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ABSTRACT
Information diffusion prediction targets on forecasting how infor-
mation items spread among a set of users. Recently, neural net-
works have been widely used in modeling information diffusion,
owing to the great successes of deep learning. However, in real-
world information diffusion scenarios, users are likely to have dif-
ferent behaviors to information items from different topics. Existing
neural-based methods failed to model the topic-specific diffusion
patterns and dependencies, which have been shown to be useful
in conventional non-neural methods. In this paper, we propose
Topic-aware Attention Network (TAN) to take advantage of both
topic-specific diffusion modeling and deep learning techniques. We
jointly model the text content of information items and cascade
sequences by incorporating topical context and user/position de-
pendencies into user representations via attention mechanisms. A
time-decayed aggregation module is further employed to integrate
user representations for cascade representations, which can encode
the topic-specific diffusion dependencies independently. Experi-
mental results on diffusion prediction tasks over three realistic
cascade datasets show that our model can achieve a relative im-
provement up to 9% against the best performing baseline in terms
of Hits@10.

CCS CONCEPTS
• Information systems→Datamining; •Computingmethod-
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Figure 1: An illustrative example of conventional modeling
and topic-aware modeling of information diffusion. Con-
ventional modeling captures dependencies entangled from
different topics, while topic-aware modeling captures topic-
specific dependencies. Here purple arrows indicate the de-
pendencies under the basketball topic, and the green arrow
indicates the dependency under the movie topic.

1 INTRODUCTION
Online social platforms such as Twitter and Sina Weibo have at-
tracted millions of users and massive information is diffused among
users everyday. The process of information diffusion, also called
a cascade, has been analyzed via diffusion pattern and user be-
havior modeling in many applications, such as popularity predic-
tion [10, 37], epidemiology [26, 36] and personal recommenda-
tion [18, 32].

As a popular microscopic cascade prediction task [33], next user
prediction [29] has been widely studied in recent years. The prob-
lem is formulated as predicting the next infected1 user of an in-
formation item given the time-ordered sequence of previously in-
fected users. With the development of deep learning techniques,
some works [6, 16, 34] adopted recurrent neural networks to model
cascades by considering information diffusion as sequences of in-
fections and achieved promising performances. Though a cascade
is often represented as a sequence of users sorted by infection

1Conventionally, researchers will use “infect”, “activate” or “influence” to characterize
the fact that a user interacts with an information item.
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timestamps [17, 35], the real diffusion process [29] is usually non-
sequential and depend on unobserved user connection graph. There-
fore, other works [29, 31, 33] leveraged attention mechanisms to
capture non-sequential long-range diffusion dependencies.

However, existing neural-based methods assumed homogeneous
diffusion behaviours and patterns for all information items. This
assumption may not hold in the real world. Intuitively, users usu-
ally have multiple interests, and their diffusion behaviors could
be rather diverse according to the topics of information items. For
instance, users are likely to follow and retweet different persons
under different topics, and therefore have topic-specific dependen-
cies. Fig. 1 shows an toy example of conventional modeling and
topic-aware modeling of information diffusion. Fig. 1(a) presents
the typical problem of next infected user prediction in informa-
tion diffusion analysis. Conventional modeling in Fig. 1(b) usually
ignores the text content of diffusing items, and learns mixed de-
pendencies from different topics. In contrast, topic-aware modeling
aims to explicit decouple topic-specific diffusion dependencies and
thus is able to predict more accurately as shown in Fig. 1(c).

In fact, conventional non-neural methods [1, 12] based on inde-
pendent cascade (IC) [15] models have demonstrated the advantage
of topic-aware modeling, where each information item is recog-
nized as a mixture of multiple topics and the diffusion behaviors
under different topics are characterized separately. But these early
methods are built on over-strong independent assumptions [33]
which limit the generalization performance, and have been shown
to be suboptimal by recent deep learning-based methods [27, 33].
To the best of our knowledge, no previous works have suggested a
neural-based topic-aware model for capturing different diffusion
dependencies from different topics.

In this paper, we proposeTopic-awareAttentionNetwork (TAN)
to benefit from both topic-specific diffusion modeling and deep
learning techniques. In specific, we design a novel and effective
topic-aware attention mechanism to incorporate the topical con-
text and diffusion history context into user representations for
predictions. The topical context enables topic-specific modeling
of diffusion patterns, and the diffusion history context can be fur-
ther decomposed to the user dependency modeling and position
dependency modeling. Consequently, we can build multi-topic user
representations with context encoded for each user. Then we fur-
ther integrate user representations for cascade representations by
a time-decayed aggregation module. Note that all these modules
are motivated by the characteristics of information diffusion. Thus,
our proposed TAN can better fit the real-world diffusion data and
predict more precisely. Also, the topics are pre-defined in conven-
tional topic-aware models [1, 11] while automatically learned in
this work. Experimental results on three public datasets show that
our proposed model achieves better performance than state-of-the-
art baseline methods on information diffusion prediction. Ablation
studies and the analysis of learned topics further demonstrate our
effectiveness.

To summarize, the main contributions of this paper are as fol-
lows:

• To the best of our knowledge, we are the first work to employ
deep learning techniques for topic-aware information diffusion
modeling.

•We propose a novel model named TAN to better fit the char-
acteristics of information diffusion. TAN can capture the topic
semantic of information text and establish topic-specific diffusion
dependencies with attention mechanisms.

•We conduct extensive experiments on three real-world cascade
datasets, demonstrating that TAN can significantly improve the
prediction performance on next infected user prediction compared
with state-of-the-art approaches.

2 RELATEDWORK
We group existing microscopic cascade prediction methods into
three categories: IC-basedmethods (popular before 2014), embedding-
based (popular during 2014 - 2017) and deep learning basedmethods
(popular after 2017). We summarize related work in Table 1.

Method Conventional Topic-Aware

IC model IC [15], CTIC [22], NetRate [21] TIC [1], HTM [11]
NetInf [8],Infopath [9], MMRate [28] PTC [12]

Embedding CDK [2], CSDK [2], Embedded IC [3] -Inf2vec [7], DNRL [30]

Deep Learning
Topo-LSTM [27], CYAN-RNN [29],

this workDeepDiffuse [14], FOREST [34],
NDM [33], HiDAN [31], Inf-VAE [24]

Table 1: Summary of related works.

