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ABSTRACT
Dynamic link prediction, which aims at forecasting future edges of
a node in a dynamic network, is an important problem in network
science and has a wide range of real-world applications. A key prop-
erty of dynamic networks is that new nodes and links keep coming
over time and these new nodes usually have only a few links at their
arrivals. However, how to predict future links for these few-shot
nodes in a dynamic network has not been well studied. Existing
dynamic network representation learning methods were not spe-
cialized for few-shot scenarios and thus would lead to suboptimal
performances. In this paper, we propose a novel model based on
a meta-learning framework, dubbed as MetaDyGNN, for few-shot
link prediction in dynamic networks. Specifically, we propose a
meta-learner with hierarchical time interval-wise and node-wise
adaptions to extract general knowledge behind this problem. We
also design a simple and effective dynamic graph neural network
(GNN) module to characterize the local structure of each node in
meta-learning tasks. As a result, the learned general knowledge
serves as model initializations, and can quickly adapt to new nodes
with a fine-tuning process on only a few links. Experimental results
show that our proposed MetaDyGNN significantly outperforms
state-of-the-art methods on three publicly available datasets.
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1 INTRODUCTION
Dynamic or temporal networks can characterize a variety of real-
world systems evolving over time, and have been extensively stud-
ied over decades [10]. Dynamic link prediction, which aims at
predicting future relationships between a set of nodes, has been
recognized as a fundamental task to understand the evolutionary
patterns of a dynamic network [4]. With a wide range of appli-
cations such as product recommendation [38] and friend sugges-
tion [18, 29, 30], link prediction in dynamic networks has gained
much attention in recent years.

A key characteristic of dynamic networks is that new nodes and
links keep coming over time [10]. These new nodes usually have
only a few links at their arrivals, e.g., new users in a social network
or new researchers in an academic collaboration network only have
a couple of friends or coauthors at the beginning. Due to the wide
existence of such new nodes or cold-start nodes in real-world sys-
tems [12, 33], it is worth studying how to predict links for the nodes
with only a few observed connections in dynamic networks, i.e.,
few-shot link prediction in dynamic networks. However, to the best of
our knowledge, as an important and realistic scenario, the problem
has not been specifically designed in existing graph representation
learning methods.

Recently, a promising direction of dynamic network represen-
tation learning techniques, i.e., dynamic graph neural network
(GNN) [25, 39], has achieved state-of-the-art (SOTA) performance
on node classification and link prediction of dynamic networks. De-
spite the significant improvements, existing dynamic GNNs treated
dynamic link prediction as a supervised problem and were not spe-
cialized for few-shot scenarios. Specifically, the prediction losses
corresponding to a few-shot node are likely to be dominated by the
overall loss. Hence, in a dynamic GNN model, the trainable param-
eters shared across all nodes could not generalize well for few-shot
nodes, and node-specific trainable parameters of few-shot nodes
could not be sufficiently trained. Therefore, the above limitations
of existing dynamic GNNs will lead to suboptimal performances.

On the other hand, as a widely used technique for few-shot
problems, meta-learning [36] can extract general knowledge across
different training tasks and quickly adapt it to few-shot testing
tasks, and has been integrated with GNNs for few-shot predic-
tion in static networks recently [2, 3, 11, 40, 41]. However, most
of them focused on node/graph classification [3, 40, 41]. Though
two very recent work [2, 11] can handle few-shot link prediction,
they focused on static network modeling and thus failed to consider
the time-varying nature of node preferences and temporal depen-
dency of link formation in dynamic networks, which is critical
for dynamic link prediction [10]. Fig. 1 (a) presents an illustrative
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Figure 1: An illustrative example of a dynamic networkwith
3 snapshots (top), and two levels of general knowledge that
can be extracted for link prediction (bottom). The knowl-
edge can be divided into node-wise general knowledge (bot-
tom left), e.g., the law of triadic closure, and time interval-
wise general knowledge of a specific node (bottom right), e.g.,
a node’s time-invariant preference.

example of the link formation process in a dynamic network. We
can find that the centering node 𝑣 ’s neighbor preference changes
in different time intervals. If we simplify a dynamic network into
a static one, a lot of time-varying information will be discarded,
which makes it hard to learn valuable time-invariant knowledge for
future predictions. Hence, how to extract general knowledge in the
formation of dynamic links via meta-learning, is still a challenge
remaining unsolved. Also, it is not trivial to simply combine meta-
learning frameworks (e.g.,MAML [5]) with existing dynamic GNNs
(e.g., TGAT [39]) whose sophisticated architectures cannot quickly
adapt to few-shot nodes in meta-learning. Therefore, how to tailor
dynamic GNNs for better generalization ability in meta-learning
settings is another challenge to be addressed.

In this paper, we propose a novel model named MetaDyGNN,
which can take advantage of both meta-learning and graph neu-
ral network techniques, for few-shot link prediction in dynamic
networks. To address the first challenge, we assume that there are
two levels of general knowledge that can be extracted via meta-
learning for dynamic link prediction, as shown in Fig 1. The first
level in Fig. 1 (b) is the knowledge shared across different nodes,
e.g., the law of triadic closure [28] that two nodes with shared neigh-
bors tend to get connected later. The second level in Fig. 1 (c) is the
knowledge of a specific node’s time-invariant preference. To extract
the above general knowledge for fast adaption, we formalize each
task in our meta-learning framework as the temporal preference
learning of a single node, and propose a hierarchically adaptive
meta-learner with both time interval-wise adaption and node-wise
(or task-wise) adaption. As a result, during the meta-testing phase,
our model can quickly adapt to a new node (node-wise adaption)
for predicting its potential links in the future (time interval-wise
adaption), with only a few links of the new node. To address the

second challenge, we design a lightweight dynamic GNNmodule to
characterize the local structure of each node in meta-learning tasks.
In detail, our module employs attention mechanism to take advan-
tage of time encoding, node features and edge features for node
representation learning. Compared with TGAT [39], our module is
more efficient and effective in the meta-learning framework. We
conduct experiments on three publicly available dynamic network
datasets. Experimental results show that our proposedMetaDyGNN
significantly outperforms previous methods as well as the simple
combinations of meta-learning and GNNs.

