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Abstract—Graph neural network (GNN), as a powerful graph representation technique based on deep learning, has shown superior
performance and attracted considerable research interest. Recently, some works attempt to generalize GNN to heterogeneous graph
which contains different types of nodes and links. Heterogeneous graph neural networks (HeteGNNs) usually follow two steps:
aggregate neighbors via single meta-path and then aggregate rich semantics via multiple meta-paths. However, we discover an
important semantic confusion phenomenon in HeteGNNs, i.e., with the growth of model depth, the learned node embeddings become
indistinguishable, leading to the performance degradation of HeteGNNs. We explain semantic confusion by theoretically deriving that
HeteGNNs and multiple meta-paths based random walk are essentially equivalent. Following the theoretical analysis, we propose a
novel Heterogeneous graph Propagation Network (HPN) to alleviate the semantic confusion. Specifically, the semantic propagation
mechanism improves the node-level aggregating process via absorbing node’s local semantic with a proper weight, which makes HPN
capture the characteristics of each node and learn distinguishable node embedding with deeper HeteGNN architecture. Then, the
semantic fusion mechanism is designed to learn the importance of meta-path and fuse them judiciously. Extensive experimental results
show the superior performance of the proposed HPN over the state-of-the-arts.

Index Terms—Heterogeneous graph, graph neural network, representation learning, deep learning.
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1 INTRODUCTION

G RAPH representation learning which can learn the rep-
resentation of graph-structured data has been widely

used in various graph mining tasks [1], [2], [3], [4], [5].
Among different graph representation learning methods,
graph neural network (GNN) is one of the most competitive
deep learning techniques and attracts considerable atten-
tion [6], [7], [8], [9]. Basically, the current GNNs follow
the message-passing framework which receives messages
from neighbors and applies neural network to learn node
representations. The promising performance of GNNs has
been demonstrated by various graph applications [1], [2],
[8], [10].

However, previous GNNs mainly focus on homoge-
neous graph, while in reality, the real-world graph usually
comes with multiple types of nodes or edges, which is
widely known as heterogeneous information network or
heterogeneous graph [11]. Heterogeneous graph contains
rich semantics and has been widely used in modeling
complex relational data. As shown in Figure 1, academic
graph ACM contains three types of nodes including papers,
authors and subjects and their complex relations. Meta-path
[12], a composite relation connecting a sequence of nodes,
has been widely used to capture the rich semantics (e.g.,
Paper-Author-Paper describes the co-author relation and
Paper-Subject-Paper means two papers belong to the same
subject). Obviously, nodes connected via different meta-
paths show diverse similarities in multiple aspects which
can be viewed as different semantic informations. Several
heterogeneous graph neural networks (HeteGNNs) have
been proposed to better analyze such heterogeneous graph
[13], [14], [15]. HeteGNNs usually follow two step aggre-
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Fig. 1: An illustrative example of academic graph ACM. (a)
A heterogenous graph ACM consists three types of nodes
(i.e., author, paper, subject) and two types of connections. (c)
Two meta-paths involved in ACM (i.e., Paper-Author-Paper
and Paper-Subject-Paper).

gating process in a hierarchical manner: aggregate neigh-
bors via single meta-path in node-level and then aggregate
rich semantics via multiple meta-paths in semantic-level.
For example, HAN [13] leverages hierarchical attention for
better aggregation. The highly practical value enables it
widely used diverse applications, especially in industrial
applications [14], [16], [17].

When applying HeteGNNs in practice, we find an im-
portant phenomenon, called semantic confusion. Similar to
over-smoothing in homogeneous GNNs [18], [19], seman-
tic confusion means HeteGNNs inject confused semantics
extracted via multiple meta-paths into node embedding,
which makes the learned node embedding indistinguishable
and leads to worse performance with more hidden layers.
Figure 2(a) shows the clustering performance of HAN on
ACM academic graph [13]. It clearly displays that with the
growth of model depth, the performance of HeteGNNs is
getting worse and worse. Furthermore, we visualize the
learned paper embeddings via HAN in Figure 2(b)(c)(d)(e).
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Fig. 2: The clustering results and visualization of paper embeddings via HAN with different layers. Each point denotes one
paper and corresponding color indicates the label (i.e., research areas). With the growth of model depth, semantic confusion
happens which means the learned node embeddings become indistinguishable. For example, the paper embeddings
belonging to different research areas which are learned via 1-layer HAN located in different positions, while the paper
embeddings learned via 4-layer HAN mixed together.

As can be seen, HAN with 1-layer is able to learn dis-
tinguishable paper embedding, i.e., papers with different
research areas are located in different positions, while HAN
with 4-layer makes them less distinguishable. Note that nei-
ther overfitting nor vanishing gradient causes the degrada-
tion of HAN because we use LeakyReLU/ELU [20] as acti-
vation functions to alleviate the gradient vanishing and vary
the hyper-parameters (e.g., regularization coefficient) with
early-stopping to avoid overfitting. Actually, the reasons of
semantic confusion are two folds: First, with the growth of
model depth, different nodes will connect to the same meta-
path based neighbors, which means the meta-path fails to
capture the meaningful information for each node. Second,
multiple meta-path combinations in semantic-level aggre-
gating actually fuse multiple indistinguishable semantics,
so the fused semantic remains indistinguishable. That is, the
semantics extracted via multiple meta-paths are still indis-
tinguishable. So even HeteGNNs are able to inject rich se-
mantics into node embedding in a hierarchical manner, the
confused semantics still happens, making the learned node
embedding indistinguishable. Semantic confusion makes
HeteGNNs hard to become a really deep model, which
severely limits their representation capabilities and hurts the
performance of downstream tasks. Alleviating the semantic
confusion phenomenon to build a more powerful deeper
HeteGNNs is an urgent problem.

In this paper, we theoretically analyze the semantic
confusion in HeteGNNs and prove that HeteGNNs and
multiple meta-paths based random walk [21] are essentially
equivalent, which inspires us to alleviate the semantic con-
fusion from the perspective of single meta-path aggregating
in node-level or multiple meta-paths fusion in semantic-
level. Then we propose a novel Heterogeneous Graph
Propagation Network (HPN) to alleviate semantic confusion
from the perspective of multiple meta-paths based random
walk, especially improving the single meta-path aggregat-
ing process in node-level. The proposed HPN contains
two parts: semantic propagation mechanism and semantic
fusion mechanism. Besides aggregating information from
meta-path based neighbors, the semantic propagation mech-
anism also absorbs node’s local semantics with a proper
weight. So even with more hidden layers, semantic propaga-
tion mechanism can capture the characteristics of each node
rather than inject confused semantics into node embedding.

