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ABSTRACT
Heterogeneous graph neural networks (HGNNs) as an emerging
technique have shown superior capacity of dealing with heteroge-
neous information network (HIN). However, most HGNNs follow a
semi-supervised learning manner, which notably limits their wide
use in reality since labels are usually scarce in real applications. Re-
cently, contrastive learning, a self-supervised method, becomes one
of the most exciting learning paradigms and shows great potential
when there are no labels. In this paper, we study the problem of
self-supervised HGNNs and propose a novel co-contrastive learning
mechanism for HGNNs, named HeCo. Different from traditional
contrastive learning which only focuses on contrasting positive and
negative samples, HeCo employs cross-view contrastivemechanism.
Specifically, two views of a HIN (network schema and meta-path
views) are proposed to learn node embeddings, so as to capture
both of local and high-order structures simultaneously. Then the
cross-view contrastive learning, as well as a view mask mecha-
nism, is proposed, which is able to extract the positive and negative
embeddings from two views. This enables the two views to collab-
oratively supervise each other and finally learn high-level node
embeddings. Moreover, two extensions of HeCo are designed to
generate harder negative samples with high quality, which further
boosts the performance of HeCo. Extensive experiments conducted
on a variety of real-world networks show the superior performance
of the proposed methods over the state-of-the-arts.
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1 INTRODUCTION
In the real world, heterogeneous information network (HIN) or
heterogeneous graph (HG) [27] is ubiquitous, due to the capacity of
modeling various types of nodes and diverse interactions between
them, such as bibliographic network [14], biomedical network [2]
and so on. Recently, heterogeneous graph neural networks (HGNNs)
have achieved great success in dealing with HIN data, because they
are able to effectively combine the mechanism of message passing
with complex heterogeneity, so that the complex structures and rich
semantics can be well captured. So far, HGNNs have significantly
promoted the development of HIN analysis towards real-world
applications, e.g., recommender [5] and security system [6].

Basically, most HGNN studies belong to the semi-supervised
learning paradigm, i.e., they usually design different heterogeneous
message passing mechanisms to learn node embeddings, and then
the learning procedure is supervised by a part of node labels. How-
ever, the requirement that some node labels have to be known
beforehand is actually frequently violated, because it is very chal-
lenging or expensive to obtain labels in some real-world environ-
ments. For example, labeling an unknown gene accurately usually
needs the enormous knowledge of molecular biology, which is not
easy even for veteran researchers [14]. Recently, self-supervised
learning, aiming to spontaneously find supervised signals from the
data itself, becomes a promising solution for the setting without
explicit labels [23]. Contrastive learning, as one typical technique
of self-supervised learning, has attracted considerable attentions
[1, 11, 12, 30]. By extracting positive and negative samples in data,
contrastive learning aims at maximizing the similarity between
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positive samples while minimizing the similarity between nega-
tive samples. In this way, contrastive learning is able to learn the
discriminative embeddings even without labels. Despite the wide
use of contrastive learning in computer vision [1, 12] and natural
language processing [3, 20], little effort has been made towards
investigating the great potential on HIN.

In practice, designing heterogeneous graph neural networks with
contrastive learning is non-trivial, we need to carefully consider
the characteristics of HIN and contrastive learning. This requires
us to address the following three fundamental problems:

(1) How to design a heterogeneous contrastive mechanism. A HIN
consists of multiple types of nodes and relations, which naturally
implies it possesses very complex structures. For example, meta-
path, the composition of multiple relations, is usually used to cap-
ture the long-range structure in a HIN [28]. Different meta-paths
represent different semantics, each of which reflects one aspect of
HIN. To learn an effective node embedding which can fully encode
these semantics, performing contrastive learning only on single
meta-path view [24] is actually distant from sufficient. Therefore,
investigating the heterogeneous cross-view contrastive mechanism
is especially important for HGNNs.

(2) How to select proper views in a HIN. As mentioned before,
cross-view contrastive learning is desired for HGNNs. Despite that
one can extract many different views from a HIN because of the
heterogeneity, one fundamental requirement is that the selected
views should cover both of the local and high-order structures.
Network schema, a meta template of HIN [27], reflects the direct
connections between nodes, which naturally captures the local
structure. By contrast, meta-path is widely used to extract the high-
order structure. As a consequence, both of the network schema and
meta-path structure views should be carefully considered.

(3) How to set a difficult contrastive task. It is well known that a
proper contrastive task will further promote to learn a more dis-
criminative embedding [1, 12, 29]. If two views are too similar, the
supervised signal will be too weak to learn informative embedding.
So we need to make the contrastive learning on these two views
more complicated. For example, one strategy is to enhance the
information diversity in two views, and the other is to generate
harder negative samples of high quality. In short, designing a proper
contrastive task is very crucial for HGNNs.

In this paper, we study the problem of self-supervised learning
on HIN and propose a novel heterogeneous graph neural network
with co-contrastive learning (HeCo). Specifically, different from
previous contrastive learning which contrasts original network
and the corrupted network, we choose network schema and meta-
path structure as two views to collaboratively supervise each other.
In network schema view, the node embedding is learned by ag-
gregating information from its direct neighbors, which is able to
capture the local structure. In meta-path view, the node embedding
is learned by passing messages along multiple meta-paths, which
aims at capturing high-order structure. In this way, we design a
novel contrastive mechanism, which captures complex structures in
HIN. To make contrast harder, we propose a view mask mechanism
that hides different parts of network schema and meta-path, respec-
tively, which will further enhance the diversity of two views and
help extract higher-level factors from these two views. Moreover,
we propose two extensions of HeCo, which generate more negative

samples with high quality. Finally, we modestly adapt traditional
contrastive loss to the graph data, where a node has many positive
samples rather than only one, different from methods [1, 12] for
CV. With the training going on, these two views are guided by each
other and collaboratively optimize. The contributions of our work
are summarized as follows:

• To our best knowledge, this is the first attempt to study
the self-supervised heterogeneous graph neural networks
based on the cross-view contrastive learning. By contrastive
learning based on cross-view manner, the high-level factors
can be captured, enabling HGNNs to be better applied to real
world applications without label supervision.

• We propose a novel heterogeneous graph neural network
with co-contrastive learning, HeCo. HeCo innovatively em-
ploys network schema and meta-path views to collabora-
tively supervise each other, moreover, a view mask mech-
anism is designed to further enhance the contrastive per-
formance. Additionally, two extensions of HeCo, named as
HeCo_GAN and HeCo_MU, are proposed to generate nega-
tive samples with high quality.

