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ABSTRACT
Heterogeneous graphs (HGs), consisting of multiple types of nodes
and links, can characterize a variety of real-world complex systems.
Recently, heterogeneous graph neural networks (HGNNs), as a
powerful graph embedding method to aggregate heterogeneous
structure and attribute information, has earned a lot of attention.
Despite the ability of HGNNs in capturing rich semantics which
reveal different aspects of nodes, they still stay at a coarse-grained
level which simply exploits structural characteristics. In fact, rich
unstructured text content of nodes also carries latent but more
fine-grained semantics arising from multi-facet topic-aware factors,
which fundamentally manifest why nodes of different types would
connect and form a specific heterogeneous structure. However,
little effort has been devoted to factorizing them.

In this paper, we propose a Topic-aware Heterogeneous Graph
Neural Network, named THGNN, to hierarchically mine topic-
aware semantics for learning multi-facet node representations
for link prediction in HGs. Specifically, our model mainly applies
an alternating two-step aggregation mechanism including intra-
metapath decomposition and inter-metapath mergence, which can
distinctively aggregate rich heterogeneous information according
to the inferential topic-aware factors and preserve hierarchical
semantics. Furthermore, a topic prior guidance module is also
designed to keep the quality of multi-facet topic-aware embed-
dings relying on the global knowledge from unstructured text con-
tent in HGs. It helps to simultaneously improve both performance
and interpretability. Experimental results on three real-world HGs
demonstrate that our proposed model can effectively outperform
the state-of-the-art methods in the link prediction task, and show
the potential interpretability of learnt multi-facet topic-aware rep-
resentations.
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1 INTRODUCTION
Heterogeneous graphs (HGs), which are composed of different types
of nodes and relations, also known as heterogeneous information
network, exist in a variety of real-world scenarios, ranging from
bibliographic networks [4, 32], social networks [33] to recommen-
dation systems [23]. For example, as shown in Fig.1 (a), an academic
network has multiple types of nodes (author, paper, conference,
and term) and edges defined by their relations (e.g., author-paper,
paper-conference). Due to its heterogeneity in both graph structure
and node attributes, HGs often carry immensely rich and diverse
semantics. Thus, much effort has been devoted to heterogeneous
graph embedding to map HGs into a low-dimension vector space
[5, 7, 22] for downstream tasks. Among the tasks in HGs, link pre-
diction is a fundamental and important problem that estimates the
existence probability of a link between two nodes, which serves as
the basis in many data mining tasks like recommendation[23, 27].

Recently, graph neural networks (GNNs), as a powerful family
of deep representation learning method to combine both structures
and node features for graph data, has attained considerable success
[17, 26]. Inspired by the well-designed mechanisms in GNNs for ho-
mogeneous graphs, heterogeneous graph neural networks (HGNNs)
[6, 8, 28] have also attracted a lot of attention in recent years. One
major line of HGNNs defines and leverages metapaths [24] to pre-
serve semantics and model heterogeneous structure [8, 28], since
different metapaths are able to reveal different aspects of target
nodes from a global perspective. For example, in an academic net-
work shown in Fig. 1(a), Author-Paper-Author (APA) and Author-
Paper-Conference-Paper-Author (APCPA) are metapaths describing
two different relations among authors. The APA metapath asso-
ciates two co-authors, while the APCPA metapath associates two
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Figure 1: An illustration for heterogeneous graph (node
types, metapaths) and comparison between our model and
previous HGNNs.

authors who published papers in the same conference. Specifically,
a classical paradigm of HGNNs is to adopt a hierarchical aggrega-
tion at node and semantic level, to fuse information from different
metapaths, which can be intuitively shown in Fig. 1(b).

In spite of the informativeness of heterogeneous structure like
metapaths, rich unstructured text content carried by nodes such as
paper abstracts, descriptions or reviews, are also pervasive in HGs.
Furthermore, text content is often a mixture of semantics arising
frommulti-facet topic-aware factors, which fundamentallymanifest
why nodes of different types would connect and form a specific
heterogeneous structure. Such topic-aware semantics are more fine-
grained than structural semantics for link prediction. For example,
an author node 𝑎1 in Fig. 1(c), may havemulti-facet research interest
on different topics, which can be reflected in a variety of local
heterogeneous context. Along her APA-based context, she works
with author 𝑎3 due to their mutual interest on the topic of "Graph
Mining" (shown in red), while builds a co-author relation with
author 𝑎4 stemming from the shared aim of "NLP Application"
(shown in yellow). Similarly, along 𝑎1’s APCPA-based context, it
can be inferred that both 𝑎1’s and 𝑎5’s papers are accepted by
the same conference also related to "Graph Mining" topic (also
shown in red). If we do not consider such fine-grained semantics
through identifying the latent multi-facet topic-aware factors, and
simply fuse derived confounding features, it will inevitably limit
the performance of node representations for link prediction.

Recently, there are some attempts at disentangled learning to
identify the latent explanatory factors behind the data with some
promising results. Most prior efforts related to disentangled learn-
ing are devoted mainly in the field of image representation learning
[9, 11, 16]. In order to tackle the non-Euclidean graph data, there are
also a couple of works that explore the potential factors of edge for-
mation between a pair of nodes for homogeneous graphs [18, 19, 31].
Although disentangled representation learning has been adopted in
HGNNs [30], it only focuses on a coarse-grained and also local level

aiming to automatically factorize structural semantics and avoid
metapath selection only from neighbor nodes, but cannot further
recognize and unveil more fined-grained semantics underlying the
bare node connections.

Given the above limitations in current approaches, in this paper,
we exploit both heterogeneous structures and unstructured text
content in HGs. Specifically, we look deeper into identifying the
potential but fundamental topic-aware factors based on the rich
structural semantics in HGs, in order to learn multi-facet topic-
aware representations for nodes while preserving such hierarchical
semantics for link prediction. However, it imposes several chal-
lenges and thus can not be a straightforward extension of existing
solutions. Firstly, HGs usually contain complex interactions and
diverse attribute information among nodes, but there are no ex-
plicit labels indicating the latent and subtle topic-aware factors.
This poses difficulties to distinguish the mixed information and
factorize the feature vector into multi-facet topic-aware compo-
nents. Secondly, after identifying potential topic-aware factors, an
appropriate mechanism is required to combine both structural and
topic-aware semantics. Thirdly, to keep up with the structural se-
mantics at the global level, it is also important to preserve the
global characteristics of topic-aware semantics and maintain the
quality of multi-facet topic-aware embeddings, thus simultaneously
improving both performance and interpretability.