To conclude, our contributions are as follows:
• We propose a novel method MetaDyGNN based on meta-

learning to address the few-shot link prediction problem in dy-
namic networks. To the best of our knowledge, MetaDyGNN is the
first model specifically designed for this important and realistic
scenario.
• The proposed model specializes meta-learning and dynamic

graph neural network techniques to extract hierarchical knowledge
for few-shot dynamic link prediction, and thus can go beyond a
simple combination of existing models.
• Experimental results on three publicly available dynamic net-

work datasets show that MetaDyGNN has a relative improvement
by up to 9.4% in terms of AUC over SOTA methods.

2 RELATEDWORK
Generally, there are two lines of work related to the few-shot link
prediction problem in dynamic networks.

2.1 Meta-learning on Graphs
Meta-learning [36] aims at extracting general knowledge (or priors)
across different tasks, which can be quickly adapted to a new task
with only a few examples. For instance, MAML [5] is a popular
meta-learning framework for deep neural networks, which learned
the general knowledge across tasks as neural network parameter
initialization. At the meta-testing phase, MAML can fine-tune the
parameters with a small amount of training instances and thus
adapt to a new learning task efficiently.

Recently, meta-learning was integrated with graph neural net-
work models for few-shot predictions on graphs. Meta-GNN [41]
was the first in this line of works, which employed MAML [5] for
few-shot node classification in a single graph. Chauhan et al. [3]
proposed a meta-learning framework based on super-class pro-
totype modeling, and can be combined with conventional GNN
models such as GCN [15] and GAT [35] for graph classification.
GFL [40] also targeted on categorizing graphs with node-level and
graph-level knowledge transfer. The above studies all focused on
classification problem.

In terms of few-shot link prediction, Meta-Graph [2] combined
meta-learning and GCN [15] for link prediction across multiple
graphs, which can not deal with link prediction problem in a single
graph. G-Meta [11] was a very recent work based on local subgraph
modeling, which can be efficiently applied on either classification
or link prediction tasks. Besides, META-MGNN [7] tried to combine
the meta-learning and GCN for graph representation learning to do
molecular property prediction. There are also some works proposed
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for representation learning of tail nodes [19], bipartite networks [17,
31], heterogeneous information networks [20].

However, all these works were designed for static networks and
failed to capture the key characteristics for dynamic link predic-
tion [10], e.g., the time-varying nature of node preferences and
temporal dependency of link formation.

2.2 Dynamic Network Representation Learning
Learning node representations in a dynamic network has become
a rising topic during the last five years. Conventional embedding-
based methods employed a shallow neural architecture, and ex-
plored the law of triadic closure [42], Hawkes process [43], Macro-
and Micro dynamics [21] and temporal random walks [24, 37] to
capture the temporal information. DyRep [32] and JODIE [16] fur-
ther utilized recurrent neural networks (RNNs) to update node
representations.

In contrast, many works were fully based on deep neural archi-
tectures and have generally better performance with larger model
capacity. These works usually formalized a dynamic network as a
sequence of graph snapshots, and employed GNNs to model struc-
tural context in each snapshot and stacked RNNs on the top of
GNNs to further model temporal context [6, 8, 22, 25, 27]. Besides,
TGAT [39] integrated the sampling strategy in GraphSAGE [9] and
multi-head attention mechanism [34] in GAT [35] to build node
representations in a dynamic network. TGN [26] utilized memory
network to model the temporal evolution of node representations.

However, these models were designed and trained under the
supervised setting, and did not focus on the predictions for few-
shot nodes. Also, they usually took the entire dynamic graph as
the input and need relatively large computing resources, which
would harm the generalization ability under a simple combination
of meta-learning techniques.

3 PRELIMINARIES
In this section, we will formalize the few-shot link prediction prob-
lem in dynamic networks, i.e., predicting future edges for the new
nodes with only a few links. A notation table is available in the
supplementary material.

Firstly, a dynamic network can be defined as follows [14]:

Definition 1. Dynamic Network. A dynamic network can be
denoted as 𝐺 = (𝑉 , 𝐸) where 𝑉 and 𝐸 are the sets of nodes and
temporal edges. Each temporal edge 𝑒 = (𝑣𝑖 , 𝑣 𝑗 , 𝑡𝑒 ) ∈ 𝐸 refers to an
event that node 𝑣𝑖 ∈ 𝑉 connects with node 𝑣 𝑗 ∈ 𝑉 at timestamp 𝑡𝑒 .
Note that nodes 𝑣𝑖 and 𝑣 𝑗 could build multiple edges at different
timestamps.

As a dynamic network evolves, new nodes continue to join the
network and build links. Here we define the new nodes in a dynamic
network as:

Definition 2. New Nodes in a Dynamic Network. Given a dy-
namic network 𝐺 = (𝑉 , 𝐸) and a timestamp 𝑡 , nodes that first join
the network 𝐺 at a future timestamp 𝑡 ′ > 𝑡 , are defined as new
nodes after timestamp 𝑡 .

Thenwe formalize the link prediction for new nodes in a dynamic
network as few-shot link prediction problem:

Definition 3. Few-shot LinkPrediction in aDynamicNetwork.
Given a dynamic network 𝐺 = (𝑉 , 𝐸) and a timestamp 𝑡 , we use
𝑉𝑛𝑒𝑤 ⊂ 𝑉 to denote the set of nodes appearing after timestamp 𝑡 .
Given all the nodes and their links before timestamp 𝑡 , our goal is
to predict future links for each new node 𝑣 ∈ 𝑉𝑛𝑒𝑤 based on its first
𝐾 connections.

Here 𝐾 is usually a small number less than 10, and a few-shot
problem can also be called as a 𝐾-shot one, e.g., 5-shot when 𝐾 = 5.
We will compare methods under different 𝐾s in our experiments.

