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ABSTRACT
Prohibited item detection, which aims to detect illegal items hidden

on e-commerce platforms, plays a significant role in evading risks

and preventing crimes for online shopping. While traditional so-

lutions usually focus on mining evidence from independent items,

they cannot effectively utilize the rich structural relevance among

different items. A naïve idea is to directly deploy existing super-

vised graph neural networks to learn node representations for item

classification. However, the very few manually labeled items with

various risk patterns introduce two essential challenges: (1) How

to enhance the representations of enormous unlabeled items? (2)

How to enrich the supervised information in this few-labeled but

multiple-pattern business scenario? In this paper, we construct item

logs as aHeterogeneousRiskGraph (HRG), and propose the novel
Heterogeneous Self-supervised Prohibited item Detection model

(HSPD) to overcome these challenges. HSPD first designs the het-

erogeneous self-supervised learning model, which treats multiple

semantics as the supervision to enhance item representations. Then,

it presents the directed pairwise labeling to learn the distance from

candidates to their most relevant prohibited seeds, which tackles the

binary-labeled multi-patterned risks. Finally, HSPD integrates with

self-training mechanisms to iteratively expand confident pseudo la-

bels for enriching supervision. HSPD has been deployed on Taobao

platform, and the extensive offline and online experimental results

on three real-world HRGs demonstrate that HSPD consistently

outperforms the state-of-the-art alternatives.
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1 INTRODUCTION
In the era of prosperous e-commerce, online shopping has become

popular for its advantages in convenience, detailed information as

well as competitive prices. However, besides numerous interesting

products, as shown in Figure 1, there are various items against laws

hidden on the platforms, including protected wildlife, pornographic

materials, illegal medicines, and many others. For example, there

have been more than 1 million products claiming to cure coron-

avirus trying to sell on Amazon since COVID-19
1
. Meanwhile, 1.35

million listings of wildlife products attacked Taobao
2
in 2019. The

selling of these illegal items would bring huge risks to platforms

like expansive fines and create salient personal and social issues

such as increasing crime rate and rampant poaching.

Prohibited item detection, which aims at searching and deleting

illegal items hidden on e-commerce platforms, has played an essen-

tial and vital role in evading risks and preventing crimes for online

shopping [7, 28]. Conventional industrial solutions prefer to formu-

late this problem as a typical classification task and directly deploy

traditional machine learning or deep learning algorithms [4] to

extract confident evidences from independent instances. Obviously,

these solutions require laboring feature engineering and adequate

supervised information of item logs. However, prohibited item de-

tection work becomes harder and harder in recent years, because

of the following two reasons.

First, the attributes of instances are weak due to the adversar-

ial actions. Since unstructured features (e.g., texts and images) of

prohibited items can be easily transformed very similar to those

of normal ones, traditional feature engineering suffers from heavy

1
https://www.bbc.com/news/technology-51675183

2
https://www.endwildlifetraffickingonline.org/our-progress
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adversarial efforts by illegal sellers. Meanwhile, current solutions

rarely utilize rich structural relations between different items which

indeed reflect the high risks in someway. For instance, items belong-

ing to the same seller are likely to share consistent risks. Modeling

such structure information can learn more robust representations

of items [1, 12? ] and make the adversarial efforts unaffordable or

unavailable [8]. Second, the supervised information for training is

weak in both the size and the expression of labels, limited by man-

power costs. There are very few labeled items. Besides, the labels

can only describe the riskiness while neglecting the diverse patterns

of prohibited items. For example, the risk patterns in pornographic

products include porn sounds and videos, adult novels, online pri-

vate services and website accounts, etc, while illegal medicines can

be divided into prescription drugs, fake medicines, illegal aphro-

disiacs and so on. Obviously, nodewise labels cannot make full use

of the diversity of same-labeled but different-pattern items, leading

to incomplete training and overfitting.

To tackle the first problem (i.e., weak attributes), a promising

direction is to model the rich structures as a graph and learn robust

representations of items via advanced graph neural networks [6,

17, 31]. Aware of both the risk and heterogeneity, in this paper,

we design a Heterogeneous Risk Graph (HRG) to connect different

items via multiple risk-relevant relations. Taking Figure 2 as an

example, there are three kinds of high-level semantics including

“same visitor”, “same seller”, and “relevant seller” between items on

Taobao platform. Focusing on representation learning on HRGs, a

naïve idea is to introduce heterogeneous graph neural networks[10,

13, 33] to make use of both heterogeneous structures and attributed

information. Unfortunately, these semi-supervised models often

require plenty of supervised information, however, there are very

few labeled but too many unlabeled instances on HRGs. Recently,

self-supervised learning has been introduced into graphs [14, 18, 29,

30] to learn robust representation of unlabeled objects for training.

However, these methods mainly deal with homogeneous graphs

but fail to preserve abundant semantics of HRGs. This remains the

first challenge, namely, how to enhance item representation by
fully exploiting abundant semantics on HRGs?

Focusing on the second problem (i.e., weak supervision), it has

become popular to integrate with self-training mechanism [18, 41]

to expand the scale of labels. Given labeled and unlabeled instances,

a typical self-training pipeline make up of three steps, (1) pretrain a

model over labeled instances, (2) assigning “pseudo-labels” to highly

confident unlabeled instances, (3) include these pseudo labels into

the labeled set for next round of training. Existing works [18, 30] are

to expand nodewise supervised information. However, for prohib-

ited item detection, as the same-class items may be very different,

the performances of both pretraining and labeling processes are

limited. In other words, current nodewise self-training mechanisms

just learn label-level similarity while neglecting the pattern-level

relevance in real-world scenarios. The easy negative and hard posi-

tive supervision would lead to overfitting [36]. Thereby, the second

challenge is how to enrich supervised information in this few
labeled but various patterned business scenario?