To address the above challenges, we introduce a new model
for link prediction, Topic-aware Heterogeneous Graph Neural
Network (THGNN), that aims to further mine fine-grained topic-
aware semantics based on structural semantics for multi-facet topic-
aware representations learning in HGs. More precisely, THGNN
applies a multi-facet transformation matrix to project the features
of different types of nodes into the multiple topic-aware subspaces.
For the first two challenges, THGNN applies an alternating two-step
aggregation mechanism including intra-metapath decomposition
and inter-metapath mergence, in order to learn multi-facet topic-
aware embeddings for each target node. Specifically, the main goal
of intra-metapath decomposition step is to infer the topic-aware
distribution of metapath-based contexts and aggregate the con-
text information according to the distribution to form multi-facet
representations, so as to capture the fine-grained topic-aware se-
mantics. On the other hand, inter-metapath mergence step adopts a
multi-facet attention mechanism to fuse different metapaths for the
final multi-facet embeddings, thus preserving both structural and
topic-aware semantics for link prediction. For the last challenge,
we introduce another module named topic prior guidance, which
leverages topic modeling to obtain global statistical knowledge
from unstructured textual content and helps to guide the context
aggregation. In this way, it serves as a regularizer to encourage
the inferential topic-aware subspaces to be more orthogonal and
improve the interpretability of learnt multi-facet topic-aware rep-
resentations.

To summarize, this work makes the following main contribu-
tions:

• From a fresh point of view, we propose to identify multi-facet
topic-aware factors underlying the bare connections between as-
sociated nodes, making full use of both heterogeneous structures
and unstructured text content for link prediction in HGs.



• We introduce a novel model THGNN for link prediction, which
can distinctively aggregates rich heterogeneous information ac-
cording to the inferred multi-facet topic-aware factors, so as
to generate multi-facet topic-aware representations preserving
both structural and topic-aware semantics. Besides, the topic
prior guidance module is further designed to leverage the global
knowledge from unstructured textual content, further keeping
the quality of multi-facet topic-aware embeddings.
• Experiments on real heterogeneous graph datasets demonstrate
that our proposed model significantly outperforms state-of-the-
art methods in link prediction task, and also show the potential
interpretability of our learnt multi-facet topic-aware embeddings.

2 RELATEDWORK
In this section, we will review the most related work to ours, includ-
ing graph neural networks and heterogeneous graph embedding.

2.1 Graph Neural Networks
Graph neural networks (GNNs) are a set of methods that apply deep
learning to arbitrary graph-structured data. They generally fall into
two categories: spectral and spatial methods. Based on spectral
graph theory, Joan Bruna et al. [3] proposed a way to perform con-
volution in the spectral domain using the Fourier basis of a given
graph. Kipf et al. [17] proposed a spectral approach, named Graph
Convolutional Network, which simplified GNNs by involving the
first-order approximation of the spectral graph convolution. A ma-
jor limitation of traditional graph convolutional methods is that
the filters are learned on the entire graph Laplacian, which lacks
feasibility and scalability when graph is changed. Therefore, spatial
approaches are proposed to define convolution operations directly
on the graph, operating on groups of spatially close neighbors.
Hamilton et al. [10] proposed GraphSage to summarize neighbor-
hood information and a variety of solutions have been designed
based on more advanced spatial-based filters. Inspired by Trans-
former [25], GAT [26] incorporated node features to measure the
relative importance of neighbors via a multi-head self-attention
mechanism.

Motivated by disentangled representation learning [1] success-
fully applied in the field of computer vision [9, 12, 16], Ma et al.
[19] firstly proposed to learn disentangled representations in graph-
structured data, employing neighborhood routing to automatically
discover the independent latent factors of edges connecting a given
node to its neighbors. As a follow up, IPGDN [18] improved disen-
tangled GCNs by enforcing independence between the latent repre-
sentations. Unlike prior efforts on decoding only a single attribute
for a neighboring node, FactorGCN [31] enabled multi-relation dis-
entangling, producing block-wise interpretable node features by
analyzing the global-level topological semantics. Despite the results
of the previous works on discovering latent factors in graphs, they
are either built for homogeneous graphs, or designed for specific
applications such as recommendation systems [15, 29].

2.2 Heterogeneous Graph Embedding
Heterogeneous graph embedding (i.e., HGE), aiming to learn a func-
tion that maps input space into a lower-dimension space while
preserving the heterogeneous structures and semantics, has drawn
considerable attentions and been applied to various scenarios in

recent years [6, 13, 14, 34]. One of the classical paradigms is to
leverage metapath for semantic-preserving embeddings. Metap-
ath2vec [5] and HERec [23] generated random walks guided by se-
lected metapaths and adopted skip-gram to perform HGE. HIN2vec
[7] carries out multiple prediction training tasks and learns latent
embeddings of nodes and metapaths simultaneously. Recent stud-
ies have attempted to extend GNNs for modeling HGs. HAN [28]
utilized metapaths to convert a heterogeneous graph to multiple
metapath-based homogeneous graphs, but adopted hierarchical at-
tention mechanism (including both of the node-level and semantic-
level attentions) to aggregate information. MAGNN [8] improved
HAN by considering node information along the metapaths instead
of only two end nodes, and thus exploited more comprehensive
information in HGs.

Recently, disentangled representation learning is also applied in
HGNNs. DisenHAN [30] was proposed to identify the major aspect
of the relation between node pairs and propagate corresponding
information semantically so as to automatically extract metapaths.
Although mining such rich structural semantics in HGs is able to
reflect multiple aspects of nodes in existing methods, there is still a
room for improvement by exploiting the multi-facet topic-aware
factors hidden by pervasive unstructured text content from a gloval
perspective in HGs. These fine-grained topic-aware semantics can
essentially bring insight into node connections and heterogeneous
structure formation, which suggests us to identify the hidden multi-
facet factors and model HGs more distinctively.

