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ABSTRACT
Graph Convolutional Networks (GCNs) have recently attracted vast

interest and achieved state-of-the-art performance on graphs, but its

success could typically hinge on careful trainingwith amounts of ex-

pensive and time-consuming labeled data. To alleviate labeled data

scarcity, self-training methods have been widely adopted on graphs

by labeling high-confidence unlabeled nodes and then adding them

to the training step. In this line, we empirically make a thorough

study for current self-training methods on graphs. Surprisingly, we

find that high-confidence unlabeled nodes are not always useful,

and even introduce the distribution shift issue between the orig-

inal labeled dataset and the augmented dataset by self-training,

severely hindering the capability of self-training on graphs. To

this end, in this paper, we propose a novel Distribution Recovered
Graph Self-Training framework (DR-GST), which could recover

the distribution of the original labeled dataset. Specifically, we first

prove the equality of loss function in self-training framework un-

der the distribution shift case and the population distribution if

each pseudo-labeled node is weighted by a proper coefficient. Con-

sidering the intractability of the coefficient, we then propose to

replace the coefficient with the information gain after observing

the same changing trend between them, where information gain

is respectively estimated via both dropout variational inference

and dropedge variational inference in DR-GST. However, such a

weighted loss function will enlarge the impact of incorrect pseudo

labels. As a result, we apply the loss correction method to improve

the quality of pseudo labels. Both our theoretical analysis and ex-

tensive experiments on five benchmark datasets demonstrate the

effectiveness of the proposed DR-GST, as well as each well-designed

component in DR-GST.
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1 INTRODUCTION
Graphs are ubiquitous across many real-world applications, rang-

ing from citation and social network analysis to protein interface

and chemical bond prediction. With the surge of demands, Graph

Convolution Network (GCN) and its variants [17, 18, 30, 32, 35]

(abbreviated as GCNs) have recently attracted vast interest and

achieved state-of-the-art performance in various tasks on graphs,

most notably semi-supervised node classification. Nevertheless,

its success could typically hinge on careful training with large

amounts of labeled data, which is expensive and time-consuming to

be obtained [28]. Empirically, the performance of GCNs will rapidly

decline with the decrease of labeled data [38].

As one of the promising approaches, self-training [16, 19] aims at

addressing labeled data scarcity by making full use of abundant un-

labeled data in addition to task-specific labeled data. Given an arbi-

trarymodel trained on the original labeled data as the teacher model,

the key idea of self-training is to pseudo-label high-confidence un-

labeled samples to augment the above labeled data, and a student
model is trained with augmented data to replace the teacher model.

Such an iteration learning is repeated until convergence
1
. Anal-

ogously, self-training has great potential to facilitate advancing

GCNs to exploiting unlabeled data [20, 28, 38]. Whereas, these

studies only focus on the high-confidence nodes on account of the

prefabricated assumption that the higher the confidence, the more

1
The teacher-student term is commonly adopted in current self-training studies [8, 14,

22], and we just reuse it here for a clearer explanation.
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accurate the prediction. Naturally, we are curious about such a

fundamental question, “Are all the unlabeled nodes pseudo-labeled
with high confidence truly useful?”

As a motivating example, we conduct an analysis experiment

on a benchmark dataset Cora [26] to explore how much additional

information these high-confidence nodes can bring to the model

(denoted as information gain). More details can be seen in Section 3.

Surprisingly, our experimental results show a clear negative corre-

lation between the confidence and the information gain, implying

that nodes pseudo-labeled by existing graph self-training methods

with high confidence may be low-information-gain and useless.

To further understand the underlying reason, we illustrate the dis-

tribution of unlabeled nodes and find these high-confidence (or

low-information-gain) nodes are far from the decision boundary,

which implies that they potentially guide the model to perform

worthless optimization for a more crisp decision boundary. Existing

graph self-training methods which focus on high-confidence nodes

are “cheated” by confidence in this way.

In light of the above observations, we further investigate into

what will happen when self-training is cheated by confidence. We

discover that during the optimization procedure dominated by easy
nodes (i.e., nodes with low information gain), the Distribution Shift
phenomenon between the original and augmented dataset gradually

appears. This is because more and more easy nodes selected by

high confidence are added to the original labeled dataset, leading

to the distribution gradually shifting to the augmented dataset

and overmuch attention paid on such easy nodes as a result. Not

surprisingly, this issue will severely threaten the capacity of self-

training on graphs, since the distribution of the augmented dataset

is different from the population distribution, resulting in a terrible

generalization during evaluation. Alleviating distribution shift from

self-training on graphs is in urgent demand, which is unexplored

in existing studies.

In this paper, we propose an information gain weighted self-

training framework DR-GST which could recover the distribution

of original labeled dataset. Specifically, we first prove that the loss

function of the self-training framework under the distribution shift

case is equal to that under the population distribution if we could

weight each pseudo-labeled node with a proper coefficient. But the

coefficient is generally intractable in practice. Then we discover the

same changing trend between the coefficient and information gain,

and propose to replace the coefficient with information gain, where

the information gain can be estimated via both dropout variational

inference and dropedge variational inference. Consequently, we

can recover the shifted distribution with the newly proposed infor-

mation gain weighted loss function. Such a loss function forces the

model to pay more attention to hard nodes, i.e., nodes with high

information gain, but will enlarge the impact of incorrect pseudo la-

bels. Therefore, we apply loss correction [10, 23, 27] to self-training

to correct the prediction of the student model, so that the impact of

incorrect pseudo labels from the teacher model can be alleviated in

this way. Finally, we conduct a theoretical analysis of self-training

on graphs, and the conclusion shows both distribution shift and

incorrect pseudo labels will severely hinder its capability, which is

consistent with our designs.

In summary, the main contributions are highlighted as follows:

• We make a thorough study on graph self-training, and find two

phenomena below: 1) pseudo-labeled high-confidence nodes may

cheat. 2) distribution shift between the original labeled dataset

and the augmented dataset. Both of them severely hinder the

capability of self-training on graphs.

• We propose a novel graph self-training framework DR-GST that

not only addresses the distribution shift issue from the view

of information gain, but also is equipped with the creative loss

correction strategy for improving qualities of pseudo labels.

• We theoretically analyze the rationality of the whole DR-GST

framework and extensive experimental results on five benchmark

datasets demonstrates that DR-GST consistently and significantly

outperforms various state-of-arts.

2 PRELIMINARY
Let 𝒢 = (𝒱, ℰ,X) be a graph with the adjacent matrixA ∈ R |𝒱 |× |𝒱 |

,

where 𝒱 and ℰ are respectively the set of nodes and edges, and

X = [x1, x2, · · · , x |𝒱 |] ∈ R |𝒱 |×𝐷𝑣
is the𝐷𝑣-dimensional featurema-

trix for nodes. In the common semi-supervised node classification

setting, we only have access to a small amounts of labeled nodes

𝒱𝐿 with their labels 𝒴𝐿 along with a larger amounts of unlabeled

nodes 𝒱𝑈 , where |𝒱𝐿 | ≪ |𝒱𝑈 |.
Self-training Generally, self-training methods on graphs firstly

train a vanilla GCN as the base teacher model 𝑓𝜃 (X,A) with ground-
truth labels𝒴𝐿 , where 𝜃 is the model parameter set. We could obtain

the probability vector for each node 𝑣𝑖 ∈ 𝒱 as: p (𝑦𝑖 |x𝑖 ,A;𝜃 ) =

𝑓𝜃 (x𝑖 ,A). For convenience, we abbreviate it to p𝑖 and denote the

j-th element of p𝑖 by 𝑝𝑖, 𝑗 . Next, the teacher model pseudo-labels

a subset 𝒮𝑈 ⊂ 𝒱𝑈 of unlabeled nodes with its prediction 𝑦𝑢 =

arg max𝑗 𝑝𝑢,𝑗 for each node 𝑣𝑢 ∈ 𝒮𝑈 . The selection of 𝒮𝑈 is based

on the confidence score 𝑟𝑖 = max𝑗 𝑝𝑖, 𝑗 , i.e., only nodes with 𝑟𝑖
higher than a threshold or top-k high-confidence nodes are added

to the labeled dataset. Then the augmented dataset 𝒱𝐿 ∪𝒮𝑈 is used

to train a student model 𝑓 ¯𝜃 with the following objective function.

min

¯𝜃 ∈Θ
ℒ (A,X,𝒴𝐿) = min

¯𝜃 ∈Θ
E𝑣𝑖 ∈𝒱𝐿,𝑦𝑖 ∈𝒴𝐿

𝑙 (𝑦𝑖 , p𝑖 )

+ 𝜆E𝑣𝑢 ∈𝒮𝑈 ,𝒮𝑈 ⊂𝒱𝑈
E𝑦𝑢∼p(𝑦𝑢 |x𝑢 ,𝐴;𝜃 )𝑙 (𝑦𝑢 , p𝑢 ) ,

(1)

where 𝑙 (𝑦𝑖 , p𝑖 ) = − log𝑝𝑖,𝑦𝑖 is the multi-class cross entropy loss

and we fix 𝜆 = 1 in this paper. Finally we replace the teacher

model with the student model and iterate the above procedure until

convergence.