In this paper, we are the first to introduce heterogeneous graph

to model risk-relevant structures of item logs, and propose a novel

Heterogeneous Self-supervised framework for Prohibited item

Detection (HSPD). In this model, we treat the semantics between

items as self supervision and design an effective heterogeneous

self-supervised learning on HRGs which factorizes and disentan-

gles semantics within relations to enhance robust representations

of items. And then, we transform the detection process as a metric

learning task between items to be predicted and existing prohib-

ited ones, making full use of various pattern-level relevance. We

further design the directed pairwise self-training mechanism to

iteratively generate more supervision to improve the generalization

performance. Obviously, HSPD can be widely used in many real-

world scenarios where objects are rarely labeled or objects belong

to different patterns or classes.

In a nutshell, the contributions of this paper are:

• The problem of prohibited item detection is very significant

to prevent crimes and protect healthy online shopping. To

our best knowledge, we are the first to introduce heteroge-

neous graph modeling to address this problem.

• We design the effective HSPD consisting of heterogeneous

self-supervised learning and directed pairwise self-training,

which can simultaneously enhance item representations and

enrich supervised information to overcome the challenges

of weak attributes and weak supervision during detecting.

• We evaluate our model in three industrial scenarios, includ-

ing protected wildlife, illegal medicines and pornographic

products. All experimental results consistently demonstrate

the effectiveness of our designs and the improvements to

the second best baseline in the AP and Max-F1 metrics are

respectively up to 9.90% and 9.40%.

2 RELATEDWORK
The related work includes the heterogeneous graph neural net-

works, the self-supervised learning on graphs and so on.

Heterogeneous graph neural networks. Recent years have wit-
nessed the success of GNNs which have the ability to model graph-

structured data, naturally capturing both graph structures and at-

tributes on graphs [6, 17, 35]. GNNs usually generate contextual

node representations via neighborhood aggregation. Under this

framework, various GNN architectures have been proposed [5, 6,

17, 31, 34]. However, as item logs in real-word scenarios are often

connected by multiple relations, these homogeneous GNNs fail to

model the heterogeneity within such HRGs. Recently, some stud-

ies have attempted to deploy GNNs on heterogeneous graphs [10,

13, 26, 33]. RGCN [26] utilizes multiple linear projection weights

for each edge type. HAN [33] and HGT [10] incorporate attention

mechanisms into heterogeneous graphs and hierarchically aggre-

gate information from different-typed neighborhoods. On Taobao

platform, heterogeneous GNNs have been introduced to address

various real-world tasks including recommendation [3, 20], user

alignment [39] and so on. However, when detecting prohibited

items, existing methods cannot thoroughly take advantage of the

abundant information, because of too few labeled data.

Self-supervised learning on graphs. Self-supervised learning [19],
which is a general learning framework that relies on pretext tasks

that can be formulated using unlabeled data, has shown its ad-

vantages in graph modeling for the fantastic data efficiency and

generalization ability. DGI [32] proposes to maximize the mutual
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Figure 2: An toy example of HRG construction on Taobao platform.

information between the local node representation and the global

graph context. GMI [25] further proposes to maximize the mu-

tual information of both features and edges between inputs and

outputs of the encoder. Focusing on the inherent structures and

attributes, GraphCL [37] designs the contrastive learning with four

types of graph augmentations (i.e., node dropping, edge perturba-

tion, attribute masking and subgraphs), to enhance robust node

representations. GPT-GNN [9] proposes to consider both the edge

and node attributes as self-supervision and models the generation

for pre-training GNNs. Recently, some works [18, 30] propose to

adopt self-supervised learning to help downstream tasks, indicating

that the self-supervision should be consistent with the supervised

learning. While the above methods are designed to handle homo-

geneous networks, they fail to fully exploit the semantics within

HRGs to enhance item representation. Some researches attempt to

model the self-supervised learning on heterogeneous graphs. SE-

LAR [11] treats meta-paths as the self-supervised information while

still constructing node representation in a homogeneous manner.

DMGI [23] introduces DGI [32] into attributed multiplex networks

and treat types of edges as supervision, however, it focuses on mod-

eling the global properties, which is unaffordable and likely useless

in prohibited item detection because of the web-scale data.

Other related works. Self-training [41], which is to iteratively

assign confident predictions as the the supervised information, has

been proved effective in GNNs. M3S [30] evaluates the confidence

by matching the labels and clusters, while Pedronette et al. [24]
focus on the ranking information. However, these methods cannot

directly introduced in HRGs because of neglecting the semantics.

On the other line, due to the ability to learn the relevance (i.e.,

metric learning) of candidates to the existing classes, pairwise la-

beling [15] has been introduced in few-shot learning containing

multiple classes with few labels.

3 PRELIMINARIES
This section introduces the general structure of item logs, the con-

struction of heterogeneous risk graphs, and then formalizes the

problem of prohibited item detection on HRGs. The key notations

are shown in Table 1.

As shown in Figure 2(a), item log generally consists of not only

the unstructured attributes (e.g., the title and images) but also sev-

eral related objects like its visitor, its seller, its seller’s IP address and

Mobile number (MID) and etc, indicating the structural relevance

between items. Obviously, we can directly connect items according

Table 1: Notations.