• We conduct diverse experiments on four public datasets
and the proposed HeCo outperforms the state-of-the-arts
and even semi-supervised method, which demonstrates the
effectiveness of HeCo from various aspects.

2 RELATEDWORK
In this section,we review some closely related studies, including
heterogeneous graph neural network and contrastive learning.

Heterogeneous Graph Neural Network. Graph neural net-
works (GNNs) have attracted considerable attentions, where most
of GNNs are proposed to homogeneous graphs, and the detailed
surveys can be found in [32]. Recently, some researchers focus on
heterogeneous graphs. For example, HAN [31] uses hierarchical
attentions to depict node-level and semantic-level structures, and
on this basis, MAGNN [7] takes intermediate nodes of meta-paths
into account. GTN [33] is proposed to automatically identify useful
connections. HGT [15] is designed for Web-scale heterogeneous
networks. In unsupervised setting, HetGNN [34] samples a fixed
size of neighbors, and fuses their features using LSTMs. NSHE [36]
focuses on network schema, and preserves pairwise and network
schema proximity simultaneously. However, the above methods
can not exploit supervised signals from data itself to learn general
node embeddings.

Contrastive Learning. The approaches based on contrastive
learning learn representations by contrasting positive pairs against
negative pairs, and achieve great success [1, 12]. Here we mainly
focus on reviewing the graph related contrastive learning methods.
Specifically, DGI [30] builds local patches and global summary as
positive pairs, and utilizes Infomax [22] theory to contrast. Along
this line, GMI [25] is proposed to contrast between center node
and its local patch from node features and topological structure.
MVGRL [11] employs contrast across views and experiments com-
position between different views. In heterogeneous domain, DMGI
[24] conducts contrastive learning between original network and
corrupted network on each single view, meta-path, and designs a
consensus regularization to guide the fusion of different meta-paths.



Nevertheless, there is a lack of methods contrasting across views
in HIN so that the high-level factors can be captured.

Figure 1: A toy example of HIN (ACM) and relative illustra-
tions of meta-path and network schema.

3 PRELIMINARY
In this section, we formally define some significant concepts related
to HIN as follows:

Definition 3.1. Heterogeneous Information Network. Het-
erogeneous Information Network (HIN) is defined as a network
G = (V, E,A,R, 𝜙, 𝜑), where V and E denote sets of nodes and
edges, and it is associated with a node type mapping function
𝜙 : V → A and a edge type mapping function 𝜑 : E → R, where
A and R denote sets of object and link types, and |A + R| > 2.

Figure 1 (a) illustrates an example of HIN. There are three types
of nodes, including author (A), paper (P) and subject (S). Meanwhile,
there are two types of relations ("write" and "belong to"), i.e., author
writes paper, and paper belongs to subject.

Definition 3.2. Network Schema. The network schema, noted
as 𝑇𝐺 = (A,R), is a meta template for a HIN G. 𝑇𝐺 is a directed
graph defined over object types A, with edges as relations from R.

For example, Figure 1 (b) is the network schema of (a), in which
we can know that paper is written by author and belongs to subject.
Network schema is used to describe the direct connections between
different nodes, which represents local structure.

Definition 3.3. Meta-path. A meta-path P is defined as a path,

which is in the form of 𝐴1
𝑅1−→ 𝐴2

𝑅2−→ . . .
𝑅𝑙−→ 𝐴𝑙+1 (abbreviated

as 𝐴1𝐴2 . . . 𝐴𝑙+1), which describes a composite relation 𝑅 = 𝑅1 ◦
𝑅2 ◦ · · · ◦ 𝑅𝑙 between node types 𝐴1 and 𝐴𝑙+1, where ◦ denotes the
composition operator on relations.

For example, Figure 1 (c) shows two meta-paths extracted from
HIN in Figure 1 (a). PAP describes that two papers are written by
the same author, and PSP describes that two papers belong to the
same subject. Because meta-path is the combination of multiple
relations, it contains high-order structures.

4 THE PROPOSED MODEL: HeCo
In this section, we propose HeCo, a novel heterogeneous graph
neural network with co-contrastive learning, and the overall ar-
chitecture is shown in Figure 2. Our model encodes nodes from
network schema view and meta-path view, which fully captures

the structures of HIN. During the encoding, we creatively involve a
view mask mechanism, which makes these two views complement
and supervise mutually. With the two view-specific embeddings,
we employ a contrastive learning across these two views. Given the
high correlation between nodes, we redefine the positive samples
of a node in HIN and design a optimization strategy specially.

4.1 Node Feature Transformation
Because there are different types of nodes in a HIN, their features
usually lie in different spaces. So first, we need to project features
of all types of nodes into a common latent vector space, as shown
in Figure 2 (a). Specifically, for a node 𝑖 with type 𝜙𝑖 , we design a
type-specific mapping matrix𝑊𝜙𝑖

to transform its feature 𝑥𝑖 into
common space as follows:

ℎ𝑖 = 𝜎

(
𝑊𝜙𝑖

· 𝑥𝑖 + 𝑏𝜙𝑖

)
, (1)

where ℎ𝑖 ∈ R𝑑×1 is the projected feature of node 𝑖 , 𝜎 (·) is an
activation function, and 𝑏𝜙𝑖

denotes as vector bias, respectively.

4.2 Network Schema View Guided Encoder
Now we aim to learn the embedding of node 𝑖 under network
schema view, illustrated as Figure 2 (b). According to network
schema, we assume that the target node 𝑖 connects with 𝑆 other
types of nodes{Φ1,Φ2, . . . ,Φ𝑆 }, so the neighbors with type Φ𝑚 of
node 𝑖 can be defined as 𝑁Φ𝑚

𝑖
. For node 𝑖 , different types of neigh-

bors contribute differently to its embedding, and so do the different
nodes with the same type. So, we employ attention mechanism here
in node-level and type-level to hierarchically aggregate messages
from other types of neighbors to target node 𝑖 . Specifically, we first
apply node-level attention to fuse neighbors with type Φ𝑚 :

ℎ
Φ𝑚
𝑖

= 𝜎
©­­«

∑
𝑗 ∈𝑁 Φ𝑚

𝑖

𝛼
Φ𝑚
𝑖, 𝑗

· ℎ 𝑗
ª®®¬ , (2)

where 𝜎 is a nonlinear activation, ℎ 𝑗 is the projected feature of node
𝑗 , and 𝛼Φ𝑚

𝑖, 𝑗
denotes the attention value of node 𝑗 with type Φ𝑚 to

node 𝑖 . It can be calculated as follows:

