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ABSTRACT
Prohibited item detection is an important problem in e-commerce,

where the goal is to detect illegal items online for evading risks and

stemming crimes. Traditional solutions usually mine evidence from

individual instances, while current efforts try employing advanced

Graph Neural Networks (GNN) to utilize multiple risk-relevant

structures of items. However, it still remains two essential chal-

lenges, including weak structure and weak supervision. This work

proposes theRiskGraph Structure Learning model (RGSL) for pro-
hibited item detection. RGSL first introduces structure learning into

large-scale risk graphs, to reduce noisy connections and add similar

pairs. It then designs the pairwise training mechanism, which trans-

forms the detection process as a metric learning from candidates to

their similar prohibited items. Furthermore, RGSL generates risk-

aware item representations and searches risk-relevant pairs for

structure learning iteratively. We test RGSL on three real-world

scenarios, and the improvements to baselines are up to 21.91% in

AP and 18.28% in MAX-F1. Meanwhile, RGSL has been deployed

on an e-commerce platform, and the improvements to traditional

solutions are up to 23.59% in ACC@1000 and 6.52% in ACC@10000.
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Figure 1: Prohibited item detection in e-commerce.
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1 INTRODUCTION
Nowadays, increasing penetration and rapid development of online

shopping have significantly changed the lifestyle of humans [9, 39],

due to advantages in lower prices and wide product variety. How-

ever, there are various items against laws hidden in e-commerce as

well, creating prominent personal and social issues. For instance,

as shown in Figure 1, millions of counterfeit medicines and wildlife

products continuously tried to sell on Taobao platform
1
.

In order to search and delete enormous illegal items, prohibited

item detection has played an essential and fundamental role during

the past decades [12, 29, 34]. Traditional industrial solutions prefer

to deploy conventional machine learning or deep learning meth-

ods [8, 25] to independently make decisions for each instance based

on feature engineering. Obviously, these methods suffer from heavy

adversarial efforts by illicit sellers. It is easy to camouflage attributes

(e.g., textural descriptions and images) of prohibited items, very

similar to those of normal ones. More importantly, there are abun-

dant relations among items to describe latent risk relevance caused

by shared factors (e.g., items sold by the same seller, items clicked

by the same visitor and so on). It is usually much more unaffordable

1
https://www.taobao.com/
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to disguise theses risk-aware relations, through some adversarial

attacks against relevance topology. However, such valuable risk

relevance cannot be directly introduced in existing solutions and

have been rarely employed until now.

Graph Neural Networks (GNN) [1, 35] have become popular

for graphic structure analysis, due to the ability to simultaneously

model both structures and attributes via neighborhood aggrega-

tion. The powerful GNNs [11, 19, 30] have been widely introduced

to handle various e-commerce scenarios such as recommendation

systems [2, 6, 22], user alignment [42], review helpfulness pre-

diction [20, 26] and so on. A naïve idea is to connect items by

risk-relevant relations (e.g., “same seller”, “same visitor”, “relevant
seller” and etc. ) as a risk graph and directly employ existing GNNs

to learn representations of items for node classification. However,

it still remains two vital problems need to be considered. On the

one hand, the manually designed risk relations are often noisy and

incomplete as well as heterogeneous (i.e., weak structures), while

GNNs are highly sensitive to the quality of graph structures for

information propagation. On the other hand, there are multiple

subcategories of each risk (e.g., illegal medicine devices contain

prescription drugs, red soluble fat and scar cream), while items are

simply labeled as prohibited or not. This phenomenon (i.e., weak

supervision) indicates that same-labeled items would contain very

different attributes, violating basic assumption of node classifica-

tion. To sum up, aiming at fully exploiting both structures and

attributes to handle the problem of prohibited item detection, we

have to face the following challenges.

First, how to learn and optimize heterogeneous structures of

risk graphs? To adaptively learn high-quality graph structures for

GNNs, several studies have been proposed around the central con-

cept of graph structure learning (GSL) [4, 41, 46]. Traditional GSL

prefers to revise structures by removing noisy connections from

topologies and adding necessary pairs based on their attribute sim-

ilarity. However, most methods deal with homogeneous and small

graphs, which are inadequate in real-world heterogeneous graphs,

especially risk scenarios containing abundant semantics. Moreover,

existing approaches [4, 40, 46] prefer to optimize the whole graph,

which would suffer from unaffordable memory cost and high com-

putational complexity when dealing with large-scale graphs.

Second, how to handle the weak supervised information for

training and inferring? Traditional GSL-based GNNs are usually

designed for node-wise classification, resulting in the limitation

when dealing with multiple subcategories of risks. A basic idea

is to introduce metric learning to learn the distance between la-

beled items. However, because of limited human resources, items

in risk graphs are labeled with simple binary value (i.e., prohibited

or not). The constraints that same-labeled items should be closer

is very difficult to satisfy. Besides, we mainly focus on detecting

prohibited items, the metric learning between normal items could

be meaningless while occupying much computational cost.