Notation Description
G the input HRG

V, E the item/relation set of 𝐺

R the relation type set of E
𝑟,𝜓 ∈ R the relation type / semantic of R
N𝑟
𝑖

the type-𝑟 neighbors of 𝑣𝑖
𝑚 the sample size of neighborhoods

𝑁 the number of labels

𝑑 the dimension of attributes

𝑇 the number of self-training epochs

𝑿 ∈ R𝑑 the attributes of items

˜𝒉𝑖 ∈ R |R |𝑑 the base representation of item 𝑣𝑖
˜𝒉𝑟
𝑖
∈ R𝑑 the type-𝑟 representation from N𝑟

𝑖

𝑯𝑖,𝜓 ∈ R𝑑 the disentangled semantic-𝜓 factor of 𝑣𝑖

𝑯𝑖 ∈ R |R |𝑑 the self-supervised representation of 𝑣𝑖
𝑰𝑖, 𝑗,𝜓 ∈ {0, 1} the type-𝜓 connection between 𝑣𝑖 and 𝑣 𝑗

𝒀𝑖 , 𝒀𝑖, 𝑗 ∈ {0, 1} nodewise/ pairwise label of 𝑣𝑖 / 𝑣𝑖 and 𝑣 𝑗

𝒀 𝑡 ,𝒁𝑡 ∈ {0, 1} training / pseudo label set at 𝑡𝑡ℎ self-training

to their same factors. However, some relations like “same-category”

could hide the risk trace. In other words, prohibited items are often

related to normal ones in these relations, leading to very noisy

structures. Focusing on modeling rich structure information re-

lated to prohibited item detection, taking Figure 2(b) as an example,

we empirically connect different items via three kinds of relations,

namely, (1) Same seller describes that both connected items belong

to the same seller, capturing the risk from same sellers. (2) Same
visitor describes that both source and target nodes (i.e., items) have

been visited by some same visitors, indicating the relevant risk to

consumers. (3) Relevant seller is to connect the items of relevant

sellers to overcome the multiple fake identifications of adversarial

sellers. In addition, there are some other risk-relevant relations and

we choose the three representative relations for discussion.

Definition 1. Heterogeneous Risk Graph (HRG). An HRG is
denoted as G = {V, E,𝑿 } whereV is the item set, E is the relation
set among items and 𝑿 denotes the attributes of nodes. There is a
relation-type mapping function on HRGs, namely𝜓 : E → R where
R denotes the relation types including “same-seller”, “same-visitor”,
“relevant-seller” and some others where prohibited items are likely to
connect with each other. Notice that, the relations on HRGs are in the



form of meta-paths [27] andmeta-graphs [38] to describe risk-relevant
semantics, rather than general edges on heterogeneous graphs.

As shown in Figure 2(c), HRG is able to preserve the risk-relevant

semantics within item logs for detecting prohibited items rather

than keeping all connections.

Definition 2. Prohibited item detection on HRGs. Given an
HRG G = {V, E,𝑿 }, label set Y = {0, 1} as well as the supervised
information 𝒀 ∈ Y𝑁 where 𝑁 denotes the size of manually labeled
items and 𝑁 ≪ |V|, the goal of prohibited item detection is to learn
the judgement functionH : H(V) → Y |V | . Notice that the values
0 and 1 inY are respectively to mark the normal and prohibited items.

This problem contains two major characteristics, making it more

challenging than traditional node classification. On the one hand,

there are too few labeled items (e.g., the ratio
𝑁
|V | is 0.05% in our

online scenario) to ensure the robust representation of items. On

the other hand, same-labeled items may belong to different patterns

(e.g., coats and bags in Figure 2(c) are all prohibited but they are

quite different to each other.), implying that nodewise labeling and

training cannot make full use of supervised information.

4 METHODOLOGY
In this section, we present the HSPD to tackle prohibited item

detection onHRGs, making full use of both structures and attributes.

We begin with an overview, before zooming into the details.

4.1 Overview
The system architecture of HSPD in Figure 3 consists of three

main modules, including HRG construction, heterogeneous self-

supervised learning for enhancing item representations, and di-

rected pairwise self-training for enriching supervised information

to handle prohibited item detection and overcome the two chal-

lenges. Specifically, (1) we first construct the numerous item logs as

an HRG which connects items via multiple risk-relevant relations.

(2) To enhance robust representations of unlabeled items, HSPD

treats the semantics of relations as the self-supervised information,

and propose the heterogeneous self-supervised learning which

disentangles semantic-level factors of relations as the robust rep-

resentations of items. (3) To enrich supervised information, HSPD

generates the directed pairwise labels to model the pattern-level

relevance of prohibited items via metric learning, and deploy self-

training framework to expand confident pseudo labels to improve

the generalization. Notice that, as the details of HRGmodeling have

been described in Section 3, we mainly introduce the representation

enhancing and supervision enhancing in this section.

4.2 Representation Enhancing via
Heterogeneous Self-Supervised Learning

We begin with the heterogeneous self-supervised learning for en-

hancing robust representations of enormous unlabeled items. Al-

though self-supervised learning has been introduced to deal with

few-labeled graphs, however, existing works are on homogeneous

graphs which fail to incorporate the abundant semantics when

generating node representations in HRGs. In order to fully preserve

the rich semantics on HRGs, we treat the types of relations, i.e.,

Feature Engineering Extract Risk-Relation 

HRG Construction

Item Logs

Heterogeneous Self-
Supervised Learning

Directed Pairwise 
Self-Training

Rank Prohibited Items

Detection Report

Figure 3: System architecture of HSPD.

risk-relevant semantics between items as the self-supervision and

present the self-supervised training on heterogeneous graphs, as

shown in Figure 4.

At first, given the HRG G as well as item 𝑣𝑖 , we respectively

gather information from type-aware neighborhoods, namely,

˜𝒉𝑟𝑖 = 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸
({
𝜎 (𝑿 𝑗𝑾

𝑟 + 𝑏𝑟 )
�� 𝑗 ∈ N𝑟

𝑖

})
, (1)

where
˜𝒉𝑟
𝑖
denotes the gathered neighborhood information of N𝑟

𝑖
,

N𝑟
𝑖
denotes the 𝑟 -typed neighborhoods of item 𝑣𝑖 , 𝑿 𝑗 denotes the

features of item 𝑗 ,𝑾𝑟
and 𝑏𝑟 are the type-wise parameter and bias

to model the semantics within relations, 𝜎 (·) denotes the activation
function and we adopt RELU in this paper. 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸 (·) is the
pooling operation for neighborhoods where we deploy the mean-

pooling to keep the full information.

