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Abstract. Recently, community detection in complex networks has at-
tracted more and more attentions. However, real networks usually have
number of overlapping communities. Many overlapping community de-
tection algorithms have been developed. These methods usually consider
the overlapping community detection as a single-objective optimization
problem. This paper regards it as a multi-objective optimization prob-
lem and proposes a Multi-Objective evolutionary algorithm for Overlap-
ping Community Detection (MOOCD). This algorithm simultaneously
optimize two objective functions to get proper community partitions.
Experiments on artificial and real networks illustrate the effectiveness of
MOOCD.
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1 Introduction

In recent years, there is a surge on community detection in complex networks.
The main reason lies in that communities play special roles in the structure-
function relationship, and thus detecting communities (or modules) can be a
way to identify substructures which could correspond to important functions.
Generally, communities are groups of nodes that are densely interconnected but
only sparely connected with the rest of the network [1][2]. For example, on an
online shopping site, users in the same community usually have the same taste in
choosing similar goods. However, recent study shows that real networks usually
have number of overlapping communities [21]. That is, some nodes in networks
exist in multiple communities. It is reasonable in real world, since objects often
have multiple roles. For example, a professor collaborates with researchers in
different fields; a person has his family group as well as friends group at the
same time, etc. So, in overlapping community detection, these objects should be
divided into multiple groups.

Up till now, many overlapping community detection algorithms have been de-
veloped [11][13][14][20], which can be roughly classified as“node-based” or“link-
based” methods. The node-based methods classify nodes of the network directly
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[20]. The link-based methods cluster the edges of network, and then map the final
link communities to node communities by simply gathering nodes incident to all
edges within each link communities [11]. The contemporary methods all consider
the overlapping community detection as a single-objective optimization problem.
That is, the overlapping community detection corresponds to discover a commu-
nity structure that is optimal on one single-objective function. However, these
single-objective algorithms may confine the solution to a particular community
structure property because of only considering one objective function. When the
optimization objective is inappropriate, these algorithms may fail. Moreover, the
overlapping community structure can be evaluated from multiple criteria, which
can comprehensively measure the quality of overlapping communities. Although
multi-objective optimization has been applied for community detection [17][19],
it has not been exploited for overlapping community detection.

In this paper, we first study the multi-objective optimization for overlap-
ping community detection and propose a Multi-Objective evolutionary algorith-
m for Overlapping Community Detection (MOOCD). The algorithm employs
a well-known multi-objective optimization framework for numerical optimiza-
tion (PESA-II) [22], and uses two conflict objective functions. In addition, the
effective genetic representation, operators and model selection strategies are de-
signed. Experiments on typical artificial networks show MOOCD not only accu-
rately detects overlapping communities but also comprehensively reveals com-
munity structures. Moreover, experiments on three real networks illustrate that
MOOCD discovers more balanceable overlapping communities compared to oth-
er well-established algorithms.

2 Related Work

In this section, we will introduce the most related work, including community
detection, overlapping community detection , and multi-objective optimization
for community detection.

Community detection is crucial for analyzing structures of social networks.
There are lots of algorithms aiming at finding proper community partition.One
of the most known algorithms proposed so far is the Girvan-Newman (GN) al-
gorithm that introduces a divisive method by iteratively cutting the edge with
the greatest betweennes value [3]. Some improved algorithms have been pro-
posed [23][24]. These algorithm are based on a foundational measure criterion of
community, modularity, proposed by Newman [3].

Recently,some studies show that real networks usually have number of over-
lapping communities [21]. Many algorithms have been proposed to detect over-
lapping communities in complex networks, such as CPM [11], GA-NET+ [13],
GaoCD [14], etc. CPM is the most widely used, but its coverage largely depends
on the feature of network. GA-NET+, developed by Pizzuti, is the first algorith-
m that adopts genetic algorithm to detect overlapping communities. However,
GA-NET+ costs so much computation in transformation between line graph and
node. GaoCD is also a genetic algorithm. But the difference is that GaoCD is
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a link-based algorithm. Besides these algorithms, some people extend conven-
tional disjointed community detection criterions to overlapping ones. For exam-
ple, Shen[15] introduced a practical extended modularity for finding overlapping
communities. And Wang[16] also extended modularity @) and proposed an ef-
ficient method for adjusting classical algorithms to match the requirement for
discovering overlapping communities.

However, because the definition of community is multi-objective, the commu-
nity detection problem is multi-objective. And the conventional single-objective
community detection methods have several crucial disadvantages. Therefore,
there are some researchers who have been aware of the multi-objective commu-
nity detection. For instance, Gong [17] solves the community detection by max-
imizing the density of internal degrees, and minimizing the density of external
degrees simultaneously. Besides, Gong [18] provides a novel multi-objective im-
mune algorithm to solve the community detection problem in dynamic networks.
And Shi[19] formulated a multi-objective framework for community detection
and proposes a multi-objective evolutionary algorithm for finding efficient solu-
tions under the framework. However, there is few work applies multi-objective
community detection methods to find overlapping community partitions.

