
1

Heterogeneous Information Network Embedding
with Adversarial Disentangler

Ruijia Wang∗, Chuan Shi∗†, Member, IEEE , Tianyu Zhao, Xiao Wang, Yanfang Ye

Abstract—Heterogeneous information network (HIN) embedding has gained considerable attention in recent years, which learns low-
dimensional representation of nodes while preserving the semantic and structural correlations in HINs. Many of existing methods
which exploit meta-path guided strategy have shown promising results. However, the learned node representations could be highly
entangled for downstream tasks; for example, an author’s publications in multidisciplinary venues may make the prediction of his/her
research interests difficult. To address this issue, we develop a novel framework named HEAD (i.e., HIN Embedding with Adversarial
Disentangler) to separate the distinct, informative factors of variations in node semantics formulated by meta-paths. More specifically,
in HEAD, we first propose the meta-path disentangler to separate node embeddings from various meta-paths into intrinsic and specific
spaces; then with meta-path schemes as self-supervised information, we design two adversarial learners (i.e., meta-path and semantic
discriminators) to make the intrinsic embedding more independent from the designed meta-paths while the specific embedding more
meta-path dependent. To comprehensively evaluate the performance of HEAD, we perform a set of experiments on four real-world
datasets. Compared to the state-of-the-art baselines, the maximum 15% improvement of performance demonstrates the effectiveness
of HEAD and the benefits of the learned disentangled representations.

Index Terms—Heterogeneous Information Networks, Network Embedding, Representation Disentanglement

F

1 INTRODUCTION

H ETEROGENEOUS information networks (HINs) [1], in-
volving different types of nodes and relations, are

ubiquitous in the real world, ranging from bibliographic
and social networks to transportation and telecommunica-
tion systems [2]. With heterogeneous types of nodes and
relations, HINs are able to model complex interactions and
immensely rich semantics in real-world scenarios. Thus,
HIN analysis has emerged as a promising direction for
many data mining tasks [3]. With the surge of network
embedding [4], [5], numerous recent research has shifted
towards HIN embedding [6], [7], [8], [9], [10], [11], which
aims to project the nodes into a low-dimensional space
whilst preserving the structural and semantic properties of
HINs. The learned low-dimensional embedding has been a
de facto solution towards fundamental problems in various
applications, such as node classification [12], [13], link pre-
diction [14], [15] and recommendation [16], [17].

HIN embedding has recently attracted considerable at-
tention, the major line of which [7], [8], [16], [18] adopts
meta-path [19] to retain both structural and semantic cor-
relations between nodes. Specifically, meta-path is a type-
constrained relation sequence connecting two nodes, which
is regarded as a basic tool in HINs to extract sub-structure
and semantic. As illustrated in Figure 1 (a) and (b) for the
bibliographic data, the toy HIN consists of multiple types of

• ∗ Both authors contributed equally to this research.
• † indicates corresponding author.

Ruijia Wang, Chuan Shi, Tianyu Zhao and Xiao Wang are with the Bei-
jing Key Lab of Intelligent Telecommunications Software and Multimedia,
Beijing University of Posts and Telecommunications, China.
E-mail: {wangruijia,shichuan,tyzhao,xiaowang}@bupt.edu.cn

• Yanfang Ye is with the Department of Computer and Data Sciences, Case
Western Reserve Univerity, USA.
E-mail: yanfang.ye@case.edu.

Fig. 1: A toy example of heterogeneous information network
and the two-step framework of meta-path based HIN embed-
ding methods.

nodes and relations; meta-path APA and APCPA describe
the co-author and co-conference relationship between two
authors, respectively. These meta-path based HIN embed-
ding methods either use only one meta-path inevitably
resulting in information loss, or rely on certain strategies to
merge multiple meta-paths, which often boil down to a two-
step framework as displayed in Figure 1 (c). Firstly, they ex-
tract node sequences along each meta-path and embed them
with optimization models, such as skip-gram [20]. Secondly,
the node embeddings learned by multiple meta-paths are
fused with some strategies (e.g., concatenation or weighted
combination [7], [18]) to obtain the final representations.
Through the above operations, they produce structure- and
semantic-preserving embeddings.

Although these meta-path based HIN embedding meth-
ods have demonstrated great success in learning representa-
tions, they may fail to uncover the latent explanatory factors
hidden in the node embeddings under various meta-paths.
Taking meta-paths APA and APCPA in Figure 1 as instances,

2

an author’s publications with interdisciplinary authors or
in multidisciplinary venues may make the prediction of
his/her research interests difficult. To address this issue, we
review the role of meta-path in HIN analysis, and have the
following two insights. (1) Meta-paths are highly correlated,
and their common part exposes intrinsic factors of nodes
which absorb informative characteristic from all meta-paths
and could more essentially reflect the characteristics. Meta-
paths APCPA and APA depict the micro co-author and
macro co-conference relations respectively, but they actu-
ally capture the intrinsic correlation among authors, i.e.,
the same research interests, from different perspectives.
(2) Meta-paths describe distinguished sub-structures from
various aspects, and their specific parts sometimes interfere
with the analysis of nodes once connections along meta-
path are sparse or noisy [8], [16]. For instance, a broad-
subject conference in APCPA may provide misleading in-
formation for predicting author’s research interest, so does
a broad-interest author in APA. Therefore, the mentioned
highly-correlated but distinguished sub-structures explored
by meta-paths provide an impetus to purify out intrinsic
factors during meta-path fusion.

Nevertheless, the type sequences among meta-paths are
overlapping somehow but different, revealing a high degree
of semantic entanglement. Although aware of the necessity
of extracting intrinsic factors, its materialization is non-
trivial. (1) How to determine intrinsic and specific factors of nodes
extracted by multiple meta-paths? From the perceptual under-
standing of intrinsic and specific factors, the intrinsic factors
should be invariant to meta-paths and correspond to the
essential feature of nodes, while the specific factors should
depend on the meta-path specific semantic. For example, the
author’s research interests determine which conferences he
will publish and which researchers he will collaborate with,
thus should be invariant to meta-paths APCPA and APA.
But misleading information brought by specific conferences
and collaborators is strongly meta-path dependent. (2) How
to disentangle intrinsic and specific factors without explicit su-
pervised information? There are no supervised labels about
intrinsic or specific factors. The author’s research interests
are sometimes expensive to obtain, let alone meta-path
dependent misleading information. Hence, it is imperative
to design a mechanism that utilizes the applicable self-
supervised information to guarantee the disentanglement.

In this paper, we make the first attempt to employ repre-
sentation disentanglement on HINs to disentangle intrinsic
and specific node embedding from multiple meta-paths. We
propose HEAD, a novel HIN Embedding framework with
Adversarial Disentangler. To detach intrinsic and specific
embedding, a meta-path disentangler is designed to en-
code node embedding generated by each meta-path into
intrinsic and specific space. Furthermore, utilizing meta-
path schemes as self-supervised information, two adversar-
ial learners (i.e., meta-path and semantic discriminator) are
deployed to try the best to separate intrinsic and specific em-
bedding. Specifically, the meta-path discriminator learns a
more intrinsic embedding while the semantic discriminator
enhances the correlation between specific embedding and
meta-path semantic. The major contributions of our work
are summarized as followings.
• To the best of our knowledge, we are the first to investi-

gate intrinsic and specific factors of nodes in HIN embed-
ding and propose a disentangled representation solution
to purify out intrinsic embedding. Purifying HIN embed-
ding is important for HIN analysis, because it alleviates
meta-path dependence and reduces noise interference.

• We devise a novel framework HEAD that disentangles
intrinsic embedding from node embeddings generated by
various meta-paths with adversarial disentangler, which
boosts the robustness of representation. Besides, HEAD
is an unsupervised learner to effectively absorb intrinsic
factors from various meta-paths, thus enhancing existing
meta-path based embedding methods.

• We perform experiments on four public datasets. Com-
pared to state-of-the-art baselines, the maximum 15% im-
provement demonstrates the effectiveness of HEAD and
the benefit of intrinsic representations.

2 RELATED WORK

We review the most related works in network embedding,
HIN embedding and representation disentanglement.

2.1 Network embedding

Network embedding, i.e., network representation learning
(NRL), is proposed to learn structure-preserving node rep-
resentations which can be applied to downstream network
tasks [4], [5], [21], [22].