Thereby, the base representation
˜𝒉𝑖 of item 𝑣𝑖 is generated by

gathering information from multiple neighborhoods via heteroge-

neous aggregator 𝐻𝑒𝑡𝑒𝐴𝐺𝐺 (·), namely,

˜𝒉𝑖 = 𝐻𝑒𝑡𝑒𝐴𝐺𝐺 ({𝑿 𝑗 | 𝑗 ∈ N𝑟
𝑖 , 𝑟 ∈ R}) = [ ˜𝒉

𝑟1
𝑖
∥ ˜𝒉𝑟2

𝑖
∥ · · · ∥ ˜𝒉𝑟 |R |

𝑖
] . (2)

With the assumption that all heterogeneous neighborhoods con-

tain latent factors to result in current connections at different levels,

inspired by [21], we factorize and disentangle these factors by de-

signing the semantic-aware self-attention mechanism, namely,

𝑯𝑖,𝜓 = 𝜶𝑖,𝜓
˜𝒉𝑖𝑾𝜓 + 𝑿𝑖 , (3)

where 𝑯𝑖,𝜓 ∈ R𝑑 with dimension 𝑑 denotes the latent factor of

type-𝜓 semantics,
˜𝒉𝑖 ∈ R |R |×𝑑 is the embedding generated by

Eq. (2), and𝑾𝜓 ∈ R𝑑×𝑑 is the semantic-aware projection param-

eter, 𝜶𝑖,𝜓 ∈ R1×|R | denotes the corresponding importance of the

multiple neighbors, defined as

𝜶𝑖,𝜓 = softmax

(
tanh( ˜𝒉𝑖𝑾𝜓,𝛼 )𝒘𝜓,𝛼

)
, (4)

where𝑾𝜓,𝛼 ∈ R𝑑×𝑑𝜓 and𝒘𝜓,𝛼 ∈ R𝑑𝜓×1 are two projection param-

eters in self-attention, and we adopt softmax(·) to normalize the

importance of these multiple information.
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Figure 4: Enhancing representation of items via heteroge-
neous self-supervised learning.

Furthermore, we treat the heterogeneous relations between items

as self-supervised information and focus on prediction the seman-

tics between items. We randomly mask several relations between

neighbors as the positive links and adopt negative sampling to

generate the corresponding unconnected pairs. The sizes of uncon-

nected and connected pairs are the same. Given the semantic-aware

pair < 𝑖, 𝑗,𝜓 >, the heterogeneous self-supervised cross-entropy

loss is defined as

L𝑆𝑆 = −
∑

<𝑖, 𝑗,𝜓>

𝑰𝑖, 𝑗,𝜓 𝑙𝑜𝑔(𝑝𝑖, 𝑗,𝜓 ) + (1 − 𝑰𝑖, 𝑗,𝜓 )𝑙𝑜𝑔(1 − 𝑝𝑖, 𝑗,𝜓 ), (5)

where 𝑰𝑖, 𝑗,𝜓 ∈ {0, 1} denotes the connection of 𝑣𝑖 and 𝑣 𝑗 under

type-𝜓 semantic, and 𝑝𝑖, 𝑗,𝜓 denotes the probability, namely,

𝑝𝑖, 𝑗,𝜓 = 𝑯𝑇
𝑖,𝜓

𝑯 𝑗,𝜓 . (6)

Notice that, in this paper, we concatenate all disentangled factors

as the robust representation 𝑯𝑇
𝑖
= ∥𝜓𝑯𝑇

𝑖,𝜓
for supervised learning.

4.3 Supervision Enriching via Directed
Pairwise Self-Training

Besides enhancing the inputs, another alternative is to enrich super-

vised information for better generalization. As shown in Figure 5,

taking the pattern-level relevance into consideration, we present the

directed pairwise labeling to evaluate the relevance from candidate

items to their related prohibited items, transforming node classi-

fication into metric learning. These connections are indeed easy

positive or hard negative training pairs, making the metric learning

effective. Furthermore, we introduce the corresponding pairwise

self-training mechanism to expand confident pseudo labels.

4.3.1 Directed Pairwise Labeling. With the robust inputs, a natural

idea is to consider the detection as a binary classification task

and train an effective supervised model to judge candidate items.

However, as mentioned in Section 1, despite the binary 𝒀 , there are
various patterns of prohibited items and these patterns are unique

in some way, e.g., porn sounds and videos, adult novels, online

private services and website accounts in pornographic products.

Besides, the normal items could be very different from each other.

Therefore, traditional approaches [18, 30] in node classification

have to suffer from poor generalization.

Inspired by metric learning [15, 36], we propose to transform the

nodewise classification as the proximity between items. Different

from traditional edge labeling which treats the source and target

nodes equally, the relevance between normal items contributes

⋯

Pairwise Self-Training

Directed Pairwise
Labeling

HeteAGG

⋯

HeteAGG

Pseudo Labels

Prohibited Item

Normal Item

Figure 5: Enriching supervised information via directed
pairwise self-training.

little to risk detection. Thereby, we design the directed pairwise

labeling in the form of {< 𝑣𝑖 , 𝑣 𝑗 > |𝒀𝑖 = 1} as follows.
• Collect all the prohibited items {𝑣𝑖 |𝑣𝑖 ∈ 𝒀 , 𝒀𝑖 = 1} as seeds;
• Collect all the labeled items {𝑣 𝑗 |𝑣 𝑗 ∈ 𝒀 } as candidates;
• Select the pair < 𝑣𝑖 , 𝑣 𝑗 > where 𝑣 𝑗 is connected to 𝑣𝑖 or 𝑣𝑖 is

the several most similar ones to 𝑣 𝑗 ;

• Label the pairs < 𝑣𝑖 , 𝑣 𝑗 > with 𝒀𝑖, 𝑗 = 𝒀𝑗 .