3 Multi-objective Evolutionary Algorithm for
Overlapping Community Detection

In this section, we will describe the Multi-Objective algorithm for Overlapping
Community Detection (MOOCD) in detail, which includes the algorithm frame-
work, objective function, genetic representation, genetic operators and multi-
objective model selection method.

3.1 Framework of the Algorithm

This paper applies the evolutionary algorithm (EA) to solve the multi-objective
optimization problem. It can simultaneously generate a set of candidate solu-
tions. The framework of MOOCD is described in Algorithm 1.

The framework of MOOCD is based on an existing multi-objective evolution-
ary algorithm: PESA-II [22]. Different from standard evolutionary algorithms,
PESA-II follows standard principles of an EA with the difference that it main-
tains two populations of solutions: internal population and external population.
External population contains non-dominated set, or Pareto front for each up-
dating. A solution dominates other solutions if all objective functions of this
solution are superior to other solutions. A solution is said to be Pareto optimal
if and only if there is no other solution dominating it. Selection occurs at the
interface between the two.

Algorithm 1 randomly generates genes and updates external population at
first. At every iteration, internal population is filled with genes selected from ex-
ternal population. New genes are generated based on internal population through
genetic operators. And external population is updated by the new genes. After
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several iterations, model selection method is used to select a single solution from
external population.

3.2 Objective Functions

As we said in Section 2, it is a good choice to use multiple objective functions
to solve the drawbacks of the single-objective community detection algorithms.
However, it is also a challenge to choose the objective functions. Different ob-
jective functions can reflect different characters of partitions. So ideal objective
functions had better contain intrinsic conflicts and thus the optimal community
partitions can be obtained through the trade-off of multiple objectives. There-
fore, the following two objective functions are selected in this paper.

One of the two objective functions is partition density D, which is raised by
Ahn [20]. The partition density D is a kind of link community evaluate function
whose mathematical definition is as following.

2 me — (ne — 1)
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Define P = {P4, ..., P.} as a partition of the network’s links into C' subsets.
me = |P| is the number of links in subset c. n. = |Ue,, € P.{i,j}| represents
the number of nodes incident to links in subset ¢. D, refers to the link density of
subset c. The intuitive meaning of D is the link density within the community. As
we said above, partition density is a link based function and it is also appropriate
when it is applied to evaluation overlapping community partition.

The other objective function is extended modularity which is proposed by
Shen [15]. This objective function is extended from modularity which is used by
many community detection methods. Traditional modularity measures the num-
ber of within-community edges, relative to a null model of a random graph with
the same degree distribution. But we can say that traditional modularity defi-
nition cannot be applied to overlapping community detection directly. To adopt

@ to overlapping community detection problem, Shen modified the traditional
modularity we mentioned above as follow.
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where m is the total number of links in the network, k; and k; are the degrees
of nodes ¢ and j respectively, A;; are the terms of the adjacency matrix of the
network. O; and O; are the numbers of communities to which nodes ¢ and j
belong respectively.

The two objective functions chosen in this paper are described above. Besides,
we can find out through our experiments that partition density tends to find
small communities. On the other hand, the modularity optimization may come
across the resolution limit problem[25]. From this problem, we can find that
modularity can lead the optimization algorithms to large community partitions.



Lecture Notes in Computer Science: Authors’ Instructions

Algorithm 1 Framework of MOOCD

Input:
The set of the internal population, ips;ze;
The set of the external population, epsize;
The probability of mutation, py,;
The probability of crossover, p.;
The running generation, gens;

Output:
The final population, P;

1: Pin=¢, Pex = ¢
2: for each i in 1 to epsize do do
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gi = generate_gene()
calculate_functions(g;)
Pem:PexU{gi}
end for
: for each ¢ in 1 to gens do
P, =¢,i=0, = Lsiz
in_select(Pey, Pin, 1)
while ¢ < ipsize do

randomly select two individuals (g; and gx) from P;,
generate random value r € [0, 1]
if r < p. then
g5, g =crossover(g;, g)
else
g; = mutate(g;)
g = mutate(gx)
end if
t=1+4+2
calculate_functions(gj); Pin = Pin U {gj}
calculate_functions(gy, );Pin = Pin, U {g}, }

end while

eX—SeleCt(Pesu Pi'ru ipsizm epsize)

: end for

: P = model_selection(P.y)

: return P

generate() //initialize individual ¢ according to the genetic representation.
calculate_function(g;) //evaluate the objective functions of g;.
ex_select(Pey, Pin, iPsize, €Psize) //update EP( maximum size is epsize).
crossover(gs, g;), mutate(g;) //crossover and mutation genetic operator
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These findings reflect the intrinsic conflict between the two. And the experiments
in section 4 shows that the algorithm using these functions can find community
partitions with different characters.

