community structures with the highest accuracy for most
networks (e.g., P1, P3, P4, P6, P7, and P10), and INFO achieves the
highest accuracy for three networks (e.g., P2, P5, and P9). MOCD-Q
performs better than GACD for most problems (e.g., P1, P2, P3, P4,
P6, P7, P9, and P10). Furthermore, MOCD-D performs better than
MOCD-Q for almost all problems. In all, the performance compar-
ison of the algorithms in the real networks is consistent with that
in the artificial networks.

The running time of six algorithms are shown in Fig. 9, we  can
find that although the running time of the EA based algorithms (i.e.,
GACD, MOGA-Net, MOCD-D, and MOCD-Q) are generally longer
than those of GN and INFO for small-scale problems, such as P1–P5,
it is not the case for large-scale problems (e.g., P6–P10), especially
for P10 where GN and INFO could not return any results in the
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Fig. 8. The performances of six algorithms for ten real networks. The numbers 1–10 represent the problems P1–P10, respectively. For P4, INFO always partitions the network
into  one community, and thus its strRat and weakRat both are settled with 0. For P10, INFO and GN cannot solve the problem in 20 h, so their strRat and weakRat all are settled
with  0.

Fig. 9. The running time of six algorithms for ten real networks. The numbers 1–10
represent the problems P1–P10, respectively. For P10, INFO and GN cannot solve the
problem in 20 h, so their running time both are settled with 20 h (i.e., 72,000 s) to
conveniently compare with other algorithms.

given time (20 h). An exception is P8 which is a co-authorship
network of scientists working on network theory and experiment
[19]. The network has an obvious community structure and it is
especially suitable for GN to detect the structure. The experiments
show that the efficiency of MOCDs is not only acceptable for small-
scale problems but also especially suitable for large-scale networks.
Although GACD and MOCD evaluate the same number of individu-
als, the multi-objective algorithms are more complicated than the
single-objective algorithms, so MOCDs have longer running time
than GACD. Because MOCD-D needs to run twice to obtain the real
and random Pareto fronts, the running time of MOCD-D is nearly
the twice of that of MOCD-Q. With the Max–Min Distance model
selection, MOCD-D achieves a better performance than MOCD-Q at
the cost of a longer running time.

4.3. Discussion

Through the experiments on artificial and real networks, we
find that two versions of MOCD (especially MOCD-D) have the best
performance on most networks. To study the reason behind the
superior performance of the MOCDs, we compare GACD with the
MOCDs (especially MOCD-Q). A number of components of these
two algorithms are the same (e.g., the EA framework, the genetic
representation and operators, and the same number of individuals
evaluated), except that GACD uses Q as the single function, whereas
MOCDs treat the two components of Q as two functions. Therefore,
the superior performances of MOCDs should be driven by the mul-
tiple optimization functions in MOCDs. We  consider two  reasons
may  account for the benefits of multiple optimization functions.
(1) The multiple objectives can measure the community structure

comprehensively and avoid the risk that one single-objective may
only be suitable to a certain kind of networks (e.g., GN is only suit-
able for symmetric networks). (2) The multi-objective optimization
process tradeoffs the multiple conflicting objectives, which can
effectively avoid being trapped to local optima. MOCD and MOGA-
Net both are based on multi-objective optimization. An important
difference between MOCD and MOGA-Net lies in the objective func-
tions. We  think these two conflicting yet complementary objective
functions in MOCD contributes to its better performances. In addi-
tion, when we compare MOCD-Q with MOCD-D, it is clear that
MOCD-D has better performances. This shows that the Max–Min
Distance may  be a better model selection method than Max Q for this
problem. We  think the reason is that Max–Min Distance selects the
model with the largest deviation from the random network with the
same scale. This may  indicate that the selected model represents
the most significant community structure.