Contemporary methods usually explore network topol-
ogy as context information. DeepWalk [23] and node2vec
[24] construct node sequences by randomly walking on the
network, then utilize skip-gram based models to learn node
embeddings. LINE [25] and SDNE [26] characterize first-
order and second-order proximity to preserve neighborhood
information for nodes. Furthermore, GraRep [27] and HOPE
[28] are both designed to model the high-order proximity
between nodes. Besides learning network embedding only
from topology, there are also some works leveraging node
content information [29], [30] or temporal information [31],
[32], [33] for a more robust representation. Recently, graph
neural networks [34], [35], [36] have demonstrated their re-
markable ability in network representation learning, which
learn a function that generates embeddings by aggregat-
ing feature from local neighborhood. For example, Graph
Convolutional Networks [35] performs localized first-order
approximation of spectral graph convolutions. Inspired by
attention mechanism [37], [38], Graph Attention Networks
[39] is proposed to distinguish the importance between
neighbors and fuse them to obtain final node embeddings.

Nonetheless, these methods mainly deal with homoge-
neous networks, and they cannot be directly applied to
HINs which contain multiple types of nodes and relations.

2.2 HIN embedding

In the past decade, heterogeneous information networks
(HINs) [1] have been proposed to model complex entities
and their rich relations in various applications [17], [40].

One major line of work leverages meta-path to learn
semantic-preserving embedding for HINs. ESim [7] accepts

3

predefined meta-paths as guidance to learn node embed-
ding for similarity search. Even though ESim utilize mul-
tiple meta-paths, it needs to conduct grid search to find
the optimal weights of meta-paths. Metapath2vec [8] and
HERec [16] design meta-path based random walk and uti-
lize skip-gram to perform HIN embedding. HIN2Vec [41]
carries out multi-task classification which learns the latent
embeddings of nodes and meta-paths simultaneously. Based
on the attention mechanism, HAN [18] proposes node- and
semantic-level attention to learn the importance of nodes
and meta-paths, respectively. In summary, these aforemen-
tioned meta-path based algorithms do not distinguish the
intrinsic and specific factors of nodes when fusing multiple
meta-paths, and may be susceptible to noise.

On another line, there exist some methods utilizing
relation type rather than meta-path to perform HIN em-
bedding. PME [42] projects different types of nodes into
the same relation space and conducts heterogeneous link
prediction. Based on the adversarial principle, HeGAN [43]
designs relation-aware discriminator and generator to learn
node distribution for better negative samples. HetGNN [44]
introduces a random walk with restart strategy to sample a
fixed size of neighbors, and aggregate feature information
from them based upon node types. It is worth noting that
meta-path has ability to accurately capture corresponding
semantic, but these meta-path free methods may lose the
advantage of meta-path, making the semantic fuzzy, which
may harm the performance of specific relation prediction.

2.3 Representation disentanglement
Recently, representation disentanglement has gained con-
siderable attention, particularly in the field of image repre-
sentation learning [45], [46], [47], [48]. It aims to disentangle
latent factors from image variants, which leads to the under-
standing of observed data. For instance, [49] learns invert-
ible graphic codes for 3D image rendering in a fully super-
vised setting. InfoGAN [45] decomposes representation by
maximizing the mutual information between latent factors
and synthesized images. Such disentangled representations
are demonstrated to bring enhanced generalization ability
and robustness in downstream tasks [50], [51].

However, the complex network structure makes repre-
sentation disentanglement on networks rarely explored. The
only studies [52], [53] focus on homogeneous networks to
identify the latent factor that may cause the link between
the node pair. These methods ignore the heterogeneity of
networks, and depart from our goal to disentangle intrinsic
and specific factors for semantic-rich HINs.

3 PRELIMINARY

In this section, we formalize the problem of HIN embedding
and introduce the background on VAEs and GANs.

HIN embedding. Heterogenous information network is a
special kind of information network, which contains either
multiple types of nodes or relations. It can be formally
defined as follows.
Definition 1. Heterogeneous Information Network (HIN)
[1]. An HIN G = (V, E ,A,R, φ, ϕ) is a form of information
network, where V and E denote sets of nodes and relations,

respectively. It is also associated with a node type mapping
function φ : V → A and an relation type mapping function
ϕ : E → R, where A andR denote sets of node and relation
types such that |A|+ |R| > 2.

A toy example of HIN is illustrated in Figure 1 for
bibliographic data. It is observed that it consists of three
types of nodes (i.e., author, paper and conference) and their
semantic information based on meta-paths [19] (e.g., author-
paper-author).

The goal of HIN embedding is to embed each node v ∈ V
to a low-dimensional space Rd (d � |V|) while preserving
structure and rich semantic on the HINs so that the learned
embeddings can be applied to downstream tasks.

Variational Autoencoders. VAEs [54], [55] are deep gener-
ative models that simultaneously train both a probabilistic
encoder and generator for a dataset D =

{
x1, · · · ,xN

}
.

The central analogy is that an encoding z can be considered
as a latent variable, casting the generator as a conditional
probability density pθ(x|z), where θ denotes parameters
of the generator. By placing a weak prior p(z) over z, the
generator defines a posterior and joint distribution p(z|x) ∝
pθ(x|z)p(z). And inference in VAEs can be performed using
a variational method that approximates the posterior distri-
bution p(z|x) using an encoder qφ(z|x), where φ denotes
parameters of the encoder. The encoder and the generator
are trained jointly by performing stochastic gradient ascent
[54] on the evidence lower bound L(φ, θ;D) (ELBO),

L(φ, θ;D) =
N∑
n=1

Eqφ(z|xn) [log pθ (x
n|z) + log p(z)− log qφ (z|xn)] .

Typically, the first term Eqφ(z|xn) [log pθ (xn|z)] is ap-
proximated by a Monte Carlo estimate and the re-
maining two terms are expressed as a divergence
−KL(qφ (z|xn) ‖p(z)), which can be computed analytically
when the encoder model and the prior are Gaussian.

Generative Adversarial Networks. Our model is based
on adversarial learning, while the typical application of
adversarial learning is GANs, which can be viewed as a
minimax game between two players, i.e., generator G and
discriminator D, in the following manner.

min
θG

max
θD

Ex∼Pdata
[
logD(x; θD)

]
+ Ez∼PZ

[
log
(

1−D(G(z; θG); θD)
)]

The generatorG tries to generate fake samples as close to
true data as possible with the noise z from a predefined dis-
tribution PZ , where θG denotes parameters of the generator.
On the contrary, the discriminatorD aims to distinguish real
data from fake samples, where θD represents parameters of
the discriminator. In practice, GANs has been found to work
better if the generator minimizes − logD(G(·; θG); θD) in-
stead of log(1−D(G(·; θG); θD)) [56].

4 HEAD: THE PROPOSED MODEL

In this section, we present the proposed model HEAD, a
novel HIN embedding framework with adversarial disen-
tangler. We begin with the overview of HEAD. Subsequently
we zoom into the meta-path disentangler, followed by elab-
orations on adversarial learners that guarantee disentangle-
ment. Lastly, we discuss the optimization and characteristics

4

Fig. 2: Overview of our proposed model HEAD for disentangled representation learning on HINs, where takes two meta-paths
APA and APCPA as an example. Note that the diagrams of encoder refer to the same one, as well as the generator.

TABLE 1: Summary of notations.

Notion Explanation

Dmp, Dsem meta-path and semantic discriminator, resp.

x1, x̂1, x̄1 input, reconstructed and synthesized node presentation of
meta-path APA, resp.

x2, x̂2, x̄2 input, reconstructed and synthesized node presentation of
meta-path APCPA, resp.

e1
in, e

1
sp intrinsic and specific embedding under APA, resp.

e2
in, e

2
sp intrinsic and specific embedding under APCPA, resp.

l̂mp, l̂sem
meta-path type predicted by meta-path classifier and sem-
antic classifier, resp.

l̄mp meta-path type of the randomly selected specific embedding

θE , θlkp, θG
parameters of encoder, embedding lookup layer and gener-
ator, resp.

θmp, θsem parameters of meta-path and semantic discriminator, resp.

of our model. Notations we use throughout the paper are
summarized in Table 1.

4.1 Overview

In order to detach intrinsic and specific factors from mul-
tiple meta-paths, we propose a disentangled representation
solution which firstly coarsely detaches intrinsic and spe-
cific embeddings under each meta-path with a meta-path
disentangler, then refine them with adversarial learners to
make intrinsic embedding more meta-path independent and
specific embedding more meta-path dependent. Figure 2
shows the overall framework.

