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ABSTRACT
Heterogeneous graph neural network (HGNN), which employs
neural network to heterogeneous graph, has shown superior per-
formance and attracted considerable research interest. However,
HGNN inherits the limitation of representational power from GNN
via learning 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 node embeddings based on their struc-
tural neighbors, largely ignoring the potential correlations between
nodes and leading to sub-optimal performance. In fact, the complex
correlation between nodes (e.g., distance or relation) is crucial for
many graph mining tasks, such as link prediction, relation pre-
diction, and subgraph prediction. How to establish the correlation
between node embeddings and improve the representational power
of HGNN is still an open problem. To solve the above problem, we
propose heterogeneous distance encoding (HDE) and inject it into
HGNN, which fundamentally improves the representational power
of HGNN. Specifically, we define heterogeneous shortest path dis-
tance to describe the relative distance between nodes, and then
jointly encode such distances for multiple nodes of interest to estab-
lish their correlation. After that, we inject the encoded correlation
into the neighbor aggregating process of HGNN to learn more rep-
resentative embedding for downstream tasks. More importantly,
the proposed HDE relies only on the graph structure and ensures
the inductive ability of HGNN. Significant improvements on both
transductive and inductive tasks demonstrate the effectiveness of
HDE in improving the representational power of HGNN.
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• Computer systems organization→ Embedded systems; Re-
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1 INTRODUCTION
Heterogeneous graphs, which consist of diverse types of nodes/edges
and rich semantics, have been widely used for abstracting and mod-
eling complex systems, such as academic graphs [24, 30], transporta-
tion systems [7], drug reactions [1], and financial analysis [34]. As
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shown in Figure 1(a), the academic heterogeneous graph contains
three types of nodes: paper, author, and term, as well as different
types of relations between them. Over the past decade, traditional
heterogeneous graph mining [16], especially path based methods
[15, 21], has been well studied. Meta-path [21], a composite relation
connecting two nodes, is used for measuring the node pair similar-
ity. Recently, deep learning based technologies gradually extend
to mine graph-structured data [11, 12, 23]. Heterogeneous graph
neural network (HGNN), as a deep graph representation learning
model, has shown its superiority over traditional heterogeneous
graph analysis [15, 21] and aroused considerable research interest.

The prevailing HGNNs focus on how to handle the heterogeneity
of graph and learn individual node embedding via aggregating its
structural neighbors. However, such learning paradigm of HGNN
inherits the limitation of representational power from GNN [27]
and fails to establish the correlation among multiple nodes [12, 18],
thus leading to sub-optimal performance on many tasks with multi-
ple nodes, such as link prediction and relation prediction. As shown
in Figure 1(b), both nodes 𝑝2 and 𝑝3 individually aggregate informa-
tion from one author and two terms, so their embeddings will be the
same embedding according to their structures (node attributes are
ignored here). As a result, given two node pairs (𝑝1, 𝑝2) and (𝑝1, 𝑝3),
HGNN cannot distinguish which link is more likely to exist and
predicts the same existence probability to them (i.e.,𝑦𝑝1,𝑝2 = 𝑦𝑝1,𝑝3 ),
shown in Figure 1(c). In fact, node 𝑝1 is relatively closer to node
𝑝2 than node 𝑝3, so link (𝑝1, 𝑝2) is more likely to exist. The limited
representational power of HGNNmay greatly hurt the performance
of downstream tasks and largely restricts its applications.

One important reason causing the limited representational power
of HGNN lies in individually aggregating structural neighbors,
while ignoring the correlation between nodes (e.g., distance and
relation), which is crucial for representational power [12, 14, 28].
Capturing the correlation among multiple nodes is extremely use-
ful for the tasks related to more than one single node, such as
link prediction, relation prediction, and subgraph prediction. For
example, node pair close to each other tend to create tie (e.g., tri-
adic closure phenomenon [17]), providing valuable information
for link prediction. Recently, several works [12, 14, 28, 31] try to
integrate diverse correlations into the learning process of homo-
geneous graph neural network. For example, DEGNN [12] utilizes
the shortest path distance (𝑆𝑃𝐷) to capture the correlation between
nodes, and then inject such correlation into node embedding to
improve the representational power of GNNs. However, the above
correlation modeling technologies do not consider diverse types of
edges, so they cannot be directly applied to heterogeneous graph.

In fact, establishing the correlation between nodes in the het-
erogeneous graph encounters much more challenges because there
exist diverse types of connections (a.k.a, paths) between nodes
on heterogeneous graph (e.g., paper-term, paper-author, and their
combinations). Traditional measures (e.g., shortest path distance)
cannot sufficiently measure the correlation between nodes on het-
erogeneous graph because they only focus on path length and
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Figure 1: An introduction to academic heterogeneous graph and the comparison between HGNN and DHN. (a) The academic
heterogeneous graph contains three types of nodes and two types of edges. Different paths reveal different distances between
nodes. (b) The limitation of HGNN comes from the aggregating process which individually learns node embeddings based on
their structural neighbors. (c) The representational power of HGNN is limited and fails to distinguish which link should exist
(i.e., 𝑦𝑝1,𝑝2 = 𝑦𝑝1,𝑝3 ). (d) Node pair connected via different paths show different distances. (e) The proposed DHN injects the
correlation information into the aggregating process via encoding distance between nodes. (f) The representational power of
DHN is significantly improved with the help of distance information (i.e., 𝑦𝑝1,𝑝2 > 𝑦𝑝1,𝑝3 ).

largely ignore the influence of path type, leading to inappropriate
results. As shown in Figure 1(d), node pair (𝑝2, 𝑝1) shows different
correlation from node pair (𝑝2, 𝑝3) because they are connected via
different types of paths (paper-author-paper v.s. paper-term-paper),
while the traditional 𝑆𝑃𝐷 [12] assigns the same relative distance to
them (i.e., path length are both 2).

Deliberately considering the above analysis, to improve the rep-
resentational power of HGNN via correlation modeling, we need
to address the following new challenges:

•Heterogeneity of graph. The heterogeneity is an intrinsic
property of heterogeneous graph, i.e., various types of nodes and
edges. For example, different types of nodes/edges have different
traits and may play different roles in a specific graph mining task.
How to handle such complex heterogeneous information is an
urgent problem that needs to be solved.