Information Gain As can be seen in Eq. 1, self-training on

graphs will exploit the unlabeled data to train the whole model.

Here, we aim to measure how an unlabeled node contributes to

the model optimization in a principled way, i.e., information gain.

Information gain usually measures the reduction in information

given a random variable, where information is generally calculated

by the Shannon’s entropy [6]. We utilize the information gain

here to seek the node 𝑣𝑢 which owns the most information about

parameters 𝜃 of model posterior and could reduce the number of

possible parameter hypotheses maximally fast. We refer to this type

of information gain as information gain about model parameters

[22]. Formally, given a node 𝑣𝑢 , the information gain about model
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(a) (b)

Figure 1: (a): Relationship between confidence and informa-
tion gain on Cora. (b): Visualization of embeddings on Cora

parameters is defined as B𝑢 , which could be calculated as follows:

B𝑢 (𝑦𝑢 , 𝜃 |x𝑢 ,A,𝒢) = H[E𝑃 (𝜃 |𝒢) [𝑦𝑢 |x𝑢 ,A;𝜃 ]]
−E𝑃 (𝜃 |𝒢) [H[𝑦𝑢 |x𝑢 ,A;𝜃 ]], (2)

where H(·) denotes the Shannon’s entropy and 𝑃 (𝜃 |𝒢) is the distri-
bution of model posterior. The first term measures the information

of the model parameters under posterior, while the second term

captures the information of model parameters given an additional

node 𝑣𝑢 . Obviously, by calculating the difference between the two

terms above, B𝑢 can measure how much information 𝑣𝑢 can bring

to learn the model parameters 𝜃 .

3 EMPIRICAL ANALYSIS
In this section, we conduct a series of empirical analysis to examine

whether current graph self-training approaches adopt a principled

way to leverage unlabeled data for semi-supervised node classifica-

tion.

Empirical Analysis of Confidence To better understand the

capacity of high-confidence nodes in current self-training approaches,

we aim to closely examine that how much additional information

these nodes can bring to the model based on information gain. We

first visualize the relationship between confidence and information

gain in Fig. 1(a), where the x-axis is the confidence while the y-axis

is the information gain, and the blue and orange dots respectively

represent nodes with correct and incorrect predictions. From Fig.

1(a) we can observe a negative correlation, implying that existing

graph self-training methods only focus on easy nodes (nodes with

low information gain) and confidence may be cheating as a result.

Essentially, such a “cheating" phenomenon lies in the worthless

optimization for a more crisp decision boundary. Specifically, as

shown in Fig. 1(b), on the Cora dataset, we visualize the node em-

beddings on the last layer of the standard GCN before softmax
using t-SNE [29] algorithm, where a darker dot represents a node

with lower information gain. From the plots, we find that most of

easy nodes (i.e., low information gain) are far from the decision

boundary. Whereas, these nodes are always emphasized by current

self-training methods on graphs [20, 28, 38] by force of high confi-

dence. That is, these methods are “cheated” by confidence in this

way.

Empirical Analysis of Distribution Shift Furthermore, we

investigate what will happen when self-training has been cheated

by confidence. As an illustrative example, we randomly generate

(a) 𝑃𝑝𝑜𝑝 (b) 𝑃𝑠𝑡 (c) ratio of 𝑃𝑝𝑜𝑝 and 𝑃𝑠𝑡

Figure 2: Visualization of labeled nodes under the ideal con-
dition. (𝑃𝑝𝑜𝑝 : distribution before self-training, 𝑃𝑠𝑡 : distribu-
tion after self-training)

500 nodes (blue) following two-dimensional Gaussion distribution

𝒩 (0, 0, 0.3, 0.3, 0) to represent labeled nodes in one class, and an-

other 4000 nodes (grey) following the distribution of concentric

circles [1] to represent labeled nodes belonging to other classes, as

shown in Fig. 2(a). Furthermore, following the common self-training

setting, a large amount of unlabeled nodes still exists in the dataset,

but for clarity, we omit them in the figure. In line with the core

idea of current self-training methods, for the “blue” class, unla-

beled nodes around the center are pseudo-labeled for self-training

since these nodes have high confidence (a.k.a., far from the decision

boundary). During iteration, as shown in Fig 2(b), the data distribu-

tion will become more and more sharpen since nodes far from the

decision boundary are paid disproportionate attention and thus the

unsatisfying Distribution Shift phenomenon between the original

and augmented dataset indeed appears.

4 THE DR-GST FRAMEWORK
In this section, we elaborate the proposed DR-GST, a novel self-

training framework aiming at recovering the shifted distribution.

4.1 Information Gain Weighted Loss Function
Towards Distribution Shift

We start with the formulation of the self-training task by analyzing

the corresponding loss functions. Specifically, assuming that the

original labeled dataset follows the population distribution 𝑃𝑝𝑜𝑝 ,

given a classifier 𝑓𝜃 parameterized by 𝜃 , the best parameter set 𝜃

could be obtained via minimizing the following loss function:

ℒ𝑝𝑜𝑝 = E(𝑣𝑖 ,𝑦𝑖 )∼𝑃𝑝𝑜𝑝 (𝒱,𝒴)𝑙 (𝑦𝑖 , p𝑖 ). (3)

Similarly, under the distribution shift case caused by self-training,

the loss function can be represented as

ℒ𝑠𝑡 =
|𝒱𝐿 |

|𝒱𝐿 ∪ 𝒮𝑈 |E(𝑣𝑖 ,𝑦𝑖 )∼𝑃𝑝𝑜𝑝 (𝒱,𝒴)𝑙 (𝑦𝑖 , p𝑖 )

+ |𝒮𝑈 |
|𝒱𝐿 ∪ 𝒮𝑈 |E(𝑣𝑢 ,𝑦𝑢 )∼𝑃𝑠𝑡 (𝒱,𝒴)𝑙 (𝑦𝑢 , p𝑢 ),

(4)

where 𝑃𝑠𝑡 represents the shifted distribution of the augmented

dataset.

Generally, the distribution shift could lead to a terrible general-

ization during evaluation, and thus severely threaten the capacity

of graph self-training. Therefore, It is ideal to optimize 𝑓𝜃 with the

loss function ℒ𝑝𝑜𝑝 under the population distribution rather than
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ℒ𝑠𝑡 under the distribution shift case. However, onlyℒ𝑠𝑡 is available

in practice. To close the gap, we show the following theorem.

Theorem 4.1. Given ℒ𝑝𝑜𝑝 and ℒ𝑠𝑡 defined in Eq. 3 and Eq. 4,
assuming that 𝑦𝑢 = 𝑦𝑢 for each pseudo-labeled node 𝑣𝑢 ∈ 𝒮𝑈 , then
ℒ𝑠𝑡 = ℒ𝑝𝑜𝑝 holds true ifℒ𝑠𝑡 can be written with an additional weight

coefficient 𝛾𝑢 =
𝑃𝑝𝑜𝑝 (𝑣𝑢 ,𝑦𝑢 )
𝑃𝑠𝑡 (𝑣𝑢 ,𝑦𝑢 ) as follows:

ℒ𝑠𝑡 =
|𝒮𝑈 |

|𝒱𝐿 ∪ 𝒮𝑈 |E(𝑣𝑢 ,𝑦𝑢 )∼𝑃𝑠𝑡 (𝒱,𝒴)𝛾𝑢𝑙 (𝑦𝑢 , p𝑢 )

+ |𝒱𝐿 |
|𝒱𝐿 ∪ 𝒮𝑈 |E(𝑣𝑖 ,𝑦𝑖 )∼𝑃𝑝𝑜𝑝 (𝒱,𝒴)𝑙 (𝑦𝑖 , p𝑖 ),

(5)

Proof. Please refer to A.1.1. □

Based on Theorem 4.1, we can find that our desired ℒ𝑝𝑜𝑝 can be

written as the available ℒ𝑠𝑡 only if a coefficient 𝛾𝑢 is added to ℒ𝑠𝑡 .

