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ABSTRACT
In recent years, Graph Neural Networks (GNNs) have been widely
used in Collaborative Filtering (CF), one of the most popular meth-
ods in recommender systems. However, most existing works focus
on designing an individual model architecture given a specific sce-
nario, without studying the influences of different design dimen-
sions. Thus, it remains a challenging problem to quickly obtain a
top-performing model in a new recommendation scenario. To ad-
dress the problem, in this work, we make the first attempt to profile
the design space of GNN-based CF methods to enrich the under-
standing of different design dimensions as well as provide a novel
paradigm of model design. Specifically, a unified framework of
GNN-based CF is proposed, on top of which a design space is devel-
oped and evaluated by extensive experiments. Interesting findings
on the impacts of different design dimensions on recommendation
performance are obtained. Guided by the empirical findings, we
further prune the design space to obtain a compact one containing
a higher concentration of top-performing models. Empirical studies
demonstrate its high quality and strong generalization ability1.
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Figure 1: An illustration of user-item bipartite graph (left)
and the general embedding-based CF framework taking the
rating prediction procedure of 𝑢2 to 𝑖4 as an example (right).

1 INTRODUCTION
Collaborative Filtering (CF) has been one of themost popular recom-
mender system (RS) methods, which aims at predicting users’ pref-
erences based on those who share similar behaviors [12, 17, 20, 30].
In the literature, most CF methods follow an embedding-based
paradigm as shown in Figure 1 (right), which first learns low-
dimensional representations for users and items, and then uses
an interaction function to predict the preferences (ratings) of users
to items. Classic Matrix Factorization (MF) [16, 24] directly adopts
dot product as the interaction function while Neural Collaborative
Filtering (NCF) [11] proposes to learn interaction function with
neural networks. Very recently, Graph Neural Networks (GNNs)
have been incorporated for the CF tasks, since the user-item inter-
actions can be naturally modeled as a bipartite graph as shown in
Figure 1 (left) and GNN can learn better user/item representations
by capturing the high-order information in the user-item bipartite
graph through an iterative message passing (neighborhood aggre-
gation) [39, 41]. Numerous successful GNN-based models have
been proposed and shown promising results for CF tasks, such as
PinSage [41], NGCF [36], LightGCN [10], and MCCF [38].

Existing GNN based methods are mainly limited to designing
a single best architecture for a specific scenario, while in real-
world applications, the recommendation scenarios are diverse as
the datasets differ in their collected domains and properties like
scale (large or small) and density (dense or sparse). Such diversity
makes it a common practice to design different architectures across
different scenarios. To be more specific, the choice of each design
dimension, e.g., aggregation function or activation function, in the
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chosen model varies across recommendation scenarios. For exam-
ple, in PinSage [41], the non-linear activation function (ReLU) is
a natural choice in the deployed architecture in Pinterest, while
in a following-up work, LightGCN [10], the authors show that the
non-linear activation functions do not always benefit the final per-
formance in other benchmark datasets. Besides, despite various
new GNN-based models for CF have been developed, little has
been done to systematically understand the influences of different
design dimensions of GNN-based CF on recommendation performance.
Therefore, each time given a new scenario, huge efforts including
computational resources and human expertise have to be invested
in exploring the entire huge space of the possible combinations of
all dimensions of GNN models to obtain a top-performing model.

To address the problem, in this work, we propose to profile the
design space, a Cartesian product of multiple design dimensions [42],
of existing GNN-based methods for CF by empirical evaluation. It
not only provides a deeper understanding of the influences of dif-
ferent dimensions on recommendation performance, but also paves
the way for a novel paradigm to efficiently design top-performing
GNN methods in different CF scenarios.

Specifically, we firstly propose a unified framework consisting
of 4 key modules, i.e., initialization, GNN, multi-component, and
interaction, as illustrated in Figure 2(a), which most GNN-based CF
methods can fit into. Then on top of this framework, we develop a
design space which covers important design dimensions of GNN-
based CF models. By incorporating popular choices for each design
dimension (Figure 2(b)), we obtain a design space with more than
100,000 different model architectures, even including classic MF
methods [16, 24] and Multi-Layer Perceptron (MLP), i.e., NCF [11].
Obviously, it is too costly to train and tune all models in the entire
design space. Thus, we adopt the controlled random search [42],
which can provide an efficient and effective way to evaluate the im-
pacts of different design dimensions. By training ∼3,400 models on
9 real-world datasets of different domains, scale, and density, some
interesting findings are obtained to help us better understand the
influences of the proposed design dimensions. Taking the activation
function as an example again, in our evaluation results, Sigmoid
tend to perform better than other choices including Identity,
i.e., no activation function (see Section 4.4 for more details).

Based on the empirical insights, furthermore, we prune the
vanilla design space by narrowing down the choices of design
dimensions, leading to a more compact design space consisting
of only 96 model instances, more than 1,000 times smaller than
the vanilla one. To verify the superiority of the pruned search
space compared to the vanilla one, we empirically compare the
performance distribution of the sampled models in the 2 design
spaces [26]. Then extensive experiments are conducted in differ-
ent popular settings in terms of recommendation scenarios, e.g.,
different levels of sparsity, different model complexity, and new
datasets, to show that the pruned search space contains a higher
concentration of top-performing CF methods. Finally, as a case
study, we perform a random search on the pruned search space
and compare the best searched model with popular CF models, like
MF [16], NCF [11], and LighGCN [10]. The experimental results
show that the searched model can obtain the best performance,
which further demonstrates the quality of the pruned search space

and provide a novel paradigm of model design in recommendation
scenarios.