Thereby, the loss with directed pairwise labels is defined as

L𝑃𝑊 = −
∑
<𝑖, 𝑗>

𝒀𝑖, 𝑗 · 𝑙𝑜𝑔(�̂�𝑖, 𝑗 ) + (1 − 𝒀𝑖, 𝑗 )𝑙𝑜𝑔(1 − �̂�𝑖, 𝑗 ), (7)

where �̂�𝑖, 𝑗 denotes the risk probability of 𝑣𝑖 , calculated by

�̂�𝑖, 𝑗 = 𝑀𝐿𝑃 ( [𝒈𝑖 ∥𝒈𝑗 ∥𝒈𝒊 · 𝒈𝒋]), (8)

whereMLP(·) denotes theMultiple Layer Perceptronwhich outputs

the link probability, 𝒈𝑖 ∈ R𝑑 denotes the embedding of 𝑣𝑖 , namely,

𝒈𝑖 = 𝐻𝑒𝑡𝑒𝐴𝐺𝐺 (𝑯𝑜 |𝑜 ∈ N𝜓

𝑖
), (9)

where 𝑯𝑜 ∈ R𝑑 |R | denotes the concatenation of all latent factors

generated by Eq. (3). Notice that, since each item can be assigned

with a certain number of pairs, the directed pairwise labeling con-

tributes to expanding supervision, as well.

4.3.2 Pairwise Self-Training Strategy. Different from metric learn-

ing which generates extra information from labels themselves, self-

training is another strong alternative to deal with weak supervi-

sion. However, the current methods mainly focus on node-level

self-training, which conflicts with our pairwise setting. Here we in-

troduce self-training into pairwise supervised learning to generate

labels via multiple pairwise instances rather than single nodes.

At first, we respectively generate 𝑛 directed pairs of training set

𝒀 and prediction set 𝒁 , and then rewrite the loss in Eq. (7) as

L𝑡
𝑆𝑇 = −

∑
<𝑖, 𝑗>

𝒀 𝑡𝑖, 𝑗 · 𝑙𝑜𝑔(�̂�
𝑡
𝑖, 𝑗 ) + (1 − 𝒀

𝑡
𝑖, 𝑗 )𝑙𝑜𝑔(1 − �̂�

𝑡
𝑖, 𝑗 ), (10)

where 𝑡 denotes the epoch of self-training, and there are 𝑇 total

epochs, 𝒀 𝑡
𝑖, 𝑗

and �̂� 𝑡
𝑖, 𝑗

respectively denote the ground truth and the

probability, and 𝒀 0 = 𝒀 .
And then, for each epoch of self-training, we predict the proba-

bility for the candidate prediction set 𝒁𝑡
as follows

ˆ𝒁𝑡+1
𝑖 =

1

𝑘

∑
<𝑖, 𝑗> ∈𝒁𝑡

ˆ𝒁𝑡
𝑖, 𝑗 , (11)

where
ˆ𝒁𝑡+1
𝑖, 𝑗

denotes the probability, namely the confidence to judge

𝑣𝑖 as the prohibited item, and vice versa, and 𝑘 denotes the size of



Algorithm 1: The proposed HSPD model.

Input: HRG G = {V, E,X}, labels 𝒀 , unlabeled items 𝒁 ,
directed pairs 𝑘 , epoch 𝑇 , threshold 𝜅0 and 𝜅1;

Output: Optimized parameters 𝚯;

1 Initialize parameters 𝚯, 𝑡 ← 0;

2 Randomly sample several type-aware connected and

unconnected quad set 𝑰 = {< 𝑖, 𝑗,𝜓, 𝐼𝑖, 𝑗,𝜓 >};
3 for each < 𝑖, 𝑗,𝜓, 𝐼𝑖, 𝑗,𝜓 > do
4 Calculate base embedding

˜𝒉𝑖 and ˜𝒉 𝑗 by Eq. (2);

5 Calculate disentangled �̃�𝑖,𝜓 and �̃� 𝑗,𝜓 by Eq. (3);

6 Calculate the probability of connections 𝑝𝑖, 𝑗,𝜓 by Eq. (6);

7 end
8 Minimize L𝑆𝑆 in Eq. (5) and obtain 𝑯 ;

9 Generate directed pairwise labels {𝑌 0

𝑖, 𝑗
|𝑌𝑖 = 1} from 𝒀 ;

10 Generate candidate pairs {𝑍 0

𝑖, 𝑗
|𝑌𝑗 = 1} from 𝒁 and 𝒀 ;

11 while 𝑡 < 𝑇 do
12 Calculate item robust representation 𝒈𝑖 and 𝒈𝑗 by Eq. (2)

for all training pairs in 𝑌 ;

13 Calculate supervised loss L𝑡
𝑆𝑇

by Eq. (10);

14 Minimize L𝑡
in Eq. (14) with fixed L𝑆𝑆 by Adam;

15 Predict 𝑍 𝑡+1
by Eq. (11);

16 Update 𝑌 𝑡+1
and 𝑍 𝑡+1

by Eq. (12) and Eq. (13);

17 𝑡 ← 𝑡 + 1;
18 end

pairs. Notice that, 𝒁0 = 𝒁 . We then rank the candidates and expand

the confident predictions as the pseudo labels for training in the

next epoch and remove them from the candidate set, namely,

𝒀 𝑡+1 = 𝒀 𝑡 ∪ { ˜𝒁𝑡+1
𝑖, 𝑗 |𝛾

𝑡+1
𝑖,− ≤ 𝜅1 𝑜𝑟 𝛾

𝑡+1
𝑖,+ ≤ 𝜅0}, (12)

𝒁𝑡+1 = {𝒁𝑡
𝑖, 𝑗 |𝜅0 < 𝛾𝑡+1𝑖,+ < 𝜅1}, (13)

where 𝛾𝑡+1
𝑖, · denotes the ranking order of item 𝑣𝑖 at 𝑡 + 1𝑡ℎ epoch,

the signs + and − under 𝛾 respectively indicate ascending and

descending, and 𝜅0 and 𝜅1 are the borderline of normal items and

risk items. Notice that, labels in risk scenarios are often imbalanced,

here we set 𝜅0 and 𝜅1 differently, where 𝜅0 = 1000 and 𝜅1 = 100. For

the same reason, we do not require 𝒁𝑇 = {𝜙} as too large pseudo

labels are likely to accumulate very many errors.