In other words, the distribution shift issue could be addressed by

optimizing 𝑓𝜃 with availableℒ𝑠𝑡 weighted by𝛾𝑢 (in Eq. 5). However,

it should be noted that the population distribution 𝑃𝑝𝑜𝑝 in ℒ𝑠𝑡 is

generally intractable, which means that 𝛾𝑢 cannot be accurately

calculated.

To this end, we propose to build the bridge between 𝛾𝑢 and the

information gain, which is motivated as follows. Recalling the data

distributions shown in Fig. 2(a) and Fig. 2(b), we could formally

represent the former as 𝑃𝑝𝑜𝑝 and the latter as 𝑃𝑠𝑡 . We visualize the

desired weight coefficient 𝛾𝑢 =
𝑃𝑝𝑜𝑝 (𝑣𝑢 ,𝑦𝑢 )
𝑃𝑠𝑡 (𝑣𝑢 ,𝑦𝑢 ) for each pseudo-labeled

node 𝑣𝑢 in Fig. 2(c) for better understanding its changing trend,

where the darker area means the larger 𝛾𝑢 . Obviously, we observe

that 𝛾𝑢 becomes smaller when getting closer to the center area

(a.k.a., far away from the decision boundary), which is consistent

with the change trend of the information gain. This finding inspires

us to adopt the information gain to approximate 𝛾𝑢 .

4.2 Information Gain Estimation on Graphs
Next, we elaborate the estimation of the information gain for each

node 𝑣𝑢 in graph. As mentioned in Eq. 2, the distribution of model

posterior 𝑃 (𝜃 |𝒢) is desired for calculating information gain, but

it is intractable in practice, and always computationally expen-

sive for traditional bayesian neural networks [2, 11, 15]. Instead,

we could shift attention towards dropout [9] and dropedge [25],

a type of regularization technique for preventing over-fitting and

over-smoothing in GCNs, which could be both interpreted as an

approximation of 𝑃 (𝜃 |𝒢) [13]. Consequently, we propose to esti-

mate the information gain assisted with dropout and dropedge

(a.k.a., dropout and dropedge variational inference), which takes

into account both features and the network topology in our uni-

fied framework DR-GST. For distinction, we refer to DR-GST with

dropout variational inference as DR-GST𝑑𝑜 and that with dropedge

variational inference as DR-GST𝑑𝑒 .

4.2.1 Dropout Variational Inference. Specifically, given a 𝐿-layer

GCN model 𝑓𝜃 , its 𝑙-th layer outputH(𝑙) ∈ R |𝒱 |×𝐷𝑙
can be obtained

by

H(𝑙) = 𝜎 (𝔑(A)H(𝑙−1)W(𝑙−1) ), (6)

where𝔑(·) represents the normalizing operator,W(𝑙−1) ∈ R𝐷𝑙−1×𝐷𝑙

is the (l-1)-th layer weight matrix, 𝜎 (·) is the activation function

andH(1) = X ∈ R |𝒱 |×𝐷𝑣
, 𝜃 = {W(𝑙) }𝐿

𝑙=1
. Dropout randomly masks

features of nodes in the graph through drawing from an indepen-

dent Bernoulli random variable. Formally, the 𝑙-th layer output of

𝑓𝜃 with dropout can be written as:

H(𝑙) = 𝜎 (𝔑(A) (H(𝑙−1) ⊙ Z(𝑙−1) )W(𝑙−1) ), (7)

where each element ofZ(𝑙) ∈ {0, 1}𝐷𝑙−1×𝐷𝑙−1
is a sample of Bernoulli

random variable, representing whether or not the corresponding

feature in H(𝑙−1)
is set to zero.

Such Bernoulli random sampling on features can also be treated

as a sample from 𝑃 (𝜃 |𝒢) [9], thus we can perform 𝑇 -times Monte-

Carlo sampling (referred to Monte-Carlo dropout, MC-dropout)
during inference to estimate 𝑃 (𝜃 |𝒢). At each time 𝑡 , a probability

vector p̃𝑡𝑢 = p̃𝑡 (𝑦𝑢 |x𝑢 ,A;
˜𝜃𝑡 ) can be obtained by performing forward

pass under such a sample weight
˜𝜃𝑡 , i.e., p̃𝑡𝑢 = 𝑓

˜𝜃𝑡
(x𝑢 ,A).

However, from the perspective of the computational overhead

and practical performance, we only conduct dropout on the last

layer during MC-dropout. In other words, the probability vector

p̃𝑡𝑢 ∈ P̃𝑡 = 𝑓
˜𝜃𝑡
(X,A) at each time 𝑡 can be obtained by:

P̃𝑡 = 𝜎 (𝔑(A) (Z(𝑡 )⊙𝜎 (𝔑(A) · · ·𝜎 (𝔑(A)XW(1) ) · · · )W(𝑙−1) ))W(𝑙) )
(8)

4.2.2 Dropedge Variational Inference. The dropedge variational

inference takes a similar way with dropout variation inference, but

imposes the randomness on the network topology instead.

Specifically, the 𝑙-th layer output of 𝑓𝜃 with dropedge can be

written as:

H(𝑙) = 𝜎 (𝔑(A ⊙ Z(𝑙−1) )H(𝑙−1)W(𝑙−1) ), (9)

where each element of Z(𝑙) ∈ {0, 1} |𝒱 |× |𝒱 |
is also a sample of

Bernoulli random variable, representing whether or not the corre-

sponding edge in A is removed.

Similarly, we only conduct dropedge on the last layer and per-

form 𝑇 -times Monte-Carlo sampling (referred to as Monte-Carlo

dropedge) base on dropedge, where at each time t, the probability
vector p̃𝑡𝑢 ∈ P̃𝑡 = 𝑓

˜𝜃𝑡
(X,A) at each time 𝑡 is obtained by

P̃𝑡 = 𝜎 (𝔑(A⊙Z(𝑡 ) )𝜎 (𝔑(A) · · ·𝜎 (𝔑(A)XW(1) ) · · · )W(𝑙−1) )W(𝑙) ).
(10)

4.2.3 Information Gain Estimation. With such probability vector

p̃𝑡𝑢 obtained by Eq. 8 or Eq. 10, we can calculate the prediction

distribution p𝒢𝑢 by averaging all the p̃𝑡𝑢 :

p𝒢𝑢 = p(𝑦𝑢 |x𝑢 ,A,𝒢) =
1

𝑇

𝑇∑
𝑡=1

p̃𝑡𝑢 , ˜𝜃𝑡 ∼ 𝑃 (𝜃 |𝒢), (11)

and thus the information gain B𝑢 can be calculated by:

B𝑢 (𝑦𝑢 , 𝜃 |x𝑢 ,A,𝒢) = −
𝐷∑
𝑑=1

𝑝𝒢
𝑢,𝑑

log𝑝𝒢
𝑢,𝑑

+ 1

𝑇

𝐷∑
𝑑=1

𝑇∑
𝑡=1

𝑝𝑡
𝑢,𝑑

log𝑝𝑡
𝑢,𝑑

.

(12)

Finally, we weight the loss function with above information gain

after normalization:
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ℒ𝑠𝑡 =
|𝒮𝑈 |

|𝒱𝐿 ∪ 𝒮𝑈 |E(𝑣𝑢 ,𝑦𝑢 )∼𝑃𝑠𝑡 (𝒱,𝒴) ¯B𝑢𝑙 (𝑦𝑢 , p𝑢 )

+ |𝒱𝐿 |
|𝒱𝐿 ∪ 𝒮𝑈 |E(𝑣𝑖 ,𝑦𝑖 )∼𝑃𝑝𝑜𝑝 (𝒱,𝒴)𝑙 (𝑦𝑖 , p𝑖 )

where
¯B𝑢 =

B𝑢

𝛽 · 1

|𝒮𝑈 |
∑
𝑖 B𝑖

.

(13)

Here, we can tune the balance coefficient 𝛽 to recover the population

distribution (i.e., ℒ𝑠𝑡 ≈ ℒ𝑝𝑜𝑝 ) as much as possible.

4.3 Improving Qualities of Pseudo Labels via
Loss Correction

Till now, we have addressed the distribution shift issue with an

information gain weighted loss function, where more attentions

are paid to nodes with high information gain rather than high con-

fidence. Unfortunately, such a training pipeline still implies hidden

risks. Specifically, considering that pseudo labels of hard nodes are

more likely to be incorrect as shown in Fig. 1(a) and our DR-GST

focuses more on hard nodes, the impact of incorrect pseudo-labeled

nodes will be enlarged and even mislead the learning of GCNs.