•Heterogeneous correlation modeling. The correlation be-
tween nodes is crucial for many graph mining tasks, and ignoring
such correlation greatly limits the representational power of HGNN.
For example, given a node pair (𝑢, 𝑣), if they both show strong cor-
relations to node 𝑖 (e.g., directly linked or relatively closed), then the
probability of link (𝑢, 𝑣) existing is quite high. Taking the heteroge-
neous graph shown in Figure 1(a) as an example, paper 𝑝1 tends
to establish reference relation with paper 𝑝2 because they are both
written by author 𝑎2 and two short paths (𝑝1, 𝑎2) and (𝑎2, 𝑝2) both
indicate strong correlations. As can be seen, author 𝑎2 serves as the
medium to establish the correlation between 𝑝1 and 𝑝2, providing
valuable information to predict the reference relation (𝑝1, 𝑝2). In
contrast, paper 𝑝1 may not establish reference relation with paper
𝑝3 because they are connected with the medium of 𝑝2 via two long
paths (𝑝1, 𝑎2, 𝑝2) and (𝑝2, 𝑡3, 𝑝3) (i.e., weak correlation). Although
the effectiveness of correlation information has been verified in ap-
plications such as similar search and co-authorship prediction [21],

how to incorporate the correlations between nodes into HGNN and
improve its representational power is still an open problem.

•Heterogeneous distance modeling. Intuitively, diverse cor-
relations between nodes can be revealed via the multiple types of
paths. Considering the heterogeneity of graph, when modeling rel-
ative distance between nodes, we need to consider both path length
and path type simultaneously, which is beyond the ability of tra-
ditional shortest path distance [12]. Only considering path length,
while ignoring path types in heterogeneous graph may lead to im-
proper distance measure. For example, node pair (𝑝1, 𝑝2) connected
via (𝑝1, 𝑎2, 𝑝2) indicates co-authoring (paper-author-paper) relation,
while node pair (𝑝3, 𝑝2) connected via (𝑝3, 𝑡3, 𝑝2) indicates term
co-occurrence relation. Although two different paths have the same
length, from the perspective of path type, path (𝑝1, 𝑎2, 𝑝2) indicates
larger similarity than path (𝑝3, 𝑡3, 𝑝2) because co-authoring rela-
tion is more reliable than term co-occurrence relation. Therefore,
simply calculating shortest path distance will weaken the semantic
information provided by different types of paths. How to properly
measure the relative distance between nodes on heterogeneous
graph remains to be solved.

In this paper, we design heterogeneous distance encoding tech-
nology (HDE) to handle the above three challenges. Then we inject
HDE into the neighbor aggregating process of HGNN, which gives
a model Distance encoding based Heterogeneous graph neural
Network (called DHN). Specifically, we first formulate the hetero-
geneous shortest path distance to measure the relative distance
between nodes and design HDE via joining such distances among
multiple nodes to encode their correlation. After that, the proposed
DHN injects the encoded correlation into the aggregating process
to learn more representative embedding for link prediction. By com-
paring Figure 1(b) and (e), we can see that, correlation modeling
pairs the proposed DHN with significantly more representation
power as opposed to previous HGNN.
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The contributions of our work are summarized as follows:
•We first point out the limitaion of representational power of

HGNN and show its limitation in learning structural representation.
To the best of knowledge, we are the first one to observe this fun-
damental issue of HGNN. To enhance its representational power,
we propose heterogeneous distance encoding (HDE) to capture the
correlation between nodes via encoding their relative distance.

•We design a more powerful HGNN, called DHN, which injects
the proposed HDE into the aggregating process to improve its rep-
resentational power, and then apply it to learn more representative
embedding for link prediction as a proof of concept.

•Extensive experiments on both transductive and inductive link
prediction demonstrate the superiority of the proposed DHN over
the state-of-the-arts with significant improvements (up to 13.3%
gains in AUC). More importantly, we discover the characteristics
of HDE and demystify how it improves the performance of HGNN.

2 RELATEDWORK
Graph neural networks generalize deep learning to graph-structured
data, which follows the message-passing framework to receive mes-
sages from neighbors and apply neural network to update node
embedding. Michaël et al. [2] propose a spectral graph convolu-
tional network based on K-order Chebyshev polynomials and GCN
[11] simplifies it via a localized approximation. GraphSAGE [6]
and GAT [23] design diverse aggregators to aggregate neighbor
information. Recently, some works [12, 28, 31] leverage the posi-
tion/location/distance to enhance the neighbor aggregating process.
PGNN [28] uses SPDs between each node and pre-selected anchor
sets to encode the absolute distance between nodes. But it holds
worse inductive/generalization capability. SEAL [31] extracts local
subgraph around each target link and maps subgraph pattern to
link existence. Li et al. [12] propose distance encoding to improve
the representational power of GNNs with both theoretical guaran-
tees and empirical efficiency. However, all the above graph neural
networks focus on homogeneous graphs.

Some works [3, 4, 9, 24, 29] extend GNNs to heterogeneous
graphs. [24] and [30] both leverage hierarchical aggregation to cap-
ture rich semantics. MEIRec [3] and IntentGC [33] apply HGNN to
solve the intent recommendation. Hu et al. [8] propose a heteroge-
neous graph attention network for short text classification. GTN
[29] learns a soft selection of edge types and generate meta-paths
automatically, solving the problem of meta-path selection. HGT
[9] adopts heterogeneous mutual attention to aggregate meta rela-
tion triplet, and MAGNN [4] leverages relational rotation encoder
to aggregate meta-path instances. In summary, all above HGNNs
only focus on the heterogeneity of graph and rich semantic fusion,
largely ignoring the correlation between nodes.

3 PRELIMINARY
Definition 3.1. Heterogeneous Graph [19]. A heterogeneous

graph, denoted as G = (V, E), consists of an object setV and a link
set E. A heterogeneous graph is also associated with a node type
mapping function 𝜙 : V → A and a link type mapping function
𝜓 : E → R. A and R denote the sets of predefined object types
and link types, where |A| + |R| > 2.

Example. Taking the heterogeneous graph shown in Figure 1
as an example, it consists of three types of nodes: paper (𝑃 ), author
(𝐴), and term (𝑇 ) (a.k.a, A = {𝑃,𝐴,𝑇 }). Given a node 𝑢, we can
obtain its type index 𝑗 = 𝜙 (𝑢) and corresponding node type A 𝑗 .
For example, the type index of node 𝑝1 is 0 (i.e., 𝜙 (𝑝1) = 0) and
the corresponding node type is 𝑃 = A0. Also, we can define the
homogeneous graph which only consists of one type of node and
edge (i.e., |A| + |R| = 2).

Then, we define the heterogeneous enclosing subgraph to ex-
tract the local structural information around the target node set
remaining to predict in the specific task.

Definition 3.2. Heterogeneous Enclosing Subgraph. Given a
target node set S ⊂ V in the heterogeneous graph, the 𝑘-hop
heterogeneous enclosing subgraph for S, denoted as G𝑘

S , is the
subgraph induced from the heterogeneous graph by the union of
the 𝑘-hop neighbors of all nodes in S.

Example.Taking node pair (𝑝1, 𝑎2) as an example (S = {𝑝1, 𝑎2}),
the 1-hop heterogeneous enclosing subgraph G1

{𝑝1,𝑎2 } is shown
within the green circle in Figure 1(a), which consists of 𝑝1’s 1-hop
neighbors {𝑎1, 𝑡1, 𝑝1, 𝑎2}, 𝑎2’s 1-hop neighbors {𝑝1, 𝑝2, 𝑎2}, as well
as the induced edges. Note that the heterogeneous enclosing sub-
graph is not necessary to be a connected graph if nodes 𝑢 and 𝑣 are
too far from each other while 𝑘 is relatively small.