Given an HIN and a set of meta-paths, HEAD first ob-
tains node embedding for each meta-path with a meta-path
based embedding method (e.g., Metapath2vec or HERec)
as input. For the node embedding xφ of a meta-path φ,
the meta-path disentangler employs a modified VAE archi-
tecture to detach the intrinsic embedding eφin and specific
embedding eφsp from xφ, which concatenates specific em-
bedding eφsp in the middle layer of VAE to reconstruct the

original node embedding xφ. As exemplified in Figure 2, x1

is reconstructed from e1
in||e1

sp.
In order to refine the intrinsic and specific embedding,

we design two adversarial learners. Specifically, a meta-path
discriminator Dmp makes the intrinsic embedding more
meta-path independent and a semantic discriminator Dsem

makes the specific embedding more meta-path dependent.
Since there is no label information to supervise the disen-
tangled learning in our problem setting, we leverage meta-
path schemes as self-supervised information to distinguish
intrinsic and specific embedding. More precisely, to purify
the intrinsic embedding eφin, the meta-path discriminator
Dmp makes eφin more difficult to be distinguished which
meta-path it belongs to. To constrain specific embedding eφsp
to be more meta-path dependent, the semantic discriminator
Dsem is designed to distinguish a synthesized semantic,
generating by the concatenation of intrinsic embedding and
specific embedding under different meta-paths (e.g., x̄2 from
e1
in||e2

sp). There are two classifiers inside semantic discrimi-
nator Dsem: (1) the semantic classifier forces the synthesized
semantic belonging to the meta-path type of specific embed-
ding (e.g., x̄2 belongs to APCPA), which makes the specific
embedding more meta-path dependent. (2) The real/fake
classifier guarantees the quality of synthesized semantic by
adversarial learning, since bad synthesized semantic can
be easily tested by the semantic classifier. Note that meta-
path disentangler and adversarial learners are shared by all
meta-paths. The parameters of these learners are iteratively
training as other adversarial models.

4.2 Meta-path Disentangler

Given an HIN G and a series of meta-paths (φ1, φ2, · · · , φK),
we first learn node embeddings under each meta-path with
existing meta-path based embedding methods (e.g., Mp2vec
and HERec) as input of HEAD. Note that we employ
Mp2vec in the experiments to obtain the input node embed-
dings (x1,x2, · · · ,xK) for meta-path set (φ1, φ2, · · · , φK).

5

Similar experimental results can also be obtained for other
meta-path based HIN embedding methods (e.g., HERec).

With node embeddings of various meta-paths as input,
the meta-path disentangler coarsely detaches intrinsic and
specific embedding for each meta-path. Specifically, taking
the node embedding xφ of a meta-path φ as input, the
encoder derives the intrinsic embedding eφin of xφ, then
concatenates it with the specific embedding eφsp from the
embedding lookup layer to reconstruct the original node
embedding xφ via generator.

It is worth noting that there exists uncertainty in the
intrinsic embedding. For example, we cannot pinpoint the
research interest of a broad-interest author. To model un-
certainty, we are inspired by the development of variational
autoencoders (VAEs) [54], [55], [57] to encode intrinsic em-
bedding eφin into random variables with variance, rather
than fixed values. Furthermore, we hypothesize that the
intrinsic embeddings under various meta-paths have similar
form inside the input embeddings and could be captured
by the same encoder, but the specific embeddings are so
diverse that they could be generated from the embedding
lookup layer with random initialization. Thus we modify
the VAE architecture as meta-path disentangler, which con-
catenates specific embedding eφsp from the middle layer, and
the encoder and generator are implemented using multi-
layer perceptron (MLP). The objective function of meta-path
disentangler is defined as:

Lvae = ‖x̂φ − xφ‖2F +KL
(
q(eφin|x

φ)‖p(eφin)
)
, (1)

where the first term aims at recovering the original node
embedding xφ, and the second term calculates Kullback-
Leibler divergence which penalizes the deviation of intrin-
sic embedding eφin from the prior distribution p(eφin) (as
eφin ∼ N (0, σ)). The loss function in Eq. (1) retains the recon-
struction ability and aligns the latent intrinsic embedding
to a Gaussian distribution. However, this property cannot
guarantee that intrinsic embedding eφin is well disentangled
from the specific embedding eφsp.

4.3 Adversarial Learners
In order to better detach intrinsic and specific embeddings,
we need to try the best to differentiate them with some
guidance. However, there is no supervised information
in our problem setting. Considering that embeddings are
learned from diverse meta-paths, we utilize the meta-path
type (denoted as lmp) as self-supervised information to
guide the learning. Moreover, enlightened by the adversar-
ial learning [45], we design two adversarial learners to refine
the disentanglement, including a meta-path discriminator
purifying intrinsic embedding and a semantic discriminator
specializing specific embedding.

4.3.1 Meta-path Discriminator
Intrinsic embedding does not depend on meta-paths and
should be invariant to meta-path types. Thus to further
refine the intrinsic embedding, we deploy meta-path dis-
criminator Dmp in intrinsic space, which makes it difficult
to tell which meta-path the intrinsic embedding comes from.

More precisely, the meta-path classifier inside Dmp takes
intrinsic embedding eφin as input and predict the meta-path

type l̂mp. In the adversarial setting, the encoder attempts to
purify out intrinsic embedding eφin that invariant to meta-
path type lmp, whereas the meta-path discriminator tries
to distinguish meta-path type lmp from encoded intrinsic
embedding eφin. The better trained meta-path discriminator
would then force the encoder to produce more intrinsic em-
bedding, and the process is repeated. During such iterations,
both the encoder and meta-path discriminator receive mu-
tual, positive reinforcement. Therefore, the objective func-
tions of meta-path discriminator Lmp and encoder LadvE are
derived as follows:

Lmp =H
[
logP

(
l̂mp = lmp|eφin

)]
, (2)

LadvE = −Lmp = −H
[
logP

(
l̂mp = lmp|eφin

)]
, (3)

where P is probability distribution over meta-paths, which
is produced by meta-path classifier, lmp is the ground-truth
meta-path type of eφin, and H represents the entropy.

4.3.2 Semantic Discriminator
To force specific embedding more meta-path dependent,
we introduce semantic discriminator Dsem, including a
semantic classifier and a real/fake classifier, to distinguish
synthesized semantics generated by the concatenation of
intrinsic embedding and specific embedding under different
meta-paths.

Semantic Classifier. For meta-paths (φ1, φ2, · · · , φK), we
shuffle (e1

sp, e
2
sp, · · · , eKsp) to (ei1sp, e

i2
sp, · · · , eiKsp), and con-

catenate them with intrinsic embeddings (e1
in, e

2
in, · · · , eKin),

which forms the concatenation of each pair ekin||eiksp to gener-
ate synthesized semantics. Although generated by intrinsic
embedding and specific embedding under different meta-
paths, a good synthesized semantic should be accurately
distinguished as the meta-path type of specific embedding,
because a good specific embedding is meta-path dependent
while a good intrinsic embedding is meta-path independent.
Thus the semantic classifier forces synthesized semantic
belonging to the meta-path type of specific embedding.
Without loss of generalization, we take two meta-paths in
Figure 2 as an example to illustrate the semantic classifier.
The synthesized semantic x̄2 is generated from e1

in||e2
sp,

and the semantic classifier forces it to be APCPA type, the
objective function of which is derived as:

Lclfsem = H
[
logP

(
l̂sem = lmp|x2

)]
+ H

[
logP

(
l̂sem = l̄mp|x̄2

)]
, (4)

where l̄mp is the meta-path type of specific embedding
(i.e., APCPA) and l̂sem is the meta-path type prediction of
semantic classifier.

Real/Fake Classifier. We introduce a real/fake classifier to
distinguish real and synthesized semantics, which compels
the generator to mimic the real semantic, so as to reduce
the impact of bad synthesized semantic on classification.
The objective functions Lr/fsem and LadvG of classifier and
generator are defined as:

Lr/fsem = H
[
log
(
Cr/f (x̄2)

)]
+ H

[
log
(
1− Cr/f (x2)

)]
, (5)

LadvG =−H
[
log
(
Cr/f (x̄2)

)]
, (6)

6

Algorithm 1: Model training for HEAD
Input : HIN G,

node embeddings (x1,x2, · · · ,xK) under
meta-path set (φ1, φ2, · · · , φK),
prior distribution N (0, σ)

Output: intrinsic embeddings (e1
in, e

2
in, · · · , eKin),

specific embeddings (e1
sp, e

2
sp, · · · , eKsp)

1 Initialize θE , θlkp, θG, θmp and θsem;
2 while not converge do
3 // Meta-path discriminator training
4 Encode (x1,x2, · · · ,xK) into (e1

in, e
2
in, · · · , eKin);

5 Update θmp with Eq. 7;
6 // Semantic discriminator training
7 Lookup (e1

sp, e
2
sp, · · · , eKsp);

8 Shuffle (e1
sp, e

2
sp, · · · , eKsp) to (ei1sp, e

i2
sp, · · · , eiKsp);

9 Generate (x̄1, x̄2, · · · , x̄K) for each pair ekin||eiksp;
10 Update θsem with Eq. 8;
11 // Meta-path disentangler training
12 Reconstruct (x̂1, x̂2, · · · , x̂K);
13 Update θE , θlkp and θG with Eq. 9, Eq. 10 and

Eq. 11, respectively;

14 return (e1
in, e

2
in, · · · , eKin) and (e1

sp, e
2
sp, · · · , eKsp);

where Cr/f () denotes the prediction result of real/fake
classifier.