4.4 The Unified Framework
By now, we have introduced both the heterogeneous self-supervised

learning and the directed pairwise self-training mechanism to re-

spectively enhance item representation and enrich supervised in-

formation. The overall optimized objective minimize both the self-

supervised loss L𝑆𝑆 and self-training loss L𝑡
𝑆𝑇

, defined as

L𝑡 = L𝑡
𝑆𝑇 + 𝛽L𝑆𝑆 + 𝜉Ω(𝚯), (14)

where 𝛽 is the weight of self-supervised learning tasks, 𝜉 denotes

the regularization of all learnt parameters 𝚯 and Ω denotes the L2

regularization. Notice that L𝑡
𝑆𝑇

= L𝑃𝑊 if 𝑡 = 0. Since the HRG G
is web-scale, we minimize the loss in two-step optimization and

the details are in Algorithm 1.

4.5 Complexity Analysis
The computational complexity of HSPD consists of two major

parts, including heterogeneous self-supervised learning and di-

rected pairwise self-training. For the former, the complexity is

O(𝑚 |𝑰 | |V||R|𝑑𝑎𝑡𝑡𝑑 + |R|2𝑑) where |𝑰 | and𝑚 respectively denote

the the size of self-supervised labels and the size of each-typed

neighborhood of each item, 𝑑𝑎𝑡𝑡 and 𝑑 respectively denote the di-

mension of attributes and outputs. For the latter, the complexity of

𝑡𝑡ℎ epoch is O(𝑚𝑘 |𝒀 𝑡 | |R |2𝑑3) where 𝑘 denote the size of pairs of

each labeled item, |𝒀 𝑡 | denotes the size of labeled items at this epoch,

𝑑 denotes the size of output embedding of items. Obviously, both

the two parts are linear with the scale of an HRG, demonstrating

the scalability of our HSPD.

5 EXPERIMENTS
In this section, we conduct experiments on three real-world risk sce-

narios to evaluate the empirical performance of our method, against

seven state-of-the-art alternatives. And then, we perform both the

variant and the parameter analysis to showcase the effectiveness

of our design choices and key factors.

5.1 Datasets
We collect the one-month real-world web-scale datasets in three risk

scenarios including the protected wildlife (i.e., “Wildlife”), the illegal
medicines (i.e., “Medicine”) and the pornographic materials (i.e.,

“Pornography”), from the Taobao platform
3
. For each risk dataset,

we empirically construct an HRG to preserve abundant semantics

within billions of item logs. We adopt word2vec [22] to embed the

titles of items as 64-dimensional numerical features.

Next, we introduce how to construct training, validation and

test instances. For offline experiments, the instances are randomly

divided into training, validation and test with rate 8:1:1. To get more

robust results, we vary the size of each training sets from 20% to

80%. The detailed statistics of these datasets are described in Table 2.

Besides offline experiments, we also evaluate the performance of

our method by designing online testing of 9-day online dataset.

Obviously, there are several unique characteristics in our risk sce-

narios, compared to traditional binary classification. First, datasets

are large enough and contain various relations between nodes. Sec-

ond, the rate of manually labeled items to the whole instances is

less than 0.2% while the balance rate between illegal (label = 1)

and legal items (label = 0) is even very small to 2% in the risk of

pornographic materials. These characteristics of data bring great

challenges to our model designs.

5.2 Experimental Settings
5.2.1 Baselines. We compare with seven representative baseline

methods including two conventional classification algorithms (i.e.,

LR and GBDT [4]) which currently deployed for prohibited item

detection on Taobao platform, five outstanding GNNs, as well as

our nodewise HSPD (i.e., HSPD𝑁𝑊 ).

• Logistic Regression (LR). This is a fundamental classifica-

tion algorithm used in industry for its good interpretability.

3
https://www.taobao.com/

https://www.taobao.com/


Table 2: Description of datasets.

Risk Wildlife Medicine Pornography
# Nodes 141,205,673 153,246,207 195,699,994

# Same visitor 251,584,066 518,175,838 96,180,405

# Same seller 14,970,328 20,726,675 9,788,736

# Relevant seller 7,793,425,568 9,720,654,470 11,699,840,416

# Average degree 57.07 66.95 60.32

# Labels 262,281 394,306 408,978

# Label=0 250,925 375,648 403,298

# Label=1 11,356 18,658 5,680

Label Rate 0.19% 0.26% 0.21%

Balance Rate 4.5% 5.0% 1.4%

• GBDT [4]. This is also a classic machine learning algorithm

which can detect the latent relevance of numerical and dis-

crete features for classification.

• GraphSAGE [6]. This is a representative GNN model which

exploits both structures and attributes via neighborhood

aggregation to construct node representations.

• MTL [6]. This is a unified GNN framework which inte-

grates multiple self-supervised learning tasks (e.g., cluster-

ing, graph partition and graph completion), and the semi-

supervised node classification together to utilize structural

information as much as possible.

• GATNE [2]. This is an inductive heterogeneous GNN model

used in industry which learns node representation consider-

ing the semantics within both of nodes and edges.

• HAN [33]. This is a heterogeneous GNN which models both

node-level and semantic-level importance and designs a hi-

erarchical message passing from heterogeneous neighbors.

• HGT [10]. This is a heterogeneous graph transformer which

designs the heterogeneous mutual attention mechanism to

aggregate information considering both edge and node types.

• HSPD𝑁𝑊 . This is the modified version of HSPD which con-

struct loss function with nodewise labels. We compare with

this variant to showcase the effectiveness of heterogeneous

self-supervision.