2.1 IC-based methods
Many cascade diffusionmodels were based on the assumptions from
the fundamental Independent cascade (i.e. IC) model [15], which
allocates an independent diffusion probability between every user
pair. Extensions had been proposed by considering more informa-
tion, such as continuous timestamps [21, 22] and user profiles [23].
CTIC [22] considered continuous-time information and was able to
extracted diffusion paths from sequential observations of infections.
NetInf [8] predicted the unobserved diffusion network from tempo-
ral correlations and Infopath [9] further inferred the dynamics of the
underlying network. MMRate [28] studied multi-aspect diffusion
networks since different cascades show various diffusion patterns.
A few techniques explored the influence of topic information for
cascade modeling. TIC [1] first studied information diffusion from
a topic-aware perspective by setting topic-specific probabilities be-
tween each user pair. HTM [11] combined hawkes processes with
topic modeling to infer diffusion networks. PTC [12] considered
users’ preferences over topics and designed a preference-enhanced
topic-aware cascade model.

2.2 Embedding-based methods
Embedding- based approaches were proposed to take advantage of
representation learning techniques. CDK [2] presented an original
way to learn diffusion processes by embedding users in a continu-
ous latent space, and CSDK [2] was proposed to additionally take
into account diffusion content. Embedded IC [3] computed the
diffusion probability of each user pair by a function of their user
embeddings instead of directly estimating a real-valued parameter.
Inf2vec [7] further combined both the local social influence and
global user similarity to learn user embeddings. DNRL [30] learned
user representations simultaneously from diffusion sequence and



(a) Weibo (b) Memetracker (c) DBLP

Figure 2: Statistical results of the percentages of items and users under each topic on three datasets. The number of LDA topics
is set to 5 for all datasets.

social network and was applicable to both diffusion prediction
and link prediction tasks. However, neither IC-based methods nor
embedding-based methods considered the modeling of sequential
information of cascades. Recent works [33] have shown that these
models are less effective than deep learning-based models.

2.3 Deep learning-based methods
With the success of deep learning, recurrent neural networks (RNNs)
have shown great capability in modeling information diffusion.
TopoLSTM [27] extended the standard LSTM model by structuring
the hidden states as a directed acyclic graph(DAG) extracted from
the social graph. CYAN-RNN [29] and DeepDiffuse [14] employed
RNNs and implicitly considered diffusion structures by attention
mechanisms. recCTIC [16] proposed a bayesian topological RNN
model for capturing tree dependencies. Diffusion-LSTM [13] em-
ployed image information to aid the prediction and built a Tree-
LSTM model to infer diffusion paths. FOREST [34] extended the
GRU model which presented an additional structural context ex-
traction strategy to utilize the underlying social graph information.

Most recently, some attention networks were presented to bet-
ter capture the diffusion dependencies in cascading sequences.
NDM [33] captured dependencies based on multi-head attention
mechanism and unified user information with convolution neu-
ral networks. HiDAN [31] built hierarchical attention network to
jointly capture user dependency and time decay effect. Inf-VAE [24]
used a novel expressive co-attentive fusion network to predict the
set of all influenced users. HID [38] presented a hierarchical cascade
framework by integrating user representation learning and multi-
scale modeling. However, to the best of our knowledge, existing
neural-based methods rarely took advantage of information text,
and did not consider the modeling topic-aware diffusion patterns
and user behaviors. Compared with them, TAN also better cap-
tures user/position dependencies by sticking to the properties of
information diffusion.

3 DATA OBSERVATION
In this section, we will first introduce the datasets studied in this
paper. Then we will conduct data observation and investigate the
intrinsic relationships between diffusion behaviors and topic se-
mantics. In specific, we will study whether topic preference exists

Dataset Weibo Memetracker DBLP

# Users 5,000 10,244 4,581
# Links 18,710,854 8,417,276 540,820

# Cascades 27,704 15,521 3,516
Avg. Cascade Length 26.27 15.38 4.37

Table 2: The statistics of datasets.

among users and whether users are interested in multiple topics
during information diffusion.

3.1 Datasets
We collect three real-world cascade datasets containing the text con-
tent of diffusing information. Each cascade consists of an ordered-
sequence of infections where each infection include both infected
user and timestamp. All three datasets are publicly available and
have been used in existing work [19, 24, 31] on information diffu-
sion prediction.

Weibo [35] dataset contains the logs of user retweets from Sina
Weibo, a Chinese micro-blogging platform. Following the settings
of previous works [24], we choose the 5000 most popular users, and
the retweeting logs related to these users are selected to construct
the dataset. Meanwhile, the text content of each tweet is regarded
as its information text.

Memetracker [17] dataset collects a million ofWeb news article
and blog posts from August, 2008 to April, 2009, and track how
popular phrases, i.e., memes, spread over the Web. Each meme is
considered as an information item and each URL of websites or
blogs is considered as a user. We filter out the users who appear
less than 60 times in all the reposting logs for data cleaning.

DBLP [19] is a citation network dataset widely used for infor-
mation diffusion study. The dataset contains paper information
of authors, publication time, title and references. For each paper,
we extract all the authors who have written or cited it and build a
cascade sequence of authors. We consider the title of each paper as
its information text.

We randomly sample 80% of cascades for training, 10% for val-
idation and the rest 10% for testing. The statistics of datasets are



listed in Table 2. Following [33], two users are assumed to have a
link between them if they appear in the same cascade sequence.

3.2 Data Analysis
In this subsection, we will validate our motivation of topic-specific
modeling. More specifically, we conduct data observations on the
three datasets and further answer the following two questions:
Q1: Does topic preference exist among the users? Q2: Are the users
interested in multiple topics?

To answer the two questions, we first need to figure out the
topics among information items. With the help of Latent Dirichlet
Allocation (LDA), we can compute topic distribution for each item.
In this experiment, we set the number of LDA topics to 5 and
categorize each item into the topic with the largest probability
based on its topic distribution.

To answer the first question, we present the distributions of
items and users under each topic, respectively. For every user, we
will count the number of times that she/he interacts with an in-
formation item of a specific topic. Then we categorize each user
into the topic with the most frequent interactions. Fig. 2 presents
the percentages of items and users under each topic on the three
datasets. Here the item distribution (golden columns) can be seen as
a prior distribution of user distribution (green columns): each user
randomly interacts with information items. However, we can see
that there are significant differences between item and user distri-
butions on all three datasets. For example, topic 5 on DBLP dataset
has the least number of items but the most number of users, which
indicates that many users prefers items of topic 5 than those of other
topics. Therefore, users do have topic preference on information
items during the diffusion.

Dataset Weibo Memetracker DBLP
Top-1 0.439 0.543 0.686
Top-2 0.684 0.805 0.956
Top-3 0.875 0.940 0.990

Table 3: The average ratios that each user’s interactions can
be covered by the interactions of her/his Top-K (K=1,2,3)
favourite topics.