And thus it alleviates semantic confusion and builds a
deeper HeteGNN. The semantic fusion mechanism aims
to learn the importance of meta-paths and fuses them for
comprehensive node embedding. Lastly, the whole model
can be optimized via back-propagtation in an end-to-end
manner.

The main contributions are summarized as follows:
•We first discover an important phenomenon in Het-

eGNNs, named semantic confusion. Semantic confusion
means the growth of model depth indistinguishes the node
embeddings learned via heterogeneous GNNs, leading to
the degeneration of model performance.

•To the best of our knowledge, this is the first attempt
to explain why semantic confusion happens by theoret-
ically proving heterogeneous GNNs and multiple meta-
paths based random walk are essentially equivalent.

•We propose a novel deep heterogeneous graph prop-
agation network, called HPN, which mainly consists of the
semantic propagation mechanism and the semantic fusion
mechanism. Comparing to the previous HeteGNNs (e.g.,
HAN), the proposed HPN is able to alleviate the semantic
confusion in node-level and learn more representative node
embedding with more hidden layers. Specifically, semantic
propagation mechanism of HPN absorbs node’s local se-
mantics and inject distinguishable semantics into node em-
bedding in node-level aggregating, while semantic fusion
mechanism of HPN learns the importance of meta-paths and
fuse them properly .

•We conduct extensive experiments to evaluate the pro-
posed HPN and show its superiority in comparison with the
state-of-the-arts. We also show the characteristics of meta-
paths in the analysis of the semantic propagation mech-
anism and semantic fusion mechanism. By analyzing the
learned importance of different meta-paths, the proposed
HPN demonstrates its potentially good interpretability for
heterogeneous graph analysis.

2 PRELIMINARY

Definition 1. Heterogeneous Graph [22]. A heterogeneous
graph, denoted as G = (V, E), consists of an object set V and a
link set E . A heterogeneous graph is also associated with a node
type mapping function φ : V → A and a link type mapping
function ψ : E → R. A and R denote the sets of predefined
object types and link types, where |A|+ |R| > 2.
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Fig. 3: Typical node- and semantic-level aggregating process
in HeteGNNs, exemplified by HAN [13].

Fig. 4: Network schemas of heterogeneous graphs. (a) IMDB.
(b) Yelp. (c) ACM. (d) MovieLens.

Definition 2. Meta-path [12]. A meta-path Φ is defined as a
path in the form of A1

R1−−→ A2
R2−−→ · · · Rl−→ Al+1 (abbreviated

as A1A2 · · ·Al+1), which describes a composite relation R =
R1 ◦R2 ◦ · · · ◦Rl between objects A1 and Al+1, where ◦ denotes
the composition operator on relations.

Definition 3. Heterogeneous Graph Representation Learn-
ing [15]. Given a heterogeneous graph G = (V, E), heterogeneous
graph representation learning aims to learn a mapping function
(e.g., neural network) that projects the nodes i ∈ V into a d-
dimensional space where d � |V |. The learned representation of
node i, denoted as zi ∈ Rd, is able to preserve rich heterogeneous
information and can be applied to the downstram tasks.

Definition 4. Semantic Confusion Given a heterogeneous
graph G = (V, E) and a k-layer HeteGNN, if we take the limit
k →∞, all node embedding zi ∈ Rd, i ∈ V will converge to the
same embedding zlim, which means the learned node embeddings
become indistinguishable. We call it semantic confusion.

lim
k→∞

zi = zlim,∀ i ∈ V. (1)

Example. Taking Figure 2 as an example, with the
growth of k (e.g., 1,2,3,4,5), the nodes belonging to differ-
ent classes mixed together. It means all node embeddings
learned via HeteGNN (e.g., HAN) gradually become indis-
tinguishable and the semantic confusion happens.

3 SEMANTIC CONFUSION ANALYSIS

In this section, we first give a brief review of HeteGNNs, and
then prove that HeteGNNs and multiple meta-paths based
random walk are essentially equivalent. Lastly, we explain
why semantic confusion happens from the perspective of
limit distribution of multiple meta-paths based random
walk.

3.1 Heterogeneous Graph Neural Network
As shown in Figure 3, HeteGNNs (e.g., HAN) usually ag-
gregate information from multiple meta-paths and update
node embedding in both node-level and semantic-level. In
particular, as shown in Figure 3(a), given a meta-path Φ1

and node i, node-level attention in HAN aggregates the
meta-path Φ1 based neighbors {1, 2, 3, 4} with attentions
{αΦ1

i1 , α
Φ1
i2 , α

Φ1
i3 , α

Φ1
i4 } to learn the semantic-specific node

embedding zΦ1
i for node i. Formally, given one meta-path

Φ, the node-level aggregating is defined as:

ZΦ,0 = X,
ZΦ,1 = σ

(
αΦ,0 · ZΦ,0

)
,

· · ·,
ZΦ = ZΦ,k = σ

(
αΦ,k−1 · ZΦ,k−1

)
,

(2)

where X denotes node feature matrix, where the i-th row
corresponds to the i-th node. And σ is an activate func-
tion, the element αΦ,k

ij of αΦ,k denotes the learned atten-
tion weight between meta-path based node pair (i, j) via
node-level attention by the k-th layer. Note that αΦ,k is
a (row-normalized) probability matrix and ZΦ,k denotes
the learned embedding matrix by the k-th layer, where
the i-th row corresponds to the i-th node. As shown
in Figure 3(b), given a node i and a set of meta-paths
{Φ1,Φ2, · · · ,ΦP }, semantic-level aggregating in HAN fuses
P semantic-specific node embeddings

{
zΦ1
i , · · · , zΦP

i

}
with

attentions {βΦ1
, · · · , βΦP

} to get the final embedding zi for
node i. The semantic-level aggregating is shown as follows:

Z =
P∑

p=1

βΦp
· ZΦp , (3)

where Z denotes the final node embedding. In summary,
HeteGNNs inject rich semantics into node embedding via
aggregating process in both node- and semantic-level.

Here we take HAN as a representative HeteGNN to
explain the hierarchical aggregating process and such ag-
gregating process is also ubiquitous in HeteGNNs, such as
[5], [14], [23], [24]. The difference among them is how to
design different aggregating functions. So, we can analyze
these HeteGNNs in a general framework (i.e., the hier-
archical aggregating process in both node- and semantic-
level) and give a unified explanation of semantic confusion
phenomenon in HeteGNNs in the next section.