4 METHODOLOGY
In this section, we present a novel method MetaDyGNN to ad-
dress the few-shot link prediction problem in dynamic networks.
Specifically, our framework is designed and built to address two
challenges:
•How to extract general knowledge in the formation of dynamic

links via meta-learning?
• How to tailor dynamic GNNs for better generalization ability

in meta-learning settings?
An overview of the proposed MetaDyGNN is shown in Fig. 2.

4.1 Task Formulation
First, we will briefly introduce the basic setup of meta-learning. A
meta-learning framework will divide the training data into a set of
tasks and treat these tasks as training instances. In each individual
task, the “training” and “testing” examples are respectively named
as the support and query sets to avoid confusion. During the meta-
training phase, the framework will learn the knowledge shared
across different tasks as model parameters. Then at the meta-testing
phase, the parameters can quickly adapt to new tasks with only a
few examples for fine-tuning.

To extract the two levels of general knowledge about dynamic
link formation as shown in Fig. 1, each task in our meta-learning
framework is formalized as the temporal preference learning of
a single node, i.e., dividing training data into node-level tasks to
capture node-wise knowledge. In specific, we regard each task as a
binary classification problem between a node’s positive temporal
links and negative ones. In order to acquire the knowledge of each
node’s time-invariant preference, we further divide the time span
of each node 𝑣 into 𝑛 equidistant time intervals 𝐼𝑣 =

{
𝐼1𝑣 , 𝐼

2
𝑣 , . . . , 𝐼

𝑛
𝑣

}
and correspondingly split the links into𝑛 sets. For task𝑇𝑣 = (𝑆𝑣, 𝑄𝑣)
of node 𝑣 , the support set 𝑆𝑣 is defined as:

S𝑣 = {S1𝑣 ,S2𝑣 , . . . ,S𝑛−1𝑣 }, (1)

where 𝑆𝑖𝑣 is the set of links in the 𝑖𝑡ℎ interval and query set 𝑄𝑣 is
the set of links in the last interval 𝐼𝑛𝑣 . Now the last piece for task
formulation is the selection of positive and negative links.

For meta-training, to enable the ability of few-shot link predic-
tion, we need to sample a small subset of dynamic links as each
node’s positive links, since the degrees of existing nodes are usually
much larger than those of new nodes. In detail, we will sample 𝐾
links as each node’s support set S𝑣 in every epoch, and make sure
the numbers of links in different time intervals are roughly equal.
Besides, another 𝐾 links will be sampled as the query set 𝑄𝑣 .
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Figure 2: The overall framework of our proposed MetaDyGNN during the meta-training phase. For each task 𝑇𝑣 of node 𝑣 ,
the global parameter in the dynamic GNN 𝜃 will be adapted for each interval 𝑆𝑘𝑣 via hierarchical adaptions. Then we will
fuse the adapted parameters across different intervals as 𝜃∗, where the weight of each adapted parameter is determined by
its performance on the entire support set 𝑆𝑣 . Finally, we will evaluate the loss of the fused parameter 𝜃∗ on query set 𝑄𝑣 , and
perform back-propagation.

For meta-testing, we use 𝐾 dynamic links of each new node as
the support set for fine-tuning (i.e., 𝐾-shot link prediction), and
employ all the remaining links as the query set for evaluation.

For negative links, we sample the same number positive ones
by following the same sampling strategy [21, 23] based on node
degree distribution.

4.2 Link Prediction based on Dynamic GNN
In this subsection, we propose a dynamic GNNmodule to solve each
node-level link prediction task in our meta-learning framework.
The proposed module integrates structural information, timestamp
information and node/edge features for representing each node in a
simple and elegant way. Then a pair of node representations will be
fed into a classifier to judge whether a temporal link 𝑒 = (𝑣, 𝑣 ′, 𝑡𝑒 )
is true or not. Formally, the dynamic GNN module 𝑓𝜃 includes a
node encoder 𝑔𝜓 and a classifier 𝑐𝜔 .

Node encoder 𝑔𝜓 . The representation of node 𝑣 at timestamp
𝑡𝑒 is aggregated from its temporal neighbors N𝑣 (𝑡), i.e., neighbors
before timestamp 𝑡 and 𝑣 itself. Note that we always set 𝑡 ≤ 𝑡𝑒 ,
e.g., the start timestamp of the corresponding time interval. Firstly,
we construct node 𝑣 ’s embedding h0𝑣 by a linear transformation of
its features 𝑥𝑣 ∈ R𝑑 , based on a shared weight matrix W𝑛𝑜𝑑𝑒 ∈
R𝑑×𝑑

′ , where 𝑑 is the size of node features and 𝑑 ′ is the size of
node embeddings. For time encoder Φ(·), we adopt random Fourier
features for encoding [13, 39] which can approach any positive
definite kernels according to the Bochner’s theorem [1].

Now we will start by describing a single dynamic GNN layer. In
specific, we propose to use an attention mechanism to calculate a
different weight for each temporal neighbor by the corresponding
node embeddings and time encodings. Hence, for node 𝑣 at time 𝑡 ,

we can get its representation by encoder 𝑔𝜓 :

h𝑙𝑣 (𝑡, 𝑡𝑒 ) = 𝑔𝜓 (𝑣,N𝑣 (𝑡), 𝑡𝑒 )

= 𝜎1
©«©«

∑
𝑗 ∈N𝑣 (𝑡 )

𝛼𝑙𝑣, 𝑗

(
h𝑙−1𝑗 (𝑡𝑣,𝑗 )∥Φ(𝑡𝑒 − 𝑡𝑣,𝑗 )

)ª®¬Wª®¬ ,
(2)

where 𝑙 means the 𝑙𝑡ℎ layer of the GNN, 𝜎1 is the activation function
(here we use 𝑅𝑒𝐿𝑈 ), 𝑡𝑒 is the timestamp of the interaction between 𝑣
and its neighbor 𝑗 , | | is the concatenation operator,W ∈ R2𝑑′×𝑑′ is a
shared weight matrix, the attention score 𝛼𝑙