To summarize, this work makes the following contributions:
• To the best of our knowledge, we make the first attempt to pro-
file the design space of GNN-based CF. It not only deepens the
understanding of different dimensions, but also provides a novel
paradigm to design GNN methods in recommendation scenarios.
• A unified framework, which can cover extensive popular GNN-
based CF models, is proposed. On top of this framework, we
develop a design space and evaluate it by extensive experiments.
Interesting findings are obtained to provide insights into model
design.
• Guided by the insights, we prune the vanilla design space to
obtain a compact one containing a higher concentration of top-
performing models. Empirical studies demonstrate the high qual-
ity and strong generalization ability of the pruned design space.

2 RELATEDWORK
2.1 GNN-based Collaborative Filtering
Collaborative Filtering (CF), learning user preferences by parame-
terizing users and items as embeddings based on the interactions
between them, is the fundamental technique in modern recom-
mender systems [12, 17, 20, 30]. Matrix Factorization (MF) [16, 24],
one of the most traditional CF techniques, projects the one-hot ID
of a user/an item into an embedding vector and then utilizes the
dot product of the embedding vectors of users and items to recon-
struct the user-item interaction matrix. The recent success of deep
learning has motivated a wave of studies focusing on incorporating
neural components into CF models [11]. For example, NCF [11]
uses Multi-Layer Perceptron (MLP) to replace the conventional dot
product as the user-item interaction function.

Recent years have witnessed the great success of Graph Neural
Networks (GNNs) in CF for learning effective user/item representa-
tions [1, 2, 10, 36–38, 41, 43]. For example, NGCF [36] decides the
message propagating on both the graph structure and the affinity
between the central node and combines the representations of dif-
ferent layers to get the final node representation. LightGCN [10]
argues that the non-linearity and weight matrices are useless for
CF without side information, and proposes a simple GNN-based CF
model. DGCF [37] disentangles the user/item representations into
several components to reflect user preference frommultiple aspects.
More works on GNN-based recommendation can be checked in a
latest survey [39].

Despite various GNN-based models developed, they only design
a specific model architecture tuned for a specific scenario while
our work focuses on a novel paradigm, i.e., profiling the design
space, to facilitate the design of top-performing models in diverse
recommendation scenarios.

2.2 Empirical Evaluation of GNN and CF
Recently, there has been an emerging trend of conducting evalua-
tion studies on GNNs and CF, respectively. Towards GNNs, Shchur
et al. [31] investigate the influence of dataset split and compare
the aggregated evaluation results on different dataset splits. Lv
et al. [22] point out the issues in heterogeneous GNNs compar-
ison and propose a heterogeneous graph benchmark. Zhang et



(a) The Unified Framework

(b) Choices in the Design Dimensions
Design Dimension Choices

Initial Embedding Dimension 𝑑 64, 128, 256
Message Function𝑚(·) Identity, Hadamard

Aggregation 𝑓 (·) None, GCN, GAT, GIN, GraphSAGE
Activation 𝜎 (·) Identity, Sigmoid, Tanh, ReLU, PReLU, LeakyReLU
Layer Number 𝐿 1, 2, 3, 4

Layer Combination 𝑔(·) Stack, Concat, Sum, Mean
Component Number 𝐾 1, 2, 3, 4

Component Combination 𝑐 (·) Concat, Mean, Att
Interaction Function 𝑝 (·) Dot Product, Concat+MLP, Sum+MLP

(c) Controlled Random Search (d) Ranking Analysis of𝑚 ( ·)

Figure 2: Overview of the design space and the evaluation strategy. (a) An illustration of the unified framework of GNN-
based CF suppose that the rating of the same user-item pair (𝑢2, 𝑖4) as in Figure 1 is to be predicted. It contains 4 modules:
initialization, GNN, multi-component, and interaction. On top of the framework, we propose a GNN-based CF design space
consisting of 9 design dimensions, which are marked in red. (b) Popular choices in the 9 design dimensions are listed. (c)
An example of performing controlled random search to investigate the influence of message function 𝑚(·). In each group
of configurations, the design choices of 𝑚(·) ∈ {Identity, Hadamard} are ranked by performance. (d) The average of the
rankings corresponding to each design choice is shown for analysis. Lower is better.

al. [44] compare the performance of embedding a network into
hyperbolic space with Euclidean space. Previous works in the rec-
ommendation domain have also discussed the worrying current
situation of reproducibility issue and fair evaluation of CF tech-
niques and several recently proposed complicated models are found
to be outperformed by simple and well-optimized baseline algo-
rithms [3, 19, 28, 29, 32, 48].

However, as a prominent CF technique, empirical evaluations
on GNN-based CF have received relatively less scrutiny in existing
works. Furthermore, the aforementioned evaluation works focus on
comparing the individual model performance, while our approach
elevates the study level to design space, i.e., a population of models,
which guarantees stronger robustness and generalization. You et
al. [42] explores the design space and the task space of GNN and
conduct experiments to provide guidelines for better GNN model
design. Faced with more domain-specific challenges, e.g., sparsity
and diverse user interests, we accordingly customize the evalu-
ation, make a more thorough analysis, and draw more valuable
conclusions that enhance research compared to the link prediction
task of GraphGym [42]. We further develop a pruned design space
containing a higher concentration of top-performing models that
can work well in different recommendation settings.