4.4 Optimization
Following the optimization technique in adversarial learn-
ing, we iteratively optimize three main modules to train
HEAD. In each iteration, we alternately update meta-path
discriminator Dmp, semantic discriminator Dsem and meta-
path disentangler. For meta-path discriminator Dmp, it
needs to accurately classify intrinsic embedding, so the
gradient is:

θmp
+← −∆θmp (Lmp) . (7)

With regard to semantic discriminator Dsem, its purpose
is to identify the meta-path type of synthesized semantic, as
well as the real/fake label:

θsem
+← −∆θsem

(
Lclfsem + Lr/fsem

)
. (8)

Meta-path disentangler includes encoder, embedding
lookup layer and decoder. First of all, their common goal
is to reconstruct input node embedding. Then, the encoder
also makes intrinsic embedding difficult to distinguish the
meta-path type, while the embedding lookup layer makes
specific embedding richer with meta-path specific informa-
tion and the generator ensures the quality of synthesized
semantics, so their gradients are as follows:

θE
+← −∆θE

(
Lvae + LadvE

)
, (9)

θlkp
+← −∆θE

(
Lvae + Lclfsem

)
, (10)

θG
+← −∆θG

(
Lvae + LadvG + Lclfsem

)
, (11)

where θ denotes the parameters of corresponding modules.
The training framework of HEAD is outlined in Algorithm

TABLE 2: Description of datasets.

Dataset Relations (A-B) #A #B #A-B

Yelp
Business-User 2, 614 1, 286 30, 838
Business-Service 2, 614 2 2, 614
Business-Reservation 2, 614 2 2, 614

ACM Paper-Author 4, 019 7, 167 13, 407
Paper-Subject 4, 019 60 4, 019

DBLP
Paper-Author 14, 376 14, 475 41, 794
Paper-Conference 14, 376 20 14, 376
Paper-Term 14, 376 8, 920 114, 624

AMiner Paper-Author 28, 722 46, 583 78, 767
Paper-Reference 28, 722 95, 970 250, 012

1. Note that we concatenate the intrinsic embeddings of all
meta-paths as the final intrinsic embedding for HEAD.

4.5 Discussion
We now conduct a complexity analysis. The complexity of
HEAD lies in the iterative updating process. Each iteration
mainly involves the updating of projection matrices in the
meta-path disentangler and discriminators. It is worth not-
ing that the meta-path disentangler and discriminators are
shared by all meta-paths. Therefore, the time complexity
is O

(
K · |V| · d2

)
, where K is the number of input meta-

paths, |V| is the number of target-type nodes and d is the
embedding dimension. Although HEAD adds complexity
in iterative updating, this updating process is still efficient,
which is linear with the number of target-type nodes.

Our HEAD provides a flexible framework to absorb
multiple meta-paths for robust node embedding and can
be seen as a fine-tuning process of existing meta-path based
methods, which arms them with the ability to purify out in-
trinsic factors from each meta-path. Thus, HEAD is capable
to enhance existing meta-path based methods.

5 EXPERIMENTS

In this section, we evaluate the effectiveness of HEAD on
four tasks, including node classification, node clustering,
relation prediction and network visualization. We further
analyze the underlying mechanism inside HEAD. Lastly, we
investigate the hyper-parameter sensitivity.

5.1 Experimental Setup
5.1.1 Datasets
We conduct extensive experiments on four heterogeneous
information networks, as summarized in Table 2.
• Yelp [43]. This dataset consists of four types of nodes,

i.e., business (B), user (U), service (S) and reservation (R),
where businesses are divided into three classes. The meta-
paths we use are {UBU,UBSBU,UBRBU}.

• ACM [18]. This dataset contains three types of nodes, i.e.,
author (A), paper (P) and subject (S), where papers are
divided into three classes according to the conferences
they published on. Here we employ the meta-path set
{PAP,PSP} to perform experiments.

• DBLP [41]. This dataset involves four types of nodes,
i.e., author (A), paper (P), conference (C) and term (T),

7

TABLE 3: Quantitative results (%±σ) on node classification. (bold: best; underline: runner-up)

Datasets Metrics Training DeepWalk LINE-1st LINE-2nd ESim HERec Mp2vec HIN2Vec HetGNN HeGAN HEAD

Yelp

Macro-F1

20% 72.90±0.88 75.55±1.23 69.79±0.90 74.83±1.28 70.68±1.30 71.42±1.38 74.27±1.08 68.92±1.06 70.51±1.12 75.69±1.25
40% 75.36±1.37 76.60±0.95 72.57±0.82 76.72±1.19 71.56±1.41 73.15±1.37 76.15±0.77 70.54±1.59 72.01±1.32 78.16±1.17∗

60% 76.47±1.69 77.60±0.82 73.57±1.04 77.86±1.41 72.94±1.72 74.36±1.32 77.17±1.21 71.76±1.55 73.41±1.44 78.61±1.50∗

80% 76.24±2.26 77.61±1.33 74.50±1.58 77.77±1.99 74.02±1.87 75.21±1.19 76.76±1.99 73.14±1.88 73.56±1.96 79.23±2.01∗

Micro-F1

20% 77.19±0.88 79.12±0.93 73.78±0.94 79.28±0.76 76.10±0.83 75.64±0.98 78.75±0.77 74.48±0.94 75.42±0.68 79.62±0.89
40% 79.18±1.24 79.92±0.76 76.63±0.65 80.57±0.97 77.07±1.09 76.89±1.35 80.14±0.52 75.98±1.00 76.88±1.02 80.92±0.96∗

60% 80.03±1.51 80.64±0.84 77.67±0.73 81.36±1.22 77.95±1.54 78.16±1.42 80.89±1.15 77.22±1.25 78.19±1.16 82.07±1.20∗

80% 80.13±2.25 80.82±1.43 78.55±1.55 81.51±2.06 79.06±1.55 79.18±1.21 80.75±1.92 78.39±1.63 78.45±1.69 83.31±1.91∗

ACM

Macro-F1

20% 79.32±0.64 80.34±0.74 80.62±0.52 78.94±0.69 81.45±0.81 82.94±0.38 82.09±0.62 79.97±0.60 80.36±0.63 84.14±0.67∗

40% 80.06±0.61 81.14±0.81 81.20±0.78 80.41±0.51 82.79±0.49 83.66±0.55 83.00±0.68 81.03±0.74 80.93±0.60 85.94±0.48∗

60% 80.50±0.87 81.69±0.76 81.48±0.94 80.76±0.87 83.07±1.02 84.04±0.68 82.61±0.73 81.70±0.82 81.02±0.80 86.45±0.59∗

80% 80.74±1.17 81.49±1.56 81.57±1.34 80.74±1.08 83.66±1.16 84.60±1.62 82.91±1.04 82.10±1.18 81.76±1.18 87.03±1.52∗

Micro-F1

20% 80.05±0.62 80.81±0.70 81.07±0.55 79.93±0.59 81.87±0.74 83.19±0.41 82.56±0.55 80.67±0.67 81.19±0.69 84.41±0.62∗

40% 80.81±0.63 81.48±0.82 81.75±0.83 81.20±0.49 83.12±0.48 83.83±0.58 83.38±0.64 81.70±0.73 81.66±0.56 86.10±0.50∗

60% 81.29±0.93 82.01±0.85 82.01±1.01 81.43±0.93 83.40±1.04 84.20±0.79 82.95±0.72 82.29±0.83 81.73±0.79 86.59±0.61∗

80% 81.60±1.14 81.82±1.61 82.20±1.36 81.39±1.14 84.00±1.14 84.79±1.50 83.26±0.98 82.79±1.15 82.55±1.20 87.20±1.47∗

DBLP

Macro-F1

20% 90.99±0.30 89.50±0.35 90.24±0.43 92.65±0.36 90.86±0.27 92.55±0.43 84.63±1.90 93.11±0.22 93.42±0.28 94.17±0.23∗

40% 91.64±0.48 90.68±0.64 91.01±0.59 93.19±0.45 91.66±0.48 92.80±0.56 88.95±1.63 93.34±0.34 93.67±0.61 94.55±0.24∗

60% 92.22±0.64 91.39±0.58 91.58±0.60 93.71±0.44 92.33±0.50 92.80±0.52 91.13±0.65 93.45±0.42 93.76±0.67 94.59±0.46∗

80% 92.12±0.43 91.61±0.67 91.80±0.76 93.57±0.75 92.70±0.37 92.63±0.75 92.23±0.78 93.41±0.73 93.64±0.76 94.92±0.75∗

Micro-F1

20% 91.55±0.26 90.00±0.32 90.72±0.41 93.15±0.32 91.46±0.27 93.11±0.38 87.58±1.28 93.56±0.19 93.87±0.27 94.56±0.21∗