Lastly, we briefly review the shortest path distance (𝑆𝑃𝐷), which
is designed to measure the relative distance between nodes in ho-
mogeneous graphs.

Definition 3.3. Shortest PathDistance. Given a node pair (𝑢, 𝑣),
a path 𝜌 is defined as a node sequence from node 𝑣 to 𝑢, denoted
as 𝜌𝑣⇝𝑢 = (𝑤0,𝑤1, · · · ,𝑤𝑝 ),𝑤0 = 𝑣,𝑤𝑝 = 𝑢. Among all possible
paths P𝑣⇝𝑢 , the length of the shortest path (a.k.a, 𝑆𝑃𝐷), denoted
as 𝑠𝑝𝑑 (𝑢 |𝑣) ∈ R, is able to capture the relative distance from node
𝑣 to node 𝑢, shown as follows:

𝑠𝑝𝑑 (𝑢 |𝑣) = min
{��𝜌𝑣⇝𝑢

������∀𝜌𝑣⇝𝑢 ∈ P𝑣⇝𝑢

}
, (1)

where |𝜌𝑣⇝𝑢 | denotes the number of nodes in the path 𝜌𝑣⇝𝑢 except
the first node 𝑣 .

Example. As shown in Figure 2, the shortest path 𝜌𝑝1⇝𝑝2 from
node 𝑝1 to node 𝑝2 is (𝑝1, 𝑎2, 𝑝2) and the corresponding 𝑠𝑝𝑑 (𝑝2 |𝑝1)
is 2. Practically, the relative distance of a node pair revealed by 𝑆𝑃𝐷
is highly related to their correlation (e.g., similarity) and has been
widely used in homogeneous graph analysis [12, 28]. Intuitively,
a node pair connected via the smaller 𝑆𝑃𝐷 show larger similarity
and tend to belong to the same community or establish a link.

4 HETEROGENEOUS DISTANCE ENCODING
In this section, we first propose heterogeneous shortest path dis-
tance to describe the relative distance between nodes. Then, given
a target node set remaining to predict for downstream task (e.g.,
a node pair for link prediction), we further show how to capture
the correlations between the target node set and a node via the
heterogeneous distance encoding. Note that the target node set can
be arbitrary in size for different tasks, such as one single node for
node classification, two nodes for link/relation prediction or even
more nodes for subgraph prediction and graph classification.
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Figure 2: An illustrative example of 𝑆𝑃𝐷 and 𝐻𝑒𝑡𝑒-𝑆𝑃𝐷 cal-
culating 𝜌𝑝1⇝𝑝2 and 𝜌𝑝3⇝𝑝2 . 𝑆𝑃𝐷 does not consider the path
type and assigns the same distance to them (i.e., 𝑠𝑝𝑑 (𝑝2 |𝑝1) =
𝑠𝑝𝑑 (𝑝2 |𝑝3) = 2). While, 𝐻𝑒𝑡𝑒-𝑆𝑃𝐷 calculates the relative dis-
tancewith regard to node type in different dimensions and is
able to distinguish two different paths (i.e., d(𝑝2 |𝑝1) = [1, 1, 0]
and d(𝑝2 |𝑝3) = [1, 0, 1]).

A simple way to model relative distance on the heterogeneous
graph is to calculate the 𝑆𝑃𝐷 between nodes. However, the simple
𝑆𝑃𝐷 only focuses on path length and largely ignores path types,
leading to sub-optimal performance on heterogeneous graph anal-
ysis. For example, node pair (𝑝1, 𝑝2) connected by (𝑝1, 𝑎2, 𝑝2) indi-
cates quite different correlations from node pair (𝑝3, 𝑝2) connected
by (𝑝3, 𝑡3, 𝑝2), while 𝑆𝑃𝐷 will assign the same value to them.

To properly measure the relative distance between nodes on the
heterogeneous graph, we formally define heterogeneous shortest
path distance (𝐻𝑒𝑡𝑒-𝑆𝑃𝐷) based on the full consideration of both
path length and path types, as follows:

Definition 4.1. Heterogeneous Shortest PathDistance. Given
the node pair (𝑢, 𝑣), heterogeneous shortest path distance describes
the relative distance from node 𝑣 to node 𝑢, denoted as d(𝑢 |𝑣) ∈
R |A | , considering both path length and path type simultaneously.
The 𝑗-th dimension of 𝐻𝑒𝑡𝑒-𝑆𝑃𝐷 , which captures the relative dis-
tance with regard to node type A 𝑗 , is shown as follows:

d𝑗 (𝑢 |𝑣) = min
{��𝜌𝑣⇝𝑢

��
𝜙 (𝑤)=𝑗

���� ∀𝜌𝑣⇝𝑢 ∈ P𝑣⇝𝑢

}
, (2)

where |𝜌𝑣⇝𝑢 |𝜙 (𝑤)=𝑗 denotes the number of nodes belonging to
type- 𝑗 in the path 𝜌𝑣⇝𝑢 except the first node 𝑣 .

Example. As shown in Figure 2(a), with the full consideration
of heterogeneity, the 𝐻𝑒𝑡𝑒-𝑆𝑃𝐷 d(𝑝2 |𝑝1) is [1, 1, 0], indicating that
the heterogeneous shortest path from node 𝑝1 to node 𝑝2 goes
through one author (𝑎2) and one paper (𝑝2). On the other hand, the
𝐻𝑒𝑡𝑒-𝑆𝑃𝐷 d(𝑝2 |𝑝3) is [1, 0, 1]. As can be seen, 𝐻𝑒𝑡𝑒-𝑆𝑃𝐷 will as-
sign different distances to node pairs (𝑝3, 𝑝2) and (𝑝1, 𝑝2) even they
share the same 𝑆𝑃𝐷s. In summary, 𝐻𝑒𝑡𝑒-𝑆𝑃𝐷 is significantly differ-
ent from 𝑆𝑃𝐷 as follows: (1) 𝐻𝑒𝑡𝑒-𝑆𝑃𝐷 fully considers the hetero-
geneity of graph and individually calculates the node-type-specific
relative distance in different dimensions. Thus, 𝐻𝑒𝑡𝑒-𝑆𝑃𝐷 is able
to comprehensively describe the relative distance between nodes
in the heterogeneous graph. (2) 𝐻𝑒𝑡𝑒-𝑆𝑃𝐷 is an |A|-dimensional
vector, while 𝑆𝑃𝐷 is a scalar. So 𝐻𝑒𝑡𝑒-𝑆𝑃𝐷 has a higher capacity
of modeling correlation and is more powerful than 𝑆𝑃𝐷 . Besides

node type counting, it is possible to utilize edge type counting for
𝐻𝑒𝑡𝑒-𝑆𝑃𝐷 calculation, which may even further improve relation
prediction in knowledge graphs [22]. We leave it as a future work.