To answer the second question, we conduct a group of statistics
to figure out the average number of topics that a user interacts
with. Specifically, for every user, we compute the average ratio of
(# items she/he interacts with under her/his Top-K favourite topics)
to (# all items she/he interacts with). In other words, we are trying
to figure out how many percent of each user’s interactions can be
covered by the interactions of her/his Top-K favourite topics on
average. Table 3 presents the statistical results for 𝐾 = 1, 2, 3 on the
three datasets. We can see that interactions of a single topic (Top-1)
cannot have a good coverage for all three datasets, especially for
Weibo where social platform users usually have multiple interests.
On the other hand, Top-3 topics on Weibo/Memetracker and Top-2
topics on DBLP can cover around 90% interactions. That is to say,
Weibo/Memetracker/DBLP users are mainly interested in 3/3/2 of 5
topics, respectively. From the above analysis, we can conclude that
users will be influenced by multiple topics, instead of preferring
only one topic.

In summary, these data observations demonstrate the existence
of topic preference and multi-topic interest of users, which supports
our motivation to model topic-specific diffusion behaviors and
dependencies for more accurate predictions.

4 METHOD
In this section, we will start by formalizing the diffusion predic-
tion problem and introducing our embedding strategy to encode
user/position/text information into vectors. Then we will propose
the topic-aware attention layers, which aim at capturing historical
diffusion dependencies and time decay effects in different topics.
Finally, our model will predict the next infected users given the
multi-topic cascade representations processed by topic-aware at-
tention layers. The overall architecture of our proposed TAN model
is shown in Fig. 3.

4.1 Problem Formalization
Given user set 𝑈 , cascade set 𝐶 and diffusion message set 𝑀 , the
diffusion sequence of 𝑖-th information item in 𝑀 can be defined
as cascade 𝑐𝑖 = {(𝑢𝑖1, 𝑡

𝑖
1), (𝑢

𝑖
2, 𝑡

𝑖
2) · · · (𝑢

𝑖
|𝑐𝑖 |, 𝑡

𝑖
|𝑐𝑖 |)}, where the tuple

(𝑢𝑖
𝑗
, 𝑡𝑖
𝑗
) denotes that user 𝑢𝑖

𝑗
is infected at time 𝑡𝑖

𝑗
and the sequence

is ranked by their aa dadinfection timestamps. Following the set-
tings in [29], the diffusion prediction task is to predict the next
infected user𝑢𝑖

𝑛+1 given diffusion text and previously infected users
{(𝑢𝑖1, 𝑡

𝑖
1), · · · (𝑢

𝑖
𝑛, 𝑡

𝑖
𝑛)} in cascade 𝑐𝑖 for 𝑛 = 1, 2, · · · , |𝑐𝑖 | − 1.

4.2 Embedding Layer
User embeddings: To capture users’ interests and dependencies
in different topics, we employ embedding matrix 𝑀𝑈 ∈ R |𝑈 |×𝐾𝑑

to encode users, where |𝑈 | is the total number of users and 𝐾,𝑑
are the number of topics and latent dimensions respectively. For
each user 𝑢𝑖

𝑗
in a cascade sequence {(𝑢𝑖1, 𝑡

𝑖
1), · · · (𝑢

𝑖
𝑛, 𝑡

𝑖
𝑛)}, its user

embedding is 𝑒𝑖
𝑗
= [𝑒𝑖

𝑗,1, · · · , 𝑒
𝑖
𝑗,𝐾

] ∈ R𝐾×𝑑 , where 𝑒𝑖
𝑗,𝑘

is the user
embedding in the 𝑘-th topic.

Positional embeddings: In order to make use of the sequence
order information, we assign a learnable positional embedding
𝑝𝑜𝑠 𝑗 ∈ R𝑑 to each position 𝑗 , where 𝑝𝑜𝑠 𝑗 is shared among all
cascades.

Text embeddings: We utilize pretrained language models (e.g.
BERT [5]) to encode the semantic information of diffusion texts.
To measure the topical similarity between user embeddings of a
specific topic and text embeddings, we transform the text embed-
dings encoded by BERT-base [5] 𝑥𝑖 ∈ R768 to 𝑦𝑖 ∈ R𝑑 via a fully-
connected layer:

𝑦𝑖 =𝑊𝑥𝑥𝑖 + 𝑏𝑥 , (1)
where𝑊𝑥 , 𝑏𝑥 are the weight matrix and bias vector.

4.3 Topic-Aware Attention Layer
In this subsection, we will further encode various context infor-
mation into user representations, and then aggregate them with
time-decayed weights to generate cascade representations for each
topic.

4.3.1 Enhancing User Representations with Context. Now we will
incorporate the topical context and diffusion history context into



Figure 3: The architecture of our proposed Topic-aware Attention Network (TAN).

multi-topic user representations. The diffusion history context can
be further decomposed into user dependency and position depen-
dency. Inspired by multi-head attention [25], we consider a topic
as a specific head and perform attention mechanisms in each topic
independently to extract user and position dependencies.

1) Topical Context: Given the embedding of diffusion text 𝑦𝑖 , we
propose to strengthen the user embedding 𝑒𝑖

𝑗,𝑘
under the 𝑘-th topic

if there exists a higher similarity between them. In specific, we
measure the cosine similarity between 𝑒𝑖

𝑗,𝑘
and 𝑦𝑖 for each topic 𝑘 ,

and normalize the similarities by a softmax function:

𝑧𝑖
𝑗,𝑘

=
𝑒𝑥𝑝 (⟨𝑦𝑖 , 𝑒𝑖𝑗,𝑘 ⟩)∑𝐾
𝑙=0 𝑒𝑥𝑝 (⟨𝑦𝑖 , 𝑒

𝑖
𝑗,𝑙
⟩)
, (2)

where 𝑘 = 1, 2 · · ·𝐾 and 𝑧𝑖
𝑗,𝑘

is the weight for user 𝑢𝑖
𝑗
in the 𝑘-th

topic. Then the user embeddings with topical context is computed
as 𝑒𝑖

𝑗,𝑘
= 𝑧𝑖

𝑗,𝑘
𝑒𝑖
𝑗,𝑘
. We can see that the 𝑘-th embedding 𝑒𝑖

𝑗,𝑘
having

a larger cosine similarity with text embedding will be allocated a
larger weight 𝑧𝑖

𝑗,𝑘
and thus get strengthened.