3.2 Relationship between HeteGNNs and Multiple
Meta-paths based Random Walk
As a classical heterogeneous graph algorithm, multiple
meta-paths based random walk [21] mainly contains: sin-
gle meta-path based random walk and multiple meta-path
combinations. Given a meta-path Φ, we have the meta-path
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based probability matrix MΦ whose element MΦ
ij denotes

the transition probability from node i to j via meta-path
Φ. Then, the k-step single meta-path based random walk is
defined as:

πΦ,k = MΦ · πΦ,k−1, (4)

where πΦ,k denotes the distribution of k-step single meta-
path based random walk. Considering a set of meta-paths
{Φ1,Φ2, · · · ,ΦP } and their weights {wΦ1

, wΦ2
, · · · , wΦP

},
the k-step multiple meta-paths based random walk is de-
fined as:

πk =
P∑

p=1

wΦp
· πΦp,k, (5)

where πk denotes the distribution of k-step multiple meta-
paths based random walk. For k-step single meta-path based
random walk:

Theorem 1. Assuming a heterogeneous graph is aperiodic and
irreducible, if we take the limit k → ∞, then k-step meta-path
based random walk will converge to a meta-path specific limit
distribution πΦ,lim which is independent of nodes:

πΦ,lim = MΦ · πΦ,lim. (6)

Proof. Since MΦ is a probability matrix, so the meta-path
based random walk is a Markov chain. The convergence
of Markov chain shows that πΦ,k will converge to a limit
distribution πΦ,lim if we take the limit k → ∞. Obviously,
πΦ,lim only depends on MΦ and is independent of nodes.

Different nodes connected via some relationships will
influence each other and [19] demonstrates the influence
distribution between two nodes is proportional to random
walk distribution, shown as the following theorem:

Theorem 2 ( [19]). For the aggregation models (e.g., graph
neural networks) on homogeneous graph, if the graph is aperiodic
and irreducible, then the influence distribution Ii of node i is
equivalent, in expectation, to the k-step random walk distribution.

By Theorems 1 and 2, we conclude the influence distri-
bution revealed by single meta-path based random walk is
independent of nodes. Comparing Eq. 2 with Eq. 4, we find
they both propagate and aggregate information via meta-
path Φ. The difference is that αΦ,k is a parameter matrix
learned via node-level attention, while MΦ is a predefined
matrix. Since MΦ and αΦ,k are both probability matrix,
they are actually meta-path related Markov Chain. So we
find that node-level aggregation in HeteGNNs is essentially
equivalent to meta-path based random walk if activate func-
tion is a linear function. Based on the above analysis, we find
that if we stack infinite layers in node-level aggregating, the
learned node embeddings ZΦ will only be influenced by the
meta-path Φ and therefore are independent of nodes. So the
learned node embeddings cannot capture the characteristics
of each node and therefore are indistinguishable. For k-step
multiple meta-paths based random walk, we have:

Theorem 3. Assuming k-step single meta-path based random
walk is independent of each other, if we take the limit k → ∞,
then the limit distribution of k-step multiple meta-paths based

random walk is a weighted combination of single meta-path based
random walk limit distribution, shown as follows:

πlim =
P∑

p=1

wΦp
· πΦp,lim. (7)

Proof. Since k-step single meta-path based random walk is
independent of each other, according to the properties of
limits including Sum Rule and Constant Multiple Rule [25],
we have:

πlim = lim
k→∞

P∑
p=1

wΦp
· πΦp,k =

P∑
p=1

wΦp
· lim
k→∞

πΦp,k

=
P∑

p=1

wΦp
· πΦp,lim.

(8)

It shows that the meta-path combination can only change
the position of limit distribution, but convergence of limit
distribution remains unchanged.

By Theorems 2 and 3, we conclude the influence distri-
bution revealed by multiple meta-paths based random walk
is also independent of nodes although they are connected
via multiple meta-paths. Comparing Eq. 3 with Eq. 5, we
can see that they both combine multiple meta-paths accord-
ing to their weights. The difference is that semantic-level
aggregating in HAN leverages neural network to learn the
weight of meta-path βΦp , while multiple meta-paths based
random walk assigns predefined weight wΦp to meta-path
Φp by hand. Recall that in node-level aggregation, the node
embeddings learned via single meta-path cannot capture the
characteristics of each node and therefore are indistinguish-
able. In semantic-level aggregation, HeteGNNs fuse multi-
ple node embeddings learned via multiple node-level aggre-
gations with semantic-wise weights. Please semantic-wise
weights are independent of each node. Synthesizing the
above analysis, we conclude that the final node embeddings
learned via both node- and semantic-level only influenced
by a set of meta-paths and still remain indistinguishable.
Since current HeteGNNs usually follow the hierarchical
aggregation including both node- and semantic-level, we
think it is the critical limitation of previous HeteGNNs and
leads to semantic confusion. Based on the above analysis,
to alleviate the semantic confusion phenomenon, we may
improve the current HeteGNN architectures in node-level
or semantic-level.

4 THE PROPOSED MODEL

In this section, we propose a novel heterogeneous graph
propagation network (HPN) which is able to alleviate the
semantic confusion phenomenon in node-level based on
the theoretical analysis. The proposed HPN mainly consists
of semantic propagation mechanism and semantic fusion
mechanism. Inspired by meta-path based random walk with
restart, the proposed semantic propagation mechanism em-
phasizes node’s local semantics in node-level aggregating
process, alleviating the semantic confusion in node-level.
Semantic fusion mechanism is able to learn the importance
of meta-paths and get the optimal weighted combination of
semantic-specific node embedding for the specific task.
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4.1 Semantic Propagation Mechanism
Given one meta-path Φ, the semantic propagation mecha-
nism PΦ first projects node into semantic space via semantic
projection function fΦ. Then, it aggregates information from
meta-path based neighbors via semantic aggregation func-
tion gΦ to learn semantic-specific node embedding, shown
as follows:

ZΦ = PΦ(X) = gΦ(fΦ(X)), (9)

where X denotes initial feature matrix and ZΦ denotes
semantic-specific node embedding. To handle heterogeneity
graph, the semantic projection function fΦ projects node
into semantic space, shown as follows:

HΦ = fΦ(X) = σ(X ·WΦ + bΦ), (10)

where HΦ is the projected node feature matrix, WΦ and
bΦ denote weight matrix and bias vector for meta-path Φ,
respectively. Note that HΦ can also be viewed as the 0-order
node embedding ZΦ,0, revealing the characteristics of each
node. To alleviate semantic confusion, we design semantic
aggregation function gΦ, shown as follows:

ZΦ,k = gΦ(ZΦ,k−1) = (1− γ) ·MΦ ·ZΦ,k−1 + γ ·HΦ, (11)

where ZΦ,k denotes node embedding learned by k-th layer
semantic propagation mechanism and we take it as the
semantic-specific node embedding ZΦ. Note that HΦ re-
flects the characteristics of each node in meta-path Φ (also
can be viewed as ZΦ,0) and MΦ ·ZΦ,k−1 means aggregating
information from meta-path based neighbors. Here γ is a
weight scalar which indicates the importance of characteris-
tic of node in aggregating process.