Note that computing 𝐻𝑒𝑡𝑒-𝑆𝑃𝐷 is not much more complex than
computing 𝑆𝑃𝐷 . We may still start with associating each node
with an |A|-dimensional vector and use breadth-first search (BFS),
although |A| many queues, each per object type, should be main-
tained to keep track of the BFS procedure. In practice, we will set
a maximum distance (typically 2-3) to truncate each dimension of
𝐻𝑒𝑡𝑒-𝑆𝑃𝐷 (Eq.(5) later). So the complexity of computing truncated
𝐻𝑒𝑡𝑒-𝑆𝑃𝐷 for all pairs of nodes is at most O(|A| · |𝐸 |), where |𝐸 |
is the total number of links. As in a heterogeneous graph, |A| is
typically assumed to be a small constant, so there is not much more
computation overhead than a standard forward pass of HGNN..

Based on the proposed heterogeneous shortest path distance, we
further define Heterogeneous Distance Encoding (HDE) to model
the correlation between a target node set S and a node 𝑖 based on
𝐻𝑒𝑡𝑒-𝑆𝑃𝐷 .

Definition 4.2. Heterogeneous Distance Encoding. Given a
target node set S ⊂ V in heterogeneous graph, the heterogeneous
distance encoding of node 𝑖 , denoted as hS

𝑖
, is the combination of

𝐻𝑒𝑡𝑒-𝑆𝑃𝐷 from all nodes in S to node 𝑖 , as follows:

hS𝑖 = 𝐹

(
𝐸𝑛𝑐

(
d(𝑖 |𝑣)

) ����𝑣 ∈ S
)
, (3)

where 𝐹 denotes the fusion function (e.g., sum operator), 𝐸𝑛𝑐 is the
encoding function (e.g., onehot encoding).

Example. Given node pair (𝑢, 𝑣) remaining to predict (i.e., S =

{𝑢, 𝑣}), the heterogeneous distance encoding of node 𝑖 with regard
to node pair {𝑢, 𝑣} is shown as follows:

h{𝑢,𝑣 }
𝑖

= 𝐹

(
𝐸𝑛𝑐

(
d(𝑖 |𝑢)

)
, 𝐸𝑛𝑐

(
d(𝑖 |𝑣)

) )
. (4)

Besides node pair (𝑢, 𝑣), S can also be a single node 𝑣 or triangle
(𝑢, 𝑣,𝑤) or even the entire graph. More specifically, 𝐹 is the con-
catenate operator and 𝐸𝑛𝑐 is the concatenation of element-wise
onehot encoding, as follows:

𝐸𝑛𝑐
(
d(𝑖 |𝑢)

)
=

��������
𝑗

𝑜𝑛𝑒ℎ𝑜𝑡

(
min

(
d𝑗 (𝑖 |𝑢), 𝑑max

𝑗

) )
, (5)

where 𝑑max
𝑗

is the maximum distance to be encoded for node type
A 𝑗 , which helps prevent overfitting the noisy structure in an overly
large neighborhood and decreases the computation complexity.

Deeper insight into the (𝑢, 𝑣)-specific HDE of node 𝑖 (a.k.a.,
h{𝑢,𝑣 }
𝑖

), we can find that node 𝑖 serves as the bridge to connect
nodes 𝑢 and 𝑣 , measuring the relative distance of node pair (𝑢, 𝑣)
indirectly. Capturing relative distance is critical for graph mining
tasks, especially link prediction. For example, if d(𝑖 |𝑢) and d(𝑖 |𝑣)
both indicate the small relative distances, then we can conclude
that nodes 𝑢 and 𝑣 are relatively close to each other, indicating
the higher existence probability of link (𝑢, 𝑣). Note that the hetero-
geneity of node 𝑖 (i.e., node type) is also crucial for the proposed
HDE. For example, two papers connected via a term (𝑝1, 𝑡3, 𝑝2) or
an author (𝑝3, 𝑎2, 𝑝2) indicate different correlations. On the other
hand, the proposed HDE is beneficial for inductive learning and
does not depend on node identities, which fundamentally differs
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from positional node embeddings such as node2vec [5] or one-hot
node identifiers. When performing prediction on unseen nodes,
heterogeneous distance encoding, which purely depends on the
graph structure, is able to initialize meaningful node embedding for
unseen nodes. In summary, the proposed HDE ensures the inductive
and generalization ability of HGNN.

5 HETEROGENEOUS DISTANCE ENCODING
FOR LINK PREDICTION

In this section, we take link prediction as an evaluation task to verify
the effectiveness of heterogeneous distance encoding. Specifically,
we inject heterogeneous distance encoding into the neighbor aggre-
gating process. The basic idea of DHN is to capture the correlations
between nodes and integrates such correlation into the aggregating
process of HGNN. Specifically, given a node pair (𝑢, 𝑣) remaining to
predict, we calculate the heterogeneous distance encoding to cap-
ture the correlations between them and use it to initialize neighbor
embeddings. After that, the proposed DHN aggregates the initial
embeddings of heterogeneous neighbors and inject the correlation
between nodes into the final node embedding. Lastly, we use the
final embedding of the node pair to predict the probability of link
(𝑢, 𝑣) existing.

5.1 Node Embedding Initialization
Node embedding initialization is the cornerstone of the HGNN.
Significantly different from previous works [24, 30], which inde-
pendently initialize node embedding, we initialize node embedding
via 𝐻𝐷𝐸 to capture the correlations between nodes. Specifically,
given the link (𝑢, 𝑣), we utilize both (𝑢, 𝑣)-specific 𝐻𝐷𝐸 and het-
erogeneous type encoding of each node to initialize its embedding.

Initialization via heterogeneous distance encoding. Given
the node pair (𝑢, 𝑣), we first calculate the corresponding 𝐻𝐷𝐸 from
node pair (𝑢, 𝑣) to the remaining nodes. Practically, we extract 𝑘-
hop heterogeneous enclosing subgraph G𝑘

{𝑢,𝑣 } of node pair and

only calculate the 𝐻𝐷𝐸 for node 𝑖 ∈ G𝑘
{𝑢,𝑣 } . The reasons are two-

fold: (1) Heterogeneous shortest path calculation for the entire
graph is time-consuming. Actually, the most relevant information
is concentrated around the node pair. 𝑘-hops heterogeneous en-
closing subgraph reduces the search space and accelerates distance
encoding calculation. (2) The extracted subgraph can be used for
mini-batch training, improving the scalability of HGNN andmaking
it apply to industrial-sized graphs.