𝛼
Φ𝑚
𝑖, 𝑗

=

exp
(
𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈

(
a⊤Φ𝑚 · [ℎ𝑖 | |ℎ 𝑗 ]

))
∑

𝑙 ∈𝑁 Φ𝑚
𝑖

exp
(
𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈

(
a⊤Φ𝑚 · [ℎ𝑖 | |ℎ𝑙 ]

)) , (3)

where aΦ𝑚 ∈ R2𝑑×1 is the node-level attention vector for Φ𝑚 and
|| denotes concatenate operation. Please notice that in practice,
we do not aggregate the information from all the neighbors in
𝑁
Φ𝑚
𝑖

, but we randomly sample a part of neighbors every epoch.
Specifically, if the number of neighbors with type Φ𝑚 exceeds a
predefined threshold 𝑇Φ𝑚 , we unrepeatably select 𝑇Φ𝑚 neighbors
as 𝑁Φ𝑚

𝑖
, otherwise the 𝑇Φ𝑚 neighbors are selected repeatably. In

this way, we ensure that every node aggregates the same amount of
information from neighbors, and promote diversity of embeddings
in each epoch under this view, which will make following contrast
task more challenging.

Once we get all type embeddings {ℎΦ1
𝑖
, ..., ℎ

Φ𝑆

𝑖
}, we utilize type-

level attention to fuse them together to get the final embedding



Figure 2: The overall architecture of our proposed HeCo.

𝑧𝑠𝑐
𝑖

for node i under network schema view. First, we measure the
weight of each node type as follows:

𝑤Φ𝑚 =
1
|𝑉 |

∑
𝑖∈𝑉

a⊤𝑠𝑐 · tanh
(
W𝑠𝑐ℎ

Φ𝑚
𝑖

+ b𝑠𝑐
)
,

𝛽Φ𝑚 =
exp

(
𝑤Φ𝑚

)∑𝑆
𝑖=1 exp

(
𝑤Φ𝑖

) , (4)

where𝑉 is the set of target nodes,W𝑠𝑐 ∈ R𝑑×𝑑 and b𝑠𝑐 ∈ R𝑑×1 are
learnable parameters, and a𝑠𝑐 denotes type-level attention vector.
𝛽Φ𝑚 is interpreted as the importance of type Φ𝑚 to target node 𝑖 .
So, we weighted sum the type embeddings to get 𝑧𝑠𝑐

𝑖
:

𝑧𝑠𝑐𝑖 =

𝑆∑
𝑚=1

𝛽Φ𝑚 · ℎΦ𝑚
𝑖
. (5)

4.3 Meta-path View Guided Encoder
Here we aim to learn the node embedding in the view of high-order
meta-path structure, described in Figure 2 (c). Specifically, given a
meta-path P𝑛 from𝑀 meta-paths {P1,P2, . . . ,P𝑀 } that start from
node 𝑖 , we can get themeta-path based neighbors𝑁 P𝑛

𝑖
. For example,

as shown in Figure 1 (a), 𝑃2 is a neighbor of 𝑃3 based on meta-path
𝑃𝐴𝑃 . Each meta-path represents one semantic similarity, and we
apply meta-path specific GCN [19] to encode this characteristic:

ℎ
P𝑛

𝑖
=

1
𝑑𝑖 + 1

ℎ𝑖 +
∑

𝑗 ∈𝑁 P𝑛
𝑖

1√
(𝑑𝑖 + 1) (𝑑 𝑗 + 1)

ℎ 𝑗 , (6)

where 𝑑𝑖 and 𝑑 𝑗 are degrees of node 𝑖 and 𝑗 , and ℎ𝑖 and ℎ 𝑗 are their
projected features, respectively. With 𝑀 meta-paths, we can get
𝑀 embeddings {ℎP1

𝑖
, ..., ℎ

P𝑀

𝑖
} for node 𝑖 . Then we utilize semantic-

level attentions to fuse them into the final embedding 𝑧𝑚𝑝

𝑖
under

the meta-path view:

𝑧
𝑚𝑝

𝑖
=

𝑀∑
𝑛=1

𝛽P𝑛
· ℎP𝑛

𝑖
, (7)

Figure 3: A schematic diagram of view mask mechanism.

where 𝛽P𝑛
weighs the importance of meta-path P𝑛 , which is cal-

culated as follows:

𝑤P𝑛
=

1
|𝑉 |

∑
𝑖∈𝑉

a⊤𝑚𝑝 · tanh
(
W𝑚𝑝ℎ

P𝑛

𝑖
+ b𝑚𝑝

)
,

𝛽P𝑛
=

exp
(
𝑤P𝑛

)∑𝑀
𝑖=1 exp

(
𝑤P𝑖

) , (8)

whereW𝑚𝑝 ∈ R𝑑×𝑑 and b𝑚𝑝 ∈ R𝑑×1 are the learnable parameters,
and a𝑚𝑝 denotes the semantic-level attention vector.

4.4 View Mask Mechanism
During the generation of 𝑧𝑠𝑐

𝑖
and 𝑧𝑚𝑝

𝑖
, we design a view mask mech-

anism that hides different parts of network schema and meta-path
views, respectively. In particular, we give a schematic diagram on
ACM in Figure 3, where the target node is 𝑃1. In the process of net-
work schema encoding, 𝑃1 only aggregates its neighbors including
authors 𝐴1, 𝐴2 and subject 𝑆1 into 𝑧𝑠𝑐1 , but the message from itself
is masked. While in the process of meta-path encoding, message
only passes along meta-paths (e.g. PAP, PSP) from 𝑃2 and 𝑃3 to



target 𝑃1 to generate 𝑧𝑚𝑝

1 , while the information of intermediate
nodes 𝐴1 and 𝑆1 are discarded. Therefore, the embeddings of node
𝑃1 learned from these two parts are correlated but also complemen-
tary. They can supervise the training of each other, which presents
a collaborative trend.