3 PRELIMINARY
In this section, we formalize some important definitions related to
heterogeneous graphs.

Definition 3.1. Heterogeneous Graph [24]. A heterogeneous
graph is defined as a graphG = (V, E) with an object typemapping
function 𝜑 : V → A and a link type mapping function𝜓 : E → R.
A and R denote the sets of predefined object types and link types,
where|A| + |R| > 2.

Definition 3.2. Metapath [24]. A metapath𝑀 is a path denoted

in the form of 𝐴1
𝑅1−−→ 𝐴2

𝑅2−−→ . . .
𝑅𝑙−−→ 𝐴𝑙+1, which defines a com-

posite relation 𝑅 = 𝑅1 ◦ 𝑅2 ◦ · · · ◦ 𝑅𝑙 between objects 𝐴1 and 𝐴𝑙+1,
where ◦ denotes the composition operator on relations.

Definition 3.3. Metapath Instance. Given a metapath 𝑀 of a
heterogeneous graph, a metapath instance𝑚 of𝑀 is defined as a
node sequence in the graph matching the sequence of types in𝑀 .
A metapath instance connecting node 𝑢 and 𝑣 where node 𝑢 is a
target node is denoted as𝑚𝑢 .

Definition 3.4. Metapath-based Context. Given a metapath
instance 𝑚𝑢 , the metapath-based context 𝑐 of the target node 𝑢
is defined as the node sequence in the rest of metapath instance
without node 𝑢, denoted as 𝑐𝑢=𝑚𝑢\{𝑢}, in which there exists nodes
that contain text content. More specifically, the set of metapath
M-based contexts with a target node 𝑢 is denoted as 𝐶𝑀𝑢 . The text-
related node sequence in 𝑐𝑢 denoted as 𝑐𝑡𝑒𝑥𝑡𝑢 .
Example. As shown in Figure 1(a), we construct a HG to model
DBLP. It consists of multiple types of objects (Author (A), Paper
(P), Term (T), Conference (C)) and relations (P-A, P-T and P-C).



Two authors can be connected based on multiple metapaths, e.g.,
Author-Paper-Author (APA) and Author-Paper-Conference-Paper-
Author (APCPA). Given a metapath APA, 𝑎3-𝑝2-𝑎1 is a metapath
instance related to the target node 𝑎1. The author 𝑎1 connects with
other authors via different metapaths, and then node sequences
(𝑎3, 𝑝2) (APA-based) and (𝑎5, 𝑝3, 𝑐1, 𝑝4) (APCPA-based) constitute
the context of 𝑎1, different metapath-based contexts may reveal
different topic-aware semantics as paper nodes in metapath-based
contexts carry rich text content.

4 METHODOLOGY
To guide information aggregation for nodes with multi-facet factors
by the hidden topic-aware semantics underlying HGs, we propose a
unified topic-aware heterogeneous graph neural network (THGNN).
In this section, we will give a detailed description about the archi-
tecture of THGNN, whose three basic components are: multi-facet
projection, multi-facet heterogeneous graph neural network, topic
prior guidance. The multi-facet projection component serves as a
preprocessing stage to facilitate the aggregation process of THGNN.
The key building block “multi-facet heterogeneous graph neural
network” consists of two steps: intra-metapath decomposition and
inter-metapath mergence, to learn multi-facet topic-aware embed-
dings for nodes with multi-facet factors iteratively. A topic prior
guidance is also introduced to guide context aggregation, further
keeping the quality of multi-facet topic-aware embedding. Figure 2
illustrates the overall topic-aware embedding generation.

4.1 Multi-facet Projection
Due to the heterogeneity of nodes in HGs, different types of nodes
and edges have different attributes, which are usually located in
totally different feature spaces. With the goal of mining potential
topic-aware subspaces in a HG, we need to project different types
of node features into the same shared latent vector subspaces that
indicates multi-facet topic-aware semantics.

Therefore, assuming that there exists 𝐾 potential topic-aware
subspaces in theHG, for each type of nodeswe apply𝐾 type-specific
linear transformation by projecting feature vectors into 𝐾 latent
topic-aware subspaces before feeding node vectors. As shown in
Fig. 2 (a), for a node 𝑢 ∈ V of type 𝜑 (𝑢) ∈ A, the multi-facet
projection process can be shown as follows:

h𝑢,𝑘 = P𝜑 (𝑢)
𝑘
· x𝑢 , (1)

where 𝑘 = 1, 2, · · · , 𝐾 . x𝑢 ∈ R𝑑𝜑 (𝑢) is the original feature vector
of node 𝑢 and h𝑢,𝑘 ∈ R

𝐷
𝐾 is the projected feature in the 𝑘𝑡ℎ latent

topic-aware subspace. P𝜑 (𝑢)
𝑘

∈ R
𝐷
𝐾
×𝑑𝜑 (𝑢) is the 𝑘𝑡ℎ training weight

matrix for nodes of type 𝜑 (𝑢).
After multi-facet projection, all nodes features share the same 𝐷

dimension with 𝐾 components, which is convenient for the multi-
facet heterogeneous graph neural network in Section 4.2.
Sampling Strategy Given a node 𝑢 with multi-facet factors in the
HG, we firstly need to sample some metapath-based contexts via
different metapaths. For the sake of identifying multi-facet topic-
aware factors, we employ a sampling strategy to pay more attention
to those metapath-based contexts containing more than one text-
related node with high topic consistency. The sampling process is

as follows:

𝑝𝑐𝑢 =

∑
𝑣𝑠 ,𝑣𝑠+1∈𝑐𝑡𝑒𝑥𝑡𝑢

cos(𝝀𝑐𝑢𝑣𝑠 ,𝝀
𝑐𝑢
𝑣𝑠+1 )∑

𝑐′𝑢 ∈𝐶𝑀𝑢
∑
𝑣𝑠 ,𝑣𝑠+1∈𝑐

′𝑡𝑒𝑥𝑡
𝑢

cos(𝝀𝑐
′
𝑢
𝑣𝑠 ,𝝀

𝑐′𝑢
𝑣𝑠+1 )

, (2)

where 𝑝𝑐𝑢 is the sampling probability of metapath M-based context
𝑐𝑢 , and 𝝀𝑐𝑢𝑣𝑠 is the pre-calculated topic distribution of text content
carried by node 𝑣𝑠 in context 𝑐𝑢 through topic model LDA.