Initialization via heterogeneous type encoding.Besides het-
erogeneous distance encoding, we also utilize heterogeneous node
type encoding to initialize node embedding, as follows:

c𝑖 = 𝑜𝑛𝑒ℎ𝑜𝑡 (𝜙 (𝑖)), (6)

where c𝑖 is an |A|-dimension vector, indicating the type of node
𝑖 . Taking node 𝑝1 shown in Figure 1 as an example, its type index
𝑗 = 𝜙 (𝑝1) = 0 and the corresponding heterogeneous type encoding
is [1, 0, 0]. Different from heterogeneous distance encoding, het-
erogeneous type encoding aims to capture the characteristic of
different types of nodes, which is independent of node pair (𝑢, 𝑣).
Lastly, we concatenate heterogeneous type encoding and heteroge-
neous distance encoding of node 𝑖 , and project it via MLP as the

initial embedding to predict the existence of link (𝑢, 𝑣), as follows:

e{𝑢,𝑣 }
𝑖

= 𝜎 (W0 · c𝑖 | |h{𝑢,𝑣 }𝑖
+ b0), (7)

where e{𝑢,𝑣 }
𝑖

denotes the (𝑢, 𝑣)-specific initial embedding of node
𝑖 , 𝜎 denotes the activation function,W0 and b0 denote the weight
matrix and the bias vector, respectively. Eq. 7 actually projects raw
distance information and type information as a learnable vector
which can be optimized via back-propagation.

5.2 Heterogeneous Graph Convolution
After initializing the (𝑢, 𝑣)-specific node embedding, we further
design heterogeneous graph convolution to aggregate diverse types
of neighbors in the heterogeneous enclosing subgraph, and update
node embeddings to predict the existence of link.

Before predicting the existence of link (𝑢, 𝑣), we need to aggre-
gate neighbor embedding to update the embeddings of both nodes
𝑢 and 𝑣 . Taking node 𝑢 as an example, we first sample a fixed num-
ber of neighbors of node 𝑢 from the corresponding heterogeneous
enclosing subgraph, denoted as N {𝑢,𝑣 }

𝑢 . Then, the proposed DHN
can obtain the neighbor based embedding of node𝑢 via multi-layers
aggregating, as follows:

x{𝑢,𝑣 }N𝑢 ,𝑙
= 𝐴𝑔𝑔({x{𝑢,𝑣 }

𝑖,𝑙−1 |∀𝑖 ∈ N {𝑢,𝑣 }
𝑢 }), (8)

where x{𝑢,𝑣 }N𝑢 ,𝑙
denotes 𝑙-layer neighbor based embedding of node

𝑢, x{𝑢,𝑣 }
𝑖,𝑙

denotes the embedding of node 𝑖 via 𝑙-layer aggregating

and x{𝑢,𝑣 }
𝑖,0 is the initial node embedding e{𝑢,𝑣 }

𝑖
. The previous works

[9, 24] usually improve the performance of HGNN via designing a
better aggregating function. Unlike them, we aim to fundamentally
improve the representational power by injecting the correlation
between nodes into aggregating process, rather than designing a
new model architecture. So we keep the model simple and adopt
the𝑀𝑒𝑎𝑛𝑃𝑜𝑜𝑙𝑖𝑛𝑔 to perform aggregating process, as follows:

x{𝑢,𝑣 }N𝑢 ,𝑙
= 𝑀𝑒𝑎𝑛𝑃𝑜𝑜𝑙𝑖𝑛𝑔({x{𝑢,𝑣 }

𝑖,𝑙−1 |∀𝑖 ∈ N {𝑢,𝑣 }
𝑢 }). (9)

To emphasize the property of root node 𝑢 explicitly, we concate-
nate root node embedding x{𝑢,𝑣 }

𝑢,𝑙−1 and neighbor based embedding

x{𝑢,𝑣 }N𝑢 ,𝑙
to update root node embedding, as follows:

x{𝑢,𝑣 }
𝑢,𝑙

= 𝜎 (W𝑙 · (x{𝑢,𝑣 }
𝑢,𝑙−1 | |x

{𝑢,𝑣 }
N𝑢 ,𝑙

) + b𝑙 ), (10)

where W𝑙 and b𝑙 denote the weight matrix and bias vector, respec-
tively. After 𝐿-layer aggregating, we obtain the final node embed-
ding z{𝑢,𝑣 }𝑢 = x{𝑢,𝑣 }

𝑢,𝐿
. Note that z{𝑢,𝑣 }𝑢 is (𝑢, 𝑣)-specific and only

used for predicting the existence of link (𝑢, 𝑣). The same process
can be done to learn the final embedding of node 𝑣 , denoted as
z{𝑢,𝑣 }𝑣 .

5.3 Loss Function and Optimization
Given a (𝑢, 𝑣)-specific embedding of node pair (i.e., z{𝑢,𝑣 }𝑢 and
z{𝑢,𝑣 }𝑣 ), we feed the concatenation of them into MLP to predict
the existence of link (𝑢, 𝑣). Here we formulate link prediction as a
binary classification problem, and the predict score 𝑦𝑢,𝑣 is shown
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Table 1: Statistics of the datasets.

Datasets A-B #A #B #A-B

LastFM Artist-Tag 1181 539 1500
User-Artist 1496 1755 3000

ACM Term-Paper 381 769 1500
Paper-Author 1000 2527 3000

IMDB Movie-Actor 3061 1374 7071
Movie-Director 3061 861 3061

as follows:

𝑦𝑢,𝑣 = 𝜎

(
W1 · (z{𝑢,𝑣 }𝑢 | |z{𝑢,𝑣 }𝑣 ) + 𝑏1

)
, (11)

where W1 and 𝑏1 denote the weight vector and bias scalar, respec-
tively. Finally, we calculate cross-entropy loss and optimize the
model, as follows:

L =
∑

(𝑢,𝑣) ∈E+∪E−

(
𝑦𝑢,𝑣 log𝑦𝑢,𝑣 +

(
1 − 𝑦𝑢,𝑣

)
log

(
1 − 𝑦𝑢,𝑣

) )
, (12)

where (𝑢, 𝑣) ∈ E and (𝑢, 𝑣 ′) ∈ E− denote the set of observed (posi-
tive) node pairs and the set of negative node pairs sampled from all
unobserved node pairs, respectively.

Although we only take the link prediction task as an example
to explain and verify the representational power of heterogeneous
distance encoding, it can be widely used in many graph mining
tasks, such as link type/relation prediction [20], hyperlink predic-
tion and its type prediction [32], and subgraph prediction [13]. One
only needs to adapt a node pair into a set of nodes. DHN should
theoretically outperform traditional HGNNs. Moreover, as long
as there is categorical node (or link) features, HDE can provide
consistently more power than traditional distance encoding [12].