Why semantic aggregation function gΦ works. Here
we establish the relationship between semantic aggregation
function gΦ and k-step meta-path based random walk with
restart. k-step meta-path based random walk with restart for
node i is defined as:

πΦ,k (i) = (1− γ) ·MΦ · πΦ,k−1 (i) + γ · i, (12)

where i is a one-hot vector of node i, γ means the restart
probability. For k-step meta-path based random walk with
restart:

Theorem 4. Assuming a heterogeneous graph is aperiodic and
irreducible, if we take the limit k → ∞, then k-step meta-path
based random walk with restart will converge to πΦ,lim (i) which
is related to the start node i:

πΦ,lim (i) = γ · (I− (1− γ) ·MΦ)−1 · i. (13)

Proof. If we take the limit k →∞, we have:

πΦ,lim (i) = (1− γ) ·MΦ · πΦ,lim (i) + γ · i. (14)

Solving Eq. 14, we have:

πΦ,lim (i) = γ · (I− (1− γ) ·MΦ)−1 · i. (15)

Obviously, πΦ,lim (i) is related to node i.

By Theorems 2 and 4, we conclude that the influence
distribution revealed by meta-path based random walk with
restart is related to nodes. Comparing Eq. 11 to Eq. 12,
we find they both emphasis node’s local semantics with a
proper weight γ. By Theorem 4, we can see that the semantic

aggregation function gΦ absorbs node’s local semantics and
makes semantic-specific node embedding ZΦ,k distinguish
from each other even if we take the limit k → ∞. So
semantic propagation mechanism can alleviate the semantic
confusion. So semantic propagation mechanism can allevi-
ate the semantic confusion in node-level via a well-designed
semantic aggregation function.

4.2 Semantic Fusion Mechanism
Generally, every node in a heterogeneous graph contains
multiple types of semantic information and semantic-
specific node embedding can only reflect node from one
aspect. To describe node more comprehensively, we leverage
multiple meta-paths to capture rich semantics and describe
node from different aspects.

Given a set of meta-paths {Φ1,Φ2, · · · ,ΦP }, we
have P group semantic-specific node embeddings{
ZΦ1 ,ZΦ2 , · · · ,ZΦP

}
. Then, we propose the semantic

fusion mechanism F to fuse them for the specific task.
Taking P groups of semantic-specific node embeddings
learned from semantic propagation mechanism as input,
the final node embedding Z learned via semantic fusion
mechanism F , shown as follows:

Z = F(ZΦ1 ,ZΦ2 , · · · ,ZΦP ). (16)

Intuitively, not all meta-paths should be treated equally.
So semantic fusion mechanism should be able to tell the
difference of meta-paths and assign different weights to
them. To learn the importance of meta-paths, we project
each semantic-specific node embedding into the same latent
space and adopt semantic fusion vector q to learn the
importance of meta-paths. The importance of meta-path Φp,
denoted as wΦp

, is defined as:

wΦp
=

1

|V|
∑
i∈V

qT · tanh(W · zΦp

i + b), (17)

where W and b denote weight matrix and bias vector,
respectively, which are shared for all meta-paths. Note that
all parameters in semantic fusion mechanism are shared for
all nodes and semantics. After obtaining the importance of
meta-paths, we normalize them via softmax function to get
the weight of each meta-path. The weight of meta-path Φp,
denoted as βΦp , is defined as:

βΦp =
exp(wΦp

)∑P
p=1 exp(wΦp

)
. (18)

Obviously, the higher βΦp
, the more important meta-path

Φp is. With the learned weights as coefficients, we can fuse P
semantic-specific embeddings to obtain the final embedding
Z as follows:

Z =
P∑

p=1

βΦp
· ZΦp . (19)

Then we can optimize the whole model for the specific task
and learn the final node embedding. Note that semantic
fusion mechanism is quite flexible and be optimized for
various types of tasks. For different tasks, each semantic
may make different contribution which means βΦp may
change a lot. Note that multiple semantics fusion is a special
form of multi-view learning [26], [27].
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4.3 Loss Functions
For semi-supervised node classification, we calculate Cross-
Entropy and update parameters in HPN:

L = −
∑
l∈YL

Yl · ln(Zl ·C), (20)

where C is a projection matrix which projects the node
embedding as a node label vector, YL is the set of labeled
nodes, Yl and Zl are the label vector and embedding of the
labeled node l, respectively.

For unsupervised node recommendation, we leverage
BPR loss with negative sampling [28], [29] to update pa-
rameters in HPN:

L = −
∑

(u,v)∈Ω

log σ
(
z>u zv

)
−

∑
(u,v′)∈Ω−

log σ
(
−z>u zv′

)
,

(21)
where (u, v) ∈ Ω and (u, v′) ∈ Ω− denote the set of ob-
served (positive) node pairs and the set of negative node
pairs sampled from all unobserved node pairs, respectively.

4.4 Model Analysis
We first analyze the relationship between the proposed HPN
and previous models (i.e., HAN and ResNet [30]). Both
HAN and HPN are HeteGNNs, but they are still different
as follows: (1) Different motivations. HAN aims to learn
the importance of neighbors in aggregating process, while
HPN aims to alleviate the semantic confusion and deepen
the HeteGNNs. (2) Different architectures. HPN removes
the time-consuming self-attention and designs a particular
aggregating model which can emphasize the local semantics
in aggregating process. If we set γ = 0 which means HPN
cannot absorb the local semantic, then the semantic confu-
sion will happen in both HAN and HPN. Although both
ResNet [30] and HPN make neural network much deeper
than before, they are still different as follows: (1) Different
motivations. ResNet aims to avoid gradient vanish and
make the learning process easier, while semantic propaga-
tion mechanism aims to alleviate the semantic confusion. (2)
Different methods. Residual connection F (x) + x connects
two hidden layers, while semantic propagation mechanism
emphasizes local semantic with weight γ.