Previous works generally filter out these low-quality nodes with

collaborative scoring [20, 28] or prefabricated assumption [38] in a

relatively coarse-grained manner, where abundant nodes with high

information gain are discarded in advance. Instead, motivated by

studies on learning with noisy labels [10, 23, 27], we propose to in-

corporate loss correction strategy into graph self-training. In brief,

DR-GST corrects the predictions of the student model in each itera-

tion, so as to eliminate the negative impact of misleading pseudo

labels from the teacher model.

Specifically, given a student model 𝑓 ¯𝜃 trained by pseudo labels,

the loss correction assumes there is a model 𝑓𝜃 ∗ trained by ground-

truth labels and a transitionmatrix T such that 𝑓 ¯𝜃 can be represented

by 𝑓 ¯𝜃 = T𝑓𝜃 ∗ , as shown in Fig. 3, where each element in T ∈ R𝑐×𝑐 is
a transition probability from the ground-truth label to the pseudo

label, i.e.,𝑇𝑘 𝑗 = 𝑃 (𝑌 = 𝑗 |𝑌 = 𝑘) and 𝑐 is the number of classes. With

such a transition matrix, every model trained by pseudo labels is

equal to that trained by ground-truth labels. We have proved the

equivalence relation above using the following proposition.

Proposition 4.2. Given a model 𝑓 ¯𝜃 trained by pseudo labels and
a model 𝑓𝜃 ∗ trained by ground-truth labels, assuming that there exists
a transition matrix T such that the equation 𝑓 ¯𝜃 (x𝑢 ,A) = T𝑓𝜃 ∗ (x𝑢 ,A)
holds for each node 𝑣𝑢 , then ¯𝜃 = 𝜃∗ if T is a permutation matrix under
cross entropy (CE) loss or T is an arbitrary non-zero matrix under
mean square error (MSE) loss.

Proof. Please refer to Appendix A.1.2. □

Based on Proposition 4.2, ideally, we can train the student model

regardless of the quality of labels, and recover 𝑓𝜃 ∗ with T. Specif-
ically, as shown in Fig. 3, for each node 𝑣𝑖 ∈ {𝒱𝐿 ∪ 𝒮𝑈 } with its

feature vector x𝑖 , we first feed it into student model and multiply

the output with T to get 𝑓 ¯𝜃 (x𝑖 ,A). Then we use 𝑓 ¯𝜃 (x𝑖 ,A) to opti-

mize the student model according to Eq. 13. Finally, at inference, we

can treat the student model as 𝑓𝜃 ∗ . Please note that the transition

matrix T is pre-computed and not updated during optimization of

the student model.

Figure 3: An illustration of loss correction.

Next, we make an illustration for the computation of the transi-

tion matrix T. Noting that for each node 𝑣𝑖 ∈ 𝒱𝐿 with the ground-

truth label𝑦𝑖 = 𝑘 , the probability 𝑃 (𝑌 = 𝑘 |𝑋 = x𝑖 ) should be 1 since
we definitely know its label to be 𝑘 . Therefore, given the output

probability 𝑝𝑘 𝑗 = 𝑓 ¯𝜃 (x𝑖 ,A) 𝑗 of class 𝑗 , we have

𝑝𝑘 𝑗 = 𝑃 (𝑌 = 𝑗 |𝑋 = x𝑖 ) =
𝑐∑

𝑚=1

𝑃 (𝑌 = 𝑗 |𝑌 =𝑚,𝑋 = x𝑖 )𝑃 (𝑌 =𝑚 |𝑋 = x𝑖 )

= 𝑃 (𝑌 = 𝑗 |𝑌 = 𝑘,𝑋 = x𝑖 ) · 1 + 0 + · · · + 0 = 𝑇𝑘 𝑗 (x𝑖 ) = 𝑇𝑘 𝑗 .

(14)

In others words, the output probability vector 𝑓 ¯𝜃 (x𝑖 ,A) of each node
𝑣𝑖 with its ground-truth label 𝑘 is the 𝑘-th row of T, where ¯𝜃 means

such a model is trained with the augmented dataset 𝒱𝐿
⋃

𝒮𝑈 .

Technically, we first train a student model 𝑓 ¯𝜃 without loss cor-

rection using the augmented dataset 𝒱𝐿 ∪ 𝒮𝑈 , then update T ac-

cording to 𝑝𝑘 𝑗 = 𝑓 ¯𝜃 (x𝑖 ,A) 𝑗 , and finally re-train a student model

from scratch with loss correction to obtain 𝑓𝜃 ∗ .

Considering that there are multiple nodes belonging to class 𝑘

in 𝒱𝐿 , we propose the following optimization problem to learn T
instead:

arg min

T

𝑐∑
𝑘=1

𝑁
(𝐿)
𝑘∑
𝑗=1

| |T𝑘,: − 𝑓 ¯𝜃 (x𝑖 ,A) | |
2 + ||TTT − I| |2, (15)

where 𝑁
(𝐿)
𝑘

is the number of nodes belonging to class 𝑘 in 𝒱𝐿
and I is an identity matrix. Since the improved CE loss is utilized

as the loss function in this paper as mentioned in Eq. 1 and Eq.

13, we append the regularization term | |TTT − I| |2 for guiding T
to approximate to a permutation matrix, which is derived from

Proposition 4.2 under the CE loss. Moreover, we initialize T with

the identify matrix I at the very beginning.

4.4 Overview of DR-GST
Till now, we have elaborated our proposed DR-GST framework,

which solves both the distribution shift and the low-quality pseudo

labels with the help of information gain and loss correction. We

summarize it in Algorithm 1 and further analyze its time complexity

in Appendix A.2.

Given a graph 𝒢 = (𝒱, ℰ,X) with its original labeled dataset 𝒱𝐿 ,
unlabeled dataset 𝒱𝑈 , adjacent matrix A as well as its label set 𝒴𝐿 ,

we first train a teacher model 𝑓𝜃 on 𝒱𝐿 to obtain the prediction

𝑦𝑢 and the confidence 𝑟𝑢 for each unlabeled node 𝑣𝑢 ∈ 𝒱𝑈 at

line 1. then iterate steps from line 3 to 9 util convergence, where

we call each iteration a stage following [28]. Specifically, at line 3
we select part of unlabeled nodes whose confidence 𝑟𝑢 is bigger

than a given threshold 𝜏 to obtain 𝒮𝑈 . Next at line 4 we pseudo-

label each node 𝑣𝑢 ∈ 𝒮𝑈 with 𝑦𝑢 to augment 𝒱𝐿 . Then at line 5 we

calculate the information gainB𝑢 according to dropout or dropedge
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variational inference in Section 4.2 and normalize it according to

Eq. 13. With such information gain, we train a student model 𝑓 ¯𝜃

at line 6 using the augmented dataset, where pseudo labels may

be incorrect. Therefore, at line 7 we update the transition matrix

T with the output probability vector of 𝑓 ¯𝜃 of each node 𝑣𝑖 ∈ 𝒱𝐿
according to Eq. 15, and retrain the student model from scratch

at line 8 with 𝑓 ¯𝜃 = T𝑓𝜃 ∗ to get 𝑓𝜃 ∗ . Finally, we replace the teacher

model 𝑓𝜃 with 𝑓𝜃 ∗ and repeat above steps utill convergence.

Algorithm 1 The DR-GST Framework

Input: Graph𝒢 = (𝒱, ℰ,X), original labeled dataset𝒱𝐿 , unlabeled
dataset 𝒱𝑈 , adjacent matrix A, label set 𝒴𝐿 , transition matrix

T = I
Output: Probability vector p𝑖 for each node 𝑣𝑖
1: Train a teacher model 𝑓𝜃 on 𝒱𝐿 to obtain the prediction 𝑦𝑢 and

the confidence 𝑟𝑢 for each unlabeled node 𝑣𝑢 ∈ 𝒱𝑈 ;

2: for each stage 𝑘 do
3: Select part of unlabeled nodes according to 𝑟𝑢 to get 𝒮𝑈 ;

4: Pseudo-labeling each node 𝑣𝑢 ∈ 𝒮𝑈 with 𝑦𝑢 ;

5: Calculate the information gain B𝑢 according to Eq. 12;

6: Train a student model 𝑓 ¯𝜃 without T according to Eq. 13;

7: Update T using 𝑓 ¯𝜃 (x𝑖 ,A) of 𝑣𝑖 ∈ 𝒱𝐿 according to Eq. 15;

8: Retrain a student model from scratch according to Eq. 13

with 𝑓 ¯𝜃 = T𝑓𝜃 ∗ to get 𝑓𝜃 ∗ ;

9: Replace the teacher model 𝑓𝜃 with the student model 𝑓𝜃 ∗ ;

10: end for
11: return p𝑖 = 𝑓𝜃 ∗ (x𝑖 ,A) in the final stage.