3 DESIGN SPACE OF GNN-BASED CF
3.1 The Unified Framework
As mentioned in the introduction, the existing GNN-based CF
could be divided into 4 key modules, i.e., initialization, GNN, multi-
component, and interaction. In general, as illustrated in Figure 2(a),
we propose a unified framework composed of the 4 modules. Taking
the representation update procedure on the user side as an example,
we elaborate on the framework as follows.

(1) Initialization projects the one-hot user/item ID to dense real-
valued embeddings by embedding matrix ID-lookup, i.e., e𝑢 =

𝑙𝑜𝑜𝑘𝑢𝑝 (𝐼𝐷 (𝑢)) , e𝑖 = 𝑙𝑜𝑜𝑘𝑢𝑝 (𝐼𝐷 (𝑖)), where e𝑢 (resp. e𝑖 ) is the
initial embedding of user𝑢 (resp. item 𝑖). It is a standard manner
when there are no extra available features such as user profiles
or item attributes.

(2) GNN feeds the initial embeddings of users/items into GNN,
refines the embeddings through the propagation of GNN layers,
and obtains the representations by combining the output of
each GNN layer (including the initial embedding), as follows,

h(0)𝑢 = e𝑢 , h
(0)
𝑖

= e𝑖 , (1)

m(𝑙)
𝑢←𝑖 =𝑚

(
h(𝑙−1)𝑢 , h(𝑙−1)

𝑖

)
, (2)



Table 1: A summary of the popular CF methods that can be instantiated from the design space. Initial embedding dimension
𝑑 , layer number 𝐿, and component number 𝐾 are omitted since they do not affect the overall model architecture and the
last column indicates if multi-component is taken into consideration during model design. The notations are introduced in
Figure 2(b).

Category Model 𝑚(·) 𝑓 (·) 𝜎 (·) 𝑔(·) 𝑐 (·) 𝑝 (·) Single-/Multi-
component

Classic MF [16, 24] Identity None Identity Stack - Dot Product Single
LLORMA [18, 46] Identity None Identity Stack Att Dot Product Multiple

MLP-based NCF [11] Identity None ReLU Stack - Concat+MLP Single

GNN-based

NGCF [36] Hadamard GCN LeakyReLU Concat - Dot Product Single
LightGCN [10] Identity GCN Identity Mean - Dot Product Single
LR-GCCF [2] Identity GCN Identity Concat - Dot Product Single
SMOG-CF [43] Hadamard GCN ReLU Concat - Dot Product Single
PinSage [41] Identity GraphSAGE ReLU Stack - Dot Product Single
MCCF [38] Identity GAT ReLU Stack Att Concat+MLP Multiple
DGCF [37] Identity GCN Tanh Sum Concat Dot Product Multiple

h(𝑙+1)𝑢 = 𝜎

(
𝑓

[{
m(𝑙)
𝑢←𝑖 ,∀𝑖 ∈ N (𝑢)

}
, h(𝑙)𝑢

] )
, (3)

h𝑢 = 𝑔(h(0)𝑢 , h(1)𝑢 , · · · , h(𝐿)𝑢 ), (4)

where h(𝑙)𝑢 (resp. h(𝑙)
𝑖

) denotes the refined representation of
user 𝑢 (resp. item 𝑖) after 𝑙 GNN layers, 𝑚(·) is the message
function to encode the message flow from item 𝑖 to user 𝑢 as
m(𝑙)
𝑢←𝑖 , 𝜎 is the activation function, N(𝑢) is the neighborhood

of user 𝑢, 𝑓 (·) is the neighborhood information aggregation
technique in each layer, 𝑔(·) is the layer combination function
of the 𝐿 + 1 representations after propagating 𝐿 layers.

(3) Multi-component learns how to better model diverse user
interests from different aspects by disentangling user/item rep-
resentations into multiple components [37, 38]. Specifically, 𝐾
independent embedding procedures are performed according
to Equation (1)-(4), and 𝐾 representations corresponding to
each component are obtained as h𝑢,1, h𝑢,2, · · · , h𝑢,𝐾 , which are
combined to obtain the final representation, as follows,

h𝑢 = 𝑐 (h𝑢,1, h𝑢,2, · · · , h𝑢,𝐾 ), (5)

where 𝑐 (·) is the component combination function of the 𝐾
representations from each component to obtain the final user
representation.

(4) Interaction performs the user-item matching and predicts the
rating value of user-item pair to reflect user preference, as fol-
lows,

𝑟𝑢𝑖 = 𝑝 (h𝑢 , h𝑖 ) , (6)

where 𝑝 (·) is the interaction function to predict 𝑟𝑢𝑖 as the rating
of the user-item pair (𝑢, 𝑖).
Due to the symmetry of the user-item bipartite graph, we can

get similar formulations on the item side.

3.2 The Proposed Design Space
Based on the unified framework, 9 design dimensions can be ex-
tracted, which are split over the 4 modules and marked in red in
Figure 2(a), with various possible design choices shown in Figure 2(b).

The proposed model architectures vary in their design choices. For
example, LightGCN [10] and LR-GCCF [2] claim that non-linear
activation doesn’t benefit CF so remove it from their proposed ar-
chitectures while it still remains in many other works [36, 38, 41].
Different combinations of design choices generate different model
instantiations with different recommendation performance. There-
fore, the specific choices in the design dimensions should be taken
into serious consideration during model design. To explore the
impacts of different design dimensions, we propose to profile the
design space, defined as the Cartesian product of design dimen-
sions [42], which contains a population of model instantiations.
Note that our purpose is not to propose the most extensive design
space, but to help to understand the influences of different design
dimensions of GNN-based CF and gain insights for designing well-
performing models. In fact, the design dimensions and their ranges
can be naturally expanded by incorporating more choices.