2) Diffusion History Context: Intuitively, the fact that a user gets
infected is usually attributed to the diffusion text and only a few
previously infected users in the diffusion sequence. Therefore, the
diffusion history context is to extract and characterize the users that
are potentially related to the infection of 𝑢𝑖

𝑗
. In specific, we propose

to employ attention mechanisms for modeling user dependencies,
and give more attention weights to such potential users. Formally,
the attention score of user dependency between target user 𝑢𝑖

𝑗
and

its previous user 𝑢𝑖𝑚 ∈ {𝑢𝑖1, . . . , 𝑢
𝑖
𝑗−1} in topic 𝑘 is computed as:

𝛼𝑢𝑠𝑒𝑟
𝑗𝑚,𝑘

= (𝑒𝑖
𝑗,𝑘
𝑊 𝑡𝑎𝑟
𝑘

) (𝑒𝑖
𝑚,𝑘

𝑊
𝑝𝑟𝑒

𝑘
)𝑇 , (3)

where𝑊 𝑡𝑎𝑟
𝑘

,𝑊
𝑝𝑟𝑒

𝑘
∈ R𝑑×𝑑 are topic-specific linear projections for

target user and previous user respectively.
Intuitively, we should also pay attention to the source user as

well as the newly infected ones. Note that this dependency is inde-
pendent with specific users, and thus we propose to model position
dependency under each topic. Different from previous works which
directly sum up predefined positional embeddings and user embed-
dings, we compute the position dependency scores in a similar way
as user dependency modeling. In this way, our method can better
capture user-irrelevant position dependencies for better prediction
performances.

Then the overall attention score 𝛼𝑖
𝑗𝑚,𝑘

and weight 𝑤𝑖
𝑗𝑚,𝑘

be-
tween 𝑢𝑖

𝑗
and 𝑢𝑖𝑚 can describe the diffusion history context and are

computed by

𝛼𝑖
𝑗𝑚,𝑘

=
1

√
2𝑑
𝛼𝑢𝑠𝑒𝑟
𝑗𝑚,𝑘

+ 1
√
2𝑑
𝛼
𝑝𝑜𝑠

𝑗𝑚,𝑘
, (4)

𝑤𝑖
𝑗𝑚,𝑘

=
exp(𝛼𝑖

𝑗𝑚,𝑘
)∑𝑗−1

𝑙=0 exp(𝛼𝑖
𝑗𝑙,𝑘

)
, (5)

where 𝛼𝑝𝑜𝑠
𝑗𝑚,𝑘

is the position dependency score from position𝑚 to

position 𝑗 , and
√
2𝑑 is used for re-normalization.

3) Overall multi-topic user representations with context: To take
advantage of the topical and diffusion history context, we represent



user 𝑢𝑖
𝑗
in the 𝑘-th topic as the weighted sum of previously infected

users:

ℎ𝑖
𝑗,𝑘

= 𝑒𝑖
𝑗,𝑘

+
𝑗−1∑
𝑚=0

𝑤𝑖
𝑗𝑚,𝑘

𝑒𝑖
𝑚,𝑘

. (6)

Notice that we can also stackmultiple layers of the above operations
for expressive representations. In this case, the weight 𝑧𝑖

𝑗,𝑘
for

topical context and the position dependency scores 𝛼𝑝𝑜𝑠
𝑗𝑚,𝑘

are shared
among different layers.

4.3.2 Time-decayed Aggregation for Cascade Representations. After
extracting multi-topic representations of users, we need to aggre-
gate them to get cascade representations in multiple topics. We
hypothesize that the influence of a user will decay with time, and
jointly consider the weights of time decay and diffusion dependen-
cies in Eq. 4.

1) Time-decay effect modeling: Specifically, inspired by [4], we em-
ploy non-parametric time decay modeling for each topic. Formally,
given the cascade sequence of history infections {(𝑢𝑖1, 𝑡

𝑖
1) · · · (𝑢

𝑖
𝑛, 𝑡

𝑖
𝑛)},

we first transform continuous time decay into discrete intervals:

𝑓 (𝑡𝑖𝑛 − 𝑡𝑖𝑗 ) = 𝑙, if t𝑙−1 ≤ 𝑡𝑖𝑛 − 𝑡𝑖𝑗 < t𝑙 , (7)

where t𝑙 are defined by splitting the time range (0,𝑇𝑚𝑎𝑥 ] into 𝐿
intervals {[0, t1) · · · [t𝐿−1,𝑇𝑚𝑎𝑥 )} and𝑇𝑚𝑎𝑥 is the maximum times-
tamp in the dataset. Each time interval will have a corresponding
learnable weight 𝜆𝑘

𝑓 (𝑡𝑛−𝑡 𝑗 ) for each topic.
2) Computing multi-topic cascade representations: The overall

scores for aggregation are calculated by adding an additional term
to Eq. (4):

𝛽𝑖
𝑛 𝑗,𝑘

= 𝛼𝑖
𝑛 𝑗,𝑘

+ 𝜆𝑘
𝑓 (𝑡𝑖𝑛−𝑡𝑖𝑗 )

. (8)

Then 𝛽𝑖
𝑛 𝑗,𝑘

will be normalized over 𝑗 = 1, 2 · · ·𝑛 via softmax.
Finally, for each topic 𝑘 , we compute the sum of ℎ𝑖

𝑗,𝑘
weighted

by 𝛽𝑖
𝑛 𝑗,𝑘

over 𝑗 = 1, 2 · · ·𝑛 and employ a point-wise feed-forward
network with ReLU activation to endow non-linearity to the model.
The output of topic-aware attention layer, i.e., cascade representa-
tions, is denoted as 𝑠𝑖𝑛 = [𝑠𝑖

𝑛,1, 𝑠
𝑖
𝑛,2 · · · 𝑠

𝑖
𝑛,𝐾

].

4.4 Training Objective and Model Details
Given the sequence {(𝑢𝑖1, 𝑡

𝑖
1), · · · (𝑢

𝑖
𝑛, 𝑡

𝑖
𝑛)}, the probability of next

infected user 𝑢𝑖
𝑛+1 is parameterized by the similarity between user

embedding 𝑒𝑖
𝑛+1,𝑘 and cascade embedding 𝑠𝑖

𝑛,𝑘
under the most sim-

ilar topic. Formally, we compute the likelihood of the cascade inter-
acting with the user 𝑢𝑖

𝑛+1 as

𝑃Θ (𝑢𝑖𝑛+1 |𝑠
𝑖
𝑛) =

max𝑘∈{1,2, · · · ,𝐾 } exp(𝑠𝑖𝑛,𝑘 · 𝑒𝑖
𝑛+1,𝑘 )∑

𝑢′∈𝑈 max𝑘∈{1,2, · · · ,𝐾 } exp(𝑠𝑖𝑛,𝑘 · 𝑒𝑖
𝑢′,𝑘

)
, (9)

where Θ indicates all the parameters to be learned.
Then our training objective of infected user prediction is to

minimize the negative log-likelihood of all users in all the cascades:

L1 =
|𝐶 |∑
𝑖=1

|𝑐𝑖 |−1∑
𝑗=1

− log 𝑃Θ (𝑢𝑖𝑗+1 |𝑠
𝑖
𝑗 ) . (10)

Besides, we expect that each topic subspace can reflect isolated
semantics, and the semantics of different users’ embeddings are

similar under the same topic. Therefore , we set up 𝐾 topic proto-
type embeddings {𝑚𝑘 }𝐾𝑘=1 and encourage the user embedding 𝑒𝑖

𝑗,𝑘

under topic 𝑘 to be close to the corresponding topic prototype𝑚𝑘 .
Formally, we aim to maximize:

𝑃Θ (𝑘 |𝑒𝑖𝑗,𝑘 ) =
𝑚𝑘 · 𝑒𝑖

𝑗,𝑘∑𝐾
𝑘′=1𝑚𝑘′ · 𝑒

𝑖
𝑗,𝑘′

. (11)

Hence, we sum this term over all users as an additional training
objective:

L2 =
𝐾∑
𝑘=1

|𝐶 |∑
𝑖=1

|𝑐𝑖 |∑
𝑗=1

− log 𝑃Θ (𝑘 |𝑒𝑖𝑗,𝑘 ). (12)

The overall training objective function is L = 𝜂L1 + (1 − 𝜂)L2,
where 𝜂 is a balance coefficient. We optimize the parameters by
gradient descent with Adam optimizer. To avoid unstable training
processes, we also apply layer normalization and dropout regular-
ization techniques to user embeddings. Hyperparameter settings
will be introduced in next section. Our code is publicly available2.

5 EXPERIMENTS
In this section, we will conduct experiments on information dif-
fusion prediction task over three public datasets to demonstrate
the effectiveness of our proposed model against various baseline
methods. We will start by introducing the baseline methods, ex-
perimental setting and evaluation metrics. Then we will present
experimental results and give further analysis about the evaluation.

5.1 Baselines
We compare the proposed model with a number of state-of-the-
art cascade prediction models, which can be roughly classified
into four types: IC-based model (i.e., TIC), embedding-based model
(i.e., DNRL), RNN-based methods (i.e., CYAN-RNN, DeepDiffuse,
FOREST), and attention based methods (i.e., NDM, HIDAN, Inf-
VAE).

TIC [1] extends the classic IC model to be topic-aware, and uses
an EM approach for estimating the parameters.

CYAN-RNN [29] extends the RNN-based model by a specific
attention mechanism for capturing cross-dependence in a cascade.

DeepDiffuse [14] models temporal information and user se-
quences by temporal point process and LSTM model, and then
employs an attention mechanism to obtain cascade representation.

FOREST [34] is also an RNN-based method which builds a struc-
tural context extraction strategy to further consider the influence
of underlying social graph information.

NDM [33] employs deep learning including convolutional neu-
ral network and multi-head attention mechanism to capture user
dependencies.

HiDAN [31] is the state-of-the-art attention based sequential
model, which adopts a two-level attention mechanism to dynami-
cally capture user dependency and time decay effect.

Inf-VAE [24] presents a variational autoencoder framework to
jointly model social homophily and temporal influence, and aims to
predict the set of all infected users. We adopt its problem definition
to our task by setting the number of infected users to 1.

2https://github.com/BUPT-GAMMA/TAN



Model Weibo Memetracker DBLP
MRR A@10 A@50 A@100 MRR A@10 A@50 A@100 MRR A@10 A@50 A@100

TIC 1.04 2.14 7.91 9.87 6.74 12.29 17.08 20.61 9.34 11.56 14.85 17.31
DNRL 2.27 4.37 12.29 19.31 9.14 17.19 30.61 39.24 21.31 24.49 28.96 31.03

CYAN-RNN 1.27 2.31 6.94 9.01 7.53 14.25 25.31 30.51 10.65 15.08 21.88 27.19
DeepDiffuse 1.45 2.97 8.74 14.47 9.07 15.69 31.24 39.37 16.71 20.80 27.64 29.93
FOREST 2.59 4.99 13.95 21.15 12.35 21.87 37.63 46.98 29.68 34.24 38.42 41.30
NDM 1.92 3.62 10.54 16.07 9.73 17.45 31.00 38.24 23.13 26.68 30.79 33.09
HiDAN 2.64 5.24 14.33 21.41 10.73 19.52 34.70 42.78 27.43 32.84 36.54 38.34
Inf-VAE 2.38 4.52 12.82 19.37 9.65 18.22 34.24 43.83 22.43 25.44 29.88 32.15
TAN 3.07 6.13 16.33 24.17 13.28 23.92 41.06 49.84 31.31 38.92 44.91 49.43

Improvement 16.29% 16.98% 13.96% 12.89% 7.53% 9.37% 9.12% 6.09% 5.49% 13.67% 16.89% 19.69%
Table 4: Experimental results on information diffusion prediction. All the metrics are the higher the better.

DNRL [30] explores the correlation between next infected user
prediction and link prediction in social network with multi-task
predictions.

5.2 Experimental Settings and Metrics
Conventionally, the next infected user prediction task is regarded
as an information retrieval problem for evaluation. In other words,
information diffusion prediction methods are required to rank all
uninfected users by their infection probabilities. Following [31], the
prediction performance is evaluated by two widely used ranking
metrics:Mean Reciprocal Rank (𝑀𝑅𝑅) andAccuracy on top k (𝐴@𝑘),
where𝑘 = 10, 50, 100. Larger values of𝑀𝑅𝑅 and𝐴@𝑘 indicate better
performance.

For hyper-parameter settings, the size of hidden units and user
embedding is selected from 64,96,128,160 for all baselines. Other
parameters are set according to their original papers. For our model,
the size of entire user embedding is set to 160, the topic number is set
to𝐾 = 5, the dimension of topic-specific embedding is 𝑑 = 160

𝐾
= 32,

the number of stacked layers in context encoding is set to 3, and
the dropout rate is set to 0.1.

To encode information text, we employ the pretrained language
model (e.g. BERT [5]) to capture semantic information of text. As
demonstrated by [20], the average of context embeddings consis-
tently outperforms the [CLS] embedding. Therefore, we use aver-
aging context embeddings as text embedding.

5.3 Main Results
Table 4 presents the overall diffusion prediction performance of all
methods on the three datasets. The last row represents the relative
improvement of TAN against the best performing baseline method.
We have the following observations:

(1) We can find that TAN consistently and significantly outper-
forms all state-of-the-art baseline methods on all three datasets. As
shown in Table 4, the relative improvement over the best perform-
ing baseline is at least 5% in terms of 𝑀𝑅𝑅 and 𝐴@𝑘 scores. The
improvement on these metrics demonstrates the effectiveness and
robustness of our proposed model.