𝑣, 𝑗
of node 𝑣 ’s temporal

neighbor 𝑗

𝛼𝑙𝑣, 𝑗 = softmax
(
𝑞𝑙𝑣, 𝑗

)
=

exp
(
𝑞𝑙
𝑣, 𝑗

)
∑
𝑘∈N𝑣 (𝑡 ) exp

(
𝑞𝑙
𝑣,𝑘

) , (3)

𝑞𝑙𝑣, 𝑗 = ®𝑎
(
h0𝑣 ∥Φ(0)∥h𝑙−1𝑗 (𝑡𝑒 )∥Φ(𝑡𝑒 − 𝑡𝑣,𝑗 )

)
, (4)

where𝑞𝑙
𝑣, 𝑗

indicates the importance of node 𝑗 to node 𝑣 and ®𝑎 ∈ R4𝑑′

is the shared parameter vector in the attention mechanism.
If edge features are also available, we can simply extend our

model by concatenating the additional edge feature 𝑥𝑣,𝑗 (𝑡𝑣,𝑗 )W𝑒𝑑𝑔𝑒

between 𝑣 and 𝑗 at timestamp 𝑡𝑣,𝑗 to the computation of Eq. (4),
whereW𝑒𝑑𝑔𝑒 ∈ R𝑑×𝑑

′ is a shared weight matrix.
Classifier 𝑐𝜔 . Given the representations of node 𝑣 and 𝑣 ′ at

timestamp 𝑡 as h𝐿𝑣 (𝑡, 𝑡𝑒 ) and h𝐿
𝑣′ (𝑡, 𝑡𝑒 ), where 𝐿 is the number of

dynamic GNN layers, we can estimate the probability that temporal
link 𝑒 = (𝑣, 𝑣 ′, 𝑡𝑒 ) is true as:

𝑝𝑒 = 𝑐𝜔

(
h𝐿𝑣 (𝑡, 𝑡𝑒 ), h𝐿𝑣′ (𝑡, 𝑡𝑒 )

)
= 𝜎2 (MLP

(
h𝐿𝑣 (𝑡, 𝑡𝑒 )∥h𝐿𝑣′ (𝑡, 𝑡𝑒 )

)
),

(5)
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where 𝑐𝜔 is the classifier parameterized by 𝜔 , 𝜎2 is the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑
function, MLP(·) is a two-layer multilayer perceptron, and ∥ is
the concatenation operator. Then we minimize the loss for each
temporal edge 𝑒 to train the model:

L𝑒 = −𝑦𝑒 log𝑝𝑒 − (1 − 𝑦𝑒 ) log(1 − 𝑝𝑒 ), (6)

where 𝑦𝑒 = 1 if 𝑒 exists in edge set 𝐸 and 𝑦𝑒 = 0 otherwise.
Comparedwith typical dynamic GNNmodels, e.g., EvolveGCN [25]

which stacked LSTM on top of GCN to encode structural and tem-
poral information, or TGAT [39] which employed multi-head at-
tention mechanism and layer-wise MLP operations for encoding,
our module is more lightweight and efficient to calculate gradients
for fine-tuning the parameters in the meta-learning framework.

4.3 Hierarchically Adaptive Meta-Learner
Now we will introduce our hierarchically adaptive meta-learner,
which conducts time interval-wise and node-wise adaptions to fine-
tune the global parameters in the dynamic GNN module for a given
task.

4.3.1 Time Interval-wise Adaption. The first-level adaption is to
fine-tune the global parameter 𝜓 of node encoder for each time
interval. Recall that the support set S𝑣 of task 𝑇𝑣 contains several
sets S1𝑣 ,S2𝑣 , . . . ,S𝑛−1𝑣 divided by time intervals. The time interval-
wise adaption updates the global parameter𝜓 of node encoder to
characterize node 𝑣 ’s preference in the 𝑘𝑡ℎ time interval, based on
the loss of each set S𝑘𝑣 in S𝑣 .

In specific, for each edge 𝑒 = (𝑣, 𝑣 ′, 𝑡𝑒 ) ∈ S𝑘𝑣 , node 𝑣 ’s represen-
tation is computed as:

h𝐿𝑣 (𝑡𝑘 , 𝑡𝑒 ) = 𝑔𝜓
(
𝑣,N𝑣 (𝑡𝑘 ), 𝑡𝑒

)
, (7)

where 𝑡𝑘 means the start timestamp of the𝑘𝑡ℎ interval. Thenwe can
calculate the loss based on node 𝑣 ’s positive and negative dynamic
links as:

L
(
𝜓,𝜔, 𝑆𝑘𝑣

)
= −

∑
𝑒∈{𝑆𝑘𝑣 ∩𝐸}

log(𝑝𝑒 ) −
∑

𝑒∈{𝑆𝑘𝑣 \𝐸}
log(1 − 𝑝𝑒 ), (8)

where 𝑝𝑒 = ℎ𝜔 (h𝐿𝑣 (𝑡𝑘 , 𝑡𝑒 ), h𝐿𝑣′ (𝑡
𝑘 , 𝑡𝑒 )) represents the predicted pos-

sibility that dynamic edge 𝑒 = (𝑣, 𝑣 ′, 𝑡𝑒 ) is true.
Then we adapt the global parameter𝜓 through several gradient

descent steps for specialized parameters for node 𝑣 in the 𝑘𝑡ℎ time
interval:

𝜓𝑘𝑣 = 𝜓 − 𝛽
𝜕L

(
𝜓,𝜔, 𝑆𝑘𝑣

)
𝜕𝜙

, (9)

where 𝛽 is the learning rate for time interval-wise adaption.

4.3.2 Node-wise Adaption. The second-level adaption is to fine-
tune the global parameter𝜔 of classifier based on adapted parameter
𝜓𝑘𝑣 . In specific, node-wise adaption projects the global parameter 𝜔
to 𝜔𝑣 for specialization, and then adapts to each set 𝑆𝑘𝑣 with several
gradient descent steps:

𝜔𝑣 = 𝜔 + h0𝑣 ·𝑊𝜔 , (10)

𝜔𝑘
𝑣 = 𝜔𝑣 − 𝜂

𝜕L
(
𝜓𝑘𝑣 , 𝜔𝑣, 𝑆

𝑘
𝑣

)
𝜕𝜔𝑣

, (11)

where 𝑊𝜔 is a projection matrix and 𝜂 is the learning rate for
node-wise adaption.