4.2 Multi-facet Heterogeneous Graph Neural
Network

In the ensuing discussion, we shall zoom into the key building block
of THGNN, which is composed of two steps: intra-metapath decom-
position to capture topic-aware semantics and inter-metapath mer-
gence to preserve structural semantics. The aim of intra-metapath
decomposition step is to infer topic-aware distribution of the metap-
ath M-based context in𝐶𝑀𝑢 preliminarily and aggregate the context
information based on the inferred distribution to form the multi-
facet representation. Inter-metapath mergence step aims to fuse
different metapaths to generate the final multi-facet embedding
preserving structural and topic-aware semantics at current itera-
tion. The above two steps are conducted alternatively, which can
be summarized as follows:

y𝑢 = 𝑔({h𝑢,𝑘 |1 ≤ 𝑘 ≤ 𝐾}, {h𝑐𝑢𝑢,𝑘 |1 ≤ 𝑘 ≤ 𝐾, 𝑐𝑢 ∈ 𝐶
𝑀𝑖
𝑢 , 𝑀𝑖 ∈ M}),

(3)
where 𝑔(·) is the aggregation function to learn the final multi-facet
topic-aware representation y𝑢 of 𝑢, and h𝑐𝑢

𝑢,𝑘
indicates embedding

of the metapath-based context 𝑐𝑢 in the 𝑘𝑡ℎ topic-aware subspace.
M is the set of selected metapaths. As assuming that there exist 𝐾
latent topic-aware subspaces, we would like to let y𝑢 be composed
of 𝐾 topic-aware components y𝑢 = [z𝑢,1, z𝑢,2, · · · , z𝑢,𝐾 ], where
z𝑢,𝑘 ∈ R

𝐷
𝐾 is able to characterize the 𝑘𝑡ℎ topic-aware factor of 𝑢.

4.2.1 Intra-metapath Decomposition. As shown in Fig. 2 (b)-1),
given a metapath 𝑀𝑖 ∈ M, the goal of this step is to infer which
topic that each sampled metapath-based context pertain to. Recall
that we expect h𝑐𝑢

𝑢,𝑘
to capture the 𝑘𝑡ℎ facet topic-aware of target

node 𝑢 by leveraging the current metapath-based context. The
context encoder can be shown in the following manner:

h𝑐𝑢
𝑢,𝑘

= 𝑓 ({h𝑣,𝑘 ,∀𝑣 ∈ 𝑐𝑢 }), (4)

where 𝑐𝑢 ∈ 𝐶𝑀𝑖𝑢 , and we choose the average pooling operation in
experiments for 𝑓 (·) in consideration of simplicity and efficiency.

After encoding the metapath-based context into multi-facet rep-
resentations in topic-aware subspaces, we adopt a cosine similarity
between multi-facet representations of target node and its current
metapath-based context, to infer the most related topic-aware sub-
space both of them share. The inferential topic distribution is given
by:

𝑝𝑘 |𝑐𝑢 =
exp(cos(h𝑢,𝑘 ,h𝑐𝑢𝑢,𝑘 )∑𝐾

𝑘′=1 exp(cos(h𝑢,𝑘′,h
𝑐𝑢
𝑢,𝑘′
)
, (5)

where 𝑘 = 1, 2, · · · , 𝐾 and 𝑐𝑢 ∈ 𝐶𝑀𝑖𝑢 .𝐶𝑀𝑖𝑢 indicates a set of sampled
metapath𝑀𝑖 -based contexts of 𝑢. Naturally, the probability 𝑝𝑘 |𝑐𝑢
should be high if the target node𝑢 is related to the current metapath-
based context 𝑐𝑢 in the 𝑘𝑡ℎ topic-aware subspace. Meanwhile, it
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Figure 2: The overall framework of the proposed model THGNN.

also serves as the importance weight of the current metapath-based
context information when propagating it to the target node in the
𝑘𝑡ℎ topic-aware subspace. Therefore, we can obtain the metapath-
specific multi-facet topic-aware representation of target node 𝑢:

h𝑀𝑖
𝑢,𝑘

= 𝐿2_𝑁𝑜𝑟𝑚(
∑

𝑐∈𝐶𝑀𝑖𝑢

𝑝𝑘 |𝑐𝑢 · h
𝑐𝑢
𝑢,𝑘
), (6)

where 𝑘 = 1, 2, · · · , 𝐾 and𝑀𝑖 ∈ M.
In summary, given themulti-facet projected feature vectors of the

target node 𝑢, and the set of selected metapathsM = (𝑀1,𝑀2, · · · ,
𝑀𝑃 ) for 𝑢, the intra-metapath decomposition generates 𝑃 groups
of metapath-specific multi-facet topic-aware representations for 𝑢,
denoted as {[h𝑀1

𝑢,1,h
𝑀1
𝑢,2, · · · , h

𝑀1
𝑢,𝐾

], [h𝑀2
𝑢,1,h

𝑀2
𝑢,2,· · · ,h

𝑀2
𝑢,𝐾

],· · · ,[h𝑀𝑃
𝑢,1 ,

h𝑀𝑃
𝑢,2 ,· · · ,h

𝑀𝑃
𝑢,𝐾

]}.
As the topic-aware distributions and multi-facet topic-aware rep-

resentations derived from the intra-metapath decomposition step
aim to be as diverse as possible, the inter-metapath mergence step,
is designed to find overall importance of multi-facet information
conditioned on certain structure semantic.