The proposed HPN has no learnable parameters in ag-
gregating process. So even if we stack semantic propagation
mechanism for multiple layers, the number of total parame-
ters in HPN remains unchanged, making HPN to be a space-
efficient model with lower parameter complexity. Besides,
the proposed HPN is also time-efficient and can be easily
parallelized. Given a meta-path Φ, the time complexity of
semantic propagation mechanism is (VΦSΦ + EΦ), where
VΦ is the number of nodes, EΦ is the number of meta-
path based node pairs and SΦ is the size of hidden layer
of semantic-specific transformation function. The overall
complexity of HPN is linear to the number of nodes and
meta-path based node pairs. The proposed HPN has poten-
tionally good interpretability for the specific task which is a
big advantage for heterogeneous graph analysis. Benefitting
from the semantic fusion mechanism, the proposed HPN is
able to learn the importance of meta-paths for the specific
task. By analyzing the learned attention values of meta-
paths, we can check which meta-paths make the higher

(or lower) contributions in the specific task, which is also
verified by the experimental results in Section 5.7.

5 EXPERIMENTS

5.1 Datasets and Baselines

We conduct experiments on real-world heterogeneous
graphs. The detailed descriptions are shown in Table 1.

•Yelp1. We extract businesses located in North Carolina
(NC), Wisconsin (WI), Pennsylvania (PA) from Yelp. Then
we construct a heterogeneous graph that comprises busi-
nesses (B), categories (C), attributes (A) and users (U). Busi-
ness features actually are represented by their attributes.
We employ the meta-path set {BCB, BAB, BUB} to perform
experiments. Here we label the businesses based on their
locations (i.e., their states).

•ACM2. We extract papers published in KDD, SIG-
MOD, SIGCOMM, MobiCOMM, and VLDB and divide
the papers into three classes (Database, Wireless Communi-
cation, Data Mining). Then we construct a heterogeneous
graph that comprises papers (P), authors (A) and subjects
(S). Paper features correspond to elements of a bag-of-
words represented of keywords. Note that we can adopt
word2vec/doc2vec initialize paper features [15], [31] and
further improve the learned node embedding. We employ
the meta-path set {PAP, PSP} to perform experiments. Here
we label the papers according to the conference they pub-
lished.

•IMDB3. Here we extract a subset of IMDB which con-
tains movies (M), actors (A) and directors (D). The movies
are divided into three classes (Action, Comedy, Drama) ac-
cording to their genre. Movie features correspond to ele-
ments of a bag-of-words represented of plots. We employ
the meta-path set {MAM, MDM} to perform experiments.

•MovieLens (ML for short) 4. Here we extract a subset
of MovieLens which contains 1682 movies (M) and 943 users
(U). Movie features correspond to their genres. We employ
the meta-path set {MU, UU} to perform experiments.

We compare with some state-of-the-art baselines, includ-
ing the (heterogeneous) network embedding and (heteroge-
neous) GNNs, to verify the effectiveness of the proposed
HPN. Meanwhile, we also test two variants of HPN (i.e.,
HPNpro and HPNfus) to verify the effectiveness of different
parts in our model.

•metapath2vec (mp2vec for short) [32]/HERec [33]:
Two classical heterogeneous graph embedding methods
which perform meta-path based random walk and utilize
skip-gram to embed the heterogeneous graphs.

•GCN [1]/GAT [34]/PPNP [35]: Three classical graph
convolutional networks which are designed for the homo-
geneous graphs.

•MEIRec [14]: It is a heterogeneous graph neural net-
work which is able to integrate rich semantics via multiple
meta-paths.

1. https://www.yelp.com
2. http://dl.acm.org/
3. https://www.kaggle.com/carolzhangdc/imdb-5000-movie-

dataset
4. https://grouplens.org/datasets/movielens/
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TABLE 1: Statistics of the datasets.
Dataset A-B #A #B #A-B Fea. Train Valid Test Meta-paths/ Semantics

IMDB Movie-Actor 4780 5841 14340 1232 300 300 2687
Movie-Actor-Movie (MAM)

Two movies are played by the same actor.

Movie-Director 4780 2269 4780 Movie-Director-Moive (MDM)
Two movies,are directed by the same director.

ACM Paper-Author 3025 5835 3025 1870 600 300 2125
Paper-Author-Paper (PAP)

Two papers published,by the same author.

Paper-Subject 3025 56 3025 Paper-Subject-Paper (PSP)
Two papers belong to the same subject.

Yelp
Bus.-Category 4463 733 17123

144 600 300 3563

Business-Category-Business (BCB)
Two business connected via the same category.

Bus.-Attribute 4463 144 82705 Business-Attribute-Business (BAB)
Two business have the same attribute.

Bus.-User 4463 29383 44816 Business-User-Business (BUB)
Two business connected via the same user.

ML User-Movie 943 1682 100000 18 72000 8000 20000
User-Movie (UM)

One user watch one movie.

User-User 943 943 47150 User-User (UU)
Two users are friends.

TABLE 2: Qantitative results (%) on the node clustering task. The larger values, the better performace.
Datasets Metrics mp2vec HERec GCN GAT PPNP MEIRec HAN HGT MG HPNpro HPNfus HPN

Yelp NMI 42.04 0.30 32.58 42.30 40.60 30.09 45.46 47.82 47.56 44.36 12.86 48.90
ARI 38.27 0.41 23.30 41.52 37.72 27.88 41.39 42.91 43.24 42.57 10.54 44.89

ACM NMI 21.22 40.70 51.40 57.29 61.68 61.56 61.56 60.89 64.12 65.60 67.55 68.21
ARI 21.00 37.13 53.01 60.43 65.15 61.46 64.39 59.85 66.29 69.30 71.53 72.33

IMDB NMI 1.20 1.20 5.45 8.45 10.20 11.32 10.87 11.59 11.79 9.45 12.01 12.31
ARI 1.70 1.65 4.40 7.46 8.20 10.40 10.01 9.92 10.32 8.02 12.32 12.55

•HAN [13]: It is a heterogeneous graph neural network
based solely on attention mechanism which employs node-
level attention and semantic-level attention simultaneously.

•HGT [23]: It is a heterogeneous graph neural network
which aggregates information via meta relation triplet based
on heterogeneous mutual attention. We remove the relative
temporal encoding in HGT, because our datasets are static
heterogeneous graphs.

•MAGNN (MG for short) [24]: It is a heterogeneous
graph neural network which leverages relational rotation
encoder to aggregate semantic in complex space.

•HPNpro: It is a variant of HPN, which set the restart
probability γ = 0.

•HPNfus: It is a variant of HPN, which takes the simple
average over all meta-paths.