4.3.3 Optimization. So far, we have adapted the global parameter
𝜃 to 𝜃𝑘𝑣 = {𝜓𝑘𝑣 , 𝜔𝑘

𝑣 } for the 𝑘𝑡ℎ time interval of node 𝑣 . In order to
optimize the meta-learner on the query set 𝑄𝑣 of every node 𝑣 , we
first fuse the adapted parameters for each node 𝑣 as:

𝜓∗𝑣 =

𝑛−1∑
𝑘=1

𝑎𝑘𝑣𝜓
𝑘
𝑣 , 𝜔
∗
𝑣 =

𝑛−1∑
𝑘=1

𝑎𝑘𝑣𝜔
𝑘
𝑣 , (12)

where 𝑎𝑘𝑣 = softmax(−L
(
𝜓𝑘𝑣 , 𝜔

𝑘
𝑣 , 𝑆𝑣

)
) is the weight of 𝜃𝑘𝑣 measured

by its performance on the entire support set 𝑆𝑣 . Compared with the
trivial average aggregation, the weight𝑎𝑘𝑣 can empirically accelerate
the convergence of the meta-training phase.

Then we aim to minimize the loss on each query set 𝑄𝑣 , and
update global parameter 𝜃 = (𝜓,𝜔) as well as the projection matrix
𝑊𝜔 through back-propagation:

𝜃 ← 𝜃 − 𝛾∇𝜃
∑
𝑣∈𝑉
L

(
𝜓∗𝑣 , 𝜔

∗
𝑣 , 𝑄𝑣

)
, (13)

𝑊𝜔 ←𝑊𝜔 − 𝛾∇𝑊𝜔

∑
𝑣∈𝑉
L

(
𝜓∗𝑣 , 𝜔

∗
𝑣 , 𝑄𝑣

)
, (14)

where 𝛾 is the learning rate of the meta-learner.
Recall our motivation illustrated in Fig. 1, the learned global

parameters 𝜓 encodes the general knowledge across nodes and
time intervals; and 𝜔𝑣 encodes the time-invariant knowledge with
respect to node 𝑣 across different intervals. The detailed meta-
training process is shown with Algorithm 1, and we will analyze
the model efficiency in the experiments. Code and data are available
at https://github.com/BUPT-GAMMA/MetaDyGNN.

Algorithm 1 The Meta-training Phase of MetaDyGNN
Require: Dynamic graph𝐺 ; the numbers of adaption steps step𝑖

and step𝑛 ; randomly initialized 𝜃 = {𝜓,𝜔} and𝑊𝜔 .
Ensure: The learned parameter 𝜃 = {𝜓,𝜔} and𝑊𝜔 of the model.
1: Construct support set S𝑣 , and query set Q𝑣 for each node 𝑣 ,

where S𝑣 =
(
S1𝑣 ,S2𝑣 , . . . ,S𝑛−1𝑣

)
;

2: while not done do
3: Set the batch of nodes for meta-training;
4: for all node 𝑣 in the batch do
5: for all dynamic link set S𝑘𝑣 ∈ S𝑣 do
6: Calculate L

(
𝜓,𝜔, 𝑆𝑘𝑣

)
by Eq. (8);

7: Perform time interval-wise adaption by Eq. (9) with
step𝑖 updates and obtain𝜓𝑘𝑣 ;

8: Calculate L
(
𝜓𝑘𝑣 , 𝜔, 𝑆

𝑘
𝑣

)
by Eq. (8);

9: Perform node-wise adaption by Eq. (10-11) with step𝑛
updates and obtain 𝜔𝑘

𝑣 ;
10: end for
11: Calculate fused parameters𝜓∗𝑣 and 𝜔∗𝑣 by Eq. (12);
12: end for
13: Back-propagate the global parameter 𝜃,𝑊𝜔 by Eq. (13-14);
14: end while

https://github.com/BUPT-GAMMA/MetaDyGNN
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5 EXPERIMENTS
We conduct experiments on three publicly available datasets of
dynamic networks, including Wikipedia, Reddit, and DBLP. We
compare the proposed method MetaDyGNN with three types of
baseline methods on the few-shot link prediction task, and present
experimental results to answer four research questions: (RQ1) How
does MetaDyGNN performs compared with SOTA methods? (RQ2)
To what extent does MetaDyGNN benefit from meta-learning and
hierarchical adaption? (RQ3) How does the hyperparameters affect
the performance ofMetaDyGNN? (RQ4)How is themodel efficiency
of MetaDyGNN compared with SOTA methods?

Table 1: Statistics of the datasets.

Dataset # Node # Dynamic edge #Timestamp
Wikipedia 9,227 157,475 continuous
Reddit 10,984 672,448 continuous
DBLP 28,085 286,894 27 snapshots

5.1 Experimental Setup
5.1.1 Datasets. We employ three benchmark datasets which have
been used for evaluating dynamic network embeddings and dy-
namic GNNs. The statistics are shown in Table 1.
•Wikipedia1 [39] is a dataset containing edited encyclopedia

pages and their editors, where nodes represent wiki pages and
their editors. Each dynamic link indicates a timestamped editing
interaction.
•Reddit2 [39] is a dataset of the active users on Reddit and their

posts under subreddits. The nodes are users and their posts. The
links represent timestamped actions of posting requests.
• DBLP3 [21] is an academic collaboration network, where the

nodes are authors and each link represents a co-authored paper at
the corresponding year.

5.1.2 Baseline Approaches. Our proposed method will be com-
pared with the following three types of baselines: (1) Static GNNs,
including GraphSAGE [9] and GAT [35]; (2) Dynamic GNNs, in-
cludingDyRep [32], EvolveGCN [25] and TGAT [39]; (3) Meta-based
GNNS, including Meta-GNN [41], GraphSAGE+MAML [5, 9] and
TGAT+MAML [5, 39]. We show the detailed information of base-
lines in supplementary material.