40% 92.16±0.44 91.13±0.61 91.46±0.56 93.63±0.40 92.21±0.45 93.31±0.52 90.52±1.21 93.77±0.30 94.11±0.56 94.90±0.21∗

60% 92.73±0.55 91.82±0.49 91.99±0.55 94.12±0.35 92.87±0.41 93.31±0.49 92.16±0.56 93.88±0.34 94.20±0.57 94.96±0.40∗

80% 92.71±0.45 92.04±0.54 92.22±0.66 94.05±0.67 93.24±0.34 93.18±0.73 93.07±0.68 93.90±0.61 94.14±0.69 95.30±0.65∗

AMiner

Macro-F1

20% 57.46±0.60 63.11±0.35 53.78±0.31 58.41±0.33 59.33±0.36 61.63±0.39 62.78±0.31 61.86±0.55 62.00±0.67 69.08±0.67∗

40% 58.15±0.33 63.45±0.30 54.39±0.45 58.72±0.31 60.18±0.43 62.43±0.30 63.16±0.31 62.34±0.41 62.72±0.39 71.46±0.65∗

60% 58.23±0.35 63.61±0.46 54.43±0.50 58.90±0.48 60.33±0.41 62.70±0.30 63.19±0.41 62.46±0.39 63.18±0.68 72.37±0.80∗

80% 58.16±0.97 63.35±1.03 54.39±0.96 58.93±0.99 60.53±0.86 63.01±0.50 63.45±0.93 62.68±0.64 62.94±1.39 72.61±0.79∗

Micro-F1

20% 78.25±0.27 82.04±0.16 75.78±0.22 78.15±0.14 78.90±0.16 80.34±0.17 81.71±0.12 81.35±0.18 79.90±0.14 83.30±0.23∗

40% 78.69±0.20 82.24±0.17 76.22±0.32 78.37±0.20 79.60±0.21 81.13±0.19 82.01±0.13 81.56±0.18 80.29±0.17 84.87±0.29∗

60% 78.81±0.27 82.31±0.26 76.32±0.41 78.48±0.26 79.80±0.31 81.31±0.24 82.07±0.29 81.64±0.35 80.47±0.36 85.44±0.31∗

80% 78.96±0.41 82.41±0.59 76.48±0.82 78.63±0.48 80.12±0.63 81.74±0.47 82.30±0.75 81.95±0.52 80.64±0.59 85.75±0.47∗

TABLE 4: Quantitative results (%±σ) on node clustering. (bold: best; underline: runner-up)

Datasets Metrics DeepWalk LINE-1st LINE-2nd ESim HERec Mp2vec HIN2Vec HetGNN HeGAN HEAD

Yelp NMI 34.73±1.32 38.66±0.00 38.66±0.00 35.12±0.06 39.01±0.00 36.66±0.43 36.14±0.30 37.76±0.00 37.31±0.32 40.06±0.00
ARI 40.39±1.24 42.47±0.00 42.47±0.00 38.42±0.05 42.67±0.00 41.56±0.84 39.36±0.68 41.69±0.00 43.31±0.73 44.02±0.00

ACM NMI 56.28±0.18 21.58±0.00 40.79±0.04 48.21±0.00 47.26±0.00 48.37±0.00 45.46±0.00 56.28±0.09 56.42±0.00 56.64±0.03
ARI 43.22±0.09 15.45±0.00 38.66±0.03 35.45±0.00 36.39±0.00 35.60±0.00 34.30±0.00 43.45±0.10 43.84±0.00 43.51±0.02

DBLP NMI 73.22±0.25 78.08±0.11 67.35±0.24 75.67±0.13 71.75±0.10 73.60±0.10 77.44±0.06 76.95±0.00 78.98±0.03 81.39±0.00
ARI 78.45±0.26 82.01±0.08 72.87±0.34 81.09±0.17 77.72±0.08 77.73±0.07 82.26±0.06 82.52±0.00 83.84±0.03 85.92±0.00

AMiner NMI 21.17±2.10 11.93±2.33 15.61±0.02 21.03±0.17 10.88±2.27 18.56±1.72 18.58±0.66 19.66±0.37 20.75±0.17 21.42±1.39
ARI 14.61±4.46 4.81±4.69 2.26±0.02 14.20±0.23 11.42±1.89 2.70±1.90 -2.73±2.37 3.41±2.32 12.17±0.14 14.63±2.41

where authors are divided into four classes based on
the conferences they submitted to. The meta-path set we
utilize is {APA,APCPA,APTPA}.

• AMiner [58]. This dataset comprises three types of nodes,
i.e., author (A), paper (P) and reference (R), where papers
are divided into six classes w.r.t. the conferences they
published on. The used meta-paths are {PAP,PRP}.

Please note that for the AMiner dataset, we do not
add conference nodes to the heterogeneous information
network. Because once the PCP meta-path is used, the
classification performances of the meta-path based HIN
embedding methods w.r.t. F1, all approach 1, losing the
meaning of comparison.

5.1.2 Baselines
We consider three categories of methods: homogeneous
network embedding (DeepWalk, LINE), meta-path based
(ESim, HERec, Mp2vec, HIN2Vec) and meta-path free (Het-
GNN, HeGAN) HIN embedding algorithms, summarized
as follows.
• DeepWalk [23] performs truncated random walks, and

employs the skip-gram model [20]. Here we ignore the
heterogeneity of nodes and evaluate it on the whole HINs.

• LINE [25] exploits the first (LINE-1st) and second (LINE-
2nd) order proximity in networks and preserves the local
and global network structures meanwhile.

• ESim [7] captures semantic information from multiple
meta-paths, and assigns weights to them. Here we con-
duct grid search to find the optimal weights for these
meta-paths.

• HERec [16] designs a type-constrained strategy to filter
node sequences of meta-path and utilizes skip-gram [20]
to embed the heterogeneous information networks.

• Mp2vec [8] samples meta-path based random walks and
employ skip-gram model [20] for semantic-preserving
HIN embedding.

• HIN2Vec [41] converts HIN embedding into multi-task
classification, then learns latent representations for both
nodes and meta-paths jointly.

• HetGNN [44] utilizes random walk with restart to sample
a fixed size of neighbors and group them according to
their types, finally learns node embedding based on GNN
framework.

• HeGAN [43] proposes a relation-aware discriminator and
generator to embed HINs on the adversarial principle to

8

learn node distribution for better negative sampling.
Please note that we do not choose HAN [18] as baseline,

because HAN is semi-supervised, while HEAD and other
baselines are unsupervised methods, thus cannot be directly
compared.

5.1.3 Implementation
We implement the proposed model HEAD with deep learn-
ing library PyTorch1. All experiments are conducted on a
Linux server with GPU (GeForce GTX 1080 Ti) and CPU
(Intel Xeon E5-2620), and its operating system is Ubuntu
16.04.1. The Python and PyTorch versions are 3.6.9 and 1.3.1,
respectively.

We perform Adaptive Moment Estimation (Adam)
[59] to optimize our model and apply a grid search
for hyper-parameters: the learning rate is tuned in
{0.05, 0.01, 0.005, 0.001} and the dropout ratio is tuned
amongst {0.1, 0.2, · · · , 0.5}. Moreover, we utilize the two-
layer MLP for all modules. To avoid gradients vanishing
or exploding, we employ Batch Normalization [60] and set
LeakyReLU [61] as the activation function. During each
iteration of alternative training, we use a batch size of 32
and set the prior distribution to standard Gaussian. For the
input of HEAD, we use node embeddings from Mp2vec for
each meta-path.

The embedding dimension for all methods is set as 64.
For random walk-based methods (i.e., DeepWalk, HERec,
HIN2Vec, Mp2vec and HetGNN), we set the number of
walks per node to 10, the walk length to 100 and the window
size to 5. For meta-path based methods, we select the
same meta-paths as our model. Particularly, for ESim, we
search the weights for all meta-paths; while for HERec and
Mp2vec, we concatenate the embeddings of all meta-paths
to ensure they utilize the same global information as ours.
For LINE, we set the number of samples as 10000M. For
fair comparison, HetGNN and HeGAN also use pre-trained
embeddings from Mp2vec, which serve as node attributes
for HetGNN meanwhile. In terms of other parameters, we
follow the settings in their original papers.

5.2 Experimental Evaluation
5.2.1 Node Classification
In this task, we use different percentages of labeled nodes
(20%, 40%, 60%, 80%) to train a logistic regression classifier
whose input is the node embeddings learned by different
models, and test the classifier on the remaining nodes. We
evaluate the classification quality in terms of Micro-F1 and
Macro-F1 w.r.t. the node labels. Since the performance of
logistic regression is affected by train/test split, we repeat
10 times, and report average and standard deviation results
in Table 3. We use ∗ to indicate that HEAD is significantly
different from runner-up methods based on paired t-tests at
the significance level of 0.01.