4.2.2 Inter-metapath Mergence. Since every node in a HG contains
multiple types of structural semantic information which can be
revealed by metapaths, we propose a multi-facet attention to learn
the importance of different metapaths and merge them to generate
the final multi-facet topic-aware representation for the target node
𝑢, which is shown at Fig. 2(b)-2).

To learn the importance of given metapath𝑀𝑖 , firstly we trans-
form themetapath-specific single-facet representationswith aweight
matrix W, then we summarize metapath𝑀𝑖 in the 𝑘𝑡ℎ topic-aware
subspace by averaging the transformed metapath-specific single-
facet representations for target nodes in a batch:

s𝑀𝑖
𝑘

=
1
|𝐵 |

∑
𝑢∈𝐵

tanh(W · 𝜎 (h𝑀𝑖
𝑢,𝑘
)), (7)

where 𝑘 = 1, 2, · · · , 𝐾 ,W ∈ R
𝐷
𝐾
×𝐷
𝐾 is learnable parameter and |𝐵 |

is size of batch.
Then we use multi-facet attention vectors (q𝑇1 , q

𝑇
2 , · · · , q

𝑇
𝐾
) to

measure the relative importance of the metapath𝑀𝑖 in each topic-
aware subspace. Since different metapaths describe various seman-
tics behind a HG at structural level, the overall importance of dif-
ferent metapaths should be shared in all topic-aware subspaces,
and thus we sum up multi-facet relative importance as the overall
importance for the metapath𝑀𝑖 :

𝑒𝑀𝑖 =

𝐾∑
𝑘=1

q𝑇
𝑘
· s𝑀𝑖
𝑘
, (8)

𝛽𝑀𝑖 =
exp(𝑒𝑀𝑖 )∑

𝑀 ∈M exp(𝑒𝑀 )
, (9)

where q𝑘 ∈ R
𝐷
𝐾 , and 𝛽𝑀𝑖 can be interpreted as the contribution of

the metapath𝑀𝑖 .
With the computed coefficients (𝛽𝑀1 , 𝛽𝑀2 ,· · · ,𝛽𝑀𝑃 ), we canmerge

all the metapath-specific multi-facet representations to obtain final
multi-facet topic-aware representation in current iteration:

ĥ𝑢,𝑘 =
∑

𝑀𝑖 ∈M
𝛽𝑀𝑖 · h𝑀𝑖

𝑢,𝑘
, (10)

where 𝑘 = 1, 2, · · · , 𝐾 .
The above two steps are performed together as an iteration and

the current output {ĥ𝑢,𝑘 , 𝑘 = 1, 2, · · · , 𝐾} will in turn serve as guid-
ance of the next topic-aware distribution inference, which can be
also interpreted as updated 𝐾 topic-aware cluster centers for differ-
ent types of metapath-based contexts of the target node 𝑢. After 𝑇
iterations, THGNN outputs 𝐾 final enriched representations for y𝑢
in Eq.(3) going through an activation function: {z𝑢,𝑘 = 𝜎 (ĥ(𝑇 )𝑢,𝑘 ) |𝑘 =

1, · · · , 𝐾}(for a text-related node 𝑣 , let z𝑣,𝑘 = 𝜎 (h𝑣,𝑘 ) without any
iteration), and also final inferential topic-aware distribution of all
the sampled metapath-based contexts, denoted as {𝚽𝑀𝑖𝑢 , 𝑀𝑖 ∈ M}.



Here 𝚽𝑀𝑖𝑢 ∈ R |𝐶
𝑀𝑖
𝑢 |×𝐾 can be interpreted as a soft cluster assign-

ment matrix of metapath𝑀𝑖 -based contexts, and each row of 𝚽𝑀𝑖𝑢
contains 𝐾 elements calculated through Eq.(5) at the last iteration.

4.3 Topic Prior Guidance
In spite of the iterative process in multi-facet heterogeneous graph
neural network inferring topic-aware distribution for metapath-
based context and generating chunked representations for the target
nodes, there are still two points needing to go further: (1) due to
the heterogeneity of metapath-based context, there might be still
confounding among different topic-aware subspaces, even leading
to an extreme collapse case; (2) the intra-metapath decomposition
step is performed essentially as a kind of local clustering, making it
difficult to capture global knowledge from 𝐾 potential topic-aware
subspaces we assume. The first suggests the inferential topic-aware
subspaces to be more independent and each one to maintain a
convenient size. Anothermeans global prior knowledge is necessary
to keep the globality of topic-aware subspaces. To meet the two
requirements, we introduce another module named topic prior
guidance to encourage the inferential topic-aware subspaces to be
more orthogonal and improve interpretability.

As shown in Fig.2 (c), inspired by the orthogonality loss term
for graph clustering [2], the added module will serve as a regular-
izer, ingeniously leveraging topic model to obtain global statistical
knowledge from unstructured textual content, to guide context
aggregation among the HG, which has the following form:

L𝑇 =
1
|M|

∑
𝑀𝑖 ∈M

∥
𝚽
𝑇
𝑀𝑖

𝚽𝑀𝑖

∥ 𝚽𝑇
𝑀𝑖

𝚽𝑀𝑖 ∥𝐹
−

𝝀𝑀𝑖

∥ 𝝀𝑀𝑖 ∥𝐹
∥𝐹 , (11)

𝝀𝑀𝑖 =
1
|𝐶𝑀𝑖 |

∑
𝑐∈𝐶𝑀𝑖

𝝀𝑐
𝑑1
, (12)

where each row of 𝚽𝑀𝑖 indicates the inferential topic-aware distri-
bution of metapath𝑀𝑖 -based context from Eq.(5), while 𝝀𝑐

𝑑1
means

the pre-calculated topic distribution of the first document node
𝑑1 along the single metapath-based context 𝑐 obtained from LDA.
Note that in experiments, we concatenate all the sampled metapath
𝑀𝑖 -based contexts of target nodes in the current mini-batch to form
the matrix 𝚽𝑀𝑖 , instead of a single target node, due to the sparsity
of data and so as to save computation. Similarly, 𝐶𝑀𝑖 also indi-
cates all the sampled metapath𝑀𝑖 -based contexts of target nodes
in the current mini-batch. In this way, 𝝀𝑀𝑖 plays a prior guiding
role in context aggregation by the hidden topic-aware subspaces
underlying the HG.