6 EXPERIMENT
6.1 Datasets
As shown in Table 1, we conduct experiments on three real-world
heterogeneous graphs: LastFM1 is an online music dataset, which
contains three types of nodes, i.e., user (U), artist (A), tag (T), and
two types of edges, i.e., artist-tag (A-T), user-artist (U-A). ACM2 is
a bibliographic dataset in computer science, which contains three
types of nodes, i.e., author (A), paper (P), term (T), and two types of
edges, i.e., paper-author (P-A), term-paper (T-P). IMDB3 contains
knowledge about movies, which contains three types of nodes,
i.e., actor (A), movie (M), director (D), and two types of edges, i.e.,
movie-actor (M-A), movie-director (M-D).

6.2 Baselines and Implementation Details
We compare with some state-of-the-art baselines including both ho-
mogeneous GNNs (i.e., GCN, GAT, GraphSAGE, GIN, and DEGNN)
and heterogeneous graph neural networks (i.e., HAN, MEIRec, and
HGT), to verify the effectiveness of the proposed DHN.

•GCN [11]: It is a classical graph convolutional network which
is designed for homogeneous graphs.

1https://www.last.fm/
2http://dl.acm.org/
3https://www.kaggle.com/carolzhangdc/imdb-5000-movie-dataset

•GAT [23]: It is an attention-based homogeneous GNN which
considers the importance of neighbor and improves the aggregating
process.

•GraphSAGE (SAGE for short) [6]: It is a classical GNN which
leverages sampler and aggregator to embed homogeneous graph.

•GIN [27]: It is a classical homogeneous GNN which is as pow-
erful as the WL test with a simple aggregating function.

•DEGNN [12]: It is a homogeneous graph neural network which
captures distance between the node set and improves the represen-
tation power of GNNs.

•HAN [24]: It is a HGNN which employs node-level attention
and semantic-level attention simultaneously.

•MEIRec [3]: It is a HGNN which leverages heterogeneous neigh-
bor sampling for large-scale heterogeneous graph.

•HGT [9]: It is a HGNN which aggregates information via meta
relation triplet based on heterogeneous mutual attention. We re-
move the relative temporal encoding in HGT, because our datasets
are static heterogeneous graphs.

For previous HGNNs including HAN, HGT, and MEIRec, we use
heterogeneous type encoding to initialize node embedding. For ho-
mogeneous GNNs except DEGNN, we only use zero as initial node
embedding. We implement the proposed DHN using Tensorflow
1.8.0. Here we randomly initialize parameters with the Gaussian
distribution and leverage Adam [10] to optimize the model. For the
proposed DHN, we set the learning rate to 0.01, the batch size to 32,
the hops of neighbor to 2, the size of heterogeneous enclosing sub-
graph to 4, the 𝑑max

𝑗
to 3, the number of sampled neighbor to 5, the

dimension of node embedding to 128, the regularization parameter
to 5e-3. For GCN, GAT, GraphSAGE, GIN, DEGNN, HAN, MEIRec,
and HGT, we split exactly the same training set, validation set, and
testing set to ensure fairness, and optimize their parameters using
the validation set. For a fair comparison, we set the embedding
dimension to 128 for all the models. We will release the code and
datasets after the paper being accepted.

6.3 Link Prediction
Link prediction aims to infer unknown links given an observed
graph structure, which has been widely used to test the generaliza-
tion ability of graph neural networks. Here we adopt two types of
tasks for evaluation: transductive and inductive link prediction.

6.3.1 Transductive Link Prediction. Considering diverse types of
edges existing in heterogeneous graph, we individually perform
transductive link prediction for all types of edges, providing exten-
sive and comprehensive evaluation. Here 𝑡𝑟𝑎𝑛𝑠𝑑𝑢𝑐𝑡𝑖𝑣𝑒 means that
when randomly removing edges from the heterogeneous graph, we
need to possibly ensure all nodes are seen in the training data. To
generate negative samples, we randomly sample an equal number
of node pairs from the graph which have no edge connecting them.
We split the chosen edges and negative samples into validation
and test. In our experiments, we test both 80%-10%-10% (8/1/1) and
60%-20%-20% (6/2/2) splitting for training, validation, and testing.
Here we select AUC and accuracy as the evaluation metrics. The
experimental results are shown in Table 2.

Based on Table 2, we have the following observations:
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Table 2: Qantitative results on the transductive link prediction with two different splitting (e.g., 8/1/1 and 6/2/2). The larger
values, the better performace. Best results are indicated in bold. The Imp.(%) indicates the percentage of improvements gained
by the proposed DHN compared to the best baseline.

Split Models
LastFM ACM IMDB

A-T U-A P-A T-P M-A M-D
Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC

8/1/1

GCN 0.5012 0.5031 0.5021 0.5041 0.5012 0.5043 0.5031 0.5087 0.5051 0.5098 0.5089 0.5102
SAGE 0.7343 0.8324 0.6766 0.7361 0.7741 0.7781 0.6512 0.7812 0.5423 0.6323 0.8482 0.8901
GAT 0.5054 0.5061 0.5102 0.5121 0.5012 0.5067 0.5121 0.5198 0.5101 0.5144 0.5123 0.5192
GIN 0.8471 0.9306 0.7281 0.7919 0.7728 0.8372 0.7833 0.8232 0.7362 0.8045 0.8483 0.9374

DEGNN 0.8532 0.9372 0.7333 0.8049 0.8512 0.9179 0.7978 0.8551 0.7857 0.8828 0.9418 0.9626
HAN 0.8154 0.8732 0.7112 0.7812 0.8423 0.8877 0.8123 0.8931 0.7949 0.8799 0.9477 0.9584

MEIRec 0.8427 0.9324 0.7221 0.8632 0.8408 0.9018 0.8151 0.8986 0.7906 0.8523 0.9575 0.9664
HGT 0.8612 0.9412 0.7412 0.8195 0.8612 0.9232 0.8268 0.9099 0.8121 0.9121 0.9677 0.9723
DHN 0.9521 0.9743 0.9623 0.9781 0.9523 0.9832 0.8531 0.9281 0.8333 0.9422 0.9912 0.9931

Imp. (%) 10.6 3.5 29.8 13.3 10.6 6.5 3.2 2.1 2.6 3.3 2.4 2.4

6/2/2

GCN 0.5058 0.5098 0.5089 0.5078 0.5102 0.5178 0.5023 0.5056 0.5032 0.5061 0.5121 0.5198
SAGE 0.6548 0.7419 0.5916 0.6332 0.6873 0.6993 0.5733 0.6263 0.5412 0.6198 0.7189 0.786
GAT 0.5123 0.5191 0.5123 0.5201 0.5287 0.5302 0.5231 0.5112 0.5187 0.5298 0.5341 0.5421
GIN 0.7789 0.8368 0.6452 0.7132 0.6857 0.7667 0.7151 0.7981 0.6812 0.7441 0.7696 0.8637

DEGNN 0.7778 0.8493 0.6508 0.7191 0.7928 0.8441 0.7433 0.8196 0.7491 0.8422 0.8571 0.9166
HAN 0.8011 0.8879 0.6892 0.7279 0.8258 0.8762 0.7366 0.8075 0.7607 0.8328 0.9093 0.9038

MEIRec 0.7812 0.9098 0.7425 0.8147 0.8499 0.9105 0.7688 0.8388 0.7953 0.8517 0.9281 0.9376
HGT 0.8312 0.9341 0.7609 0.8531 0.8812 0.9321 0.7923 0.8512 0.8381 0.8831 0.9541 0.9512
DHN 0.9612 0.9732 0.9322 0.9767 0.9512 0.9874 0.8612 0.9151 0.9012 0.9645 0.9965 0.9901

Imp. (%) 15.6 4.2 22.5 14.5 7.9 5.9 8.7 7.5 7.5 9.2 4.4 4.1

Table 3: Qantitative results on the inductive link prediction. The larger values, the better performace. Best results are indicated
in bold. The Imp.(%) indicates the percentage of improvements gained by the proposed DHN compared to the best baseline.