4.5 Theoretical Analysis
In this section, we theoretically analyze the influence factors on

self-training from the perspective of gradient descent, and our

theorem below demonstrates the rationality of the whole DR-GST

framework.

Theorem 4.3. Assuming that | |∇𝜃 𝑙 (𝑦𝑖 , p𝑖 ) | | ⩽ Ψ for each node
𝑣𝑖 , where Ψ is a constant, given ∇𝜃ℒ𝑝𝑜𝑝 and ∇𝜃ℒ𝑠𝑡 , the gradient of
ℒ𝑝𝑜𝑝 andℒ𝑠𝑡 w.r.t. model parameters 𝜃 , the following bound between
∇𝜃ℒ𝑝𝑜𝑝 and ∇𝜃ℒ𝑠𝑡 holds:

| |∇𝜃ℒ𝑝𝑜𝑝 − ∇𝜃ℒ𝑠𝑡 | | ⩽
|𝒮𝑈 |

|𝒱𝐿 ∪ 𝒮𝑈 |Ψ(2| |𝑃 (𝑣𝑢 ,𝑦𝑢 )∼𝑃𝑝𝑜𝑝 (𝒱,𝒴) (𝑦𝑢 ≠ 𝑦𝑢 ) | |

+ | |𝑃𝑠𝑡 (𝒱,𝒴) − 𝑃𝑝𝑜𝑝 (𝒱,𝒴) | |) .
(16)

Proof. Please refer to Appendix A.1.3. □

From the Theorem 4.3 we can conclude that the performance

of self-training is negatively related to the difference | |𝑃𝑠𝑡 (𝒱,𝒴) −
𝑃𝑝𝑜𝑝 (𝒱,𝒴) | | between the two distributions as well as the error rate

| |𝑃 (𝑣𝑢 ,𝑦𝑢 )∼𝑃𝑝𝑜𝑝 (𝒱,𝒴) (𝑦𝑢 ≠ 𝑦𝑢 ) | | of pseudo labels. Meanwhile, we

find our proposed DR-GST is a natural framework equipped with

two designs to correspondingly address the issues in self-training:

information gain weighted loss function for distribution recovery and
loss correction strategy for improving qualities of pseudo labels. This

analysis further demonstrates the rationality of DR-GST framework

from the theoretical perspective.

5 EXPERIMENT
In this section, we evaluate the effectiveness of DR-GST framework

on semi-supervised node classification task with five widely used

benchmark datasets from citation networks [3, 26] (i.e., Cora, Cite-
seer, Pubmed and CoraFull) and social networks [21] (i.e., Flickr).
More detailed descriptions about datasets are in Appendix A.3.1.

5.1 Experimental Setup
5.1.1 Baselines. We compare our proposed DR-GST framework

with two categories of baselines, including three representative

GCNs (i.e., GCN [17], GAT [30], PPNP [18]) and three graph self-

training frameworks (i.e., STs [20], M3S [28], ABN [38]). Noting that

STs includes four variants (i.e., Self-Training, Co-Training, Union
and Intersection) in the original paper and the best performance

is reported in our experiments. The implementation of DR-GST

and all the baselines can be seen in Appendix A.3.2. More detailed

experimental environment can be seen in Appendix A.3.3.

5.1.2 Evaluation Protocol. To more comprehensively evaluate our

model, for all the datasets, we arrange only a few (including 3, 5,

10, 20) labeled nodes per class (𝐿/𝐶) for the training set following
[20]. Specifically, in the setting 𝐿/𝐶 = 20, we follow the standard

split [26] for Cora, Citeseer and Pubmed, and manually select 20

labeled nodes per class for CoraFull and Flickr considering the lack

of standard split. In the setting 𝐿/𝐶 < 20, we make 10 random splits

for each 𝐿/𝐶 , where each random split represents that we randomly

select part of nodes from the training set of 𝐿/𝐶 = 20. For all the

methods and all the cases, we run 10 times and report the mean

accuracy.

5.2 Overall Comparison on Node Classification
The performance of different methods on node classification are

summarized in Table 1. We have the following observations.

• Our proposed DR-GST framework outperforms all the baselines

by a considerable margin across most cases of all the datasets.

The results demonstrate the effectiveness of DR-GST by adopting

a more principled mechanism to make use of unlabeled nodes in

graph for boosting classification performance.

• With the decrease of labeled nodes, we observe that the perfor-

mance of GCNs (i.e., GCN, GAT and APPNP) drops quickly. For

clarity, we further illustrate the changing trend of accuracy w.r.t.
𝐿/𝐶 in Fig. 4. Obviously, we can discover the larger performance

margin between DR-GST and GCNs with fewer labeled nodes

per class, which further implies the superior capacity of DR-GST

for addressing labeled data scarcity on graph learning.

• Considering the two variants of DR-GST, we find that DR-GST𝑑𝑜

performs better on Pubmed, CoraFull and Flickr while DR-GST𝑑𝑒

on Cora and Citeseer. An intuitive explanation for such distinct

performance is the different emphasis on network topology and

feature information w.r.t. different graphs for node classification
task. Correspondingly, in DR-GST framework, MC-dropedge per-

forms information gain estimation with network topology while

MC-dropout is based on feature information. This finding also

sheds light on possible future work to combine both topology and

feature to further enhance performance under our framework.
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Table 1: Node classification results(%). (L/C: the number of labels per class; bold: best)

Dataset Cora Citeseer Pubmed CoraFull Flickr

L/C 3 5 10 20 3 5 10 20 3 5 10 20 3 5 10 20 3 5 10 20

GCN 64.52 69.55 78.03 81.56 51.39 61.34 68.39 71.64 66.04 71.25 75.88 79.31 41.83 49.12 55.67 60.69 37.69 40.64 48.04 51.74

GAT 67.19 69.45 76.38 82.24 55.19 59.40 67.61 72.00 67.85 68.41 72.42 78.38 36.44 46.70 52.45 57.97 20.02 24.90 33.27 37.06

APPNP 65.06 75.53 81.33 83.14 51.22 60.48 68.50 71.64 65.77 73.01 76.35 79.51 40.29 44.49 50.89 60.77 24.76 35.54 47.87 61.55
STs 70.68 75.60 80.35 82.89 56.29 65.59 74.17 74.36 69.82 73.77 77.68 81.02 43.44 51.16 58.40 61.70 35.21 43.25 48.23 52.99

M3S 64.24 71.02 78.93 82.78 50.07 63.28 74.54 74.72 68.76 69.21 70.72 81.34 42.77 49.75 57.43 61.40 35.33 39.02 47.62 51.87

ABN 66.39 73.07 78.73 81.79 54.30 64.27 69.90 72.81 59.17 71.40 75.26 79.09 43.38 48.39 55.88 60.62 35.13 41.62 47.01 52.10

DR-GST𝑑𝑜 70.85 77.92 80.88 83.34 59.39 69.08 75.00 75.78 70.74 74.63 78.44 81.08 45.44 53.29 60.01 62.75 37.84 43.47 49.48 53.66

DR-GST𝑑𝑒 73.43 77.59 81.67 84.03 60.60 69.91 74.65 75.26 70.55 73.71 77.42 80.65 45.42 52.50 59.16 63.11 38.21 43.28 49.44 53.05

• Among the two categories of baselines, self-training frameworks

(i.e., STs, M3S and ABN) can generally improve GCNs (i.e., GCN,
GAT and APPNP), which indicates the usefulness of unlabeled

data. Nevertheless, DR-GST still yields better performance for

the following two promising designs: 1) We pay more attention

on nodes with high information gain rather than high confidence,

so that the unsatisfying distribution shift issue is avoided. 2) We

adopt a loss correction strategy, where qualities of pseudo labels

are improved for subsequent self-training.

5.3 In-depth Analysis of DR-GST
In this section, we make a series of analysis to better understand

each component in DR-GST, as well as key parameter selections.

5.3.1 Ablation Study. Asmentioned above, the performance of self-

training theoretically hinges on the distribution gap and qualities

of pseudo labels, which could be naturally captured by our DR-GST

framework with two corresponding designs: the information-gain

based weighted loss function and loss correction module. To com-

prehensively understand their contributions towards self-training

on graphs, we prepare following three variants of DR-GST:

• DR-GST-lc: DR-GST only with the loss correction module, i.e.,
¯B = 1 for all the unlabeled nodes.

• DR-GST-ig: DR-GST only with the information gain weighted

loss function.