4.4 Model Training
After applying above described three basic components, we ob-
tain multi-facet topic-aware representations for nodes, the forward
propagation process is shown in Algorithm 1. We estimate the simi-
larity for a training pair (𝑢, 𝑣) through inner product in multi-facet
topic-aware subspaces, and then we sum all of them as the final
matching score for link prediction:

𝑠𝑢𝑣 =

𝐾∑
𝑘=1

z𝑇
𝑢,𝑘
· z𝑣,𝑘 , (13)

We construct the loss function of graph reconstruction using
mini-batch gradient in two major learning paradigms:

Algorithm 1 The forward propagation of THGNN.
Require:

The heterogeneous graph G = (V, E),
node types A={𝐴1, 𝐴2, · · · , 𝐴 |A |},
the type of nodes with multi-facet factors A,
metapathsM={𝑀1, 𝑀2, · · · , 𝑀M },
node features {x𝑣,∀𝑣 ∈ V},
the number of multi-facet topic-aware factors 𝐾

Ensure:
{z𝑣,𝑘 |1 ≤ 𝑘 ≤ 𝐾,∀𝑣 ∈ V};

1: for node type 𝐴𝑖 ∈ A do
2: for 𝑘 = 1, 2, · · · , 𝐾 do
3: Multi-facet projection h𝑣,𝑘 = P𝐴𝑖

𝑘
· x𝑣,∀𝑣 ∈ V𝐴𝑖 ;

4: end for
5: end for
6: for 𝑇 iterations do
7: for metapath𝑀𝑖 ∈ M do
8: for 𝑢 ∈ V𝐴 do
9: for 𝑘 = 1, 2, · · · , 𝐾 do
10: Calculate h𝑐𝑢

𝑢,𝑘
for all 𝑐𝑢 ∈ 𝐶𝑀𝑖𝑢 with Eq. 4;

11: Infer the topic-aware distribution 𝑝𝑘 |𝑐𝑢 with Eq. 5;
12: Obtain h𝑀𝑖

𝑢,𝑘
with Eq. 6;

13: end for
14: end for
15: end for
16: Calculate 𝛽𝑀𝑖 of metapath𝑀𝑖 ∈ M with Eq. 7 8, 9;
17: Obtain ĥ𝑢,𝑘 , h𝑢,𝑘 ← ĥ𝑢,𝑘 , 𝑘 = 1, 2, ...𝐾 with Eq. 10;
18: end for
19: return {z𝑣,𝑘 = 𝜎 (h𝑣,𝑘 ) |𝑘 = 1, · · · , 𝐾,∀𝑣 ∈ V}

• Only one node with multi-facet factors in training pair (𝑢, 𝑣):
assuming that 𝑢 is the only node with multi-facet factors , then

L𝐺,B = −
∑

(𝑢,𝑣) ∈B+
log𝜎 (𝑠𝑢𝑣) −

∑
(𝑢,𝑣′) ∈B−

log𝜎 (−𝑠𝑢𝑣′), (14)

where B ={B+ ∪ B−} denotes the training pairs involving the
observed edges B+ and unobserved edges B−.
• Both are nodes with multi-facet factors in training pair (𝑢, 𝑣):

L𝐺,B = −
∑

(𝑢,𝑣) ∈B+
log𝜎 ( 1

𝐾
𝑠𝑢𝑣) −

∑
(𝑢′,𝑣′) ∈B−

log𝜎 (− 1
𝐾
𝑠𝑢′𝑣′), (15)

where B ={B+ ∪ B−}. Here we take the average of the final
matching score because THGNN outputs the final multi-facet
representations after l2 normalization operation.
The overall training loss which combines the loss of graph re-

construction and regularizer term can be rewritten as:

LB = L𝐺,B + 𝛾L𝑇 . (16)



Table 1: Description of datasets.

Dataset Relation (A-B) #A #B #A-B

DBLP
Paper-Author
Paper-Conference
Paper-Term

11,248
11,248
11,248

11,569
16
2,463

32,534
11,248
65,818

YELP
Business-User
Business-City
Business-Category

2,203
2,203
2,203

1,430
66
347

27,793
2,157
9,787

Amazon
Movie-User
Movie-Brand
Movie-Category

1,754
1,754
1,754

2,476
293
95

34,042
734
4,913

5 EXPERIMENTS
In this section, we evaluate the effectiveness of THGNN on three
real-world graph datasets, namely, DBLP, YELP and Amazon, whose
nodes carry a wealth of text content. A comparative evaluation
against a wide variety of baselines is performed in the link predic-
tion task to evaluate themodel. Besides, we also visualize the quality
of the learned multi-facet topic-aware embeddings to demonstrate
the discovered topic-aware semantics. The experiments aim to ad-
dress the following questions:
• Q1: How does THGNN perform in link prediction task compared
with state-of-the-art methods?
• Q2: How does topic prior guidance affect the result of THGNN?
• Q3: Can THGNN capture multi-facet topic-aware semantics?

5.1 Experimental Setup
Datasets The detailed descriptions of the HGs used in our experi-
ments are shown in Table 1.
• DBLP: We extract a subset of DBLP which contains 11,569 au-
thors (A), 11,248 papers (P), 16 conferences (C), 2,463 terms (T)
between year 2000 to 2010, to build an academic graph. The con-
tents of papers consist of abstracts and titles and are transformed
into bag-of-word representations of keywords for author fea-
tures. Here we employ the metapath set {APA, APCPA, APTPA}
to perform experiments. For DBLP dataset, we split training and
test data sequentially with a split year 2008 and predict both
author-paper links and co-author hyper-links. Due to the tempo-
rality of DBLP dataset, we train the topic model LDA only using
papers before split year. We also randomly sample disconnected
node pairs of the given form as negative instances.
• YELP: We extract a subset of YELP which contains 1,430 users
(U), 2,230 businesses (B), 66 cities (Ci), 347 categories (Ca), to
build a review graph. Business nodes carry text content from
some useful reviews. Here we employ the metapath set {UBU,
UBCiBU, UBCaBU} to perform experiments. We randomly hide
25% of user-business links as the ground truth positives, and
randomly sample disconnected node pairs of the given form as
negative instances. All the text content carried by business nodes
is used to train the topic model LDA. The ground truth serves as
our test set of YELP dataset.
• Amazon: We extract a subset of Amazon which contains 2,476
users (U), 1,754 movies (M), 293 brands (Br), 95 categories (Ca), to
build a review graph. Movie nodes carry text content from some
useful reviews and descriptions. Here we employ the metapath

set {UMU, UMBrMU, UMCaMU} to perform experiments. All the
text content carried by movie nodes is used to train the topic
model. Similar to YELP dataset, we randomly hide 25% of user-
movie links as the ground truth positives.