We elaborate on some important design dimensions as follows.
Others can be naturally understood from the table in Figure 2(b).

• Message function 𝑚(·). In the literature, the common prac-
tice is to directly set 𝑚(·) = h(𝑙−1)𝑢 [10, 37, 38, 41], but some
works [36, 43] claim that the interaction between the source and
the target node should be encoded into message. Therefore, we
also set𝑚(·) = h(𝑙−1)𝑢 ⊙ h(𝑙−1)

𝑖
, where ⊙ denotes the hadamard

multiplication of two vectors. The above two design choices are
denoted as Identity and Hadamard, respectively.
• Aggregation 𝑓 (·). For this design dimension, we consider four
common and effective GNNmethods as its design choices:GCN [15],
GAT [34], GIN [40], and GraphSAGE [8]. Particularly, we gener-
alize the design dimension to include the choice of None, which
represents not exploiting the graph information and refining the
user/item representations throughMLP, to enlarge the capacity of
the design space to include those non-GNN-based models [11, 16].
• Layer combination 𝑔(·). Stack represents directly stacking
multiple GNN layers and using the output of the final layer [38,
41] to obtain the representation corresponding to each compo-
nent. Since the outputs of intermediate layers are also found



useful in previous works [10, 36, 37], we investigate three addi-
tional layer combination approaches: Concat, Sum, and Mean.
• Component combination 𝑐 (·). A direct strategy used in ex-
isting works, such as DGCF [37], is to get the representations
concatenated, denoted as Concat. The attention mechanism
can also be used [38], denoted as Att. And we add an additional
design choice Mean.
• Interaction function 𝑝 (·). A simple yet effective choice is cal-
culating the dot product of the user and item representations,
denoted as Dot Product. Neural networks can also be used
for learning an interaction function [11]. The user and item rep-
resentations are first concatenated or summed up, and then fed
into an MLP for prediction, which are denoted as Concat+MLP
and Sum+MLP, respectively.

3.3 Relationship with Existing CF Methods
Table 1 shows 10 popular CF methods that can be instantiated
from the proposed design space. Specifically, the methods can be
categorized into 3 groups: (1) classic methods which mainly refer
to MF and its variants; (2) MLP-based methods which incorporate
neural networks for CF; (3) GNN-based methods which enhance
CF by GNNs. We next choose 3 representative models from each
category and briefly explain how they can be instantiated by the
design space.

• MF [16] is the most common CF method which uses the dot
product of the user and item representations to reconstruct the
user-item interaction matrix. It can be naturally instantiated by
setting the aggregation as None and adopting Dot Product
as the interaction function.
• NCF [11] proposes to learn interaction function with neural
networks. It can be included by choosing Concat+MLP as the
interaction function.
• LightGCN [10] is a state-of-the-art GNN-based CFmethod, which
can be considered as choosing GCN as the aggregation technique,
Identity function as the activation, i.e., removing the non-
linear computations, and Mean as the layer combination func-
tion.

We can see that the framework unifies the key design dimensions
in popular CF models and the proposed design space is comprehen-
sive enough to include a broad spectrum of model instantiations.
In the next section, we then perform an evaluation of the design
space to understand the impacts of different design dimensions.

4 EVALUATION OF THE DESIGN SPACE
4.1 Datasets
As discussed in the introduction, the recommendation scenarios
in real-world applications are diverse. To make the experimental
findings more robust, the evaluation is conducted on 9 real-world
datasets, which are diverse in scale (large or small), density (dense
or sparse), and the collected domain. The statistics of the datasets
are shown in Table 2, whose detailed descriptions and preprocessing
strategies can be found in Appendix A.

Table 2: Statistics of the datasets.

Dataset # of Users # of Items # of Interactions Rating Scale Density

Yelp1 58,069 31,721 1,160,605 [1,5] 0.063%
Amazon-CDs [9] 31,296 24,379 622,163 [1,5] 0.082%

Amazon-Movies [9] 44,439 25,047 1,070,860 [1,5] 0.096%

YahooMusic [5, 25] 1,357 1,363 5,335 [1,100] 0.28%
Amazon-Beauty [9] 7,068 3,570 79,506 [1,5] 0.32%
Flixster[13, 25] 2,341 2,956 26,173 [0.5,5] 0.38%

Douban [23, 25] 2,999 3,000 136,891 [1,5] 1.52%
MovieLens-1M2 6,040 3,706 1,000,209 [1,5] 4.47%
MovieLens-100K3 943 1,682 100,000 [1,5] 6.31%

1 https://www.yelp.com/dataset/
2 https://grouplens.org/datasets/movielens/100k/
3 https://grouplens.org/datasets/movielens/1m/

Table 3: Choices of the hyperparameter dimensions.

Hyperparameters Choices

Dropout 0, 0.5
Training Epochs 120, 160, 200

𝐿2 Regularization Weight 𝜆 0.0005, 0.005, 0.05

Figure 3: Ranking analysis of the hyperparameter dimen-
sions. Lower is better. The values of these hyperparameters
are fixed as the optimal design choices.

4.2 Evaluation Technique
With over 100,000 model architectures in the design space, conduct-
ing full grid search to evaluate each design dimension is too costly.
To overcome this issue, we adopt controlled random search [42] as
the design space evaluation strategy.