Here we randomly initialize parameters with the Gaus-
sian distribution and leverage Adam [36] to optimize the
model. For the proposed HPN, we set the learning rate to
0.01, the regularization parameter to 5e-3, the dimension of
the semantic fusion attention vector q to 32 and the dropout
rate to 0.5. We use early stopping with a patience of 100, i.e.
we stop training if the validation loss does not decrease for
100 consecutive epochs. For GCN, GAT, PPNP, MEIRec and
HAN, we optimize their parameters using the validation
set. For single meta-path based methods including metap-
ath2vec and HERec, we test their performance with different
meta-paths and report the best performance of all meta-
paths. For homogeneous graph neural networks including
GCN, GAT and PPNP, we translate the original heteroge-
neous graph into several homogeneous graphs via different
symmetric meta-paths and report the best performance of
all meta-paths. For all GNNs including GCN, GAT, PPNP,
HAN, HGT, MAGNN and MEIRec, we split exactly the
same training set, validation set and test set to ensure fair-
ness. Note that for all GNNs, we test their performance with

different layers and report the best performance. The reason
is that with the growth of model depth, the performance of
some graph neural networks start to degenerate (e.g., HAN).
For example, we use 1-layer HAN for all datasets (details
are shown in Section 5.6). For random walk models(e.g.,
metapath2vec and HERec), we set window size to 5, walk
length to 100, walks per node to 40, the number of negative
samples to 5. For a fair comparison, we set the embedding
dimension to 64 for all models. For node recommendation,
we uniformly sample one negative sample to calculate BPR
loss and set the drop rate to 0.5, the learning rate to 1e-5 and
the regularization to 1e-5.

5.2 Node Clustering

In order to compare unsupervised models (i.e., metap-
ath2vec and HERec) with semi-supervised models (i.e.,
GCN, GAT, PPNP, MEIRec, HGT, MAGNN, HAN and
HPN), following the previous work [13], we get the learned
node embeddings of all models via feed forward, and
then leverage classical node clustering to test their effec-
tivenesses. Here we utilize the K-Means to perform node
clustering and the number of clusters K is set to the number
of classes. We select NMI and ARI to evaluate the clustering
task and report the averaged results of 10 runs in Table 2.

As can be seen, the proposed HPN performs signifi-
cantly better than all baselines. It shows the importance of
alleviating semantic confusion in HeteGNNs. We also find
that graph neural networks always perform better than net-
work embedding methods. Moreover, heterogeneous graph
neural networks including HAN, MEIRec, HGT, MAGNN
and HPN outperform homogeneous GNNs because they
can capture rich semantics and describe the characteristic
of node more comprehensively. Note that the performance
of HPNpro and HPNfus both show different degradations,
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which imply the importance of semantic propagation mech-
anism and semantic fusion mechanism. Based on the above
analysis, we can find that the proposed HPN can propagate
and fuse semantic information effectively and shows signif-
icant improvements.

5.3 Node Classification
Besides node clustering, node classification is also an ef-
fective method to evaluate the node embeddings. Once the
graph neural network trained, we can get all the node em-
bedding via feed forward. Here we employ the KNN classi-
fier (k = 5) perform node classification and select Macro-F1
and Micro-F1 as the evaluation metrics. For a more stable
comparison, we repeat the process for 10 times and report
the averaged results in Table 3.

As shown in Table 3, the proposed HPN generally out-
performs than baselines. As can be seen, graph neural net-
work based methods which combine the structure and fea-
ture information, usually perform better than graph embed-
ding methods (i.e., metapath2vec and HERec) which do not
consider the feature information. With deeper insight into
these models, attention based models (i.e., GAT, HAN, HGT,
MAGNN and HPN) which are able to learn the weights
of nodes or meta-paths usually perform better. Although
MEIRec, HGT, MAGNN, HAN and HPN are designed for
heterogeneous graph, HPN still show its superiority. The
reason is that HPN can capture high-order semantics via
stacking more layers and absorbs node’s local semantics.
Comparing with HPN, the performance of two variants of
HPN (i.e., HPNpro and HPNfus) show different degrada-
tions, indicating the importance of semantic propagation
mechanism and semantic fusion mechanism. In summary,
HPN usually outperforms all state-of-the-art baselines.

5.4 Node Recommendation
Following [24], [29], we test all models on unsupervised
node recommendation task. Here we select four metrics
including precise@10, recall@10, hit@10 and ndcg@10 to
evaluate the recommendation results. The experimental re-
sults are shown in Table 4.

From Table 4, we can find the proposed HPN out-
performs all baselines. Heterogeneous GNNs show their
superiorities via capturing rich semantics. Attention based
GNNs usually perform better via distinguishing the im-
portance of nodes or meta-paths. By stacking multiple lay-
ers, HPN is capable of exploring the high-order semantics,
which serves the crucial collaborative signal in the recom-
mendation. Note that the performance of HPNfus is similar
to HPN because all meta-paths make equal contributions.

5.5 Node Visualization
For a more intuitively comparison, we conduct the task of
node visualization. Specifically, we use t-SNE [37] to project
the learned node embedding into a 2-dimensional space and
visualize them. Taking ACM as an example, we visualize the
learned paper embedding in Figure 5. Each point indicates
one paper and its color indicates the research area.

From Figure 5, we can observe that homogeneous GNNs
fail to perform well. The papers belonging to different

research areas are mixed with each other. Comparing with
homogeneous GNNs, HAN performs slightly better. How-
ever, the boundary is still blurry. Based on the visualization
results, we can find that the proposed HPN is able to learn
more representative node embedding than all baselines,
as papers belonging to different research areas located in
different positions with clear boundaries. Benefitting from
semantic propagation mechanism, the proposed HPN is able
to caputure high-order semantic structure and learn more
representative node embedding.

5.6 Robustness to Model Depth
A salient property of HPN is the incorporation of the
semantic propagation mechanism which is able to allei-
vate the semantic confusion and build a deeper and more
powerful HeteGNN. Comparing to the previous HeteGNNs
(e.g., HAN), the proposed HPN can stack more layers and
learn more representative node embedding. To show the
superiority of semantic propagation in HPN, we test HAN
and HPN with 1, 2, 3, 4, 5 layers, shown in Figure 6.

As can be seen, with the growth of model depth, the per-
formance of HAN performs worse and worse on both ACM
and IMDB. Recall the theoretical analysis in Section 2, we
believe this phenomenon is the semantic confusion, leading
to the degradation of previous heterogeneous GNNs (e.g.,
HAN). Obviously, semantic confusion makes HeteGNNs
hard to become a really deep model, which severely limits
their representation capabilities and hurts the performance
of downstream tasks (e.g., node clustering). On the other
hand, with the growth of model depth, the performance of
the proposed HPN is getting better and better, indicating
that semantic propagation mechanism is able to effectively
alleviate the semantic confusion. So even stacking for more
layers, the node embeddings learned via the proposed HPN
are still distinguishable. In summary, the proposed HPN
is able to capture high-order semantics and learns more
representative node embedding with deeper architecture,
rather than learning indistinguishable node embedding.