5.1.3 Evaluation Task. Our evaluation task is link prediction for
few-shot nodes that are not observed in the training set. In our
experiments, we follow two steps to split the data: (1) we first split
all the links into training / validation / testing sets chronologically.
In specific, the entire time duration [0, 𝐷] is divided into three
intervals: [0, 𝐷𝑡𝑟𝑎𝑖𝑛), [𝐷𝑡𝑟𝑎𝑖𝑛, 𝐷𝑣𝑎𝑙 ), [𝐷𝑣𝑎𝑙 , 𝐷] = 6 : 2 : 2. (2) We
take the nodes already exist before𝐷𝑡𝑟𝑎𝑖𝑛 and their associated links
in [0, 𝐷𝑡𝑟𝑎𝑖𝑛) as the training set; the nodes whose first appearances
fall into the second interval [𝐷𝑡𝑟𝑎𝑖𝑛, 𝐷𝑣𝑎𝑙 ) and their associated links
in [𝐷𝑡𝑟𝑎𝑖𝑛, 𝐷𝑣𝑎𝑙 ) as the validation set; the nodes that only appear
after 𝐷𝑣𝑎𝑙 and their associated links in [𝐷𝑣𝑎𝑙 , 𝐷] as the test set. For
1http://snap.stanford.edu/jodie/wikipedia.csv
2http://snap.stanford.edu/jodie/reddit.csv
3https://dblp.uni-trier.de

the nodes in the validation and test set, we assume that their first
𝐾 = 2, 4, 6, 8 links are known and can be used to adapt parameters
for meta-learning based methods or compute node representations
for non-meta ones. Then the goal is to identify the future links given
the same number of randomly sampled negative links. Note that all
methods will output an affinity score for each future/negative link,
and the prediction can be treated as either a binary classification
problem or a ranking problem. Therefore, we employ three metrics
to fully evaluate our model and baseline methods: accuracy (ACC),
AUC and Macro-F1. Also, we find that for all the methods except
DyRep, it is beneficial to re-train the models with training and
validation sets after hyperparameter tuning on the validation set.
This is because the temporal context in the validation set is closer
and more related to the test set. For a fair comparison, we use the
same evaluation procedures for all methods, and report the better
result (retrain or not) of each model.

5.1.4 Hyperparameter Settings. We employ Adam optimizer for
training, and early stopping strategy with a tolerance of three
epochs to select the best epoch. The maximum number of epochs
are set to 30. For all three datasets, we set batch size as 64 and
embedding dimension as 64. For the temporal node encoder, we also
use a two-layer architecture for a fair comparison with baselines.
For the sake of efficiency, we sample 16 neighbors in 𝑁𝑣 (𝑡) for
neighbor aggregation. For the meta-learning part, the number of
intervals 𝑛 = 3 and the neighbor dropout as 0.5. We perform a
single step of gradient descent for both time interval- and node-wise
adaptions. We set the learning rates for meta-learner 𝜂 = 0.001, time
interval-wise adaption 𝛼 = 2𝑒 − 4, and and node-wise adaption 𝛽 =

0.025. We conduct experiments on a Linux server with a single GPU
(GeForce RTX) and CPU (Intel Xeon E5-2620). We implement the
proposed MetaDyGNN with PyTorch 1.4.0. The code and datasets
are released on https://github.com/BUPT-GAMMA/MetaDyGNN

5.2 Main Experiments (RQ1)
In this subsection, we present the main results and compare our
MetaDyGNN with three types of baselines. Table 2 and 3 respec-
tively present the performances of all methods when 𝐾 = 8 and
𝐾 = 2, 4, 6. The best and second-best results in each column are high-
lighted in bold font and underlined, respectively. We only present
the most challenging baselines in Table 3 for brevity, and have the
following observations:
• Our proposed MetaDyGNN significantly outperforms all base-

line methods on the three dynamic network datasets by a large
margin. In terms of AUC, MetaDyGNN has 6.17/2.56/9.40% rela-
tive improvements over the best performed baseline method TGAT
under the 8-shot setting, which demonstrates the effectiveness of
MetaDyGNN on predicting future links for unseen nodes with only
a few links. MetaDyGNN also performs best under the 2-, 4- and
6-shot settings.
• Compared with the static GNN models and their combinations

of meta-learning, i.e., GraphSAGE, GAT, Meta-GNN and Graph-
SAGE+MAML, our model can further capture the temporal depen-
dency via temporal attention layers and time interval-wise adap-
tions. Thus our method is more powerful in dynamic link prediction,
where temporal factors play an important role [10].

https://github.com/BUPT-GAMMA/MetaDyGNN
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Table 2: Experimental results of few-shot link prediction on three datasets. Larger scores indicate better performances.

Model/Result Wikipedia Reddit DBLP
ACC(%) AUC(%) Macro-F1(%) ACC(%) AUC(%) Macro-F1(%) ACC(%) AUC(%) Macro-F1(%)

GraphSAGE 75.84 77.17 74.76 89.32 93.21 88.28 72.17 76.35 71.12
GAT 76.03 78.76 74.94 89.86 93.36 88.64 73.18 77.16 72.56
DyRep 58.01 62.54 56.93 62.14 66.08 61.27 59.14 66.73 57.79

EvolveGCN 56.36 63.15 54.27 58.21 62.64 57.13 57.98 64.14 56.92
TGAT 87.15 90.44 86.89 93.53 95.45 93.27 76.32 81.13 76.26

Meta-GNN 78.92 80.96 77.13 86.27 90.87 85.44 75.48 79.64 74.81
GraphSAGE+MAML 79.54 81.21 77.49 87.41 91.34 85.91 76.18 80.17 75.12

TGAT+MAML 83.29 85.04 83.04 87.46 91.07 87.09 73.86 78.03 72.67
MetaDyGNN 95.21 96.02 94.32 96.03 97.89 95.98 83.15 88.76 82.15
Improvement 9.25 6.17 8.55 2.67 2.56 2.91 8.95 9.40 7.72

Table 3: Experimental results of few-shot link prediction on three datasets. Larger scores indicate better performances.