Based on results, we make the following observations.
• HEAD consistently and significantly outperforms all base-

lines and achieves performance gains over the best base-
line by 2.2%, 2.9%, 1.4% and 14.4% on four datasets re-
spectively, which demonstrates that disentangled intrinsic

1. https://pytorch.org/

embeddings can characterize nodes in a robust manner.
Note that the overwhelming performance superiority of
HEAD over Mp2vec serving as the input of HEAD implies
that HEAD is capable of enhancing existing meta-path
based methods.

• Compared with the runner-ups, HEAD greatly improves
the classification performance on the AMiner dataset. One
feasible reason is that the used meta-paths, i.e., PAP and
PRP, are not informative. In this case, using the informa-
tion of all meta-paths and purifying out intrinsic factors
may reduce noise and learn robust representation.

• As the percentage of labeled nodes increases, our perfor-
mance margins over the runner-ups become larger, since
disentangled factors benefit more from the supervision,
widening the gaps.

• Both HEAD and HeGAN employ the adversarial princi-
ple, thus their performance improvement illustrates the
vital role of adversarial learning in enhancing represen-
tation robustness. Moreover, HEAD is consistently better
than HeGAN, further indicating the effectiveness of dis-
entangling the intrinsic factors.

• Among the baselines, HIN methods generally outper-
form homogeneous network methods (i.e., DeepWalk and
LINE), implying the importance of semantic-preserving
embedding.

5.2.2 Node Clustering
In this task, we employ the K-Means algorithm on the em-
beddings produced by all algorithms to perform clustering,
and evaluate the clustering quality in terms of normalized
mutual information (NMI) and adjusted rand index (ARI) w.r.t.
the node labels. Note that the larger NMI and ARI mean
the better performance. Since the performance of K-Means
is affected by initial centroids, we repeat the process for 10
times, and report average and standard deviation results in
Table 4.

Similar conclusions to the node classification can be
drawn, where HEAD generally shows better performance,
which once again proves the effectiveness of intrinsic repre-
sentations.

5.2.3 Relation Prediction
In this task, we predict the co-author relation of authors (i.e.,
APA) on DBLP, and the same-author relation of papers (i.e.,
PAP) on ACM and AMiner. Specifically, we randomly hide
20% of author-paper relations from the original network
and label their corresponding relations as ground-truth pos-
itives, then randomly sample the same number of negative
instances to form the test set together. Subsequently, we
utilize the left network to learn node embeddings. After
obtaining node embeddings, we train a logistic regression
classifier using node embeddings of positive and negative
instances from the left network. We adopt F1, ACC and AUC
as evaluation metrics, shown in Table 5.

To investigate the impact of specific factors on the corre-
sponding relation prediction, we evaluate the performances
of the final intrinsic embedding and the concatenation of
the final intrinsic embedding and corresponding meta-path
specific embedding (i.e., tested meta-paths: APA for DBLP,
PAP for ACM and AMiner), denoted as HEAD and HEADs.

9

TABLE 5: Quantitative results (%) on relation prediction. (bold: best; underline: runner-up)

Datasets Metrics DeepWalk LINE-1st LINE-2nd ESim HERec Mp2vec HIN2Vec HetGNN HeGAN HEAD HEADs

ACM
(Same-Author)

F1 58.36 64.88 61.37 59.35 64.96 63.92 60.84 59.40 59.80 65.60 65.92
ACC 59.32 64.64 62.72 61.45 63.73 63.77 62.68 61.43 61.00 65.04 65.74
AUC 63.39 66.34 66.08 64.91 65.74 67.24 67.01 65.57 65.26 67.56 69.15

DBLP
(Co-Author)

F1 56.59 56.36 54.41 55.98 57.31 58.32 50.52 56.29 55.32 57.39 59.19
ACC 56.57 57.12 58.27 57.67 57.55 57.60 57.91 56.97 56.90 58.28 59.43
AUC 59.66 61.00 61.36 60.66 60.54 59.69 61.87 60.50 60.75 61.03 62.00

AMiner
(Same-Author)

F1 62.19 59.11 56.57 58.09 62.39 60.54 62.06 62.38 62.79 61.48 62.47
ACC 62.80 59.49 58.04 59.62 61.73 62.73 61.91 61.91 61.09 62.25 62.96
AUC 65.57 63.31 61.13 64.19 62.03 65.92 66.84 65.78 63.79 64.46 66.96

(a) DeepWalk (b) Mp2vec (c) HeGAN (d) HEAD

Fig. 3: Visualization of the embeddings learned by baselines and HEAD on DBLP. Color indicates the categories of authors.

(a) Intrinsic embedding labeled
by author categories

(b) Specific embedding labeled
by author categories

(c) Specific embedding labeled
by meta-path types

(d) Performance change

Fig. 4: Disentanglement analysis of HEAD on DBLP.

We observe the following phenomena. (1) HEADs and
HEAD generally outperform all baselines, which reveals
that detaching intrinsic and specific factors innately learns
a better structure- and semantics-preserving embedding
space for relations. (2) There exists performance gain of
HEADs over HEAD. Note that the task is to predict relations
defined by given meta-paths, which is directly meta-path
dependent. HEADs injects meta-path specific embeddings,
which makes it perform better than HEAD. It implies that
the learned specific embeddings are also useful for meta-
path related tasks.

5.2.4 Network Visualization
To examine the network representation intuitively, we visu-
alize embeddings of author nodes in DBLP using the t-SNE
algorithm [62] in Figure 3.

From the plots, we find that DeepWalk cannot effectively
identify different author categories due to the ignorance
of heterogeneity. On the other hand, Mp2vec and HeGAN
can reasonably separate author categories, implying that
they learn semantic-preserving embeddings to some degree.
Compared to these baselines, HEAD correctly separate these
authors with crisp boundaries, demonstrating that disentan-
gling intrinsic factors from multiple meta-paths can exert a
vital part in reducing noise.

5.3 Model Analysis

5.3.1 Disentanglement Analysis

First of all, we study whether HEAD can effectively dis-
entangle intrinsic and specific factors of nodes. We use
DBLP dataset as an example, and similar patterns have been
observed on other datasets. In Figure 4, we visualize in-
trinsic and specific embedding under APCPA, subsequently
present the performance changes of the final intrinsic em-
beddings and specific embeddings under all meta-paths on
node clustering task.

In Figure 4 (a) and (b), the visualizations for intrinsic
and specific embeddings are labeled by author categories
which can be considered as intrinsic factors, and we find
that the intrinsic embedding correctly separates nodes with
clear boundaries, whereas the specific embedding is an
extremely chaotic. We further label specific embeddings by
meta-path types which can be treated as specific factors, and
re-visualize them. As shown in Figure 4 (c), the visualization
results have obvious clusters, conforming to our hypoth-
esis that specific embedding reflects meta-path dependent
semantics. From Figure 4 (d), we observe that the final
intrinsic embedding converges quickly and performs well,
while the performance of the specific embeddings fluctuates
and slowly increases at a low level. The results are in

10

(a) Performances of HEAD and
variants on node classification

(b) Performances of HEAD and
variants on node clustering

(c) Loss change of meta-path and
semantic classifier

(d) Loss change of real/fake clas-
sifier

Fig. 5: Analysis on adversarial learning of HEAD.

(a) Yelp (b) ACM (c) DBLP (d) AMiner

Fig. 6: Performances of HEAD gradually adding paths.

(a) Mp2vec (b) HERec

Fig. 7: Improvements to existing meta-path based methods.

line with our assumption that the intrinsic factors involved
in various meta-paths reveal the intrinsic characteristic of
nodes.

5.3.2 Adversarial Learning
Since adversarial learners in HEAD guarantee represen-
tation disentanglement, we conduct an ablation study to
validate the effectiveness of them. In particular, we compare
HEAD with three variants named HEAD\mp (i.e., HEAD
without meta-path discriminator), HEAD\sem (i.e., without
semantic discriminator) and HEAD\m&s (i.e., without both
discriminators). For HEAD and its variants, we separately
evaluate intrinsic embeddings under every meta-path used
in citation networks (i.e., ACM, DBLP and AMiner datasets)
on node clustering and classification tasks, and plot their
performances of different meta-paths as boxes in Figure 5
(a) and (b).

With respect to the average performance, we observe
that HEAD is consistently better than the remaining vari-
ants and HEAD\m&s generally performs the worst. Such
phenomenon is not surprising, and reveals that disregarding
the adversarial learners leads to the intrinsic factors mottled,
which harms the performance. In terms of the fluctuation
range, HEAD is always minimal. We hypothesize that re-
moving any module affects the mutual guidance of semantic
purification among meta-paths, pushing the performances

of various meta-paths away. Overall, these observations
justify the necessity of adversarial learners.