• HSPD. This is our proposed model consisting of heteroge-

neous self-supervised learning and directed pairwise self-

training to handle the few labeling problem in prohibited

item detection scenarios

5.2.2 Implementation Details. All baselines and our HSPD are im-

plemented with Tensorflow 1.12 on PAI
4
with Tesla GeForce GTX

1080 Ti Cluster. As the scales of datasets are quite large, we uti-

lize AliGraph [40] API to load graphs and do sampling over HRGs

in a distributed system. For a fair comparison, we randomly ini-

tialize model parameters with Gaussian distribution and optimize

the model with Adam [16]. We set the batch size to 1024 for each

worker, the number of workers to 8, the learning rate to 0.005, the

feature embedding 𝑑 to 64, the regularization weight 𝜉 to 0.01 and

the dropout rate to 0.4, the weight 𝛽 to 1. In homogeneous GNNs

(e.g., GraphSAGE and MTL), we randomly sample 5 neighbors for

4
https://www.aliyun.com/product/bigdata/product/learn

eacn item. In heterogeneous GNNs (e.g., HAN, GATNE, HGT and

our HSPD), we set the sample size as 5 for each relation. The maxi-

mum iteration of all the nodewise baselines is set to 300. For our

proposed HSPD, we generate 6 pairs from each candidate to the

risk seeds according to there structural and attributed similarity.

We set the maximum iteration of HSPD to 100 and the epochs 𝑇 of

self-training strategy to 5. For each self-training process, 𝜅0 is set

to 1000 and 𝜅1 is set to 100. We further discuss the hyper-parameter

sensitivity in Section 5.7.

5.2.3 Evaluation Metrics. In our offline experiments, we calculate

the Max-F1 (the max F1 value by varying the threshold of re-

called items) and Average Precision (AP) to evaluate the global

performance of identifying all test instances, which are the general

metrics in the current system. In our online experiments, limited

by manpower cost, we choose ACC@10000 (the accuracy of the

top 10,000 recalled items which is manually reviewed) to measure

the effectiveness of our HSPD. The larger values of Max-F1, AP or

ACC@10000 indicate the better performance.

5.3 Performance Evaluation
We start by evaluating the detection performance of all the base-

lines and our HSPD on the three real-world risk scenarios. The

overall Max-F1 and AP results of different methods under different

scales of labels are presented in Table 3, from which the following

observations can be made:

First, HSPD performs the best in all three risk scenarios with all

different sizes of training sets. Compared with the baselines except

HSPD𝑁𝑊 , the improvement is prominent from 3.08% up to 9.40% in

the Max-F1 metric and is from 3.76% up to 9.90% in the AP metric.

Besides, our variant HSPD𝑁𝑊 is better than the best baselines as

well. The reason is twofold: (1) HSPD and HSPD𝑁𝑊 fully combine

both the features and semantic information to enhance node repre-

sentation by designing the heterogeneous self-supervised learning.

(2) HSPD enriches supervised information via the asymmetric pair-

wise labeling to discover patterns and self-training framework to

expand confident pseudo labels, leading to the advantages over

HSPD𝑁𝑊 .

Second, HSPD has the ability to handle the imbalance and small

scale of labels in prohibit item detection. On the one hand, Com-

pared toMedicine, althoughWildlife has few labels and Pornography
has more imbalance labels, the improvements of our HSPD to base-

lines on the two datasets are both more obvious. On the other hand,

the pairwise self-training mechanism performs more significant in

the fewer labelingWildlife, by comparing the improvement from

HGT, HSPD𝑁𝑊 to our HSPD on all the three datasets.

Third, Modeling the structural and the semantic information

within the complex datasets contributes much to address the prob-

lem of prohibited item detection. By comparing with the classic LR

and GBDT, almost all other methods achieve better performance

on the three datasets. Furthermore, The supervised heterogeneous

GNNs (i.e., HAN, HGT, HSPD𝑁𝑊 and our HSPD) outperform ho-

mogeneous GNNs (GraphSAGE and MTL) because of the semantic

modeling.

https://www.aliyun.com/product/bigdata/product/learn


Table 3: Performance of baselines and HSPD for risk detection on the three datasets. The best performance is in bold and the
second best except HSPD𝑁𝑊 is underlined. Relative improvements of HSPD w.r.t. the second best are reported as well.

Dataset Metric Rate LR GBDT GraphSAGE MTL GATNE HAN HGT HSPD𝑁𝑊 HSPD Improv.