3.3 Genetic Representation and Operators

In this section, we describe two parts of the algorithm which are encoding and
decoding as well as mutation and crossover in detail.

Genetic Encoding and Decoding To apply genetic algorithm to our prob-
lem, we need to transfer the community partitions into some forms which can
execute genetic operations. To satisfy the requirement of overlapping community
detection, we choose link-based genotype to represent solutions. In this repre-
sentation method, links are clustered into different partitions. It is possible for
nodes that belong to two or more communities. As for the implement of this
method, we use the strategy provided by Cai [14].

In this link-based representation, an individual g of the population consists
of m genes {go, 91, - -,Gi,---,Gm—1}, where i € {0,...,m— 1} is the identifier of
edges, m is the number of edges, and each g; can take one of the adjacent edges
of edge i. As Fig. 1 shows

Poston. 0 1 2 3 456 7 8 910
1/2/0 4 5/6/7/8/9103

Genotype

Fig. 1: Genetic Encoding and Decoding

The decoding phase transfers genotype to partition, which consists of link
communities. Gene g; of the genotype and it’s value j is interpreted that edge
¢ and edge j have one node in common, and should be classified to same com-
ponent. In the decoding phase, all components of edges are found, and all edges
with in the component constitute a link community.

Genetic Mutation and Crossover. To implement genetic algorithm, we need
to confirm some necessary operators such as mutation and crossover. To describe
our mutation and crossover strategies, we suppose there are two solutions which
are represented through the method above as gl and g2. In the crossover oper-
ation, we randomly generate a value ¢. And then, the two genotypes exchange
their genes whose positions are i. As for the mutation operation, one random
value j is generated. And the jth gene of a certain genotype g is replaced by
another value we generate randomly. Fig. 2 show these operations in detail.
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Poson 01 2345678910 012345678910 0123456780910
Genotye | 1/2/0 4[3 6/3 8/910(7 12 0[/4 36 189107 1204563809107
i=3 i=6
Poston 0 1 2345678910 012345678910 012345678910
Genotye | 1/2/0 4[5 6|7 8/910/3 12 0/0 5678 9/103 120 4/36/7 89103
(a) parents (b) mutation (c) crossover

Fig. 2: Genetic Mutation and Crossover

3.4 Model Selection

When the genetic iterations finish, MOOCD returns its external population
which is a set of Pareto optimal solutions. And it’s time for the decision makers
to choose one solution from them. However, we provide an automated strategy
to select a more reasonable result. There are many methods that can identify
one promising solution in the candidate set. And the principle of some of these
model selection methods is to make use of new objective functions to find out a
proper solution. In this paper, we use another strategy called Max-Min Distance
strategy. The principle of this method is to find a solution which deviates from
the random solutions most. And the concrete procedure of it is as follows.

Before the procedure, the method executes MOOCD on some random net-
works with the same scale. The Pareto front of their solutions are called random
Pareto front compared with the real Pareto front.

Firstly, the distance between a solution in the real Pareto front and one in
the random Pareto front is defined in

dis(C,C") = /((intra(C) — intra(C"))2 + ((intra(C) — intra(C"))?)

where C' and C' represent the solutions in the real and random Pareto fronts,
respectively. Then the deviation of a solution in the real Pareto front from the
whole random Pareto front is quantified by the minimum distance between this
solution and any solutions in the random Pareto front. the deviation is defined
in
dev(C,CF) = min{dis(C,C")|C" € CF}
where C'F represents the random Pareto front. Finally we select the solution in
the real Pareto front with the maximum deviation. The model selection process
is formulated in
Sinaz—min = arg C{g@)}{dev(C, CF)}

where SF represents the real Pareto front.

In this section, we provided the framework of MOOCD and described some
crucial aspects of our algorithms. And we will evaluate the effectiveness of this
method based on artificial networks as well as real networks in the next section.
Besides, some other overlapping community detection algorithms are chosen to
compare with MOOCD in the experiments.
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4 Experiments

This section will validate the effectiveness of MOOCD through experiments on
artificial and real networks. The artificial netwrk experiments will illustrate the
advantages of multiple solutions returned by MOOCD, and the real network
experiments will validate the quality of the solution provided by the model s-
election method. The experiments are carried out on a 2.2GHz and 2G RAM
computer running Windows 7.