Next, to understand the adversarial learning process of
these two discriminators, we present the loss change of
classifiers inside them on DBLP. As shown in Figure 5 (c),
the loss of semantic classifier decreases, in the sense that the
specific embedding becomes more meta-path dependent.
Whereas the loss of meta-path classifier increases, the reason
for which is the encoder tries to fool meta-path classifier
by disentangling more intrinsic embedding. From Figure 5
(d), we observe the classification performances of real and
fake semantics gradually become worse, indicating that the
synthesized semantic is getting closer to the real one. After
around 10k steps of adversarial training, the losses tend to
converge. Note that the step here represents the mini-batch.
In all, the experiment results reveal that these adversarial
learners can stably and consistently improve performance
through mutual adversarial learning.

5.3.3 Effects of Meta-paths

To investigate the effect of different meta-paths, we inject
meta-paths to HEAD one by one from scratch, constantly
concatenate intrinsic embedding under the new added
meta-path and evaluate the resulted intrinsic embedding on
node classification. We report their performances in Figure
6.

With the increase of injected meta-paths, the perfor-
mance of HEAD consistently grows, which further confirms
that HEAD can absorb intrinsic factors from diverse meta-
paths for better performance. Note that, although many HIN
based methods [16], [63] can improve performance when
adding more meta-paths, they need supervised informa-
tion. But the experiments here imply our HEAD is able to
robustly improve performance through adding meta-paths,
even though we have no supervised information.

11

(a) Yelp (b) ACM (c) DBLP (d) AMiner

Fig. 8: Impact of embedding dimension on HEAD.

(a) Yelp (b) ACM (c) DBLP (d) AMiner

Fig. 9: Impact of standard deviation on Gaussian prior.

5.3.4 Improvements to existing methods

As mentioned before, our HEAD can purify the learned
embeddings of different meta-paths, which indicates that
HEAD can effectively absorbs intrinsic factors from vari-
ous meta-paths and enhance the existing meta-path based
methods. Therefore, we design comparative experiments for
different input methods to prove that point.

Here we employ two typical models (Mp2vec and
HERec) as input methods. Specifically, for each dataset,
we train the proposed model HEAD for 100 epochs with
Mp2vec and HERec as input methods, respectively. Then the
input embedding and disentangled intrinsic embedding are
respectively evaluated by node classification and clustering
task w.r.t. Micro-F1 and NMI metrics. Please note that the
input embedding and intrinsic embedding evaluated here
are the concatenation embedding of all meta-paths in the
dataset. As shown in Figure 7, the blue bars correspond to
the Micro-F1 on the left Y axis and the green bars correspond
to the NMI on the right Y axis.

It is obvious that HEAD can significantly improve the
performance of two base models, Mp2vec and HERec, on
node classification and clustering tasks on all datasets. This
demonstrates that HEAD, as an unsupervised learner, can
utilize the mutual guidance among meta-paths to extract
the intrinsic factors of nodes. Moreover, the performance
improvements on node classification seem more significant
than clustering, which further confirms that the disentan-
gled factors benefit more from the supervision.

5.4 Hyper-parameter Sensitivity

Finally, we investigate the sensitivity of hyper-parameters
and report the results w.r.t. node classification on four
datasets. In the experiments, we vary the studied hyper-
parameter and fix the others.

5.4.1 Dimension Selection

The embedding dimension is a key parameter to control
the complexity and capacity. Therefore, we evaluate how
it affects the classification performance. As shown in Fig-
ure 8, as we gradually increase the embedding dimension
d, the performance grows since a larger dimension could
enhance the representation capability. Nevertheless, when
d is larger than the optimal value, increasing d will hurt
the performance probably due to overfitting. Therefore, we
employ the applicable embedding dimension 64 to balance
the trade-off between performance and complexity.

5.4.2 Standard Deviation

The standard deviation of Gaussian prior reflects the dis-
tribution law that the intrinsic factors may follow. A small
standard deviation σ will make the meta-path disentangler
closer to vanilla auto-encoder, while a large σ gives the
intrinsic factors more uncertainty. To investigate whether
HEAD can benefit from modeling the uncertainty, we vary
the standard deviation σ of Gaussian prior in the range of
{0.001, 0.01, 0.1, 1, 10}, while keeping the other parameters
the same. Figure 9 shows the experimental results on four
datasets. HEAD achieves optimal performance at the stan-
dard deviation σ = 1.0 and is generally stable around it,
and too small or large values would harm the model.

6 CONCLUSION

In this paper, we first investigate latent explanatory factors
of nodes in HIN embedding and propose a novel solu-
tion HEAD with disentangled representation. Our HEAD
purifies out intrinsic embedding from input embeddings
of multiple meta-paths, which absorb informative charac-
teristic from all meta-paths and reduce the noise interfer-
ence. Specifically, given node embeddings of various meta-
paths, a meta-path disentangler in HEAD encodes them

12

into intrinsic and specific spaces. Subsequently, two adver-
sarial learners (i.e., meta-path discriminator and semantic
discriminator) utilize meta-path schemes as self-supervised
information to further refine the disentanglement. Extensive
experimental results verify the effectiveness of HEAD and
its ability to attain robust node embedding.

7 ACKNOWLEDGMENTS

This research is supported in part by the National Natu-
ral Science Foundation of China (No. U20B2045, 61772082,
62002029), The Fundamental Research Funds for the Central
Universities (2021RC28), and BUPT Excellent Ph.D. Stu-
dents Foundation (CX2021105). In addition, Y. Ye’s work is
partially supported by the NSF under grants IIS-2107172,
IIS-2027127, IIS-2040144, CNS-2034470, IIS-1951504, CNS-
1940859, CNS-1814825 and OAC-1940855, and the DoJ/NIJ
2018-75-CX-0032.

REFERENCES

[1] Y. Sun and J. Han, “Mining heterogeneous information networks: a
structural analysis approach,” Acm Sigkdd Explorations Newsletter,
pp. 20–28, 2013.

[2] C. Shi, Y. Li, J. Zhang, Y. Sun, and S. Y. Philip, “A survey of
heterogeneous information network analysis,” IEEE Transactions
on Knowledge and Data Engineering, pp. 17–37, 2016.

[3] C. Shi and S. Y. Philip, Heterogeneous information network analysis
and applications. Springer, 2017.

[4] H. Cai, V. W. Zheng, and K. C.-C. Chang, “A comprehensive sur-
vey of graph embedding: Problems, techniques, and applications,”
IEEE Transactions on Knowledge and Data Engineering, pp. 1616–
1637, 2018.

[5] P. Cui, X. Wang, J. Pei, and W. Zhu, “A survey on network
embedding,” IEEE Transactions on Knowledge and Data Engineering,
pp. 833–852, 2018.

[6] J. Tang, M. Qu, and Q. Mei, “Pte: Predictive text embedding
through large-scale heterogeneous text networks,” in SIGKDD,
2015, pp. 1165–1174.

[7] J. Shang, M. Qu, J. Liu, L. M. Kaplan, J. Han, and J. Peng, “Meta-
path guided embedding for similarity search in large-scale hetero-
geneous information networks,” arXiv preprint arXiv:1610.09769,
2016.

[8] Y. Dong, N. V. Chawla, and A. Swami, “metapath2vec: Scalable
representation learning for heterogeneous networks,” in SIGKDD,
2017, pp. 135–144.

[9] L. Xu, X. Wei, J. Cao, and P. S. Yu, “Embedding of embedding
(eoe): Joint embedding for coupled heterogeneous networks,” in
WSDM, 2017, pp. 741–749.

[10] X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang, “Community
preserving network embedding.” in AAAI, 2017, pp. 203–209.

[11] C. Yang, Y. Xiao, Y. Zhang, Y. Sun, and J. Han, “Heterogeneous
network representation learning: Survey, benchmark, evaluation,
and beyond,” arXiv preprint arXiv:2004.00216, 2020.

[12] Y. Zhang, Y. Xiong, X. Kong, S. Li, J. Mi, and Y. Zhu, “Deep
collective classification in heterogeneous information networks,”
in WWW, 2018, pp. 399–408.

[13] Y. Jacob, L. Denoyer, and P. Gallinari, “Learning latent representa-
tions of nodes for classifying in heterogeneous social networks,”
in WSDM, 2014, pp. 373–382.

[14] Y. Sun, R. Barber, M. Gupta, C. C. Aggarwal, and J. Han, “Co-
author relationship prediction in heterogeneous bibliographic net-
works,” in ASONAM, 2011, pp. 121–128.

[15] H. Wang, F. Zhang, M. Hou, X. Xie, M. Guo, and Q. Liu, “Shine:
Signed heterogeneous information network embedding for senti-
ment link prediction,” in WSDM, 2018, pp. 592–600.