4.5 Collaboratively Contrastive Optimization
After getting the 𝑧𝑠𝑐

𝑖
and 𝑧𝑚𝑝

𝑖
for node 𝑖 from the above two views,

we feed them into a MLP with one hidden layer to map them into
the space where contrastive loss is calculated:

𝑧𝑠𝑐𝑖 _𝑝𝑟𝑜 𝑗 =𝑊 (2)𝜎
(
𝑊 (1)𝑧𝑠𝑐𝑖 + 𝑏 (1)

)
+ 𝑏 (2) ,

𝑧
𝑚𝑝

𝑖
_𝑝𝑟𝑜 𝑗 =𝑊 (2)𝜎

(
𝑊 (1)𝑧𝑚𝑝

𝑖
+ 𝑏 (1)

)
+ 𝑏 (2) ,

(9)

where 𝜎 is ELU non-linear function. It should be pointed out that
{𝑊 (2) ,𝑊 (1) , 𝑏 (2) , 𝑏 (1) } are shared by two views embeddings. Next,
when calculate contrastive loss, we need to define positive and neg-
ative samples in HIN. In computer vision, generally, one image only
considers its augmentations as positive samples, and treats other
images as negative samples [1, 12]. In a HIN, given a node under
network schema view, we can simply define its embedding learned
by meta-path view as the positive sample. However, consider that
nodes are highly-correlated because of edges, we propose a new
positive selection strategy, i.e., if two nodes are connected by many
meta-paths, they are positive samples, as shown in Figure 2 (d)
where links between papers represent they are positive samples
of each other. One advantage of such strategy is that the selected
positive samples can well reflect local structure of the target node.

For node 𝑖 and 𝑗 , we first define a function C𝑖 (·) to count the
number of meta-paths connecting these two nodes:

C𝑖 ( 𝑗) =
𝑀∑
𝑛=1

1

(
𝑗 ∈ 𝑁 P𝑛

𝑖

)
, (10)

where 1(·) is the indicator function. Then we construct a set 𝑆𝑖 =
{ 𝑗 | 𝑗 ∈ 𝑉 𝑎𝑛𝑑 C𝑖 ( 𝑗) ≠ 0} and sort it in the descending order based
on the value ofC𝑖 (·). Next we set a threshold𝑇𝑝𝑜𝑠 , and if |𝑆𝑖 | > 𝑇𝑝𝑜𝑠 ,
we select first 𝑇𝑝𝑜𝑠 nodes from 𝑆𝑖 as positive samples of 𝑖 , denotes
as P𝑖 , otherwise all nodes in 𝑆𝑖 are retained. And we naturally treat
all left nodes as negative samples of 𝑖 , denotes as N𝑖 .

With the positive sample set P𝑖 and negative sample set N𝑖 , we
have the following contrastive loss under network schema view:

L𝑠𝑐
𝑖 = − log

∑
𝑗 ∈P𝑖 𝑒𝑥𝑝

(
𝑠𝑖𝑚

(
𝑧𝑠𝑐
𝑖
_𝑝𝑟𝑜 𝑗, 𝑧𝑚𝑝

𝑗
_𝑝𝑟𝑜 𝑗

)
/𝜏
)

∑
𝑘∈{P𝑖

⋃
N𝑖 } 𝑒𝑥𝑝

(
𝑠𝑖𝑚

(
𝑧𝑠𝑐
𝑖
_𝑝𝑟𝑜 𝑗, 𝑧𝑚𝑝

𝑘
_𝑝𝑟𝑜 𝑗

)
/𝜏
) ,
(11)

where 𝑠𝑖𝑚(𝑢, 𝑣) denotes the cosine similarity between two vectors
u and v, and 𝜏 denotes a temperature parameter. We can see that
different from traditional contrastive loss [1, 12], which usually only
focuses on one positive pair in the numerator of eq.(11), here we
consider multiple positive pairs. Also please note that for two nodes
in a pair, the target embedding is from the network schema view
(𝑧𝑠𝑐
𝑖
_𝑝𝑟𝑜 𝑗 ) and the embeddings of positive and negative samples

are from the meta-path view (𝑧𝑚𝑝

𝑘
_𝑝𝑟𝑜 𝑗 ). In this way, we realize

the cross-view self-supervision.

The contrastive loss L𝑚𝑝

𝑖
is similar as L𝑠𝑐

𝑖
, but differently, the

target embedding is from the meta-path view while the embeddings
of positive and negative samples are from the network schema view.
The overall objective is given as follows:

J =
1
|𝑉 |

∑
𝑖∈𝑉

[
𝜆 · L𝑠𝑐

𝑖 + (1 − 𝜆) · L𝑚𝑝

𝑖

]
, (12)

where 𝜆 is a coefficient to balance the effect of two views. We can
optimize the proposed model via back propagation and learn the
embeddings of nodes. In the end, we use 𝑧𝑚𝑝 to perform down-
stream tasks because nodes of target type explicitly participant into
the generation of 𝑧𝑚𝑝 .

4.6 Model Extension
It is well established that a harder negative sample is very important
for contrastive learning [16]. Therefore, to further improve the
performance of HeCo, here we propose two extended models with
new negative sample generation strategies.

HeCo_GAN GAN-based models [9, 13] consist of a generator
and a discriminator, and aim at forcing generator to generate fake
samples, which can finally fool a well-trained discriminator. Besides
negatives selected from original HIN, we additionally generate
harder negatives with GAN. Specifically, HeCo_GAN is composed
of three components: the proposed HeCo, a discriminator D and a
generator G. We alternatively perform the following two steps and
more details are provided in the Appendix B:

(1) We utilize two view-specific embeddings to train D and G
alternatively. First, we train D to identify embeddings from two
views as positives and that generated from G as negatives. Then, we
train G to generate samples to fool D. The two steps are alternated
for some interactions to make D and G trained.

(2) We utilize a well-trained G to generate samples, which can
be viewed as the new negative samples with high quality. Then,
we continue to train HeCo with the newly generated and original
negative samples for some epochs.

HeCo_MUMixUp [35] is proposed to efficiently improve results
in supervised learning by adding arbitrary two samples to create
a new one. MoCHi [16] introduces this strategy into contrastive
learning , who mixes the hard negatives to make harder negatives.
Inspired by them, we bring this strategy into HIN field for the
first time. We can get cosine similarities between node 𝑖 and nodes
from N𝑖 during calculating eq.(11), and sort them in the descending
order. Then, we select first top k negative samples as the hardest
negatives, and randomly add them to create new k negatives, which
are involved in training. It is worth mentioning that there are no
learnable parameters in this version, which is very efficient.

5 EXPERIMENTS
5.1 Experimental Setup
Datasets We employ the following four real HIN datasets, where
the basic information are summarized in Table 1.

• ACM [36]. The target nodes are papers, which are divided
into three classes. For each paper, there are 3.33 authors
averagely, and one subject.



Table 1: The statistics of the datasets

Dataset Node Relation Meta-path

ACM
paper (P):4019
author (A):7167
subject (S):60

P-A:13407
P-S:4019

PAP
PSP

DBLP

author (A):4057
paper (P):14328
conference (C):20
term (T):7723

P-A:19645
P-C:14328
P-T:85810

APA
APCPA
APTPA

Freebase

movie (M):3492
actor (A):33401
direct (D):2502
writer (W):4459

M-A:65341
M-D:3762
M-W:6414

MAM
MDM
MWM

AMiner
paper (P):6564
author (A):13329

reference (R):35890

P-A:18007
P-R:58831

PAP
PRP

• DBLP [7]. The target nodes are authors, which are divided
into four classes. For each author, there are 4.84 papers aver-
agely.