(2) Compared with the traditional topic-aware model TIC, TAN
has very significant improvements on both𝑀𝑅𝑅 and 𝐴@𝑘 metrics:
the scores are almost doubled. This indicates the advantage of deep

learning techniques for modeling cascade sequences. Compared
with the neural models based on RNNs and attention mechanism,
the improvements of TAN mostly come from the modeling of topic-
specific behaviors, which employs a novel topic-aware attention
network to capture the dependencies in each topic. Therefore, the
proposed TAN provides a successful modeling to benefit from the
advantages of both topic-aware modeling and deep learning tech-
niques.

(3) The improvement is especially impressive on Weibo and
DBLP, where the relative improvement over the strongest baselines
can go up to 13% in terms of 𝐴@𝑘 scores. The relative improve-
ment gains on Memetracker is around 8%. A possible reason is that
information items (memes) spread among websites instead of users
in Memetracker dataset, and thus the topic-specific behaviors are
less significant. Recall the statistical results in Fig. 2, we can also
find that user distributions on Memetracker are also more consis-
tent with item distribution (i.e., priors) than the other two datasets,
which indicates weaker topic-specific patterns.

5.4 Analysis of Multi-Interest Users
Since TAN is proposed to model topic-specific diffusion behaviors
and dependencies, it should be more suitable for predicting users
with multiple interests than baseline methods. In order to prove
this ability, we evaluate TAN and all baseline methods only on the
appearance of multi-interest users.

First, the topic distribution of information can be obtained by
calculating the similarity between learned text embeddings and
topic prototypes. Then we compute the topic distribution of a user’s
interest by averaging the topic distributions of all her/his related
information items. Afterward, we select the top 5% users whose
topic distributions are the most similar to the uniform distribution
(measured by Kullback-Leibler divergence). Hence, the selected
users will have multiple interests and it is harder to correctly predict
them due to the potential topic-specific dependencies.

As shown in Table 5, we report the results of top 5% multi-
interest users on three datasets. For all methods, we can observe
a significant decline in all metrics due to the challenge of topic-
specific modeling. Compared with baseline methods, our model has
a relative improvement of 25% in𝑀𝑅𝑅 scores and achieves around



Model Weibo Memetracker DBLP
MRR A@10 A@50 A@100 MRR A@10 A@50 A@100 MRR A@10 A@50 A@100

TIC 0.89 1.76 6.41 8.94 4.58 9.41 13.26 15.72 5.27 7.32 10.01 12.36
DNRL 1.64 2.97 8.28 13.41 4.96 10.17 23.64 28.93 12.38 15.25 17.56 19.72

CYAN-RNN 0.74 1.48 4.83 7.62 4.08 8.19 13.62 18.43 5.26 8.74 12.93 15.17
DeepDiffuse 0.95 1.88 6.73 10.54 4.87 11.47 19.08 25.86 9.78 13.22 16.19 18.96
FOREST 2.16 4.25 12.64 18.31 9.24 15.73 26.40 31.42 20.56 25.62 28.91 32.04
NDM 1.31 2.79 8.23 12.36 5.87 10.54 21.27 27.19 14.61 17.26 20.42 24.04
HiDAN 2.04 4.18 12.13 19.27 7.67 14.67 26.08 30.62 17.10 22.74 27.78 29.98
Inf-VAE 1.84 3.67 9.03 15.43 5.04 11.21 25.13 29.84 15.12 18.54 20.17 22.79
TAN 2.72 5.07 14.76 22.61 11.59 19.57 33.27 40.39 25.69 30.87 34.48 36.21

Improvement 25.93% 19.29% 16.77% 17.33% 25.43% 24.41% 26.02% 28.55% 24.95% 20.49% 19.27% 13.01%
Table 5: Experimental results on top 5% multi-interest users. All the metrics are the higher the better.

Model Weibo Memetracker DBLP
MRR A@10 A@50 A@100 MRR A@10 A@50 A@100 MRR A@10 A@50 A@100

RNN+doc 2.04 4.44 12.62 19.01 12.15 21.98 38.46 45.79 27.99 30.81 35.23 37.82
GRU+doc 2.60 5.11 14.20 21.13 12.29 22.00 37.09 45.19 28.73 31.74 35.69 38.06
TANK=1 2.70 5.29 14.35 21.47 12.83 22.86 38.79 47.00 28.91 35.63 40.8 42.94
TAN−pos 2.75 5.49 15.05 22.52 13.54 22.83 40.62 48.97 28.60 33.91 40.15 44.58
TAN−time 2.95 5.91 15.91 23.77 13.12 23.51 40.84 49.56 29.49 33.66 40.72 45.24
TAN−text 2.89 5.54 15.21 22.62 12.91 21.87 39.24 47.69 29.45 36.74 40.23 45.07
TAN 3.07 6.13 16.33 24.17 13.28 23.92 41.06 49.84 31.31 38.92 44.91 49.43

Table 6: Experimental results of ablation study.

20% increase in 𝐴@10. This experiment demonstrates that our pro-
posed model performs well on multi-interest users by considering
topic-specific diffusion dependency into cascade modeling.

5.5 Ablation study
In this subsection, we compare several variants of TAN by removing
some components. The variant TANK=1 removes topic-specificmod-
eling by setting K = 1 to evaluate the benefits from topic-aware
attention; TAN−pos directly adds positional embeddings to user
embeddings for validating the modeling of position dependency;
TAN−time removes the time-decayed effect to assess its importance;
and TAN−text ignores the text input and employs uniform topic
distributions. In addition, to study the improvement brought by
attention mechanisms, we propose two RNN-based methods, i.e.,
RNN+doc and GRU+doc, which directly concatenate text embed-
dings encoded by BERT and RNN hidden states, and employ an
MLP layer for prediction.

Experimental results of ablation study are shown in Table 6. Com-
paring to two RNN-based baselines, we can find that our TAN and
its variants can achieve better performances, which validates the
benefits of the designs in TAN. The performances of TAN against
model variants imply the indispensable advantage of these com-
ponents: topic-specific modeling, position dependency modeling,
and time decay aggregation. Among them, topic-specific modeling
is the most important module with the largest performance gain.
It is worth noting that the model variant TANK=1 without topic-
specific modeling can still outperforms existing SOTA methods,
which indicates that our modeling of context and dependencies is

more powerful. These findings demonstrate that the effectiveness
of our proposed topic-aware attention mechanism, the primary
motivation and contribution of this work.

5.6 Parameter Sensitivity
The proposed TANmodel contains several critical hyper-parameters.
In this subsection, we will analyse the effect of the following hyper-
parameters on prediction performance: 1) the number of topics𝐾 , 2)
the dimension of topic-specific embedding 𝑑 and 3) the number of
stacked layers in context encoding. We vary each hyper-parameter
while keeping others fixed.