• DR-GST-w/o: DR-GST without the above two designs.

The results on DR-GST𝑑𝑜 and DR-GST𝑑𝑒 are respectively re-

ported in Fig. 5 and Fig. 6 From the results we can find that the

overall performance order is as follows: DR-GST > DR-GST-ig >

DR-GST-lc >DR-GST-w/o. There are three conclusions here. Firstly,

the best performance achieved by the complete DR-GST framework

indicates the effectiveness of considering two components together.

Secondly, the information gain weighted loss function and loss

correction are both value modules for self-training on graphs. Thus,

ignoring them altogether (i.e.,DR-GST-w/o) is not ideal. Thirdly,
the information-gain weighted loss function plays a more vital

role in our self-training framework since DR-GST-lc generally does

not perform as well as DR-GST-ig. In short, above findings further

verify the rationality of DR-GST from the empirical perspective.

5.3.2 Parameter Study. Here, we investigate into the sensitivity

of two hyper-parameters (i.e., threshold 𝜏 and balance coefficient

𝛽) on Cora and CoraFull datasets. Similar observations are also

Figure 4: The changing trends of accuracy w.r.t. 𝐿/𝐶

Figure 5: Ablation study of DR-GST𝑑𝑜 .

made on other datastes. In particular, we respectively report the

performance of DR-GST𝑑𝑜 and DR-GST𝑑𝑒 , and vary the 𝐿/𝐶 in {3, 5,

10}. For clear notation in figures, we use “do-3” to denote DR-GST𝑑𝑜

with 𝐿/𝐶 = 3, and the rest can be done in the same manner.

Analysis of threshold 𝜏 in self-training We test the impact

of threshold 𝜏 in self-training, and vary it from 0.40 to 0.70 for Cora

and 0.60 to 0.90 for CoraFull. The results are summarized in Fig
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Figure 6: Ablation study of DR-GST𝑑𝑒 .

Figure 7: Impact of threshold 𝜏 .

Figure 8: Impact of balance coefficient 𝛽 .

.7. Generally speaking, the best performance is achieved when we

set a smaller 𝜏 , which is consistent with our analysis above that

high-confidence unlabeled nodes contribute less.

Analysis of balance coefficient 𝛽 We then test the impact

of the balance coefficient 𝛽 in Eq. 13, and vary it from 1/3 to 1.

The results are shown in Fig. 8. Obviously, with the increase of

𝛽 , or, in other words, with more attention paid to hard nodes, the

performance shows a downward trend, further demonstrating the

effectiveness of our design.

5.3.3 Visualization. For a more intuitive of the proposed informa-

tion gain based DR-GST, we conduct the task of visualization on

Cora dataset. Specifically, as shown in Fig. 9, we visualize the output

embedding of the student model at different stages in DR-GST for

Cora dataset. From Fig. 9(a) to Fig. 9(c) we show the visualization

of unlabeled nodes, where a lighter dot represents a node endowed

with a higher weight by information gain when calculating the loss

(a) 𝑠𝑡𝑎𝑔𝑒 = 1 (b) 𝑠𝑡𝑎𝑔𝑒 = 2 (c) 𝑠𝑡𝑎𝑔𝑒 = 3

(d) 𝑠𝑡𝑎𝑔𝑒 = 1 (e) 𝑠𝑡𝑎𝑔𝑒 = 2 (f) 𝑠𝑡𝑎𝑔𝑒 = 3

Figure 9: Visualization of learned embeddings for unlabeled
nodes ((a)∼(c)) and test nodes ((d)∼(f)) on Cora at different
stages during self-training.

function in Eq. 13. Obviously, we can discover that at an earlier

stage, DR-GST pays more attention to nodes close to the decision

boundary which is also indistinct at this moment. With the training

progress going on, the light nodes gradually vanish, implying that

most of information these nodes contain has been learned, leading

to a more crisp decision boundary. From Fig. 9(d) to Fig. 9(f) we

show the visualization of test nodes, where different colors rep-

resent different classes. Apparently, the separability of different

classes for test nodes is gradually improved, further demonstrating

the effectiveness of DR-GST for optimizing the decision boundary.

6 RELATEDWORK
In line with the main focus of our work, we review the most related

work in graph neural networks and self-training.

Graph Neural Networks Recent years have seen a surge of

efforts on Graph Neural Networks (GNNs) and achieved state-of-

the-art performance in various tasks on graphs [33, 36]. Gener-

ally, current GNNs can be divided into two categories. The first

category is spectral-based GNNs, which defines graph convolu-

tion operation in the spectral domain [4, 7]. The well-known GCN

[17] simplifies graph convolutions by using the 1-order approx-

imation. Since then, plenty of studies have sprung up. SGC [32]

further simplifies GCN by removing the nonlinearities between

GCN layers. [20] shows that GCNs smooth node features between

neighbours. On the comparison, the other category is spatial-based

GNNs, mainly devoted to aggregating and transforming the local in-

formation from the perspective of spatial domain. GAT [30] assigns

the learnt weight to each edge during aggregation. [12] proposes a

permutation-invariant aggregator for message passing. Moreover,

there are many other graph neural models, we please refer the

readers to recent surveys [34, 37] for a more comprehensive review.

Self-training Despite the success, GNNs typically require large

amounts of labeled data, which is expensive and time-consuming.

Self-training [16] is one of the earliest strategies addressing labeled

data scarcity by making better use of abundant unlabeled data, and

has shown remarkable performance on various tasks [14, 19, 22].
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Recently, [20] proposes a graph-based self-training framework,

demonstrating the effectiveness of self-training on graphs. Further,

[28] utilizes the DeepCluster [5] to filter out low-quality pseudo

labels during self-training. CaGCN-st [31] argues that self-training

under-performs due to generally overlooked low-confidence but

high-accuracy predictions, and proposes a confidence-calibrated

self-training framework. [38] proposes to select high-quality unla-

beled nodes via an adaptive pseudo labeling technique. [24] utilizes

a margin prediction confidence to select unlabeled nodes, aiming

at identifying the most confident labels. In summary, almost all

of graph self-training methods focus on improving the quality of

pseudo labels by virtue of confidence, but none of them have ever

considered the capability and limitation of such selection criterion.

7 CONCLUSION
In this paper, we empirically make a thorough study for capability

and limitation of current self-training methods on graphs, and sur-

prisingly find they may be cheated by confidence and even suffer

from the distribution shift issue, leading to unpromising perfor-

mance. To this end, we propose a novel self-training framework

DR-GST which not only addresses the distribution shift issue from

the view of information gain, but also is equipped with the creative

loss correction strategy for improving qualities of pseudo labels.

Theoretical analysis and extensive experiments well demonstrate

the effectiveness of the proposed DR-GST. Moreover, our study

also gives an insight that confidence alone is not enough for self-

training and thus motivates us an interesting direction for future

work, i.e., exploiting more criteria for the selection of unlabeled

nodes during self-training.
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A SUPPLEMENT
In the supplement, we first provide detailed poofs of import theo-

rems in our paper i.e., Theorem 4.1, Proposition 4.2 and Theorem 4.3.

Next, more experimental details are represented for reproduction.

A.1 Proof
In this section, we successively show the detailed proof for Theo-

rem 4.1, Proposition 4.2 and Theorem 4.3.

A.1.1 Proof of Theorem 4.1.

Proof. With our assumption that 𝑦𝑢 = 𝑦𝑢 for each pseudo-

labeled node 𝑣𝑢 ∈ 𝒮𝑈 , we first rewrite ℒ𝑝𝑜𝑝 in Eq. 3 as:

ℒ𝑝𝑜𝑝 =
|𝒮𝑈 |

|𝒱𝐿 ∪ 𝒮𝑈 |E(𝑣𝑢 ,𝑦𝑢 )∼𝑃𝑝𝑜𝑝 (𝒱,𝒴)𝑙 (𝑦𝑢 , p𝑢 )

+ |𝒱𝐿 |
|𝒱𝐿 ∪ 𝒮𝑈 |E(𝑣𝑖 ,𝑦𝑖 )∼𝑃𝑝𝑜𝑝 (𝒱,𝒴)𝑙 (𝑦𝑖 , p𝑖 ).