4.1 Experiments on Artificial Networks

To explore the character and ability of MOOCD, we create 5 small typical arti-
ficial networks. In the artificial network experiment, we won’t use the model se-
lection methods like max-min distance method to choose a single result. Rather,
we will represent all the candidate results in Pareto set provided by MOOCD.
And these results are shown in Fig. 3 and Fig.4.

(a) N1 (b) N2 (c) N3

Fig.3: The Community Partition Results of the Artificial Network N1, N2 and

N3
) N4-1 ) N4-2 ) N5-1 ) N5-2

Fig.4: The Community Partition Results of the Artificial Network N4 and N5

As we can see in the results, for the networks with single correct community
partition (N1,N2,N3), MOOCD can find the correct ovelapping community par-
titions. More importantly, all the candidate results of MOOCD are meaningful
for the networks with multiple community partitions(N4,N5). At the meantime,
MOOCD can simultaneously find community partitions in different sizes. This
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matches our purpose to choose the two objective functions. And we can say that
MOOCD has the ability to find different types of communities like overlapping
communities and disjoint communities. This conclusion matches our analysis and
assumption in Section 3.

4.2 Experiment on Real Network

In this section, we compare MOOCD with ABL and GA_NET on real networks.
We execute these 3 algorithm on 3 real networks and calculate D as well as extend
Qo1 of the partition results. After that, we calculate the number of communities,
the size distribution of communities and the average size of communities of the
partition results. At last, an intuitive view of partitions on Dolphin found by
MOOCD will be posted. Here we choose 3 networks as described in the Table 1
to execute the algorithms. The density and extended modularity are shown in
Fig.5.

Table 1: Real Networks Attributes
dolphins football lemis

Nodes 62 115 77
Edges 159 613 254
0.60] [ —m—GANET—@— ABL—A—MC [—=— GANET—@— ABL—A—MOOCD |
: 0.25-
0.55
> 0.50 ? 020 .
= 045 =
2] ©
< 0.40] -
[ S 0415
T 0.35] k=3
< 030 2
=2 £ 0.10 A—
S 025 ko) /
E 0.20 § 008 L]
Q. 0.15] ‘>1<, 1
0.10] "
0.00

T T T
football dolphins lesmis footlball dolp'hins Ies;nis

real network real network
(a) Partition density D (b) Extend modularity Qor

Fig. 5: The Experiment Result of 3 Methods in Real Networks

The modularity Qo of our method is much better than that of other meth-
ods. Though the partition density of our method is lower than the partition
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density of other methods in some network, we find a more appropriate com-
munity partition through the trade-off between partition density D and extend
modularity Qor. However, these results are not enough to demonstrate the abil-
ity and superiority of MOOCD. Additionally, to evaluate the rationality of the
result of MOOCD, in the results of the three methods, we calculate the num-
ber of communities, the size distribution of communities and the average size of
communities. The results of dolphin network are shown if Fig. 6.

0. (s 10
80 0.8
60 0.6
o o
N =
o) 404 E 0.4
20 0.2
0.0
GA_NET+ ABL MOoOoCD 1-3 4-6 79 10-12
Agorithm community size
(a) Community Number and Average (b) Community Size Distribution
Size

Fig. 6: Statistic Information for the Partition Results of Dolphin Network

As we can see in this figure, ABL and GA_NET both tend to find small
communities and they find too many communities. Noticing that the objective
function of GA_NET is community density, we can find community density D
can lead the algorithms to find tiny communities. This conclusion demonstrates
what we described in Section 3. This doesn’t match the real situation. On the
other hand, MOOCD can find bigger communities and the size distribution of
communities is more balanced.

And then, we show an intuitive view of partition on Dolphin found by
MOOCD in Fig.7 and analyze this partition. This figure shows the partition-
s found by MOOCD in dolphin network. Dolphin network is a social network
of frequent associations between 62 dolphins in a community living off Doubtful
Sound, New Zealand. The network fell into two parts because of SN100(node
36). In the partition result of MOOCD, node 36 is belonging to many commu-
nities. In other word, many communities overlap with each other on the node
36. Removing it makes many communities disjoint with each other, which then
splits the networks.
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Fig. 7: The Partition of Dolphin Network

5 Conclusion and Future Work

In this paper, we propose an evolutionary algorithm for multi-objective overlap-
ping community detection. This algorithm uses two classical community parti-
tion evaluation functions as objective functions. These objective functions reflect
different characters of community structures and make our algorithms have some
interesting abilities. The experiments show that our method works well on find-
ing overlapping communities. Besides, MOOCD can simultaneously find different
types of community partitions.

In the future, we will try some other interesting objective functions to extend
MOOCD. At the meantime, we will apply more than two objective functions to
this algorithm. Furthermore, we are going to use the ideas and strategies of this
method to solve other problems like dynamic community detection.
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