The first parameter we evaluated is the number of topics, which
we vary from 2 to 8 in this experiment. In Fig. 4, we draw both𝑀𝑅𝑅
and 𝐴@𝐾 scores to show the effect of the number of topics. For
Weibo and Memetracker, the performance grows when the number
of topics increases from 2 to 5 and then becomes stable. For DBLP
dataset, the model has the best performance with 3 topics, and the
scores decrease slightly as the number of topics increases. We hold
K=5 for all datasets for convenience.

To evaluate how topic-specific embedding dimension will influ-
ence the performance, we fix the number of topics to 5 and try
different embedding dimensions. Since the dimension of entire user
embedding is computed by 5 × 𝑑 , we only try 16,32,64 to prevent
excessive parameters. The comparison results of 𝑀𝑅𝑅 shown in
Fig. 5(a) show that the model with 𝑑 = 32 performs better. More-
over, our model does not encounter the overfitting problem when
the dimension of embeddings increases from 32 to 64. Thus, 32-
dimensional topic-specific embeddings are enough to represent



(a) Weibo (b) Memetracker (c) DBLP

Figure 4: Parameter sensitivity analysis of the number of topics.

Topic Top-frequent words Avg.depth Avg.size

1 演唱会 (concert),音乐 (music),好听 (pleasant to hear),作品 (work),话筒 (microphone),歌曲 (song) 7.46 24.72
2 法律 (law),公平 (fairness),建议 (suggest),伤害 (hurt),社会 (society),保护 (protect) 7.94 28.90
3 好友 (friend),抽奖 (lottery),转发 (retweet),关注 (follow), 分享 (share),评论 (comment) 7.69 21.84
4 爱心 (love),期待 (expect),电影 (movie),视频 (video),经典 (classical),精彩 (wonderful) 8.32 22.32
5 旅行 (travel),拍摄 (photography),生活 (life),好友 (friend),照片 (photo),地址 (address) 8.69 32.42
Table 7: The top-frequent words and statistics of diffusion patterns under each learned topic on Weibo dataset.

(a) Embedding dimension (b) Layer number
Figure 5: Parameter sensitivity analysis of topic-specific em-
bedding dimension and the number of layers.

the semantic space in the dataset and our model is robust to this
parameter.

For the number of stacked layers, Fig. 5(b) shows the𝑀𝑅𝑅 results
from 2 to 5 while keeping other hyper-parameters unchanged. A
3-layer architecture yields the best performance, and the results
start to decline when we further increase the number of layers
because of overfitting.

Based on the experimental results, we can conclude that the
proposed model can achieve stable performance, when we tune the
hyper-parameters within a reasonable range.

5.7 Analysis of Learned Topics
To further valid the effectiveness of TAN on capturing topic infor-
mation, we will analyze the semantics of learned topics on Weibo
dataset. First, we compute the topic distribution of cascades, and
then categorize each diffusion text into the topic with the largest
similarity, and conduct statistics about diffusion patterns under
each topic. As shown in Table 7, we present the top-6 frequent
words, the average depth of the tree-structured diffusion graphs,
and the average size of cascades under each topic.

We can see that the semantic meanings and average sizes of
different topics are quite diverse from each other. For example, the
largest avg.size is about 1.5 times of the smallest one. The 5-th topic
about traveling has the largest diffusion depth and size, and thus
is the most influential topic. The reason may be that people are
willing to retweet photos of beautiful scenes. Therefore, TAN can
automatically learn topic semantics with good interpretability.

6 CONCLUSION
In this paper, we propose TAN for topic-specific diffusion modeling.
In specific, we aim to jointly model the text content of diffusion
items and historical user sequences, and propose topic-aware atten-
tions to capture historical diffusion dependencies and time decay
effects in different topics. Compared with conventional topic-aware
models, TAN can learn the topics automatically and benefit from
the success of deep learning techniques; Compared with existing
neural-based models, TAN not only models topic-specific patterns,
but also better captures user/position dependencies by sticking
to the properties of information diffusion. Experiments on real
diffusion datasets demonstrate the effectiveness of our model.

For future works, we plan to consider more information related
to diffusion such as the underlying social graph structure, and study
multi-modal data fusion method to better capture users’ interests
and dependencies.

ACKNOWLEDGMENTS
This work is supported by the National Natural Science Foundation
of China (No. U20B2045, 62002029, 61772082, 61702296), the Fun-
damental Research Funds for the Central Universities 2020RC23,
and the National Key Research and Development Program of China
(2018YFB1402600).



REFERENCES
[1] Nicola Barbieri, Francesco Bonchi, and Giuseppe Manco. 2012. Topic-aware

Social Influence Propagation Models. In ICDM. 81–90.
[2] Simon Bourigault, Cedric Lagnier, Sylvain Lamprier, Ludovic Denoyer, and Patrick

Gallinari. 2014. Learning social network embeddings for predicting information
diffusion. In Proceedings of WSDM. ACM.

[3] Simon Bourigault, Sylvain Lamprier, and Patrick Gallinari. 2016. Representation
learning for information diffusion through social networks: an embedded cascade
model. In WSDM. 573–582.

[4] Qi Cao, Huawei Shen, Keting Cen,Wentao Ouyang, and Xueqi Cheng. 2017. Deep-
Hawkes: Bridging the gap between prediction and understanding of information
cascades. In CIKM. 1149–1158.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[6] Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-
Rodriguez, and Le Song. 2016. Recurrent Marked Temporal Point Pro-
cesses:Embedding Event History to Vector. In Proceedings of SIGKDD. ACM.

[7] Shanshan Feng, Gao Cong, Arijit Khan, Xiucheng Li, Yong Liu, and Yeow Meng
Chee. 2018. Inf2vec: Latent Representation Model for Social Influence Embedding.
In ICDE. 941–952.

[8] Manuel Gomez Rodriguez, Jure Leskovec, and Andreas Krause. 2010. Inferring
networks of diffusion and influence. In Proceedings of SIGKDD. ACM.

[9] Manuel Gomez Rodriguez, Jure Leskovec, and Bernhard Schölkopf. 2013. Struc-
ture and dynamics of information pathways in online media. In Proceedings of
WSDM. ACM.

[10] Chengcheng Gou, Huawei Shen, Pan Du, Dayong Wu, Yue Liu, and Xueqi Cheng.
2018. Learning sequential features for cascade outbreak prediction. Knowledge
and Information Systems 57, 3 (2018), 721–739.