Baselines We compare THGNN against three categories of graph
embeddingmethods: randomwalk-based, GNN-based, HGNN-based.
DeepWalk [21] is a traditional random walk-based homogeneous
method employing the skip-gram model [20]. Here we ignore the
heterogeneity of nodes and perform DeepWalk on the whole het-
erogeneous graphs. Mp2vec [5] is a random walk-based hetero-
geneous method, which generates node embeddings by feeding
metapath-based random walks and also employs the skip-gram
model. Here we test all the metapaths for metapath2vec and report
the best performance. HERec [23] is a random walk-based hetero-
geneous method which designs a type-constrained strategy to o
filter the node sequence and utilizes skip-gram to embed the HGs.
GraphSage [10] is a classical GNNs which leverages sampler and
aggregator to encode homogeneous graph. GAT [26] is a homoge-
neous GNN method which adopts multi-head additive attention on
neighbors. DisenGCN [19] is a homogeneous disentangled GNN
method which designs a neighborhood routing mechanism and em-
bedding propagation to disentangle latent factors underlying edges
between nodes and their neighbors. HAN [28] is a HGNN-based
method which extracts metapath-based homogeneous graphs and
adopts hierarchical attentions to aggregate neighobor information
via different metapaths. DisenHAN [30] is a HGNN-based method
which can iteratively identify the major aspect of meta relations
and aggregate corresponding aspect features from each meta rela-
tion for target nodes.MAGNN [8] is a HGNN-based method which
also adopts hierarchical attentions but to aggregate metapath in-
stances leveraging node content features. THGNN\𝑀𝐴 is a variant
of THGNN, which removes the multi-facet attention and employs
the simple average strategy on all metapaths.

Parameter Settings For all the GNN-based and HGNN-based
methods including our model, we search the dimension of output
node embeddings in {64, 128, 256} and report the best performance,
and we unify them in an inductive version. For our method, the
number of metapath-based context samples is 30 and the number
of iterations is 3 in default setting. We fix the dimension of output
node embedding for each task and search the number of latent topic-
aware factors in {4, 8, 16, 32}. To prevent overfitting, we employ
dropout where the ratio is tuned among {0.0, 0.1, · · · , 0.5}. We
optimize THGNN with Adam optimizer by setting the learning rate
to 1𝑒-7 ∼ 1𝑒-4. We use AUC and average precision (AP) to evaluate
performance of models. For all methods, we run 5 times with the
same partition and report the average results. We will release the
codes after the paper is accepted.

5.2 Link Prediction (Q1)
In link prediction, the goal is to predict potential or missing links
connecting pairwise nodes in a graph. It is a widely used task to
evaluate the quality of learnt node representations, and it is also
a demanding task in real world scenarios with multi-facet char-
acteristic. The prediction performance of all models on the three
datasets is summarized in Table 2. Analyzing such performance
comparison, we have the following observations:



Table 2: The performance comparison of link prediction. The underlined means the best performance in baselines.

DBLP (A-P) DBLP (A-A) YELP (U-B) Amazon (U-M)
Models AUC AP AUC AP AUC AP AUC AP
DeepWalk 0.7754 0.7782 0.7488 0.7568 0.6200 0.6281 0.7684 0.7840
Mp2vec 0.7213 0.7243 0.7600 0.7484 0.6792 0.6872 0.7812 0.7834
HERec 0.8186 0.7927 0.7565 0.7871 0.8383 0.8215 0.8085 0.8083

GraphSage 0.8218 0.8341 0.8524 0.8817 0.8874 0.8810 0.8236 0.8327
GAT 0.8322 0.8367 0.8579 0.8805 0.8915 0.8847 0.8329 0.8343

DisenGCN 0.8301 0.8352 0.8692 0.8936 0.8957 0.8838 0.8435 0.8390
HAN 0.8535 0.8719 0.8744 0.9046 0.9013 0.8722 0.8418 0.8414

DisenHAN 0.8496 0.8654 0.8868 0.8947 0.8976 0.8843 0.8426 0.8419
MAGNN 0.8543 0.8727 0.8671 0.9035 0.9123 0.8926 0.8378 0.8278

THGNN\𝑀𝐴 0.8546 0.8683 0.8712 0.8939 0.9154 0.8945 0.8578 0.8502
THGNN 0.8807 0.9000 0.8996 0.9174 0.9243 0.9037 0.8634 0.8515
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Figure 3: Effect of the topic prior guidance module. THGNN-w/o means THGNN without topic prior guidance.

It is clear that our model consistently performs better than all
baselines on three datasets. Compared to the best performance of
baselines, THGNN achieves improvements in terms of both AUC
(up to 1.32% ∼ 3.09%) and AP (up to 1.14% ∼ 3.13%), which indicates
the effectiveness of the delicate designs for factorizing multi-facet
topic-aware semantics in THGNN. The results of its variant also
achieve competitive performance compared to baselines, it is still
significantly worse than the complete THGNN. It indicates the
effectiveness of both structural and topic-aware semantics.

Comparing across baselines, we can observe that GNNs often
obtain better performance against random walk-based methods
since they combine the structures and features information in dif-
ferent ingenious ways. HGNNs further outperform GNNs by better
capturing HGs’ complex structures and rich semantic information.