(17)

Note that

E(𝑣𝑢 ,𝑦𝑢 )∼𝑃𝑝𝑜𝑝 (𝒱,𝒴)𝑙 (𝑦𝑢 , p𝑢 ) = E(𝑣𝑢 ,𝑦𝑢 )∼𝑃𝑠𝑡 (𝒱,𝒴)
𝑃𝑝𝑜𝑝 (𝑣𝑢 , 𝑦𝑢 )
𝑃𝑠𝑡 (𝑣𝑢 , 𝑦𝑢 )

𝑙 (𝑦𝑢 , p𝑢 ),
(18)

then we can rewrite Eq. 17 as

ℒ𝑝𝑜𝑝 =
|𝒮𝑈 |

|𝒱𝐿 ∪ 𝒮𝑈 |E(𝑣𝑢 ,𝑦𝑢 )∼𝑃𝑠𝑡 (𝒱,𝒴)
𝑃𝑝𝑜𝑝 (𝑣𝑢 , 𝑦𝑢 )
𝑃𝑠𝑡 (𝑣𝑢 , 𝑦𝑢 )

𝑙 (𝑦𝑢 , p𝑢 )

+ |𝒱𝐿 |
|𝒱𝐿 ∪ 𝒮𝑈 |E(𝑣𝑖 ,𝑦𝑖 )∼𝑃𝑝𝑜𝑝 (𝒱,𝒴)𝑙 (𝑦𝑖 , p𝑖 )

=
|𝒮𝑈 |

|𝒱𝐿 ∪ 𝒮𝑈 |E(𝑣𝑢 ,𝑦𝑢 )∼𝑃𝑠𝑡 (𝒱,𝒴)𝛾𝑢𝑙 (𝑦𝑢 , p𝑢 )

+ |𝒱𝐿 |
|𝒱𝐿 ∪ 𝒮𝑈 |E(𝑣𝑖 ,𝑦𝑖 )∼𝑃𝑝𝑜𝑝 (𝒱,𝒴)𝑙 (𝑦𝑖 , p𝑖 ),

(19)

where 𝛾𝑢 can be regarded as a weight of the loss function for each

pseudo-labeled node 𝑣𝑢 .

Finally, recalling the loss function under the distribution shift

case in Eq. 4, i.e.,

ℒ𝑠𝑡 =
|𝒱𝐿 |

|𝒱𝐿 ∪ 𝒮𝑈 |E(𝑣𝑖 ,𝑦𝑖 )∼𝑃𝑝𝑜𝑝 (𝒱,𝒴)𝑙 (𝑦𝑖 , p𝑖 )

+ |𝒮𝑈 |
|𝒱𝐿 ∪ 𝒮𝑈 |E(𝑣𝑢 ,𝑦𝑢 )∼𝑃𝑠𝑡 (𝒱,𝒴)𝑙 (𝑦𝑢 , p𝑢 ),

(20)

we can find that it is definitely equal to that in Eq. 3 with an ad-

ditional weight coefficient. In other words, we can recover the

population distribution as long as we weight each pseudo-labeled

node with a proper coefficient in ℒ𝑠𝑡 . □

A.1.2 Proof of Proposition 4.2.

Proof. Without loss of generality, we respectively prove the

equality of 𝜃∗ and ¯𝜃 under MSE loss and CE loss.

MSE loss. Under the MSE loss, with our non-zero assumption

for T, the following equation holds true:

𝜃∗ = arg min

𝜃 ∗∈Θ

∑
𝑢

| |𝑓𝜃 ∗ (x𝑢 ,A) − y𝑢 | |2

= arg min

𝜃 ∗∈Θ

∑
𝑢

| |T𝑓𝜃 ∗ (x𝑢 ,A) − Ty𝑢 | |2

= arg min

¯𝜃 ∈Θ

∑
𝑢

| |𝑓 ¯𝜃 (x𝑢 ,A) − ȳ𝑢 | |2 = ¯𝜃,

(21)

where y𝑢 is a one-hot vector expanded from 𝑦𝑢 . The proof is con-

cluded for MSE loss.

CE loss. Under CE loss, we prove the equality of
¯𝜃 and 𝜃∗ from

the perspective of gradient descent. Specifically, if for each node

𝑣𝑢 , the gradient of 𝑓 ¯𝜃 (x𝑢 ,A) w.r.t. ¯𝜃 is equal to that of 𝑓𝜃 ∗ (x𝑢 ,A)
w.r.t. 𝜃∗, then optimizing a model 𝑓 ¯𝜃 using gradient descent will

definitely leads to our desired model 𝑓𝜃 ∗ , that is to say,
¯𝜃 = 𝜃∗.

Specifically, for each node 𝑣𝑢 , we first rewrite the CE loss as

follows:

𝑙 (y𝑢 , p𝑢 ) = yT𝑢 log 𝑓𝜃 (x𝑢 ,A) . (22)

Then the difference 𝑑 of gradient between
¯𝜃 and 𝜃∗ can be written

as:

𝑑 = | |∇𝜃 ȳT𝑢 log 𝑓 ¯𝜃 (x𝑢 ,A) − ∇𝜃y
T
𝑢 log 𝑓𝜃 ∗ (x𝑢 ,A) | | (23)

Considering our assumption that 𝑓 ¯𝜃 (x𝑢 ,A) = T𝑓𝜃 ∗ (x𝑢 ,A), Eq. 23
becomes:

𝑑 = | |∇𝜃 (Ty𝑢 )T log(T𝑓𝜃 ∗ (x𝑢 ,A)) − ∇𝜃y
T
𝑢 log 𝑓𝜃 ∗ (x𝑢 ,A) | | (24)

According to the chain rule, we have:

𝑑 = | |∇𝜃 𝑓𝜃 ∗ (x𝑢 ,A) · (TT (Ty𝑢 ⊘ T𝑓𝜃 ∗ (x𝑢 ,A)) − y𝑢 ⊘ 𝑓𝜃 ∗ (x𝑢 ,A)) | |,
(25)

where ⊘ represents the element-wise division operation.

Obviously, if T is a permutation matrix, the difference 𝑑 of gra-

dient is zero. The proof is concluded for CE loss. □

A.1.3 Proof of Theorem 4.3. To prove Theorem 4.3, we need to bor-

row a corollary from [38], which illustrates the impact of incorrect

pseudo labels on self-training without distribution shift.

Corollary A.1. Assuming that the augmented dataset follows
the population distribution 𝑃𝑝𝑜𝑝 and | |∇𝜃 𝑙 | | ≤ Ψ for any gradient
∇𝜃ℒ, the following bound between ∇𝜃ℒ𝑝𝑜𝑝 and ∇𝜃ℒ𝑠𝑡 holds:

|∇𝜃ℒ𝑝𝑜𝑝 − ∇𝜃ℒ𝑠𝑡 | ⩽
|𝒮𝑈 |

|𝒱𝐿 ∪ 𝒮𝑈 | 2Ψ| |𝑃 (𝑣𝑢 ,𝑦𝑢 )∼𝑃𝑝𝑜𝑝 (𝒱,𝒴) (𝑦𝑢 ≠ 𝑦𝑢 ) | |.
(26)

Now, we prove Theorem 4.3.

Proof. We first calculate the difference between ∇𝜃ℒ𝑝𝑜𝑝 and

∇𝜃ℒ𝑠𝑡 as follows:

| |∇𝜃ℒ𝑝𝑜𝑝 − ∇𝜃ℒ𝑠𝑡 | | =
|𝒮𝑈 |

|𝒱𝐿
⋃

𝒮𝑈 | | |E(𝑣𝑢 ,𝑦𝑢 )∼𝑃𝑝𝑜𝑝 (𝒱,𝒴)∇𝜃 𝑙 (𝑦𝑢 , p𝑢 )

− E(𝑣𝑢 ,𝑦𝑢 )∼𝑃𝑠𝑡 (𝒱,𝒴)∇𝜃 𝑙 (𝑦𝑢 , p𝑢 ) | |.
(27)

Adding and subtracting a same term E(𝑣𝑢 ,𝑦𝑢 )∼𝑃𝑠𝑡 (𝒱,𝒴)∇𝜃 𝑙 (𝑦𝑢 , p𝑢 ),
and abbreviating

|𝒮𝑈 |
|𝒱𝐿

⋃
𝒮𝑈 | as 𝜂, Eq. 27 can be written as:

| |∇𝜃ℒ𝑝𝑜𝑝 − ∇𝜃ℒ𝑠𝑡 | | =
𝜂 | |E(𝑣𝑢 ,𝑦𝑢 )∼𝑃𝑝𝑜𝑝 (𝒱,𝒴)∇𝜃 𝑙 (𝑦𝑢 , p𝑢 ) − E(𝑣𝑢 ,𝑦𝑢 )∼𝑃𝑝𝑜𝑝 (𝒱,𝒴)∇𝜃 𝑙 (𝑦𝑢 , p𝑢 )
+ E(𝑣𝑢 ,𝑦𝑢 )∼𝑃𝑝𝑜𝑝 (𝒱,𝒴)∇𝜃 𝑙 (𝑦𝑢 , p𝑢 ) − E(𝑣𝑢 ,𝑦𝑢 )∼𝑃𝑠𝑡 (𝒱,𝒴)∇𝜃 𝑙 (𝑦𝑢 , p𝑢 ) | |.