Wildlife

AP

20% 0.2958 0.5886 0.6829 0.7071 0.5610 0.6956 0.7354 0.7719 0.7883 7.20%

40% 0.3044 0.6183 0.7122 0.7284 0.5732 0.7397 0.7721 0.8052 0.8318 7.74%

60% 0.3060 0.6414 0.7166 0.7447 0.5787 0.7518 0.7804 0.8085 0.8445 8.22%

80% 0.3063 0.6414 0.7348 0.7525 0.5837 0.7686 0.7834 0.8216 0.8610 9.90%

Max-F1

20% 0.3741 0.5638 0.6475 0.6683 0.5440 0.6632 0.6705 0.6940 0.7145 6.56%

40% 0.3758 0.5770 0.6695 0.6775 0.5537 0.6862 0.7078 0.7252 0.7548 6.63%

60% 0.3723 0.5932 0.6777 0.6888 0.5646 0.6936 0.7135 0.7348 0.7650 7.21%

80% 0.3726 0.5932 0.6842 0.7019 0.5609 0.7020 0.7245 0.7502 0.7926 9.40%

Medicine

AP

20% 0.5617 0.7594 0.7616 0.7747 0.6570 0.7942 0.8064 0.8200 0.8378 3.89%

40% 0.5630 0.7686 0.7727 0.7929 0.6675 0.8115 0.8270 0.8364 0.8575 3.69%

60% 0.5667 0.7752 0.7724 0.8009 0.6719 0.8208 0.8289 0.8455 0.8698 4.93%

80% 0.5646 0.7791 0.7788 0.7960 0.6732 0.8283 0.8430 0.8606 0.8747 3.76%

Max-F1

20% 0.5274 0.6977 0.6855 0.7043 0.5987 0.7242 0.7393 0.7341 0.7656 3.56%

40% 0.5281 0.7097 0.6984 0.7201 0.6148 0.7341 0.7547 0.7591 0.7779 3.08%

60% 0.5273 0.7123 0.6989 0.7277 0.6210 0.7514 0.7559 0.7665 0.7819 3.44%

80% 0.5264 0.7184 0.7005 0.7143 0.6201 0.7523 0.7656 0.7794 0.7958 3.94%

Pornography

AP

20% 0.3181 0.5047 0.5099 0.5856 0.6161 0.6701 0.7082 0.7345 0.7699 8.72%

40% 0.3198 0.5442 0.5435 0.6167 0.6264 0.6801 0.7405 0.7852 0.8028 8.41%

60% 0.3214 0.5485 0.5802 0.6263 0.6293 0.7005 0.7666 0.8026 0.8252 7.64%

80% 0.3213 0.5590 0.5867 0.6659 0.6255 0.7433 0.7839 0.8032 0.8314 6.06%

Max-F1

20% 0.3938 0.5183 0.5150 0.5707 0.5990 0.6372 0.6980 0.6967 0.7290 4.44%

40% 0.3882 0.5304 0.5443 0.6043 0.6062 0.6732 0.7083 0.7291 0.7543 6.49%

60% 0.3933 0.5340 0.5593 0.5961 0.6096 0.6804 0.7261 0.7429 0.7674 5.70%

80% 0.3905 0.5316 0.5801 0.6387 0.6026 0.7133 0.7332 0.7470 0.7682 4.78%

AP Max-F1
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Figure 6: Performance comparison of HSPD and its variants on the three risk scenarios with 20% supervised information.

5.4 Variant Analysis
HSPD is to fully utilize the heterogeneous self-supervision and

pairwise self-training to enhance node representation and enrich

supervised information. Here we analyze three HSPD variants to

evaluate the effectiveness of our design choices. (1)HSPD-w\o-ST
removes the self-training process but utilizes both pairwise labels

and self-supervision. (2)HSPD-w\o-SS removes the heterogeneous

self-supervision. (3) HSPD-w\o-PW replaces pairwise labels with

nodewise labels.

In Figure 6, we showcase the Max-F1 and AP performance of

HSPD and its variants on all three datasets with 20% supervised in-

formation. There are two main observations as follows. (1) First, our

proposed HSPD outperforms all variants with an obvious improve-

ment. Compared with HSPD-w\o-SS, the improvements mainly

result from the robust node representations by designing hetero-

geneous self-supervised learning to fully exploit both structural

and semantic information within the complex datasets. Compared

with HSPD-w\o-PW, the advantage of pairwise labeling is proved as

well, due to the ability of learning distance between risk items and

candidates. Compared with HSPD-w\o-ST, our HSPD introduces the

self-training mechanism which can help us to avoid the over-fitting

and learn a robust model. (2) Second, the HSPD-w\o-SS often per-

forms worse against HSPD-w\o-ST and HSPD. This phenomenon

is reasonable and explicable. Due to the noise and weak attributes

but quite a few labels of items, the base representations of items
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Figure 7: Performance comparison of HSPD by varying the number of pairwise labels and the epochs of self-training.

Figure 8: Case study onWildlife.

would be limited, leading to the inaccurate prediction as well as the

worse generation of pseudo labels during self-training.

5.5 Parameter Analysis
In this section, we investigate the effect of both the number of

pairwise labels and the epochs of self-training, which are two key

factors in enriching supervised information. We respectively vary

𝑘 , the number of pairwise labels of each candidate from 3 to 12,

and vary the epochs of self-training 𝑇 from 0 to 4, and report the

corresponding AP results with 20% self-supervised information on

all three datasets in Figure 7. Notice that, epoch=0 indicates the

pairwise learning without self-training.

There are twomain observations. First, the performance of HSPD

is related to the size of pairwise labels. By setting 𝑇 as 0, We can

easily find that there is an obvious improvement when we increase

𝑘 from 3 to 6, indicating that too few pairwise cannot help training.

Besides, too large may lead to expensive computational cost but

obtain little increase. Here we set 𝑘 = 6 to achieve a balance. Second,

self-training mechanisms help HSPD to keep both outstanding and

robust performance. With the self-training epoch 𝑇 increases, the

performance overall increase to be stable. In this paper, we set 𝑇 as

4 to achieve a robust performance but avoid too heavy costs.

5.6 Case Study
We showcase some representative cases of detecting prohibited

items on theWildlife dataset. As shown in Figure 8, there are five

patterns, including bamboo partridges, selaginella, red coral, hawks-

bill and illegal traps. Due to the advantages in evaluating the rele-

vance between predictions and seeds via directed pairwise labelling,

our HSPD obviously outperforms HAN and can discover various

patterns of prohibited items to help manually reviewing.
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Figure 9: The results of online testing.

5.7 Online Experiments
We deploy HSPD on Taobao platform for online prohibited porno-

graphic product detection and compare HSPDwith GBDT via online

testing. In fact, online service is very more challenging where the

label rate is about 0.05%. The online results are shown in Figure 9.

For daily results, we rank the candidate items with 𝑌 and select

top-10000 items for manually checking. The long-term observations

show that HSPD outperforms GBDT in all 9 days. This phenomenon

demonstrates the high industrial practicability of HSPD.

6 CONCLUSION
In this paper, we study the problem of prohibited item detection

which plays an important and essential role in ensuring the health

of online shopping. In order to solve the challenges of too few man-

ual labels, we are the first to model the large-scale item logs as a

HRG and introduce the self-supervised learning and self-training

in HRGs to address this problem, and then propose the novel HSPD.

This approach considers the semantics of relations as the self-

supervision and generates the disentangled factors of items as the

robust representation. Moreover, the directed pairwise self-training

is designed in HSPD to enrich the supervised information. Exten-

sive results on both offline and online experiments demonstrate the

effectiveness of our proposed model.
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