5.7 Analysis of Semantic Fusion Mechanism
An interesting characteristic of HPN is the incorporation of
semantic fusion mechanism which can learn the importance
of meta-paths and fuse them for the specific task. To under-
stand the importance of meta-paths, we provide a detailed
analysis on the semantic fusion mechanism. Here we con-
duct two types of semantic fusion experiments, shown in
Figure 7 and Figure 8. We first show the importance of meta-
paths with the fixed number of layers. Then, we discover
the propagation property of meta-path by showing how the
importance of meta-paths changes with the growth of depth.

5.7.1 Semantic Fusion Mechanism with Fixed Depth.
Here we analyze semantic fusion mechanism on ACM
dataset with 5-layer HPN. As shown in Figure 7, different
meta-paths show different effectivenesses and semantic fu-
sion mechanism assigns different attention weights to them.
The higher NMI, the more useful meta-path is. The proposed
HPN assigns higher weights to more userful meta-paths
which means the semantic fusion mechanism is able to
fuse multiple meta-paths properly for the specific task. In
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TABLE 3: Qantitative results (%) on the node classification task. The larger values, the better performace.
Data Metric Train mp2vec HERec GCN GAT PPNP MEIRec HAN HGT MG HPNpro HPNfus HPN

Yelp

Ma-F1

20% 82.37 83.03 83.57 75.10 78.73 79.09 83.91 82.95 84.05 79.39 66.28 84.47
40% 83.93 83.93 84.29 77.83 81.79 79.94 84.23 83.23 84.51 82.39 68.44 85.56
60% 83.69 83.76 84.32 78.24 83.37 80.31 84.83 83.89 84.58 83.12 69.80 86.55
80% 84.17 83.28 84.84 79.58 83.53 79.58 84.50 83.81 84.66 83.76 70.66 85.75

Mi-F1

20% 82.43 83.08 83.61 75.37 79.10 79.20 83.89 82.94 84.10 79.84 66.70 84.57
40% 83.98 83.97 84.3 77.88 81.88 79.95 84.23 83.26 84.49 82.54 68.61 85.64
60% 83.74 83.79 84.33 78.43 83.43 80.39 84.78 83.81 84.59 83.34 69.92 86.61
80% 84.25 83.38 84.81 79.52 83.56 79.68 84.87 83.79 84.67 83.77 71.16 85.90

ACM

Ma-F1

20% 65.09 66.17 86.81 86.23 88.62 88.89 89.40 89.12 89.01 88.28 89.38 89.71
40% 69.93 70.89 87.68 87.04 88.99 89.12 89.79 89.80 89.76 88.80 89.59 89.68
60% 71.47 72.38 88.10 87.56 89.58 89.61 89.51 89.58 89.81 88.86 89.75 89.96
80% 73.81 73.92 88.29 87.33 90.09 89.84 90.63 90.31 90.85 89.86 90.12 91.16

Mi-F1

20% 65.00 66.03 86.77 86.01 88.55 88.72 89.22 88.98 88.84 88.16 89.28 89.58
40% 69.75 70.73 87.64 86.79 88.91 88.89 89.64 89.63 89.05 88.69 89.47 89.57
60% 71.29 72.24 88.12 87.40 89.52 89.40 89.33 89.45 88.55 88.72 89.56 89.78
80% 73.69 73.84 88.35 87.11 90.07 89.72 90.54 90.69 89.89 89.72 90.09 91.11

IMDB

Ma-F1

20% 41.16 41.65 45.73 49.44 48.73 50.12 50.00 51.13 51.98 48.96 50.25 51.36
40% 44.22 43.86 48.01 50.64 49.93 52.36 52.71 52.07 52.55 50.61 52.63 52.86
60% 45.11 46.27 49.15 51.90 51.18 53.21 54.24 54.19 54.11 52.78 53.31 54.15
80% 45.15 47.64 51.81 52.99 53.98 53.68 54.38 54.68 54.59 53.30 55.71 55.78

Mi-F1

20% 45.65 45.81 49.78 55.28 53.82 55.97 55.73 55.67 55.98 53.63 56.80 56.53
40% 48.24 47.59 51.71 55.91 54.79 57.20 57.97 57.99 57.89 55.12 57.83 58.25
60% 49.09 49.88 52.29 56.44 55.42 57.73 58.32 58.21 58.12 56.79 58.85 58.52
80% 48.81 50.99 54.61 56.97 58.10 58.23 58.51 58.59 58.55 57.00 59.93 60.07

(a) GAT (b) PPNP (c) HAN

20

0

−20

−40

−60 −40 −20 0 20 40 60 80

(d) HPN

Fig. 5: Visualization paper embedding on ACM. Each point indicates one paper and its color indicates the research area.

TABLE 4: Qantitative results (%) on the node recommenda-
tion. The larger values, the better performace.

Model ML
recall@10 prec@10 hit@10 ndcg@10

GCN 20.09 32.08 89.28 40.06
GAT 20.78 32.66 89.88 40.79

PPNP 21.41 33.21 90.66 41.91
MEIRec 22.19 34.19 91.12 43.09

HAN 22.14 34.21 91.04 43.01
HGT 22.21 34.25 91.21 43.11
MG 22.29 34.28 91.12 43.04

HPNpro 22.02 33.89 91.02 42.35
HPNfus 22.71 34.82 91.91 43.36

HPN 22.73 34.81 91.93 43.34
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Fig. 6: Clustering results of HAN/HPN with 1,2,3,4,5 layers.
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Fig. 7: Performance and weights of different meta-paths.

Yelp, meta-path BUB is much more important than the rest.
Since the importance of meta-paths can be quite different,
if we treat these meta-paths equally (e.g., HPNfus), the
performance will drop significantly. For ACM, the proposed
HPN gives PAP the larger weight, which means HPN con-
siders the PAP as the more critical meta-path in identifying
the paper’s research area. We also find that although PAP
shows superiority over PSP, the gap is not very large. It
can explain why HPNfus still works well on ACM with
simple average operation on all meta-paths. We can find
similar phenomenon on the IMDB. MAM performs slightly
better than MDM, so HPNfus also performs well by average
operation as shown in Tables 3 and 2. In summary, semantic
fusion mechanism can tell the difference of meta-paths and
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Fig. 8: The learned attention weights of different meta-paths
with 1, 2, 3, 4, 5 layers on ACM via HPN.
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Fig. 9: Parameter study of the proposed HPN on ACM.

assign proper weights to them.