[16] C. Shi, B. Hu, W. X. Zhao, and S. Y. Philip, “Heterogeneous infor-
mation network embedding for recommendation,” IEEE Transac-
tions on Knowledge and Data Engineering, pp. 357–370, 2018.

[17] B. Hu, C. Shi, W. X. Zhao, and P. S. Yu, “Leveraging meta-
path based context for top-n recommendation with a neural co-
attention model,” in SIGKDD, 2018, pp. 1531–1540.

[18] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu,
“Heterogeneous graph attention network,” in WWW, 2019, pp.
2022–2032.

[19] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu, “Pathsim: Meta
path-based top-k similarity search in heterogeneous information
networks,” Proceedings of the VLDB Endowment, pp. 992–1003, 2011.

[20] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient esti-
mation of word representations in vector space,” arXiv preprint
arXiv:1301.3781, 2013.

[21] D. Zhang, J. Yin, X. Zhu, and C. Zhang, “Network representation
learning: A survey,” IEEE transactions on Big Data, 2018.

[22] D. Zhou, J. He, H. Yang, and W. Fan, “Sparc: Self-paced network
representation for few-shot rare category characterization,” in
KDD, 2018, pp. 2807–2816.

[23] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in SIGKDD, 2014, pp. 701–710.

[24] A. Grover and J. Leskovec, “node2vec: Scalable feature learning
for networks,” in SIGKDD, 2016, pp. 855–864.

[25] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in WWW, 2015, pp.
1067–1077.

[26] D. Wang, P. Cui, and W. Zhu, “Structural deep network embed-
ding,” in SIGKDD, 2016, pp. 1225–1234.

[27] S. Cao, W. Lu, and Q. Xu, “Grarep: Learning graph representations
with global structural information,” in CIKM, 2015, pp. 891–900.

[28] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asymmetric transi-
tivity preserving graph embedding,” in SIGKDD, 2016, pp. 1105–
1114.

[29] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Chang, “Network
representation learning with rich text information,” in IJCAI, 2015.

[30] D. Zhang, J. Yin, X. Zhu, and C. Zhang, “Homophily, struc-
ture, and content augmented network representation learning,”
in ICDM, 2016, pp. 609–618.

[31] D. Zhou, L. Zheng, J. Han, and J. He, “A data-driven graph
generative model for temporal interaction networks,” in KDD,
2020, pp. 401–411.

[32] Z. Liu, D. Zhou, Y. Zhu, J. Gu, and J. He, “Towards fine-
grained temporal network representation via time-reinforced ran-
dom walk,” in AAAI, vol. 34, no. 04, 2020, pp. 4973–4980.

[33] Z. Liu, D. Zhou, and J. He, “Towards explainable representation
of time-evolving graphs via spatial-temporal graph attention net-
works,” in CIKM, 2019, pp. 2137–2140.

[34] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional
neural networks on graphs with fast localized spectral filtering,”
in NIPS, 2016, pp. 3844–3852.

[35] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” ICLR, 2017.

[36] W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representa-
tion learning on large graphs,” in NIPS, 2017, pp. 1025–1035.

[37] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate,” ICLR, 2014.

[38] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
in NIPS, 2017, pp. 5998–6008.

[39] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” ICLR, 2018.

[40] B. Hu, Z. Zhang, C. Shi, J. Zhou, X. Li, and Y. Qi, “Cash-out user
detection based on attributed heterogeneous information network
with a hierarchical attention mechanism,” in AAAI, 2019, pp. 946–
953.

[41] T.-y. Fu, W.-C. Lee, and Z. Lei, “Hin2vec: Explore meta-paths in
heterogeneous information networks for representation learning,”
in CIKM, 2017, pp. 1797–1806.

[42] H. Chen, H. Yin, W. Wang, H. Wang, Q. V. H. Nguyen, and X. Li,
“Pme: projected metric embedding on heterogeneous networks for
link prediction,” in SIGKDD, 2018, pp. 1177–1186.

[43] B. Hu, Y. Fang, and C. Shi, “Adversarial learning on heterogeneous
information networks,” in SIGKDD, 2019, pp. 120–129.

[44] C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla,
“Heterogeneous graph neural network,” in SIGKDD, 2019, pp.
793–803.

[45] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and
P. Abbeel, “Infogan: Interpretable representation learning by in-
formation maximizing generative adversarial nets,” in NIPS, 2016,
pp. 2172–2180.

13

[46] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick,
S. Mohamed, and A. Lerchner, “beta-vae: Learning basic visual
concepts with a constrained variational framework,” ICLR, 2017.

[47] A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis
with auxiliary classifier gans,” in ICML, 2017, pp. 2642–2651.

[48] H. Kim and A. Mnih, “Disentangling by factorising,” arXiv preprint
arXiv:1802.05983, 2018.

[49] T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum, “Deep
convolutional inverse graphics network,” in NIPS, 2015, pp. 2539–
2547.

[50] Y. Bengio, A. Courville, and P. Vincent, “Representation learning:
A review and new perspectives,” IEEE transactions on pattern
analysis and machine intelligence, pp. 1798–1828, 2013.

[51] A. A. Alemi, I. Fischer, J. V. Dillon, and K. Murphy, “Deep vari-
ational information bottleneck,” arXiv preprint arXiv:1612.00410,
2016.

[52] J. Ma, P. Cui, K. Kuang, X. Wang, and W. Zhu, “Disentangled
graph convolutional networks,” in ICML, 2019, pp. 4212–4221.

[53] Y. Liu, X. Wang, S. Wu, and Z. Xiao, “Independence promoted
graph disentangled networks,” arXiv preprint arXiv:1911.11430,
2019.

[54] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic back-
propagation and approximate inference in deep generative mod-
els,” arXiv preprint arXiv:1401.4082, 2014.

[55] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
arXiv preprint arXiv:1312.6114, 2013.

[56] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee,
“Generative adversarial text to image synthesis,” arXiv preprint
arXiv:1605.05396, 2016.

[57] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling, “Semi-
supervised learning with deep generative models,” in NIPS, 2014,
pp. 3581–3589.

[58] R. Bekkerman and A. McCallum, “Disambiguating web appear-
ances of people in a social network,” in WWW, 2005, pp. 463–470.

[59] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[60] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv
preprint arXiv:1502.03167, 2015.

[61] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in ICML, 2013.

[62] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,”
Journal of machine learning research, pp. 2579–2605, 2008.

[63] C. Shi, Z. Zhang, P. Luo, P. S. Yu, Y. Yue, and B. Wu, “Semantic path
based personalized recommendation on weighted heterogeneous
information networks,” in CIKM, 2015, pp. 453–462.

Ruijia Wang received the B.S. degree from Bei-
jing University of Posts and Telecommunications
in 2019. She is currently a Ph.D. student in
Beijing University of Posts and Communications.
Her current research interest is graph analysis,
especially graph neural networks.

Chuan Shi received the B.S. degree from the
Jilin University in 2001, the M.S. degree from
the Wuhan University in 2004, and Ph.D. degree
from the ICT of Chinese Academic of Sciences
in 2007. He joined the Beijing University of Posts
and Telecommunications as a lecturer in 2007,
and is a professor and deputy director of Beijing
Key Lab of Intelligent Telecommunications Soft-
ware and Multimedia at present. His research
interests are in data mining and machine learn-
ing. He has published more than 100 papers in

refereed journals and conferences.

Tianyu Zhao received the B.S. degree from
Beijing University of Posts and Telecommuni-
cations in 2020. He is currently a master stu-
dent in Beijing University of Posts and Commu-
nications. His current research interest is graph
analysis, especially heterogeneous graph neural
networks.

Xiao Wang is an Assistant Professor in the
School of Computer Science, Beijing University
of Posts and Telecommunications. He received
his Ph.D. degree from the School of Computer
Science and Technology, Tianjin University, in
2016. He was a postdoctoral researcher in De-
partment of Computer Science and Technology,
Tsinghua University. He got the China Schol-
arship Council Fellowship in 2014 and visited
Washington University as a joint training student
from 2014 to 2015. His current research inter-

ests include data mining, social network analysis and machine learning.
Until now, he has published more than 50 papers in conferences, such
as AAAI, IJCAI, KDD, and journals such as IEEE TKDE, IEEE Trans. on
Cybernetics, etc.

Yanfang Ye is Theodore and Dana Schroeder
Associate Professor at Case Western Reserve
University. She received her Ph.D. in computer
science from Xiamen University. She was an as-
sistant professor and then associate professor in
the department of computer science and electri-
cal engineering (CSEE) at West Virginia Univer-
sity. Her research areas mainly include data min-
ing, machine learning, cybersecurity, and health
intelligence.