To make the evaluation distributed across different datasets, we
first define the Cartesian product of design dimensions and datasets
as the configuration space, and the controlled random search is
performed in the configuration space to draw experimental con-
figurations. As illustrated in Figure 2(c), suppose that we want to
evaluate message function𝑚(·), we first draw 𝑆 experimental con-
figurations by random searching the configuration space, all with
𝑚(·) = Identity. Then, by setting𝑚(·) = Hadamard, while con-
trolling all the other dimensions, we draw another 𝑆 configurations.
Now, we obtain 𝑆 groups, all with 2 configurations that only differ
from each other in𝑚(·). Within each group, the 2 design choices
of 𝑚(·) ∈ {Identity, Hadamard} are ranked by performance,
where a tie is given if the performance difference is less than 0.0001.
The average rankings of different choices over all the 𝑆 groups are
shown via bar plot as illustrated in Figure 2(d). In our experiment,
we set 𝑆 = 100 to cut the number of experiments from 103,680 to
3,400, by over 30 times.

4.3 Evaluation Setup
4.3.1 Loss Function and Evaluation Metric. Since our task is pre-
dicting ratings for user-item pairs, we adopt the widely-used Mean



Figure 4: Ranking analysis of the 9 design dimensions.
Lower is better.

Square Error (MSE) loss function,2 which is formulated as follows:

𝐿 =

∑
(𝑢,𝑖) ∈O𝑡 (𝑟𝑢𝑖 − 𝑟𝑢𝑖 )

2

|O𝑡 |
+ 𝜆∥Θ∥2, (7)

where 𝑟𝑢𝑖 and 𝑟𝑢𝑖 are the predicted rating and the ground truth,
respectively, O𝑡 is the set of observed ratings for training, 𝜆 is the
hyperparameter controlling the 𝐿2 regularization weight and Θ
denotes the model parameters.

As for the evaluation metric, we use the common Rooted Mean
Square Error (RMSE) for the rating prediction task [16], which is

calculated by 𝑅𝑀𝑆𝐸 =

√∑
(𝑢,𝑖 )∈O𝑒 (𝑟𝑢𝑖−𝑟𝑢𝑖 )

2

|O𝑒 | , where O𝑒 is the set of
observed ratings for testing.

4.3.2 Hyperparameters. The hyperparameters of the sampled mod-
els should be the same to ensure a fair comparison. The values of 3
hyperparameters, i.e., dropout, training epochs, and 𝐿2 regulariza-
tion weight 𝜆 are set according to the evaluation result of controlled
random search on the validation set. Their available choices are
listed in Table 3 and the evaluation result is shown in Figure 3. The
rest of the hyperparameters are set as common values in practice.
We refer the readers to Appendix B.1 for more detailed hyperpa-
rameter settings and C.1 for other implementation details.

4.4 Evaluation Results
Results are shown in Figure 4 with 9 bar plots, each depicting the
averaged rankings of different choices in each design dimension
(we further show the violin plots to decipt the ranking distribu-
tion in Appendix D). The experiment quantitatively evaluates the
impacts of different design dimensions of GNN-based CF on recom-
mendation performance across a wide range of recommendation
scenarios.

Rather than searching for the single best model out of all these
configurations, we explore whether there are findings that can
enrich the understanding of the design dimensions and help to
efficiently design top-performing GNN-based CFmodels in different
recommendation scenarios. Some key experimental findings are
enumerated as below:
• GAT and GraphSAGE slightly outperform the other alternatives.
Interestingly, None is comparable with GNN-based aggregators,

2In this work, we mainly study the rating prediction task under MSE loss and leave
the study of the influence of different types of loss function as future work.

indicating that simply using MF [16] or MLP-based CF meth-
ods [11] can achieve competitive or even better performance in
some scenarios. The interesting finding reveals that incorporat-
ing graph information can not always enhance CF.
• Sigmoid clearly stands out among all the 6 activations. This
finding differs from that in [10], which finds out that the non-
linear activation can not benefit CF. A possible explanation is
that the tasks studied in the two works are different: item ranking
in [10] while rating prediction in ours, where non-linear acti-
vation can help to increase the expressive power of the neural
networks for such a regression task.
• When taking multi-component into consideration, it is more
favorable to set component number as 4, which aligns with the
finding of previous work [37] that the user interests are diverse in
different aspects. And it is preferable to combine representations
of different components with Att mechanism.
• Adopting neural interaction function is superior to adopting
Dot Product, which is not consistent with the finding in [28]
that Dot Product is a better choice to MLP for predicting
the ratings for user-item pairs. We suppose it may be caused by
the different settings of the two works. In [28], the evaluation is
performed on specific model architectures with 2 datasets, while
in our setting, we evaluate thousands of model architectures on
9 different datasets, and thus, different conclusions are drawn.
The above findings not only enrich our understanding of the

impacts of different design dimensions but further provide valuable
insights for effectively designing top-performing models. Specif-
ically, we can observe that there exists some redundancy in the
design space. For example, the initial embedding dimension can be
fixed as 64 since it significantly outperforms the other 2 alternatives.
It motivates us that the vanilla design space can be further pruned
to improve its quality, which will boost the searching efficiency of
top-performing models.