• Freebase [21]. The target nodes are movies, which are di-
vided into three classes. For each movie, there are 18.7 actors,
1.07 directors and 1.83 writers averagely.

• AMiner [13]. The target nodes are papers. We extract a
subset of original dataset, where papers are divided into
four classes. For each paper, there are 2.74 authors and 8.96
references averagely.

Baselines We compare the proposed HeCo with three categories
of baselines: unsupervised homogeneous methods { GraphSAGE
[10], GAE [18], DGI [30] }, unsupervised heterogeneous methods
{ Mp2vec [4], HERec [26], HetGNN [34], DMGI [24] }, and a semi-
supervised heterogeneous method HAN [31].
Implementation Details For random walk-based methods (i.e.,
Mp2vec, HERec, HetGNN), we set the number of walks per node to
40, the walk length to 100 and the window size to 5. For GraphSAGE,
GAE, Mp2vec, HERec and DGI, we test all the meta-paths for them
and report the best performance. In terms of other parameters, we
follow the settings in their original papers.

For the proposed HeCo, we use Glorot initialization [8], and
Adam [17] optimizer. We search on learning rate from 1e-4 to 5e-3,
and tune patience for early stopping from 5 to 50. For dropout
rate, we test ranging from 0.1 to 0.5 with step 0.05, and 𝜏 is tuned
from 0.5 to 0.9 with step 0.05. Moreover, for meta-path view we
use one-layer GCN for every meta-path, and for network schema
view we only consider interactions between nodes of target type
and their one-hop neighbors of other types. The source code and
datasets are publicly available on Github 1.

For all methods, we set the embedding dimension as 64 and
randomly run 10 times and report the average results. For every
dataset, we only use original attributes of target nodes, and assign
one-hot id vectors to nodes of other types, if they are needed. For
the reproducibility, we report some parameters in supplement A.3.

1https://github.com/liun-online/HeCo

5.2 Node Classification
The learned embeddings of nodes are used to train a linear classifier.
To more comprehensively evaluate our model, we choose 20, 40,
60 labeled nodes per class as training set, and select 1000 nodes as
validation and 1000 as test set respectively, for each dataset. We
follow DMGI that report the test performance when performance
on validation gives the best result. We use common evaluation
metrics, including Macro-F1, Micro-F1 and AUC. The results are
reported in Table 3. As can be seen, the proposed HeCo generally
outperforms all the other methods on all datasets and all splits,
even compared with HAN, a semi-supervised method. We can also
see that HeCo outperforms DMGI in most cases, while DMGI is
even worse than other baselines with some settings, indicating that
single-view is noisy and incomplete. So, performing contrastive
learning across views is effective. Moreover, even HAN utilizes the
label information, HeCo performs better than it in all cases. This
well indicates the great potential of cross-view contrastive learning.

5.3 Node Clustering
In this task, we utilize K-means algorithm to the learned embeddings
of all nodes and adopt normalized mutual information (NMI) and
adjusted rand index (ARI) to assess the quality of the clustering
results. To alleviate the instability due to different initial values, we
repeat the process for 10 times, and report average results, shown
in Table 2. Notice that, we do not compare with HAN, because it
has known the labels of training set and been guided by validation.
As we can see, HeCo consistently achieves the best results on all
datasets, which proves the effectiveness of HeCo from another angle.
Moreover, HeCo outperforms DMGI in all cases, further suggesting
the importance of contrasting across views.

Table 2: Quantitative results on node clustering.

Datasets ACM DBLP Freebase AMiner
Metrics NMI ARI NMI ARI NMI ARI NMI ARI

GraphSage 29.20 27.72 51.50 36.40 9.05 10.49 15.74 10.10
GAE 27.42 24.49 72.59 77.31 19.03 14.10 28.58 20.90

Mp2vec 48.43 34.65 73.55 77.70 16.47 17.32 30.80 25.26
HERec 47.54 35.67 70.21 73.99 19.76 19.36 27.82 20.16
HetGNN 41.53 34.81 69.79 75.34 12.25 15.01 21.46 26.60
DGI 51.73 41.16 59.23 61.85 18.34 11.29 22.06 15.93
DMGI 51.66 46.64 70.06 75.46 16.98 16.91 19.24 20.09
HeCo 56.87 56.94 74.51 80.17 20.38 20.98 32.26 28.64

5.4 Visualization
To provide a more intuitive evaluation, we conduct embedding vi-
sualization on ACM dataset. We plot learnt embeddings of Mp2vec,
DGI, DMGI and HeCo using t-SNE, and the results are shown in
Figure 4, in which different colors mean different labels.

We can see that Mp2vec and DGI present blurred boundaries
between different types of nodes, because they cannot fuse all kinds
of semantics. For DMGI, nodes are still mixed to some degree. The
proposed HeCo correctly separates different nodes with relatively
clear boundaries. Moreover, we calculate the silhouette score of
different clusters, and HeCo also outperforms other three methods,
demonstrating the effectiveness of HeCo again.

https://github.com/liun-online/HeCo


Table 3: Quantitative results (%±𝜎) on node classification.

Datasets Metric Split GraphSAGE GAE Mp2vec HERec HetGNN HAN DGI DMGI HeCo

ACM

Ma-F1
20 47.13±4.7 62.72±3.1 51.91±0.9 55.13±1.5 72.11±0.9 85.66±2.1 79.27±3.8 87.86±0.2 88.56±0.8
40 55.96±6.8 61.61±3.2 62.41±0.6 61.21±0.8 72.02±0.4 87.47±1.1 80.23±3.3 86.23±0.8 87.61±0.5
60 56.59±5.7 61.67±2.9 61.13±0.4 64.35±0.8 74.33±0.6 88.41±1.1 80.03±3.3 87.97±0.4 89.04±0.5

Mi-F1
20 49.72±5.5 68.02±1.9 53.13±0.9 57.47±1.5 71.89±1.1 85.11±2.2 79.63±3.5 87.60±0.8 88.13±0.8
40 60.98±3.5 66.38±1.9 64.43±0.6 62.62±0.9 74.46±0.8 87.21±1.2 80.41±3.0 86.02±0.9 87.45±0.5
60 60.72±4.3 65.71±2.2 62.72±0.3 65.15±0.9 76.08±0.7 88.10±1.2 80.15±3.2 87.82±0.5 88.71±0.5