[11] Xinran He, Theodoros Rekatsinas, James Foulds, Lise Getoor, and Yan Liu. 2015.
Hawkestopic: A joint model for network inference and topic modeling from
text-based cascades. In ICML. 871–880.

[12] Qingbo Hu, Sihong Xie, Shuyang Lin, Wei Fan, and Philip S Yu. 2015. Frameworks
to encode user preferences for inferring topic-sensitive information networks. In
SDM. 442–450.

[13] Wenjian Hu, Krishna Kumar Singh, Fanyi Xiao, Jinyoung Han, Chen-Nee Chuah,
and Yong Jae Lee. 2018. Who Will Share My Image?: Predicting the Content
Diffusion Path in Online Social Networks. In WSDM. 252–260.

[14] Mohammad Raihanul Islam, Sathappan Muthiah, Bijaya Adhikari, B Aditya
Prakash, and Naren Ramakrishnan. 2018. DeepDiffuse: Predicting
the’Who’and’When’in Cascades. In ICDM. 1055–1060.

[15] David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the spread of
influence through a social network. In KDD. 137–146.

[16] Sylvain Lamprier. 2019. A Recurrent Neural Cascade-basedModel for Continuous-
Time Diffusion. In ICML. 3632–3641.

[17] Jure Leskovec, Lars Backstrom, and Jon Kleinberg. 2009. Meme-tracking and the
dynamics of the news cycle. In KDD. 497–506.

[18] Jure Leskovec, Ajit Singh, and Jon Kleinberg. 2006. Patterns of influence in a
recommendation network. In PAKDD. 380–389.

[19] Cheng Li, Xiaoxiao Guo, and Qiaozhu Mei. 2018. Joint Modeling of Text and
Networks for Cascade Prediction.. In ICWSM. 640–643.

[20] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence embeddings
using siamese BERT-networks.. In Proceedings of EMNLP-IJCNLP.

[21] Manuel Gomez Rodriguez, Jure Leskovec, David Balduzzi, and Bernhard
Schölkopf. 2014. Uncovering the structure and temporal dynamics of information
propagation. Network Science 2, 1 (2014), 26–65.

[22] Kazumi Saito, Masahiro Kimura, Kouzou Ohara, and Hiroshi Motoda. 2009. Learn-
ing continuous-time information diffusion model for social behavioral data anal-
ysis. In ACML. 322–337.

[23] Kazumi Saito, Kouzou Ohara, Yuki Yamagishi, Masahiro Kimura, and Hiroshi
Motoda. 2011. Learning diffusion probability based on node attributes in social
networks. In ISMIS. 153–162.

[24] Aravind Sankar, Xinyang Zhang, Adit Krishnan, and Jiawei Han. 2020. Inf-VAE:
A Variational Autoencoder Framework to Integrate Homophily and Influence in
Diffusion Prediction. In WSDM. 510–518.

[25] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Processing Systems. 5998–6008.

[26] Jacco Wallinga and Peter Teunis. 2004. Different epidemic curves for severe
acute respiratory syndrome reveal similar impacts of control measures. American
Journal of epidemiology 160, 6 (2004), 509–516.

[27] Jia Wang, Vincent W Zheng, Zemin Liu, and Kevin Chen-Chuan Chang. 2017.
Topological recurrent neural network for diffusion prediction. In ICDM. 475–484.

[28] Senzhang Wang, Xia Hu, Philip S Yu, and Zhoujun Li. 2014. MMRate: inferring
multi-aspect diffusion networks with multi-pattern cascades. In Proceedings of
SIGKDD. ACM, 1246–1255.

[29] YongqingWang, Huawei Shen, Shenghua Liu, Jinhua Gao, and Xueqi Cheng. 2017.
Cascade Dynamics Modeling with Attention-based Recurrent Neural Network.
In IJCAI. 2985–2991.

[30] Zhitao Wang, Chengyao Chen, and Wenjie Li. 2020. Joint Learning of User Rep-
resentation with Diffusion Sequence and Network Structure. IEEE Transactions
on Knowledge and Data Engineering (2020).

[31] Zhitao Wang and Wenjie Li. 2019. Hierarchical Diffusion Attention Network.. In
IJCAI. 3828–3834.

[32] Qitian Wu, Yirui Gao, Xiaofeng Gao, Paul Weng, and Guihai Chen. 2019. Dual Se-
quential Prediction Models Linking Sequential Recommendation and Information
Dissemination. In Proceedings of SIGKDD. ACM.

[33] Cheng Yang, Maosong Sun, Haoran Liu, Shiyi Han, Zhiyuan Liu, and Huanbo
Luan. 2019. Neural Diffusion Model for Microscopic Cascade Prediction. IEEE
Transactions onKnowledge and Data Engineering (2019).

[34] Cheng Yang, Jian Tang, Maosong Sun, Ganqu Cui, and Zhiyuan Liu. 2019. Multi-
scale Information Diffusion Prediction with Reinforced Recurrent Networks.. In
IJCAI. 4033–4039.

[35] Jing Zhang, Biao Liu, Jie Tang, Ting Chen, and Juanzi Li. 2013. Social influence
locality for modeling retweeting behaviors.. In IJCAI. 2761–2767.

[36] Liang Zhao, Jiangzhuo Chen, Feng Chen, Fang Jin, Wei Wang, Chang-Tien Lu,
and Naren Ramakrishnan. 2020. Online flu epidemiological deep modeling on
disease contact network. GeoInformatica 24, 2 (2020), 443–475.

[37] Qingyuan Zhao, Murat A Erdogdu, Hera Y He, Anand Rajaraman, and Jure
Leskovec. 2015. Seismic: A self-exciting point process model for predicting tweet
popularity. In Proceedings of the 21th ACM SIGKDD. ACM, 1513–1522.

[38] Honglu Zhou, Shuyuan Xu, Zuohui Fu, Gerard de Melo, Yongfeng Zhang, and
Mubbasir Kapadia. 2020. HID: Hierarchical Multiscale Representation Learning
for Information Diffusion. In IJCAI.


	Abstract
	1 Introduction
	2 Related Work
	2.1 IC-based methods
	2.2 Embedding-based methods
	2.3 Deep learning-based methods

	3 Data observation
	3.1 Datasets
	3.2 Data Analysis

	4 Method
	4.1 Problem Formalization
	4.2 Embedding Layer
	4.3 Topic-Aware Attention Layer
	4.4 Training Objective and Model Details

	5 Experiments
	5.1 Baselines
	5.2 Experimental Settings and Metrics
	5.3 Main Results
	5.4 Analysis of Multi-Interest Users
	5.5 Ablation study
	5.6 Parameter Sensitivity
	5.7 Analysis of Learned Topics

	6 Conclusion
	Acknowledgments
	References