5 EVALUATION OF PRUNED DESIGN SPACE
Following the insights provided in Section 4.4, we prune the vanilla
design space by narrowing down the choices of design dimen-
sions. The motivation is that we only remain those favorable de-
sign choices, which are empirically more likely to generate well-
performingmodels. Thus, the pruned design space contains a higher
concentration of top-performing models which will facilitate model
searching.

5.1 The Pruned Design Space
Table 4 introduces the choices in the design dimensions of the
pruned design space. We briefly explain the pruning in 3 dimen-
sions, and for the other dimensions, preferable design choices are
remaining, which can be naturally understood from Figure 4. For
aggregation, GraphSAGE remains as the representative of graph
information aggregator for its smaller training consumption than
GAT, and None also remains to make the pruned design space have
a capacity of non-GNN-based models. As for the activation, two
preferable non-linear functions and Identity remain for better
containment of linear and non-linear models. The optimal com-
ponent number 4 remains, and we also keep the choice of 1 for
investigating single-component models.



Table 4: Choices in the design dimensions of the pruned de-
sign space.

Design Dimension Choices

Initial Embedding Dimension 𝑑 64
Message Function𝑚(·) Identity, Hadamard

Aggregation 𝑓 (·) None, GraphSAGE
Activation 𝜎 (·) Identity, Sigmoid, ReLU
Layer Number 𝐿 1, 2

Layer Combination 𝑔(·) Mean
Component Number 𝐾 1, 4

Component Combination 𝑐 (·) Att
Interaction Function ℎ(·) Concat+MLP, Sum+MLP

After pruning, there are only 96 candidate models in the design
space, compared to 103,680 in the vanilla one. The scale of the design
space is reduced by three orders of magnitude (1,080x). Compared
to the vanilla one, the superiority of the pruned design space lies in
that it simplifies the combinations of design dimensions by ruling
out the sub-optimal choices, and thus contains a higher concentra-
tion of top-performing models which work well across scenarios
for efficient searching. The pruned design space consistently shows
high quality in different recommendation settings, which indicates
its strong generalization ability. In the remainder of this section, we
then conduct a series of evaluation studies to verify the superiority
of the pruned design space.

5.2 Evaluation
5.2.1 Evaluation Technique. We use the RMSE empirical distribu-
tion function (EDF) [26] to quantify the quality of a design space by
characterizing the RMSE distribution generated by sampling and
training 𝑛 models from that design space. We empirically observe
that sampling 𝑛 = 100 samples is sufficient. For more discussions
on EDF and the detailed selection process for 𝑛, please refer to
Appendix E.

5.2.2 Generalization Evaluation. To show that the pruned design
space can facilitate model design across different scenarios, we con-
duct the following empirical studies to evaluate its generalization.
Specifically, we compare the EDFs in 3 different popular settings
in terms of recommendation scenarios. The experimental results
demonstrate that the quality of the pruned design space consistently
outperforms that of the vanilla one.

Different levels of density. Interaction density is an important
property to characterize a recommendation dataset and it diversi-
fies in different recommendation scenarios. As shown in Table 2,
datasets can be divided into 3 groups according to the order of mag-
nitude of their interaction density. We select Yelp, Amazon-Beauty,
and MovieLens-1M as the representatives of each group, and the
EDF comparison results on the 3 datasets are shown in Figure 5.

Under all the 3 levels of density, the performance distribution of
the pruned design space concentrates within a compact and high-
valued range. Specifically, on Yelp and Amazon-Beauty, the pruned
design space contains the models with the best performance in the
vanilla design space; and in MovieLens-1M, although the models

Figure 5: Comparison results of design space generalization
to different levels of density. Yelp (left), Amazon-Beauty
(middle), and MovieLens-1M (right).

Figure 6: Comparison results of design space generalization
to different model complexity on Yelp. Low (left) and high
model complexity (right).

of the pruned design space may be outperformed by about 10%
of those in the vanilla one, we still significantly narrow down the
performance range of the models to a high-valued area, making it
more efficient to find models with satisfactory performance.

Different model complexity. Recently, there is a growing inter-
est in deploying customized neural architectures on diverse hard-
ware devices with different computational resource constraints [33].
Therefore, the requirements of model complexity vary across dif-
ferent platforms. By regarding the number of trainable parameters
as the indicator of model complexity, we compare the quality of
the vanilla and the pruned design space under the constraints of
low and high model complexity, respectively. Specifically, we use a
model with𝑑 = 64, 𝐿 = 1,𝐾 = 1, 𝑓 (·) = None as reference to set the
low complexity constraint; and the other with 𝑑 = 256, 𝐿 = 4,𝐾 = 4,
𝑓 (·) = GraphSAGE to set the high complexity constraint (both
with 64 hidden dimensions). The number of hidden dimensions of
the sampled architecture is adjusted to match the model complexity
constraints. We choose Yelp as the experimental dataset and the
comparison results are shown in Figure 6.

We can observe that model performance in the pruned design
space distributes in a small but top-valued area under both lev-
els of model complexity, demonstrating its superior performance
compared to the vanilla design space.

Generalization to new datasets. To further show the generaliza-
tion ability to new recommendation scenarios, we sample and train
the models from each design space on 2 new datasets: Epinions and
Amazon-Sports, whose statistics are shown in Table 5. The EDFs of
the 2 design spaces on the new datasets are compared, respectively,
in Figure 7.

Again, we can observe that the EDF of the pruned design space is
improved substantially on both of the new datasets, which demon-
strates the stronger robustness and generalization of the pruned
design space given new recommendation scenarios.



Figure 7: Comparison results of design space generalization
to new datasets. Epinions (left) and Amazon-Sports (right).