AUC
20 65.88±3.7 79.50±2.4 71.66±0.7 75.44±1.3 84.36±1.0 93.47±1.5 91.47±2.3 96.72±0.3 96.49±0.3
40 71.06±5.2 79.14±2.5 80.48±0.4 79.84±0.5 85.01±0.6 94.84±0.9 91.52±2.3 96.35±0.3 96.40±0.4
60 70.45±6.2 77.90±2.8 79.33±0.4 81.64±0.7 87.64±0.7 94.68±1.4 91.41±1.9 96.79±0.2 96.55±0.3

DBLP

Ma-F1
20 71.97±8.4 90.90±0.1 88.98±0.2 89.57±0.4 89.51±1.1 89.31±0.9 87.93±2.4 89.94±0.4 91.28±0.2
40 73.69±8.4 89.60±0.3 88.68±0.2 89.73±0.4 88.61±0.8 88.87±1.0 88.62±0.6 89.25±0.4 90.34±0.3
60 73.86±8.1 90.08±0.2 90.25±0.1 90.18±0.3 89.56±0.5 89.20±0.8 89.19±0.9 89.46±0.6 90.64±0.3

Mi-F1
20 71.44±8.7 91.55±0.1 89.67±0.1 90.24±0.4 90.11±1.0 90.16±0.9 88.72±2.6 90.78±0.3 91.97±0.2
40 73.61±8.6 90.00±0.3 89.14±0.2 90.15±0.4 89.03±0.7 89.47±0.9 89.22±0.5 89.92±0.4 90.76±0.3
60 74.05±8.3 90.95±0.2 91.17±0.1 91.01±0.3 90.43±0.6 90.34±0.8 90.35±0.8 90.66±0.5 91.59±0.2

AUC
20 90.59±4.3 98.15±0.1 97.69±0.0 98.21±0.2 97.96±0.4 98.07±0.6 96.99±1.4 97.75±0.3 98.32±0.1
40 91.42±4.0 97.85±0.1 97.08±0.0 97.93±0.1 97.70±0.3 97.48±0.6 97.12±0.4 97.23±0.2 98.06±0.1
60 91.73±3.8 98.37±0.1 98.00±0.0 98.49±0.1 97.97±0.2 97.96±0.5 97.76±0.5 97.72±0.4 98.59±0.1

Freebase

Ma-F1
20 45.14±4.5 53.81±0.6 53.96±0.7 55.78±0.5 52.72±1.0 53.16±2.8 54.90±0.7 55.79±0.9 59.23±0.7
40 44.88±4.1 52.44±2.3 57.80±1.1 59.28±0.6 48.57±0.5 59.63±2.3 53.40±1.4 49.88±1.9 61.19±0.6
60 45.16±3.1 50.65±0.4 55.94±0.7 56.50±0.4 52.37±0.8 56.77±1.7 53.81±1.1 52.10±0.7 60.13±1.3

Mi-F1
20 54.83±3.0 55.20±0.7 56.23±0.8 57.92±0.5 56.85±0.9 57.24±3.2 58.16±0.9 58.26±0.9 61.72±0.6
40 57.08±3.2 56.05±2.0 61.01±1.3 62.71±0.7 53.96±1.1 63.74±2.7 57.82±0.8 54.28±1.6 64.03±0.7
60 55.92±3.2 53.85±0.4 58.74±0.8 58.57±0.5 56.84±0.7 61.06±2.0 57.96±0.7 56.69±1.2 63.61±1.6

AUC
20 67.63±5.0 73.03±0.7 71.78±0.7 73.89±0.4 70.84±0.7 73.26±2.1 72.80±0.6 73.19±1.2 76.22±0.8
40 66.42±4.7 74.05±0.9 75.51±0.8 76.08±0.4 69.48±0.2 77.74±1.2 72.97±1.1 70.77±1.6 78.44±0.5
60 66.78±3.5 71.75±0.4 74.78±0.4 74.89±0.4 71.01±0.5 75.69±1.5 73.32±0.9 73.17±1.4 78.04±0.4

AMiner

Ma-F1
20 42.46±2.5 60.22±2.0 54.78±0.5 58.32±1.1 50.06±0.9 56.07±3.2 51.61±3.2 59.50±2.1 71.38±1.1
40 45.77±1.5 65.66±1.5 64.77±0.5 64.50±0.7 58.97±0.9 63.85±1.5 54.72±2.6 61.92±2.1 73.75±0.5
60 44.91±2.0 63.74±1.6 60.65±0.3 65.53±0.7 57.34±1.4 62.02±1.2 55.45±2.4 61.15±2.5 75.80±1.8

Mi-F1
20 49.68±3.1 65.78±2.9 60.82±0.4 63.64±1.1 61.49±2.5 68.86±4.6 62.39±3.9 63.93±3.3 78.81±1.3
40 52.10±2.2 71.34±1.8 69.66±0.6 71.57±0.7 68.47±2.2 76.89±1.6 63.87±2.9 63.60±2.5 80.53±0.7
60 51.36±2.2 67.70±1.9 63.92±0.5 69.76±0.8 65.61±2.2 74.73±1.4 63.10±3.0 62.51±2.6 82.46±1.4

AUC
20 70.86±2.5 85.39±1.0 81.22±0.3 83.35±0.5 77.96±1.4 78.92±2.3 75.89±2.2 85.34±0.9 90.82±0.6
40 74.44±1.3 88.29±1.0 88.82±0.2 88.70±0.4 83.14±1.6 80.72±2.1 77.86±2.1 88.02±1.3 92.11±0.6
60 74.16±1.3 86.92±0.8 85.57±0.2 87.74±0.5 84.77±0.9 80.39±1.5 77.21±1.4 86.20±1.7 92.40±0.7

(a) Mp2vec (b) DGI (c) DMGI (d) HeCo

Figure 4: Visualization of the learned node embedding on ACM. The Silhouette scores for (a) (b) (c) (d) are 0.0292, 0.1862, 0.3015
and 0.3642, respectively.

5.5 Variant Analysis
In this section, we design two variants of proposed HeCo: HeCo_sc
and HeCo_mp. For variant HeCo_sc, nodes are only encoded in

network schema view, and the embeddings of corresponding posi-
tive and negatives samples also come from network schema view,
rather than meta-path view. For variant HeCo_mp, the practice
is similar, where we only focus on meta-path view and neglect



network schema view. We conduct comparison between them and
HeCo on ACM and DBLP, and report the results of 40 labeled nodes
per class, which are given in Figure 5.