(28)

According to the triangle property of the norm, the following in-

equality is satisfied:

| |∇𝜃ℒ𝑝𝑜𝑝 − ∇𝜃ℒ𝑠𝑡 | | ≤
𝜂 ( | |E(𝑣𝑢 ,𝑦𝑢 )∼𝑃𝑝𝑜𝑝 (𝒱,𝒴)∇𝜃 𝑙 (𝑦𝑢 , p𝑢 ) − E(𝑣𝑢 ,𝑦𝑢 )∼𝑃𝑝𝑜𝑝 (𝒱,𝒴)∇𝜃 𝑙 (𝑦𝑢 , p𝑢 ) | |
+ | |E(𝑣𝑢 ,𝑦𝑢 )∼𝑃𝑝𝑜𝑝 (𝒱,𝒴)∇𝜃 𝑙 (𝑦𝑢 , p𝑢 ) − E(𝑣𝑢 ,𝑦𝑢 )∼𝑃𝑠𝑡 (𝒱,𝒴)∇𝜃 𝑙 (𝑦𝑢 , p𝑢 ) | |) .

(29)
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Table 2: The statistics of datasets

Dataset Nodes Edges Classes Features Validation Test

Cora 2708 5429 7 1433 500 1000

Citeseer 3327 4732 6 3703 500 1000

Pubmed 19717 44338 3 500 500 1000

CoraFull 19793 65311 70 8710 500 1000

Flickr 7575 239738 9 12047 500 1000

Recalling Corollary A.1, we know that the first term on the right

hand side satisfies:

| |E(𝑣𝑢 ,𝑦𝑢 )∼𝑃𝑝𝑜𝑝 (𝒱,𝒴)∇𝜃 𝑙 (𝑦𝑢 , p𝑢 ) − E(𝑣𝑢 ,𝑦𝑢 )∼𝑃𝑝𝑜𝑝 (𝒱,𝒴)∇𝜃 𝑙 (𝑦𝑢 , p𝑢 ) | |
≤ 2Ψ| |𝑃 (𝑣𝑢 ,𝑦𝑢 )∼𝑃𝑝𝑜𝑝 (𝒱,𝒴) (𝑦𝑢 ≠ 𝑦𝑢 ) | |.

(30)

And for the second term, we have:

E(𝑣𝑢 ,𝑦𝑢 )∼𝑃𝑝𝑜𝑝 (𝒱,𝒴)∇𝜃 𝑙 (𝑦𝑢 , p𝑢 ) − E(𝑣𝑢 ,𝑦𝑢 )∼𝑃𝑠𝑡 (𝒱,𝒴)∇𝜃 𝑙 (𝑦𝑢 , p𝑢 ) | |

=

∫ +∞

−∞

∫ +∞

−∞
∇𝜃 𝑙 (𝑦𝑢 , p𝑢 )𝑑 (𝑃𝑝𝑜𝑝 (𝒱,𝒴) − 𝑃𝑠𝑡 (𝒱,𝒴))

≤ Ψ · | |𝑃𝑝𝑜𝑝 (𝒱,𝒴) − 𝑃𝑠𝑡 (𝒱,𝒴) | |,
(31)

where the inequality is from our assumption that | |∇𝜃 𝑙 | | ≤ Ψ.
Combining Eq. 30 with Eq. 31, we have:

| |∇𝜃ℒ𝑝𝑜𝑝 − ∇𝜃ℒ𝑠𝑡 | | ⩽
|𝒮𝑈 |

|𝒱𝐿 ∪ 𝒮𝑈 |Ψ(2| |𝑃 (𝑣𝑢 ,𝑦𝑢 )∼𝑃𝑝𝑜𝑝 (𝒱,𝒴) (𝑦𝑢 ≠ 𝑦𝑢 )

+ | |𝑃𝑠𝑡 (𝒱,𝒴) − 𝑃𝑝𝑜𝑝 (𝒱,𝒴) | |) .
(32)

The proof is concluded. □

A.2 Time Complexity Analysis
We first analyze the time complexity of a general self-training

framework. Assuming training an epoch takes 𝑂 (𝑀) time, given

epochs 𝐸, its time complexity in each stage is 𝑂 (𝐸𝑀). DR-GST is

innovated in information gain and loss correction, which respec-

tively takes 𝑂 (𝑇𝑀) and 𝑂 (𝐸𝑐2) time in each stage, where 𝑇 and

𝑐 are the numbers of sampling for variational inference and class.

Moreover, considering that we train a student model twice in each

stage, the total time complexity is 𝑂 ((2𝐸 +𝑇 )𝑀 + 𝐸𝑐2). In fact, 𝑇

and 𝑂 (𝐸𝑐2) are always far less than 𝐸 and 𝑂 (𝐸𝑀). Consequently,
the time complexity of DR-GST is approximately twice that of the

general self-training framework.

A.3 More Experimental Details
A.3.1 Details of datasets. We adopt five widely used benchmark

datasets from citation networks [3, 26] (i.e., Cora, Citeseer, Pubmed

and CoraFull) and social network [21] (i.e., Flickr) for evaluation. For
the citation networks, nodes represent papers, edges are the citation

relationship between papers, node features are comprised of bag-of-

words vector of the papers and labels represent the fields of papers.

And for the social network, nodes in Flickr represent users of the

Flickr website, edges are their relationships induced by their photo-

sharing records and labels represent users’ interest groups. For all

the datasets, We choose 500 nodes for validation, 1000 nodes for test.

The details of these datasets are summarized in Table 2. Our data

are public and do not contain personally identifiable information

and offensive content. The address of our data is https://docs.dgl.ai/

en/latest/api/python/dgl.data.html#node-prediction-datasets and

the license is Apache License 2.0.

A.3.2 Implementation. We supplement the implementation details

of DR-GST and all the baselines here.

For fair comparison, we utilize the standard GCN with 2 layers

as the backbone for all graph self-training framework. We optimize

models via Adam with learning rate of 0.01 and early stopping with

a window size of 200. In paticular, we set L2 regularization with

𝜆𝑟 = 5𝑒 − 4 for Cora, Citeseer, Pubmed, CoraFull and 𝜆𝑟 = 5𝑒 − 5

for Flickr. We set ReLU as the activation function and apply a

dropout rate of 0.5 to prevent over-fitting. As for the MC-dropout

and MC-dropedge, we set the number of sampling 𝑇 = 100. More-

over, we apply grid search for other important hyper-parameters.

Specifically, the drop rate of MC-dropout and MC-dropedge is cho-

sen from {0.1, 0.2, · · · , 0.5}, the balance coefficient 𝛽 for informa-

tion gain in Eq. 13 is searched in {4/3, 1, 2/3, 1/2, 1/3, 1/4} and the

threshold 𝜏 is tuned amongst {0.4, 0.45, · · · , 0.75} for Cora, Citeseer,
{0.6, 0.65, · · · , 0.9} for Pubmed, CoraFull and {0.75, 0.78, · · · , 0.96}
for Flickr.

We adopt the implementation of GCN, GAT and APPNP from

DGL
2
, and the implementations of STs

3
and ABN

4
are publicly

provided by their authors. Considering that the implementation of

M3S is not available, we re-implement it referring to the original

paper [28]. For all baselines, we perform grid search for important

hyper-parameters (i.e., 𝜏) to obtain optimal results.

A.3.3 Experimental Environment. In this section we summarize

the hardware and software environment in our experiments.

We utilize a linux machine powered by an Intel(R) Xeon(R) CPU

E5-2682 v4 @ 2.50GHz CPU and 4 Tesla P100-PCIE-16GB as well

as 4 GeForce RTX 3090 GPU cards.

The operating system is Linux version 3.10.0-693.el7.x86_64. We

realize our code with Python 3.8.8 as well as some other python

packages as follows: PyTorch 1.8.1, DGL 0.6.0 (cuda 10.1), NetworkX

2.5.

2
https://www.dgl.ai/

3
https://github.com/Davidham3/deeper_insights_into_GCNs

4
https://anonymous.4open.science/r/e7aca211-0d8d-4564-8f3f-0ef24b01941e/

https://docs.dgl.ai/en/latest/api/python/dgl.data.html#node-prediction-datasets
https://docs.dgl.ai/en/latest/api/python/dgl.data.html#node-prediction-datasets
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