Models
LastFM ACM IMDB

A-T U-A P-A T-P M-A M-D
Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC

GCN 0.5021 0.5091 0.5031 0.5089 0.5121 0.5152 0.5012 0.5321 0.5089 0.5102 0.5131 0.5234
SAGE 0.6311 0.5945 0.6681 0.7029 0.5722 0.5212 0.5212 0.5444 0.6132 0.6231 0.6312 0.6421
GAT 0.5121 0.5212 0.5091 0.5102 0.5213 0.5298 0.5132 0.5273 0.5102 0.5301 0.5202 0.5352
GIN 0.8033 0.8253 0.6683 0.7116 0.6023 0.6231 0.6171 0.6157 0.5512 0.6412 0.7041 0.7501

DEGNN 0.8197 0.8749 0.6612 0.7221 0.7221 0.8013 0.6328 0.7072 0.6723 0.7122 0.7921 0.8121
HAN 0.7951 0.8512 0.7885 0.8399 0.8191 0.8523 0.7891 0.8689 0.8061 0.8615 0.9022 0.9312

MEIRec 0.8033 0.8762 0.8028 0.8387 0.8333 0.9019 0.7732 0.8532 0.8022 0.8614 0.9373 0.9531
HGT 0.8344 0.8922 0.8301 0.8621 0.8512 0.9213 0.7922 0.8753 0.8112 0.8921 0.9521 0.9652
DHN 0.8867 0.9488 0.9268 0.9815 0.9122 0.9507 0.8205 0.9485 0.8295 0.9446 0.9819 0.9951

Imp. (%) 6.2 6.3 11.6 13.8 7.1 3.2 3.5 8.3 2.2 5.8 3.1 3.0

•The proposed DHN consistently performs better than all base-
lines with significant improvements on all datasets. When pre-
dicting the U-A relation on the LastFM dataset, the superiority of
DHN is up to 29.8% and 13.3% improvements in accuracy and AUC,
respectively. It demonstrates the effectiveness of heterogeneous
distance encoding in modeling node pair correlation.

•Compared to the traditional GNNs which individually learn
node embedding (e.g., GCN, GraphSAGE, GIN, HAN, MEIRec, and
HGT), both DEGNN and DHN are able to capture the correlations
between nodes via distance modeling and achieve significant better

performance. To go deep into DEGNN and DHN, we find that 𝐻𝑒𝑡𝑒-
𝑆𝑃𝐷 is more powerful than 𝑆𝑃𝐷 in modeling node pair correlation
on heterogeneous graph because it fully considers both path length
and path type for relative distance modeling.

•With the full consideration of heterogeneity of graph, HGNNs
including HAN, MEIRec, HGT, and DHN usually show superiorities
over homogeneous GNNs. When predicting heterogeneous links
(e.g., paper-author), node type encoding may provide potentially
valuable information and improves the performance.
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Figure 3: Effectiveness of HDE w.r.t maximum distance and
dimension.

•Among all homogeneous GNNs, GAT, GCN, and GraphSAGE,
which are bounded by the 1-WL test, fail to perform well. On the
other hand, GIN and DEGNN are more powerful than traditional
GNNs, achieving competitive performance.

6.3.2 Inductive Link Prediction. Besides transductive link predic-
tion, we further conduct inductive link prediction [25, 26] to evalu-
ate the generalization ability of the proposed DHN on unobserved
links. Here 𝑖𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑒 means the model should be able to efficiently
predict the links associated with nodes that are not observed in
the training data. Specifically, we follow two steps to split the data:
1) we use the same setting of the transductive task to first split
the links into training/validation/testing sets; 2) we randomly se-
lect 20% nodes, remove any links associated with them from the
training set, and remove any links not associated with them in the
validation and testing sets. The experimental results of inductive
link prediction are shown in Table 3.

Based on Table 3, we have the following observations:
•Similar to transductive link prediction, the proposed DHN

consistently shows its superiorities over all baselines on all three
datasets, verifying its strong inductive ability. In brief, the proposed
DHN is able to generate meaningful embeddings for unseen nodes
and predicts inductive links effectively.

•Among all models, DEGNN shows better generalization because
it captures node pair correlation based solely on the graph structure
via 𝑆𝑃𝐷 . However, it fails to outperform the proposed DHN due to
the lack of heterogeneity modeling in distance calculation.

•HGNNs including HAN, MEIRec, and HGT outperform ho-
mogeneous GNNs with significant gaps because they are able to
capture the characteristics of different types of nodes, indicating
the necessity of heterogeneity modeling.

6.4 Analysis of Heterogeneous Distance
Encoding

The correlation modeling via the proposed HDE plays a key role
in improving the representational power of HGNN. Practically, we
truncate the proposed HDE with the maximum distance to prevent
overfitting and project it as the learnable vector to improve its ca-
pacity. As shown in Figure 3, we further discover the characteristic
of the proposed HDE (w.r.t. maximum distance and dimension) and
have the following observations: From Figure 3(a), we find that the
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Figure 4: A case study that shows how the proposed HDE im-
proves the representational power of HGNN via correlation
modeling (i.e., positive correlation improves the probability
of link (𝑝28, 𝑎54) existing).

relative distance in a small range (typically 2-3) provides valuable
correlation information, and large distance may be unnecessary.
Comparing the results in Figure 3(a) and those in Table 2, we can
see that even with 𝑑𝑚𝑎𝑥 = 1, DHN performs far more better than all
the baselines. It makes sense because local structure around nodes
is beneficial for link prediction [31] while long-range connections
may introduce noise and lead to overfitting. As shown in Figure 3(b),
we can see that with the growth of the dimension, the effectiveness
of HDE rises first and then starts to keep stable, which means it
needs enough dimension to encode the correlation between nodes
and larger dimension may introduce additional redundancies.

6.5 Case Study
To intuitively show the effectiveness of the proposed HDE in im-
proving the representational power of HGNN, we take paper-author
pair (𝑝28, 𝑎54)4 on ACM dataset as an example to show how paper-
author prediction changes with/without HDE. Note that the link
(𝑝28, 𝑎54) actually exists in the dataset (i.e., 𝑦𝑝28,𝑎54 = 1). To predict
whether the link (𝑝28, 𝑎54) exists, we first extract corresponding
heterogeneous enclosing subgraph (six authors5, two papers6, and
induced edges) and show them in Figure 4.