Table 5: Statistics of the 2 new datasets.

Dataset # of Users # of Items # of Interactions Rating Scale Density

Epinions1 40,163 139,738 664,824 [1,5] 0.012%
Amazon-Sports [9] 11,435 5,405 108,004 [1,5] 0.17%
1 http://www.trustlet.org/downloaded_epinions.html

Table 6: The best searched model architectures with ran-
dom sample number m=10 on Epinions and Amazon-Sports.
Only the variable design dimensions in Table 4 are listed,
and the choices in the remaining design dimensions remain
the same as those in Table 4.

Dataset 𝑚(·) 𝑓 (·) 𝜎 (·) 𝐿 𝐾 𝑝 (·)
Epinions Hadamard None ReLU 1 1 Sum+MLP

Amazon-Sports Identity GraphSAGE Sigmoid 1 4 Sum+MLP

To summarize, in all the above 3 settings, the pruned design space
consistently holds better quality than that of the vanilla design
space without signs of overfitting, which demonstrates its strong
generalization to various new settings.

5.3 Case Study: Random Search
A case study is conducted to further verify if the pruned design
space with a higher concentration of top-performing models can
enhance model searching in new scenarios. Since our focus is the de-
sign space, the searching can be performed with exiting graph neu-
ral architecture search algorithm [4, 7, 35, 45, 47], for whichwe leave
this as future work. Here, we simply adopt random search. Specifi-
cally, we randomly search and train𝑚 = 10 models in the pruned
search space on the 2 new datasets, i.e., Epinions and Amazon-
Sports, and adopt the one with the best test performance as our
final choice. Table 6 shows the best searched model architectures.

We then compare the best searched model with popular CF
baselines. The goal of this section is not to pursue state-of-the-art
performance on the 2 datasets, but to evaluate the quality of the
pruned search space, i.e., higher concentration of top-performing
models, and how it benefits model design in new recommendation
scenarios simply with a random search strategy. Thus, we only
include 3 popular GNN-based CF methods as well as MF and NCF
as comparisons and do not heavily tune the baselines as well as
our searched models. We run all the methods for 10 times with
different random seeds, and report the average and the standard
deviation of the RMSE performance results in Table 7. The detailed
hyperparameter settings and more implementation details can be
found in Appendix B.2 and C.2, respectively.

We can observe that the randomly searched models can out-
perform all the baselines on the 2 datasets, which shows that the

Table 7: Performance comparisons with baselines on Epin-
ions and Amazon-Sports. RS-10 denotes the randomly
searched model under 10 samples. Lower is better. The best
results are bold and the second-best are underlined.

Model Epinions Amazon-Sports

MF [16] 0.9945 ± 0.0000 0.9882 ± 0.0007
NCF [11] 1.0070 ± 0.0055 0.9342 ± 0.0008
NGCF [36] 1.1437 ± 0.0240 1.0668 ± 0.0038

LightGCN [10] 0.9926 ± 0.0001 0.9705 ± 0.0003
DGCF [37] 1.6800 ± 0.2272 0.9894 ± 0.0000

RS-10 0.8729 ± 0.0014 0.9327 ± 0.0006

pruned design space with high quality can help to efficiently de-
sign top-performing models for new recommendation scenarios.
Besides, we note that there is not a single baseline model which
can consistently beat its competitors, which shows that designing
top-performing models for diverse new scenarios is not a trivial
task and emphasizes the significance of exploring design space for
higher model design efficiency.

The insights obtained from design space profiling in Section 4.4
guide us to perform design space pruning for a higher concentra-
tion of top-performing models. Compared to the common practice
that designing an individual model for a specific setting, the novel
paradigm of profiling the design space focuses on a population
of models, and thus stronger robustness and generalization are
guaranteed. The evaluation results demonstrate its strong general-
ization ability and the case study further shows its effectiveness in
quickly finding well-performing models. Therefore, we conclude
that the novel paradigm of exploring design space paves the way
for efficiently designing top-performing GNN methods in different
recommendation scenarios.

6 CONCLUSION
In this work, we propose to profile the design space of GNN-based
CF methods, which have been widely researched in recent years.
By covering existing GNN-based CF methods in a unified frame-
work, a novel design space is developed and a controlled random
search is adopted to efficiently and effectively evaluate the influ-
ences of different dimensions on recommendation performance.
Furthermore, based on the empirical findings, design space pruning
is performed by ruling out some design choices which are shown to
be sub-optimal in the evaluation. Then empirical studies in different
settings demonstrate the high quality and the strong generalization
ability of the pruned design space. Finally, as a case study, we show
that it can quickly obtain top-performing model architectures on 2
new datasets simply by random searching the pruned design space,
compared to popular CF methods. In the future, we will further
explore how the proposed design space can benefit more complex
recommendation scenarios, e.g., social recommendation [6].
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A DATASETS
• Yelp is a business recommendation dataset. 10-core filtering is
applied to ensure that each user/item has at least 10 interactions.
• Amazon is a large e-commerce dataset introduced in [9], and we
take the subsets from 3 categories to form Amazon-CDs, Amazon-
Movies and Amazon-Beauty and apply 10-core filtering.
• MovieLens is a widely-used movie rating dataset for evaluating
recommender systems, and we choose both the 100K and 1M
versions in our experiment.
• YahooMusic [5] is a music rating dataset, and Flixster [13], and
Douban [23] are both movie rating datasets. For these 3 datasets,
we use the preprocessed subsets provided by [25].
For MovieLens-100K/1M, YahooMusic, Flixster, and Douban, we

follow the customized split provided together with the dataset; and
for the rest of the datasets, we randomly split them into 0.8/0.1/0.1
train/validation/test sets. Testing performance in the best epoch of
validation set is reported.