From Figure 5, some conclusions are got as follows: (1) The re-
sults of HeCo are consistently better than two variants, indicating
the effectiveness and necessity of the cross-view contrastive learn-
ing. (2) The performance of HeCo_mp is also very competitive,
which demonstrates that meta-path is a powerful tool to handle
the heterogeneity. (3) HeCo_sc is the worst one, which makes us
realize the necessity of involving the features of target nodes into
embeddings if contrast is done only in a single view.

(a) ACM (b) DBLP

Figure 5: The comparison of HeCo and its variants.

5.6 Collaborative Trend Analysis
One salient property of HeCo is the cross-view collaborative mecha-
nism, i.e., HeCo employs the network schema and meta-path views
to collaboratively supervise each other to learn the embeddings. In
this section, we examine the changing trends of type-level atten-
tion 𝛽Φ in network schema view and semantic-level attention 𝛽P
in meta-path view w.r.t epochs, and the results are plotted in Figure
6. For both ACM and AMiner, the changing trends of two views are
collaborative and consistent. Specifically, for ACM, 𝛽Φ of type A
is higher than type S, and 𝛽P of meta-path PAP also exceeds that
of PSP. For AMiner, type R and meta-path PRP are more impor-
tant in two views respectively. This indicates that network schema
view and meta-path view adapt for each other during training and
collaboratively optimize by contrasting each other.

(a) ACM (b) AMiner

Figure 6: The collaborative changing trends of attentions in
two views w.r.t epochs.

5.7 Model Extension Analysis
In this section, we examine results of our extensions. As is shown
above, DMGI is a rather competitive method on ACM. So, we com-
pare our two extensionswith basemodel andDMGI on classification
and clustering tasks using ACM. The results is shown in Table 4.

From the table, we can see that the proposed two versions gen-
erally outperform base model and DMGI, especially the version of
HeCo_GAN, which improves the results with a clear margin. As
expected, GAN based method can generate harder negatives that
are closer to positive distributions. HeCo_MU is the second best in
most cases. The better performance of HeCo_GAN and HeCo_MU
indicates that more and high-quality negative samples are useful
for contrastive learning in general.

Table 4: Evaluation of extended models on various tasks us-
ing ACM (Task 1: Classification; Task 2: Clustering).

Task 1 DMGI HeCo HeCo_MU HeCo_GAN

Ma
20 87.86±0.2 88.56±0.8 88.65±0.8 89.22±1.1
40 86.23±0.8 87.61±0.5 87.78±1.7 88.61±1.6
60 87.97±0.4 89.04±0.5 89.83±0.5 89.55±1.3

Mi
20 87.60±0.8 88.13±0.8 88.39±0.9 88.92±0.9
40 86.02±0.9 87.45±0.5 87.66±1.7 88.48±1.7
60 87.82±0.5 88.71±0.5 89.52±0.5 89.29±1.4

AUC
20 96.72±0.3 96.49±0.3 96.38±0.5 96.91±0.3
40 96.35±0.3 96.40±0.4 96.54±0.5 97.13±0.5
60 96.79±0.2 96.55±0.3 96.67±0.7 97.12±0.4

Task 2 DMGI HeCo HeCo_MU HeCo_GAN
NMI 51.66 56.87 58.17 59.34
ARI 46.64 56.94 59.41 61.48

5.8 Analysis of Hyper-parameters
In this section, we systematically investigate the sensitivity of two
main parameters: the threshold of positives 𝑇𝑝𝑜𝑠 and the threshold
of sampled neighbors with 𝑇Φ𝑚 . We conduct node classification on
ACM and AMiner datasets and report the Micro-F1 values.

Analysis of𝑇𝑝𝑜𝑠 . The threshold𝑇𝑝𝑜𝑠 determines the number of
positive samples. We vary the value of it and corresponding results
are shown in Figure 7. With the increase of 𝑇𝑝𝑜𝑠 , the performance
goes up first and then declines, and optimum point for ACM is at 7
and at 15 for AMiner. For both datasets, three curves representing
different label rates show similar changing trends.

Analysis of 𝑇Φ𝑚 . To make contrast harder, for target nodes, we
randomly sample 𝑇Φ𝑚 neighbors of Φ𝑚 type, repeatably or not.
We again change the value of 𝑇Φ𝑚 . It should be pointed out that in
ACM, every paper only belongs to one subject (S), so we just change
the threshold of type A. The results are shown in Figure 8. As can
be seen, ACM is sensitive to 𝑇Φ𝑚 of type A, and the best result is
achieved when 𝑇Φ𝑚 = 7. However, AMiner behaves stably with
type A or type R. So in our main experiments, we set the 𝑇Φ𝑚 = 3
for A and 𝑇Φ𝑚 = 8 for R. Additionally, we also test the case that
aggregates all neighbors without sampling, which is marked as "all"
in x-axis shown in the figure. In general, "all" cannot perform very
well, indicating the usefulness of this sampling strategy.



(a) ACM (b) AMiner

Figure 7: Analysis of the threshold of positive samples.

(a) ACM: type A (b) AMiner: type A (c) AMiner: type R

Figure 8: Analysis of the number of sampled neighbors.

6 CONCLUSION
In this paper, we propose a novel self-supervised heterogeneous
graph neural networks with cross-view contrastive learning, named
HeCo. HeCo employs network schema and meta-path as two views
to capture both of local and high-order structures, and performs
the contrastive learning across them. These two views are mutually
supervised and finally collaboratively learn the node embeddings.
Moreover, a view mask mechanism and two extensions of HeCo are
designed to make the contrastive learning harder, so as to further
improve the performance of HeCo. Extensive experimental results,
as well as the collaboratively changing trends between these two
views, verify the effectiveness of HeCo.
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A SUPPLEMENT
In the supplement, for the reproducibility, we provide all the base-
lines and datasets websites. The implementation details, including
the detailed hyper-parameter values, are also provided.