5.7.2 Semantic Fusion Mechanism with Different Depths.
Then, we test semantic fusion mechanism with different
depths (e.g., HPN with 1,2,3,4,5 layers). The propagation
property of each meta-path can be quite different, i.e., after
propagating for several steps, the importance of meta-paths
may change a lot. Taking ACM as an example, we show how
the weights of meta-paths change with different number of
layers in Figure 8. As can be seen, after propagating for sev-
eral steps, the attention weight of PSP becomes higher and
higher, while the attention weight of PAP becomes lower
and lower, which indicates PSP is getting more and more
important. When deeper insight into such phenomenon, we
find that PAP may connect two papers belonging to different
research areas because some authors have diverse research
interests and publish papers in different research areas. So
semantic propagation process will introduce some noise via
PAP and mixes papers in different research areas and makes
their embeddings indistinguishable. On the contrary, papers
connected via PSP always belong to the same research area
due to the same subject. So even propagating for several
steps, PSP still differentiates the characteristics of papers
clearly. It explains why semantic fusion mechanism pays
more attention to PSP with the growth of model depth.
In summary, different meta-paths have different propagate
properties and semantic fusion mechanism is able to assign
suitable attention weights to them.

5.8 Parameters Experiments
In this section, we investigate the sensitivity of parameters
and report the results of clustering (NMI) on ACM dataset
with various parameters in Figure 9.

•Dimension of the final embedding Z. We first test
the effect of the dimension of the final embedding Z. The
results are shown in Figure 9(a). We can see that with the
growth of the embedding dimension, the performance of

HPN raises first and then remains stable. The reason is that
higher dimension can encode more semantics and a suitable
dimension can capture all semantics. For ACM dataset, the
proposed HPN achieves the best performance when the
dimension of the final embedding Z is set to 64.

•Value of restart probability γ. In order to check the
impact of restart probability γ, we explore the performance
of the proposed HPN with various values of γ and show
them in Figure 9(b). Note that the restart process is removed
when the value of γ is set to 0. Here larger γ means the
proposed HPN pays more attention to local semantics. We
can find that the restart process (γ > 0) can improve the
performance of HPN. However, the larger γ will lead to
the worse performance. A suitable γ is able to balance local
semantics and global semantics properly and improve per-
formance. Here HPN achieves the best performance when
restart probability γ is set to 0.1.

•Dimension of semantic fusion vector q. Since the
ability of semantic fusion mechanism is affected by the
dimension of attention vector q, we change its dimension
and test the performance of HPN. The results are shown
in Figure 9(c). With the growth of dimension of q, the per-
formance of HPN increases in the beginning and decreases
significantly when the dimension of q is larger than 32. One
possible reason is that there are no learnable parameters in
the semantic propagation mechanism, so the larger dimen-
sion of attention vector q will significantly increase the total
number of parameters in HPN and lead to over-fitting.

6 RELATED WORK

6.1 Graph Neural Network
Graph neural networks generalize deep learning to graph-
structured data, which follows the message-passing frame-
work to receive messages from neighbors and apply neural
network to update node embedding. Michaël et al. [38]
propose a spectural graph convolutional network which
leverages K-order Chebyshev polynomials to approximate
smooth filters. [1] proposes GCN via a localized approxima-
tion of spectral graph convolutions. [39] proposes a induc-
tive GraphSAGE model which leverage neighbor sampling
and flexible aggregating function to learn node embedding.
To improving the neighbors aggregation scheme in GNNs,
Veličković et al. [34] utilizes attention mechanism to learn
the improtance of neighbors and aggregate them properly.
DGI [40] tries to maximize mutual information between
global and local representations and learn node embedding
in an unsupervised manner. Some works [18], [35] try to give
a theoretical analysis of graph convolutional network. [18]
demonstrates GCN is a special form of Laplacian smooth-
ing. Klicpera et al. [35] utilize the relationship between
GCN and PageRank to derive an improved propagation
scheme based on personalized PageRank. All the above
graph neural networks focus on homogeneous graphs.

Some works [13], [14], [23], [24], [41], [42] extend GNNs
to the heterogeneous graph. [41] proposes GraphInception
to learn relational features for collective classification. [13]
and [15] both leverage hierarchical aggregation to capture
rich semantics. [23] adopts heterogeneous mutual attention
to aggregate meta relation triplet, and [24] leverages rela-
tional rotation encoder to aggregate meta-path instances.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

[42] learns a soft selection of edge types and generate meta-
paths automatically, solving the problem of meta-path selec-
tion. Some works [14], [16], [17] leverage HeteGNNs to solve
diverse recommendation tasks. Although there are several
attempts in design HeteGNNs, the working mechanism of
HeteGNNs still remains to be analyzed.

6.2 Network Embedding
Network embedding aims to project node into low-
dimensional space while preserving the network structure
and property. For example, the random walk based methods
[43], [44], the deep neural network based methods [45], the
matrix factorization based methods [46], and others, e.g.,
LINE [47]. [43] leverages random walk to get the context
and adopts skip-gram model to learn node embedding.
Node2vec [44] leverages BFS and DFS to get more flexible
contexts. Wang et al. [45] introduce deep autoencoder to
capture the non-linear graph structure. However, all above
algorithms are proposed for the homogeneous graphs.

Heterogeneous graph embedding focuses on capture
rich semantics via meta-path. Metapath2vec [32] utilizes
meta-path based random walk and skip-gram to embed het-
erogeneous graph. HIN2Vec [48] captures the rich semantics
by exploiting different types of relationships among nodes.
[49] embeds heterogeneous graph into hyperbolic space to
capture hierarchical structure. RHINE [50] designs a relation
structure-aware heterogeneous graph embedding method
which can distinguish the difference of affiliation relations
and interaction relations. [51] propose PME to capture both
first-order and second-order proximities in a unified way.
HERec [33] captures rich semantics via meta-path based
random walk and learn node embedding via skip-gram.

7 CONCLUSION

In this paper, we explore the semantic confusion phe-
nomenon in HeteGNNs, i.e., with the growth of model
depth, the node embeddings learned via HeteGNNs be-
come indistinguishable, leading to the degradation of per-
formance and limiting their representation capabilities and
applications. We explain semantic confusion by demon-
strating that HeteGNNs and multiple meta-paths based
random walk are essentially equivalent. Then, we propose
a novel heterogeneous graph propagation network (HPN)
to alleviate the semantic confusion in node-level, which
mainly consists of semantic propagation mechanism and
semantic fusion mechanism. Specifically, the semantic prop-
agation mechanism absorbs node’s local semantic with a
proper weight during node-level aggregating, alleviating
the semantic confusion under deep HeteGNN architecture.
And, the semantic fusion mechanism is designed to fuse
rich semantics and comprehensively describe the node from
different aspects. Experimental results show the superiority
of the proposed HPN. More importanctly, we analyze the
importance and propagation property of meta-path which
may help to understand heterogeneous graph.
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