The 9 datasets contain ratings with different scales. For a more
fair comparison and fast convergence of models, we adopt stan-
dardization to the initial ratings using 𝑅′ = 𝑅−𝜇𝑡𝑟𝑎𝑖𝑛

𝜎𝑡𝑟𝑎𝑖𝑛
, where 𝜇𝑡𝑟𝑎𝑖𝑛

and 𝜎𝑡𝑟𝑎𝑖𝑛 are the mean and standard variation of the rating value
in the training set, respectively.

B HYPERPARAMETERS
B.1 Design Dimension Evaluation
In hyperparameter evaluation, 𝑆 = 30 groups of experimental con-
figurations are sampled for each of the 3 selected hyperparameters.
The values of these hyperparameters remain the same as the opti-
mal choices in the evaluation result shown in Figure 3, i.e., dropout
is fixed as 0, the number of training epochs is fixed as 200, and 𝐿2
regularization weight is fixed as 0.0005. The hidden dimension
of GNN layer is set as 64. All models are optimized using Adam [14]
optimizer. The base learning rate is set as 0.01 and is scheduled
using the cosine annealing method of SGDR [21].

B.2 Case Study
For our randomly searched models, we perform rough hyperpa-
rameter tuning; and for the baselines, their hyperparameters are
initialized according to the suggestions in the original papers and
also roughly tuned by several steps.

For brevity, we will denote some variables. Suppose hidden di-
mension of (GNN) layer as 𝑑ℎ , number of (GNN) layers as 𝐿, 𝐿2
regularization weight as 𝜆, learning rate as 𝑙𝑟 . For training epochs
of baselines, we use early stop mechanism based on the evaluation
on validation set.

B.2.1 MF. We set 𝑑ℎ = 64, 𝜆 = 10−2 and 𝑙𝑟 = 10−3 for both
datasets.

B.2.2 NCF. We set 𝑑ℎ = 64, 𝜆 = 10−2 and 𝑙𝑟 = 10−3 for both
datasets.

B.2.3 NGCF. We set 𝑑ℎ = 64, 𝐿 = 3, 𝜆 = 10−2 and 𝑙𝑟 = 10−3 for
both datasets.

B.2.4 LightGCN. We set 𝑑ℎ = 64, 𝐿 = 3, 𝜆 = 10−5 and 𝑙𝑟 = 10−3
for both datasets.

B.2.5 DGCF. We set 𝑑ℎ = 64, 𝐿 = 1, the number of latent factors
as 4, the number of iterations as 2, 𝜆 = 10−3 and 𝑙𝑟 = 10−3 for both
datasets.

B.2.6 RS-10. We set the number of training epochs as 160 for Epin-
ions, and 𝜆 = 5 × 10−3 for Amazon-Sports. Other hyperparameters
remain the same as our former setting.

C IMPLEMENTATION DETAILS
C.1 Design Dimension Evaluation
We utilize Intel(R) Xeon(R) Silver 4210 CPU@ 2.20GHz and GeForce
RTX 3090 as the experimental environment. A small number of ex-
perimental configurations are skipped because of OOM on a single
GPU. Our customized evaluation is performed on the GraphGym
platform [42], which supports parallel experiment launch. To make
the results convincing as reliable, the averaged results across 3 runs
with different random seeds are reported.

C.2 Case Study
The baselinemethods are evaluated using the RecBole framework [48].
For fair comparisons, all the methods are optimized with the MSE
loss calculated as Equation (7).

D ADDITIONAL RESULTS
In this section, we provide additional experimental results of design
space profiling. The violin plot indicates the smoothed distribution
of the ranking of each design choice aggregated over the sampled
experimental configurations (Figure 8). It provides us with informa-
tion on how the ranking results distribute across different values.

Figure 8: The ranking distribution analysis.

E DISCUSSION ON EDF
Suppose 1 as the indicator function, 𝑛 as the number of sampled
models, each with RMSE 𝑥𝑖 . The RMSE EDF is given by:

𝐹 (𝑥) = 1
𝑛

𝑛∑
𝑖=1

1 [𝑥𝑖 < 𝑥] . (8)

𝐹 (𝑥) gives the fraction of models with RMSE less than 𝑥 .



Figure 9: EDF curves w.r.t. varying sample numbers on
Amazon-Sports.

The key intuition behind using EDF as the indicator of a design
space is that comparing distributions can help to obtain more robust

and informative conclusions than comparing the best found models
from the two design spaces [27].

To explore the appropriate value for 𝑛, we plot the EDF curves of
the vanilla design space on the Amazon-Sports dataset, whose sta-
tistics are introduced in Table 5, with the sample number 𝑛 ranging
from 20 to 1000 in Figure 9. Since only the performance distribution
on the same dataset is comparable, the dataset is fixed when com-
paring EDF curves in the same illustration. We can observe that
the resulting EDF curves are close to each other after 𝑛 reaching
100, which suggests that 100 samples may be sufficient to give a
reasonable estimate of the accurate EDF. Therefore, for the vanilla
design space, we will show the EDFs for 𝑛 = 100 sampled models;
and for the pruned design space, we set 𝑛 = 96 since it is the total
number of the models it contains.
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