A.1 Baselines
The publicly available implementations of baselines can be found
at the following URLs:

• GraphSAGE: https://github.com/williamleif/GraphSAGE
• GAE: https://github.com/tkipf/gae
• Mp2vec: https://ericdongyx.github.io/metapath2vec/m2v.html
• HERec: https://github.com/librahu/HERec
• HetGNN: https://github.com/chuxuzhang/KDD2019_HetGNN
• HAN: https://github.com/Jhy1993/HAN
• DGI: https://github.com/PetarV-/DGI
• DMGI: https://github.com/pcy1302/DMGI

A.2 Datasets
The datasets used in experiments can be found in these URLs:

• ACM: https://github.com/Andy-Border/NSHE
• DBLP: https://github.com/cynricfu/MAGNN
• Freebase: https://github.com/dingdanhao110/Conch
• AMiner: https://github.com/librahu/HIN-Datasets-for-Recommen-
dation-and-Network-Embedding

A.3 Implementation Details
We implement HeCo in PyTorch, and list some important parameter
values used in our model in Table 5. In this table, lr is the learning
rate, and sample_num is𝑇Φ𝑚 , the threshold of sampled neighbors of
type Φ𝑚 . It should be pointed that author only connects with paper
in the network schema of DBLP, so we only set the threshold for
type P. dropout_feat is the dropout value used on projected features,
and dropout_attn is the dropout of attentions in two views.

B DETAILS OF HeCo_GAN
In this section, we further explain the training process of HeCo_GAN,
proposed in section 4.6.

HeCo_GAN contains the proposed HeCo, a discriminator D and
a generator G. At the beginning of the train, the parameters of
HeCo should be warmed up to improve the quality of generated
embeddings. So, we first only train HeCo for 𝐾0 epochs, which is
a hyper-parameter. Then, we get 𝑧𝑠𝑐 and 𝑧𝑚𝑝 and utilize them to
train D and G alternatively, which is as following two steps:

• Freeze G and train D for 𝐾𝐷 epochs. For target node i and its
embedding 𝑧𝑠𝑐

𝑖
under network schema view, we can get the

embeddings of nodes in P𝑖 under meta-path view. D outputs
a probability that a sample 𝑗 is from P𝑖 given 𝑧𝑠𝑐𝑖 :

𝐷
(
𝑧 𝑗 |𝑧𝑠𝑐𝑖

)
=

1

1 + exp
(
−𝑧𝑠𝑐

𝑖
⊤𝑀𝐷

𝑚𝑝𝑧 𝑗

) , (13)

where 𝑀𝐷
𝑚𝑝 is a matrix that projects 𝑧𝑠𝑐

𝑖
into the space of

meta-path view. And the objective function of D under the

network schema view is:

L𝑠𝑐
𝑖𝐷

= − E
𝑗∼p𝑖

log𝐷
(
𝑧
𝑚𝑝

𝑗
|𝑧𝑠𝑐𝑖

)
− E

𝑧
𝑚𝑝

𝑖
∼𝐺 (𝑧𝑠𝑐𝑖 )

log
(
1 − 𝐷

(
𝑧
𝑚𝑝

𝑖
|𝑧𝑠𝑐𝑖

))
,

(14)

where p𝑖 ⊂ P𝑖 , which is chosen randomly, and 𝑧𝑚𝑝

𝑖
is gen-

erated by generator based on 𝑧𝑠𝑐
𝑖
. This shows that given 𝑧𝑠𝑐

𝑖
,

D aims to identify its positive samples from meta-path view
as positive and samples generated by G as negative. Notice
that the number of fake samples from G is the same as |p𝑖 |.
Similarly, we can also get the objective function of D under
the meta-path view L𝑚𝑝

𝑖𝐷
. So, we train the discriminator D

by minimizing the following loss:

L𝐷 =
1
|𝐵 |

∑
𝑖∈𝐵

1
2

(
L𝑠𝑐
𝑖𝐷

+ L𝑚𝑝

𝑖𝐷

)
, (15)

where𝐵 denotes the batch of nodes that are trained in current
epoch.

• Freeze D and train G for𝐾𝐺 epochs. G gradually improves the
quality of generated samples by fooling D. Specifically, given
the target 𝑖 and its embedding 𝑧𝑠𝑐

𝑖
under network schema

view, G first constructs a Gaussian distribution center on 𝑖 ,
and draws samples from it, which is related to 𝑧𝑠𝑐

𝑖
:

𝑒
𝑚𝑝

𝑖
∼ N

(
𝑧𝑠𝑐𝑖

⊤
𝑀𝐺
𝑚𝑝 , 𝜎

2I
)
, (16)

where𝑀𝐺
𝑚𝑝 is also a projected function to map 𝑧𝑠𝑐

𝑖
into meta-

path space, and 𝜎2I is covariance. We then apply one-layer
MLP to enhance the expression of the fake samples:

𝑧
𝑚𝑝

𝑖
= 𝐺

(
𝑧𝑠𝑐𝑖

)
= 𝜎

(
𝑊𝑒

𝑚𝑝

𝑖
+ 𝑏

)
. (17)

Here, 𝜎 ,𝑊 and𝑏 denote non-linear activation, weight matrix
and bias vector, respectively. To fool the discriminator, gen-
erator is trained under network schema view by following
loss:

L𝑠𝑐
𝑖𝐺

= − E
𝑧
𝑚𝑝

𝑖
∼𝐺 (𝑧𝑠𝑐𝑖 )

log𝐷 (𝑧𝑚𝑝

𝑖
|𝑧𝑠𝑐𝑖 ),

L𝐺 =
1
|𝐵 |

∑
𝑖∼𝐵

1
2

(
L𝑠𝑐
𝑖𝐺

+ L𝑚𝑝

𝑖𝐺

)
.

(18)

Again, L𝑚𝑝

𝑖𝐺
is attained like L𝑠𝑐

𝑖𝐺
.

These two steps are alternated for 𝐼𝐷𝐺 times to fully train the D
and G.

Once we get the well-trained G, high-quality negative samples
𝑧
𝑚𝑝

𝑖
and 𝑧𝑠𝑐

𝑖
will be obtained, given 𝑧𝑠𝑐

𝑖
and 𝑧𝑚𝑝

𝑖
, respectively. And

they are combined with original negative samples from meta-path
view or network schema view. Finally, the extended set of negative
samples is fed into HeCo to boost the training for 𝐾𝐻 epochs.

The training processes of the proposed HeCo, discriminator D
and generator G are employed iteratively until to the convergence.
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https://github.com/librahu/HIN-Datasets-for-Recommen-dation-and-Network-Embedding
https://github.com/librahu/HIN-Datasets-for-Recommen-dation-and-Network-Embedding


Table 5: The values of parameter used in HeCo.

Dataset lr patience sample_num 𝜏 dropout_feat dropout_attn weight_decay
ACM 0.0008 5 A:7 ; S:1 0.8 0.3 0.5 0.0
DBLP 0.0008 30 P:6 0.9 0.4 0.35 0.0

Freebase 0.001 20 D:1 ; A:18 ; W:2 0.5 0.1 0.3 0.0
AMiner 0.003 40 A:3 ; R:8 0.5 0.5 0.5 0.0
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