As shown in Figure 4, we can find that: When predicting the exis-
tence of link (𝑝28, 𝑎54), HGNNwithout HDE is not sure whether the
link should exist and leads to sub-optimal prediction (i.e., 𝑦𝑝28,𝑎54 =
0.59). It is because although (𝑝28, 𝑎54) are close to each other, HGNN
without HDE fails to capture such positive correlation (small dis-
tance) due to its limited representational power. In contrast, HGNN
withHDE is pretty sure that link (𝑝28, 𝑎54) should exist (i.e.,𝑦𝑝28,𝑎54 =
0.95) because the proposed HDE injects the correlation into the
embedding and enables HGNN to distinguish their relative dis-
tance. So we can conclude that HDE significantly improves the
representational power of HGNN and leads to better performance.

4𝑝28: Michele Berlingerio, Fabio Pinelli, Mirco Nanni, Fosca Giannotti. Temporal
mining for interactive workflow data analysis, KDD’09. 𝑎54 : Fabio Pinelli.
5𝑎54 ,𝑎19 : Mirco Nanni,𝑎26 : Fosca Giannotti,𝑎79 : Roberto Trasarti,𝑎83 : AnnaMonreale,
𝑎96 : Michele Berlingerio.
6𝑝28 , 𝑝34 : Anna Monreale, Fabio Pinelli, Roberto Trasarti, Fosca Giannotti. WhereNext:
a location predictor on trajectory pattern mining, KDD’09.
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Figure 5: Parameter sensitivity of DHN.

6.6 Parameters Study
We investigate the sensitivity of parameters on the ACMdataset and
report the performance of DHN on both paper-author prediction
and paper-term prediction with various parameters in Figure 5.

•Hop of heterogeneous enclosing subgraph.We show how
different hops of heterogeneous enclosing subgraph affect themodel
performance. The results are shown in Figure 5(b). We can find
that the performance of DHN rises slowly and achieves the best
performance when the hop is set to 4. Again, comparing Figure 5(a)
and Table 2, we can see that even with only one-hop enclosing sub-
graph, DHN has already significantly outperform all the baselines.
After that, the performance of DHN keeps stable. It is because we
need enough local structural information to encode the correlation
between nodes. And, more hops will increase the time cost and may
be unnecessary.

•Number of the neighbor. As illustrated in Figure 5(d), we can
see that the performance of our model significantly improves as
the number of neighbors grows. When sampling 5 neighbors, the
proposed DHN achieves the best performance. This confirms that
the neighbor information can effectively improve node embedding.

7 CONCLUSION
In this paper, we first point out the limitation of representational
power of HGNN. After that, we study the problem of correlation
modeling in the heterogeneous graph and design provably a more
powerful HGNN, called DHN, which injects the correlation into
the aggregating process to learn more representative embeddings.
Specifically, we formulate heterogeneous shortest path distance to
model the relative distance between nodes and then propose a novel
heterogeneous distance encoding to encode the relative distance as
the correlation between nodes. Then, we inject the proposed HDE
into the aggregating process of HGNN, which gives a model DHN.
Extensive experimental results on both transductive and inductive
tasks verify the superiority of the proposed DHN.
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Table 4: List of hyperparameters and their value / range.

Hyperparameters Value / Range Notes
Batch size 1, 32, 64, 128
Optimizer SGD, Adam
Activation ReLU, Elu

Learning rate 0.005, 0.01
Seed 0,1,2,3,4 Random seed for initialization

Dropout 0, 0.2 Dropout rate in MLP
Hidden dim. 32, 64, 128 Dimension of hidden layer in MLP

Layers 1, 2, 3 Number of aggregating layer of GNNs
Neighbors 1, 2, 3, 4, 5 Number of sampled neighbors for GraphSAGE and DHN

Hops 1, 2, 3, 4, 5 Hops of enclosing subgraph for DEGNN and DHN
𝑑𝑚𝑎𝑥 1, 2, 3, 4, 5 Maximum of distance for DEGNN and DHN
Heads 8 Number of attention head for GAT and HAN

A DETAILS OF THE EXPERIMENTS
A.1 Baseline Details
We take both homogeneous GNNs and HGNN as baselines. We
first introduce the implementation of baselines and then discuss
hyper-parameters tuning.

Regarding homogeneous GNN models, GCN is implemented ac-
cording to Equation (9) of [11] with self-loops added. GraphSAGE is
implemented according to Algorithm 1 of Section 3.1 in [6]7. Mean
pooling is used as the neighborhood aggregation function. GAT
layer is adopted from the code released in the paper [23]8. GIN is
implemented by adapting the code provided by the original paper
[27]9, where we use the sum-pooling aggregation and multi-linear
perception to aggregate neighbors. In all three baselines described
above, ReLU nonlinearities are applied to the output of each hidden
layer, followed by a Dropout layer. PGNN layer is implemented by
adapting the code provided by the original paper [28]10. DEGNN
is implemented by adapting the code provided by the original pa-
per [12]11. As we focus on learning structural representation with
inductive capability, all the homogeneous GNNs use zero as input
features. We use the heterogeneous type encoding (i.e., node type)
as the initial features. Regarding heterogeneous GNN models, HAN
layer is adopted from the code released in [24]12. For MEIRec, we
use the code provided by the original paper [3]13 and select average
function to aggregate neighbors. And, HGT [9] is adopted from the
original implement released in GitHub14.

A.2 Hyperparameters Tuning
Table 4 lists themost important hyperparameters’ at a glance, which
applies to both the baselines and our proposed models. Grid search
is used to find the best hyperparameters combination. The models
are sufficiently trained till the cross entropy loss converges and we
report the best model over different random seeds.

7https://github.com/tkipf/gcn
8https://github.com/PetarV-/GAT
9https://github.com/weihua916/powerful-gnns
10https://github.com/JiaxuanYou/P-GNN
11https://github.com/snap-stanford/distance-encoding
12https://github.com/Jhy1993/HAN
13https://github.com/googlebaba/KDD2019-MEIRec
14https://github.com/acbull/pyHGT


	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary
	4 Heterogeneous Distance Encoding
	5 Heterogeneous Distance Encoding for Link Prediction
	5.1 Node Embedding Initialization
	5.2 Heterogeneous Graph Convolution
	5.3 Loss Function and Optimization

	6 Experiment
	6.1 Datasets
	6.2 Baselines and Implementation Details
	6.3 Link Prediction
	6.4 Analysis of Heterogeneous Distance Encoding
	6.5 Case Study
	6.6 Parameters Study

	7 Conclusion
	References
	A Details of the Experiments
	A.1 Baseline Details
	A.2 Hyperparameters Tuning