DisenGCN substantially outperforms other homogeneous GNNs
in most cases. It is reasonable since it is capable of dynamically
recognizing and disentangling the latent factors that cause edges
through a neighbor routing mechanism. The improvements of Dis-
enHAN is not obvious. Possible reasons are that the main goal of
DisenHAN is to automatically factorize structural semantics, which
further confirms the necessity and benefits of mining fine-grained
topic-aware semantics in HGs.

5.3 Analysis of Topic Prior Guidance (Q2)
To investigate the effect of topic prior guidance module on improv-
ing performance, we test THGNN and THGNN without topic prior
guidance (THGNN-w/o) with topic-aware factors in {4, 8, 16, 32} on
DBLP (A-P), YELP (U-B) and Amazon (U-M). As shown in Fig. 3, a
better performance on AUC and AP is substantially coupled with
topic prior guidance especially when 𝐾 is set to be relatively small.
This is because a small 𝐾 with higher dimension for each factor

easily leads to collapse and the topic prior guidance can help to
relieve and keep the quality of multi-facet topic-aware embeddings.
We also notice that the improvements on Amazon when 𝐾 = 8 and
𝐾 = 16 is much less than that on others. This might suggest that,
the inferential process is performed well enough and THGNN still
achieves competitive performance against baselines without topic
prior guidance since users’ preference on movies are diverse.

5.4 Multi-facet Embedding Visualization (Q3)
To analyze the quality of the multi-facet topic-aware embeddings
learned by THGNN intuitively, we visualize the correlation analysis
between the elements of multi-facet node embeddings learned in
DBLP (A-P) task and Amazon (U-M) task. The number of multi-
facet topic-aware factors is set to 𝐾 = 16 in DBLP and 𝐾 = 8
in Amazon. Fig. 4 (a), Fig. 4 (b) and Fig. 4 (c, d) show the results
derived from MAGNN, THGNN without topic prior guidance and
THGNN respectively. The latent features learned by MAGNN are
still hiddenly entangled. It can be explained that the multi-head
attention mechanism [25] adopted by MAGNN has little ability
to capture more fine-grained multi-facet semantics, and its main
function is to reflect in stabilizing the training process. According
to Fig. 4 (c, d) we can also observe on both DBLP and Amazon
dataset that THGNN is able to extract independent multi-facet
representations especially on Amazon dataset, as the correlation
plot exhibits 𝐾 clear diagonal blocks. Comparing the quality of
Fig. 4 (b) and Fig. 4 (c), we can further make a conclusion that
the topic prior guidance plays an important role on giving more
orthogonality and keeping the quality of multi-facet topic-aware
embeddings, and thus THGNN achieves a better performance in
the link prediction task.



Table 3: Case study of the author u198’s top 2 papers by the probability in her three most concerned factors on DBLP (A-P).

Factor Text Content (Title) of Top 2 Papers Probability

9 BibFinder/StatMiner: Effectively Mining and Using Coverage and Overlap Statistics in Data Intergration. 0.1327
Improving text collection selection with coverage and overlap statistics. 0.1621

14 When is Temporal Planning Really Temporal? 0.1404
Parallelizing State Space Plans Online. 0.1480

16 Query Processing over Incomplete Autonomous Databases. 0.2782
Answering Imprecise Queries over Autonomous Web Databases. 0.2632

(a) MAGNN DBLP (A-P). (b) THGNN-w/o DBLP (A-P).

(c) THGNN DBLP (A-P). (d) THGNN Amazon (U-M).

Figure 4: Themagnitude of the correlations between the ele-
ments of the 256-dimensional representations for DBLP (A-
P), and 128-dimensional representations for Amazon (U-B).

(a) Attention scores of metapaths. (b) Average topic distribution.

Figure 5: Attention values on metapaths and average topic-
aware distribution of APA-based context of u198 on DBLP
(A-P).

5.5 Semantics Analysis: Case Study
In order to investigate the semantics in both structural level and
topic-aware level, we further present a case study for a deeper
understanding. We randomly select an author 𝑢198 from DBLP (A-
P) task, and the attention score of metapaths as well as her average
topic distribution of APA-based context are shown in Fig. 5. Fig. 5
(a) shows the metapath APCPA is given the largest weight which
means that𝑢198 considers the APCPA as the most critical metapath
when she connects with a paper node. It suggests that a conference
may represent a research topic. From Fig. 5 (b) we can find that

(a) DBLP (A-P). (b) YELP (U-B).

Figure 6: Analysis of parameter 𝛾 .

𝑢198 mainly focus on topic-aware factor 9, 14 and 16. For each one,
we visualize the title of top 2 papers in her metapath-based context
as well as their probability. As shown in Table 3, for example, factor
9 is probably related to "Overlap statistics" topic, factor 16 may
indicate the "Database" research field.

5.6 Parameter Study
Finally, we perform a sensitivity analysis of the parameter 𝛾 on
DBLP and YELP datasets to explore how topic prior guidance in-
fluences model performance. The results are shown in Fig. 6. As
the topic prior coefficient increases, the performance increases ini-
tially as the guidance is beneficial to the multi-facet topic-aware
representation learning. However, it will drop quickly if 𝛾 is larger
than 0.1 on both DBLP and YELP because too sharp topic-aware
distribution inference which cannot maintain topic relevance will
negatively affect the model.

6 CONCLUSIONS
In this paper, we proposed to identify and reason multi-facet topic-
aware factors underlying the bare connections between associated
nodes, by taking advantage of both heterogeneous structures and
unstructured text content in HGs. Specifically, we proposed a novel
framework THGNN for link prediction to distinctively aggregate
rich heterogeneous information according to the inferential multi-
facet topic-aware factors, so as to generate multi-facet topic-aware
representations preserving both structural and topic-aware seman-
tics. Moreover, we incorporated a topic prior guidance module,
which aims to leverage global knowledge from unstructured text
content, to further improving the quality of multi-facet topic-aware
embeddings. Experiments show that the learned multi-facet topic-
aware node embeddings are more predictive and interpretable.
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