Model/Result/AUC(%) 2-shot 4-shot 6-shot
Wikipedia Reddit DBLP Wikipedia Reddit DBLP Wikipedia Reddit DBLP

TGAT 90.20 95.20 81.01 90.21 95.23 80.98 90.23 95.34 81.03
Meta-GNN 75.81 82.96 74.03 77.89 87.69 76.63 79.03 89.92 78.84

GraphSAGE+MAML 76.21 83.34 74.17 78.42 88.31 77.17 79.21 90.34 79.17
TGAT+MAML 80.14 88.67 73.04 81.24 89.67 76.24 83.07 92.67 78.12
MetaDyGNN 90.31 95.76 82.14 92.75 96.87 83.83 94.82 97.21 86.24
Improvement 0.12 0.59 1.39 2.81 1.72 3.51 5.08 1.96 6.42

• Compared with dynamic GNNmodels, i.e.,DyRep, Evolve GCN
and TGAT, we design a meta-learner with hierarchical adaptions
to extract general knowledge across nodes and time intervals, and
thus can adapt our parameters to the new nodes rapidly. In contrast,
their parameters are trained and fixed, and thus cannot generalize
well in few-shot scenarios. Also, note that DyRep and Evolve GCN
have even worse performance than static GNNs. A possible reason
is that they both employed RNNs to update node representations
over time and could not adapt to the sparsity of few-shot nodes.
• Compared with the combination of dynamic GNNs and meta-

learning, i.e., TGAT+MAML, our modification of base model can
better fit the framework of meta-learning, which requires less com-
putation resources and can faster adapt to few-shot nodes. As an
evidence, TGAT+MAML requires large memory usage and we have
to reduce the batch size to fit the limit of GPU devices. Conse-
quently, the integration of TGAT+MAML performs even worse than
TGAT. Therefore, the few-shot link prediction problem cannot be
addressed by a straightforward integration of existing techniques.

5.3 Analysis of Model Components (RQ2)
In this subsection, we conduct ablation studies to evaluate the
performance improvement brought by meta-learning framework
and the two-level hierarchical adaptions.

5.3.1 Performance gains from meta-learning framework. We de-
sign two ablated model to demonstrate the necessity of meta-
learning framework. 1) The first ablated model MetaDyGNN-BM
only contains the base model without any meta-learning strat-
egy, and is trained in a supervised manner. 2) The second ablated

Figure 3: Ablation study of meta-learning strategies (left)
and hierarchical adaptions (right).

model MetaDyGNN w/o FT removes the fine-tuning of meta-
learning in the training procedure, but will update the parame-
ters of the model with few-shot links during meta-testing. Fig. 3
(left) presents the results of our model and two ablated model with
metrics ACC/AUC/Macro-F1. Through the experimental results
we can conclude that the fine-tuning in both meta-training and
meta-testing can improve the prediction performance of our model.
Fine-tuning at training phase can help extract general knowledge
and fine-tuning at testing phase can help adapt the parameters
to a specific node. Therefore, it is necessary to take advantage of
meta-learning techniques for the problem.

5.3.2 Performance gains from hierarchical adaptions. We specialize
meta-learning for dynamic link prediction by applying the hierar-
chical adaptions to extract both node-wise and time interval-wise
knowledge. We design another two ablated models to verify the
effectiveness of our model design. 1) MetaDyGNN-N only has
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the node-wise adaption and 2) MetaDyGNN-I only has the time
interval-wise adaption. As shown in Fig. 3 (right), our full model
is always better than the two model variants: around 1 − 1.5% im-
provements on AUC. The results indicate that both node-wise and
time interval-wise adaptions contribute to the performance gains
by capturing the general knowledge at different levels.

5.4 Analysis of Model Hyperparameters (RQ3)

(a) # time intervals (b) # neighbors

(c) # embedding dimension (d) # batch size

Figure 4: Performance under different hyperparameters.

In this subsection, wewill investigate howprimary hyper-parameters4
influence the performance of MetaDyGNN. In specific, we present
the analysis of (1) the number of time intervals to split for each
support set; (2) the number of neighbors to sample for aggregation
in the node encoder; (3) the dimension of node representations; (4)
the number of batch size. and (5) the running time analysis. The
results are shown in Fig. 4 and we have the following observations:
• Fig. 4 shows that performance can be enhanced when we divide

a support set into more time intervals. This is because the time
interval-wise adaption can be more fine-grained and better fit the
target node. However, as the number of time intervals gets larger,
the performance gains will shrink while the time cost of meta-
training increases. Thus, we use trisection as a good balance of
efficiency and effectiveness.
• Our model performance will be improved and get steady when

the number of neighbors to sample for each support set increases
to 16, the dimension of node representations and the batch size
increase to 64. Thus, MetaDyGNN is relatively stable when these
hyperparameters vary within a reasonable range.

5.5 Analysis of Time Efficiency (RQ4)
We present the performance with respect to running time of 6
dynamic graph representation learning methods in Fig. 5, where
MetaDyGNN-M replaces the weighted fusion in Eq. (12) bymean op-
eration. We can see that MetaDyGNN spends less time than TGAT
4We only present the performance under AUC metric due to space limitation, and list
the results of ACC/Macro-F1 in the supplementary material.

and EvolveGCN. Compared with dynamic GNNmodels which need
all the links of a dynamic network as input, we can use less links
to gain more accuracy in few-shot link prediction, with the help
of sampling strategies. We also test the time cost of TGAT+MAML,
which suffers from a sophisticated node encoder and cannot be fit
into this figure due to its high complexity. Besides, compared with
the variant MetaDyGNN-M, our model converges more quickly and
also has slight improvement. The variant MetaDyGNN-N is faster
with the second best performance, and can be used if a high demand
for efficiency is needed. The above observations demonstrate the
efficiency of our proposed method.