The fitness evaluation function (i.e., calculating the objective
value) is the most time-consuming component in the algorithm.
The calculation of objective functions (i.e., intra and inter) has
the complexity O(m), and the decoding of the genetic representa-
tion has the complexity O(n) (m and n are the number of edges
and nodes, respectively). As a consequence, the fitness evalua-
tion of an individual has the complexity O(m + n). Note that the
multi-objective optimization process of MOCD (i.e., PESA-II) has
the complexity O(gs2) [6]. So the whole complexity of MOCD is
O(gs2(m + n)) which grows linearly with the scale of the network.
(g is the running generation, and s is the population size. For sim-
plicity, ipsize and epsize both are s). The running generation and
population size can affect the algorithm performance. However,
increasing the population size or running generation does not nec-
essarily yield better results after some points. Therefore, by settling
the appropriate population size and running generation, MOCD
can solve large-scale problems with an acceptable performance
and a comparatively small time cost. As we  known, many com-
munity detection algorithms have large time complexities [7],  and
thus they are not suitable for large-scale problems. For this reason,
MOCD is a good solution for large-scale problems. Our experiments
on real networks also confirm this point. As for model selection
methods, Max Q has only the complexity O(1), and Max–Min Dis-
tance has the complexity O(gs2(m + n)). Compared to MOCD-Q, the
better performances of MOCD-D are at cost of longer running time.

All MOCD’s parameters are from those of PESA-II. These parame-
ter settings follow the general rules of parameter settings in PESA-II.
Generally, the large population size (i.e., ipsize and epsize)  and run-
ning generations (i.e., gen) help to improve the accuracy of the
algorithm and solve large-scale problems. The epsize controls the
size of Pareto optimal set. The large epsize provides more candidate
solutions. Simultaneously, it also becomes more difficult to choose
a proper one. The large ipsize helps MOCD to extensively explore the
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solution space, whereas it will cost more running time. Large ratio
of crossover (i.e., pc) is helpful for quick convergence, but it may
lead to premature. The ratio of mutation (i.e., pm) has an opposite
effect. In our experiments, we select the rational ipsize, epsize,  and
gen according to the scale of problems. The parameters pc and pm
are fixed for all experiments, because we found that these settings
are suitable for most problems.

5. Related work

Many algorithms have been designed to analyze the commu-
nity structure in complex networks. The algorithms use methods
and principles of physics, artificial intelligence, graph theory and
even electrical circuits [7].  Most of these algorithms are based on
the single-objective community detection. However, our MOCD is
based on multi-objective community detection. Here, we briefly
compare our MOCD with those most related work.

Genetic algorithm (GA) has been applied for community detec-
tion. The GAs in Refs. [28,29] optimize the modularity Q. Pizzuti
proposes GA-Net to optimize the “community score” criterion [23].
Similar to these GA-based community detection methods, MOCD
is also a heuristic search algorithm based on GA but different from
them in its multi-objective nature. A multi-objective community
detection algorithm MOGA-Net [24] has been proposed, which
simultaneously optimizes the CommunityScore and CommunityFit-
ness with NSGA-II. Besides differences in the components of EA (e.g.,
multi-objective optimization mechanism and objective functions),
MOCD proposes two effective model selection methods. Handle and
Knowles have applied EMO  to clustering (MOCK) [15]. The differ-
ent characteristics of the two problems (i.e., community detection
and clustering) make MOCD and MOCK have many differences in
objective functions, genetic operators and model selection meth-
ods. Many effective EMO  algorithms have been proposed, such
as NSGA-II [9] and PESA-II [6].  However, those EMO  algorithms
are designed for numerical optimization problems. Our MOCD is
designed for community detection problem.

Some multi-solutions methods have been proposed. The
Hamiltonian-based method introduced by Reichardt and Bornholdt
(RB) [27] considers the community indices of nodes as spins in a
q-state Potts model. Arenas, Fernandez and Gomez (AFG) [2] pro-
pose a multiple resolution procedure that allows the modularity
optimization to go deep into the structure. These two  methods
investigate the community structure at various resolutions through
tuning a parameter in their criteria. Essentially, they both are the
single-objective community detection algorithm. In order to obtain
multiple solutions, they need to run many times by tuning the
parameter. However, our MOCD only requires one run to obtain
a set of solutions.

6. Conclusion

In this paper, we first study the multi-objective community
detection problem and propose an effective solution MOCD. MOCD
simultaneously optimizes over two conflicting yet complementary
objective functions with evolutionary algorithm and returns a set
of community partitions. To help the DMers select proper par-
titions from those candidate partitions, we further propose two
model selection methods: Max  Q and Max–Min Distance. Through
extensive experiments on both artificial and real networks, we
demonstrate the advantages of the multi-objective community
detection. The multiple solutions returned by MOCD can reveal
community structures at different resolution levels in just one
run, which can alleviate the bias existing in the single-objective
community detection. With the proposed model selection meth-
ods, MOCD can discover more the accurate and comprehensive

community structure compared to those well-established commu-
nity detection algorithms.
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