Figure 5: Running time analysis. Each dot corresponds to an
epoch of a model.

6 CONCLUSION
In this paper, we propose a novel model named MetaDyGNN to
address the few-shot link prediction problem in dynamic networks.
We specialize the meta-learning framework for this task by intro-
ducing hierarchical time interval-wise and node-wise adaptions.
In this way, we can better extract the general knowledge across
nodes or time intervals, and quickly adapt to previously unseen
nodes with only a few links. Also, we design a simple and effec-
tive dynamic GNN module, which can better fit the meta-learning
framework than existing dynamic GNN models. We conduct exper-
iments on three publicly available datasets and the results show
that our proposed MetaDyGNN significantly outperforms SOTA
methods as well as the simple combinations of dynamic GNN mod-
els and meta-learning. Ablation studies further demonstrate the
effectiveness of each proposed model component.

For future work, an interesting direction is to specialize our
model for more specific application scenarios such as recommenda-
tion systems. Though a straightforward migration could be feasible,
it would be better if user behaviors are further considered.
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A NOTATION TABLE

Table 4: Descriptions of key notations.

Notations Descriptions
𝐺 the dynamic network
𝑉 , 𝐸 the sets of nodes and dynamic links
𝑣, 𝑒, 𝑡𝑒 node 𝑣 , edge 𝑒 , timestamp 𝑡𝑒 of edge 𝑒
𝑇𝑣, 𝑆𝑣, 𝑄𝑣 the task, support set, and query set of node 𝑣
𝑆𝑘𝑣 the set of links in the 𝑘𝑡ℎ interval of 𝑆𝑣
𝑓𝜃 dynamic GNN module for link prediction
𝑔𝜓 , 𝑐𝜔 node encoder and classifier in the dynamic

GNN
𝜃 = (𝜓,𝜔) the parameters of dynamic GNN,𝜓 is for node

encoder and 𝜔 is for classifier
𝜃𝑘𝑣 = (𝜓𝑘𝑣 , 𝜔𝑘

𝑣 ) the adapted parameters for the 𝑘𝑡ℎ interval of
node 𝑣

𝑎𝑘𝑣 the weight of𝜓𝑘𝑣 , 𝜔𝑘
𝑣 during parameter fusion

𝜃∗𝑣 = (𝜓∗𝑣 , 𝜔∗𝑣 ) the fused parameters for node 𝑣
𝛽, 𝜂, 𝛾 the learning rates for time interval-wise adap-

tion, node-wise adaption, and meta-learner
®𝑥𝑣 node feature of node 𝑣
W𝑛𝑜𝑑𝑒 ,W𝑒𝑑𝑔𝑒 the parameters to construct node and edge em-

beddings
Φ(·) time encoder
h𝐿𝑣 (𝑡, 𝑡𝑒 ) the embedding of node 𝑣 at timestamp 𝑡𝑒

through 𝐿-layer dynamic GNN model and 𝑡 is
the timestamp for neighbor aggregation

®𝑎 the shared attention mechanism
𝛼𝑙
𝑣, 𝑗

the attention score of node 𝑣 ’s neighbor 𝑗 at
the 𝑙𝑡ℎ layer of GNN

B BASELINE DESCRIPTIONS
Here we present the detailed descriptions of baselines as follows:
• GraphSAGE [9] can be adopted to learn a few-shot node’s

embedding by sampling and aggregating its neighborhood. We use
the two-layer GraphSAGE as the baseline and follow the other
settings in the original paper.
• GAT [35] incorporates the multi-head attention mechanism to

allocate each neighbor an aggregation weight for node embedding
learning. We use the two-layer GAT as our baseline.
• DyRep [32] employs RNNs to update node embeddings con-

strained by a temporal point process.We can get the embeddings for
few-shot nodes by aggregating the embeddings of existing nodes.
• EvolveGCN [25] updates GCN-based [15] node representa-

tions by operating RNNs over discrete snapshots.
• TGAT [39] encodes continuous timestamp into vectors and

employs multi-head attention mechanism to aggregate its neigh-
borhood with temporal context.

•Meta-GNN [41] combines meta-learning framework and GNN
to tackle the few-shot node classification problem in a single graph.
We adopt its task formulation and loss function according for the
requirement of few-shot link prediction.
•GraphSAGE+MAML simply combines GraphSAGE [9] as the

encoder to learn node representations and MAML [5] to meta-learn
the parameters.
• TGAT+MAML simply combines TGAT [39] as the encoder to

learn temporal node representations and MAML [5] to meta-learn
the parameters.

C ADDITIONAL HYPERPARAMETER
EXPERIMENTS

C.1 Adaption Steps
Let step𝑖 be the number of time interval-wise adaption steps and
step𝑛 be the node-wise adaption steps. Fig. 6 shows the performance
of MetaDyGNNwhen step𝑖 , step𝑛 are set within the range 0 to 3 and
the evaluation metric is AUC. We can observe that the performance
is stable when both steps range from 1 to 3. Since the increase of
adaption steps will lead to an increase in the demand for computing
resources, we finally choose one step for both time interval- and
node-wise adaptions.

C.2 Results under ACC and Macro-F1 Metrics
Due to space limitation, we put the results of different hyperpa-
rameters under ACC and Macro-F1 metrics in Fig. 7 and 8. The
conclusions are consistent with the AUC metric in the main docu-
ment.

Figure 6: Performance w.r.t the update steps, where step𝑖 is
for time interval-wise adaption and step𝑛 is for node-wise
adaption. The evaluation metric is AUC.



Few-shot Link Prediction in Dynamic Networks WSDM ’22, February 21–25, 2022, Tempe, AZ, USA

(a) # meta-learning strategies (b) # hierarchical adaptions

Figure 7: Ablation study of meta-learning strategies (a) and hierarchical adaptions (b).

(a) # time intervals (b) # neighbors

(c) # embedding dimension (d) # batch size

Figure 8: Performance under different hyper-parameters.
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