In this paper, we are the first to introduce graph structure learn-

ing to prohibited item detection. We first construct a risk graph

to describe the risk-relevant relations among items, and then pro-

pose a novel iterative Risk Graph Structure Learning framework

(RGSL) for prohibited item detection. RGSL respectively designs

the heterogeneous structure learning and pairwise metric learn-

ing on risk graphs to overcome both weak structures and weak

supervision. Specifically, heterogeneous structure learning is to

reduce noisy structures and add incomplete connections by eval-

uating their corresponding importance, and then construct item

representations with effective heterogeneous message passing. And

then, we transform the detection process as a pairwise metric learn-

ing from candidates to their corresponding similar illegal seeds.

Furthermore, we design the unified framework which iteratively

learns risk-relevant representations of items and generates confi-

dent label-similar pairs for GSL in turn.

In a nutshell, the contributions of this paper are:

• To our best knowledge, we are the first to introduce graph

structure learning to address the problem of prohibited item

detection, which can clarify the risk-relevant structures and

identify prohibited items at the same time.

• We propose the novel RGSL consisting of both heteroge-

neous structure learning and pairwise training in an iterative

manner. RGSL is able to construct risk-relevant structures

and generate effective item representations by iteratively

keeping the consistency of feature smoothness and label

homophily during detection process.

• We evaluate RGSL by designing both various offline and

online experiments. Compared to state-of-the-art alterna-

tives, the improvements of RGSL are obvious up to 21.91%,

18.28%, 23.59% and 6.52% in AP, Max-F1, ACC@1000 and

ACC@10000 metrics.

2 RELATEDWORK
This section briefly introduces and analyzes the most related work,

including graph neural networks and graph structure learning.

Graph neural networks (GNN) [35], aiming at extending deep

neural networks tomodel structured data, have beenwidely used for

representation learning on graphs [11, 13, 19, 30]. Kipf et al. [19] pro-
pose the Graph Convolutional Networks (GCN) which propagates

graph information recursively to generate node representation.

Hamilton et al. [11] further extend GNNs to an inductive setting

via sampled neighborhood aggregation. Considering that neigh-

borhoods are often noisy, researchers introduce attention mecha-

nism [30] and importance sampling strategies [3, 14] to re-wight

neighborhood aggregation by attributed and structural similarity.

However, these GNNs pay no attention to types of nodes and edges,

implying the limitation when modeling risk graphs. Recently, het-

erogeneous GNNs have become popular [13, 16, 32, 38, 42] for repre-

sentation learning on heterogeneous graphs, preserving semantics

of real-world graphs as much as possible. The earlier RGCN [27]

directly designs multiple linear projection weights for each edge

type. Wang et al. [32], Cen et al. [2] and Hu et al. [13] respectively
introduce hierarchical heterogeneous attention, heterogeneous self-

attention and heterogeneous mutual attention mechanisms to ex-

tract fine-grained semantic information propagation. Meanwhile, Ji

et al [16] summarize the general framework of heterogeneous GNNs

and propose several heterogeneous importance sampling strategies

to keep effective and efficient message passing of different-typed

neighborhoods. However, when dealing with risk graphs, current

homogeneous and heterogeneous GNNs have to face the incom-

plete structures and weak supervision because of enormous items

but limited human resources.
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Table 1: Notations.

Notation Description
G the input risk graph

G𝑇 the topological structures of G
G𝐴 the attribute similarity graph of G
V the item set of 𝐺

V𝐿,V𝑆 the labeled item set and the prohibited seeds of 𝐺

E the edge set of 𝐺

R the relation type set of E
𝜓 ∈ R the relation type of R
N𝜓,𝑖 the type-𝜓 neighbors of 𝑣𝑖

𝑑𝑎 the dimension of attributes

𝑑 the dimension of representation

𝐾 the size of pairwise labels

𝑇 the number of iterative training

𝑿 ∈ R𝑑𝑎 the attributes of items

𝒀 the set of labels

𝚪𝜓 (𝑣𝑖 , 𝑣 𝑗 ) the type-𝜓 similarity of 𝑣𝑖 and 𝑣 𝑗

G𝑡
𝐴

the 𝑡𝑡ℎ attribute similarity graph

𝑯 𝑡 ∈ R𝑑 the 𝑡𝑡ℎ representation of items

As GNNs usually require high-quality graphic structures for

effective message passing, Graph Structure Learning (GSL) has at-

tached many attentions recently, targeting at jointly learning an op-

timized graph and corresponding representations [46]. GLNN [10]

proposes to keep both sparsity and feature smoothness of graphs

and incorporates them into a hybrid objective. ProGNN [17] takes

low-rank prior into consideration by using nuclear norm of gener-

ated graphs. Following the assumption that graphs are generated via

a sampling process from certain distributions, LDS-GNN [7] frames

GSL as a bilevel programming problem and generate edges of each

node with a parameterized Bernoulli distribution. GAUG-O [41]

proposes to integrate GNN based edge predictor with traditional

adjacency matrix as sampling probability. GEN [31] keeps label ho-

mophily within both embedding-based KNN graphs and topological

graphs in all layers of GNNs. The most popular direction of GSL is

directly learn a metric function between pairwise representations

of nodes to derive edge weights. AM-GCN [33] learns the relevance

and difference between topological graph and attribute-KNN graph

at the same time. GAUG-M [41] integrates with the self-supervised

graph embedding while GRCN [37] utilizes the GNN-based node

representation to generate confident unconnected pairs as candi-

dates for metric learning. IDGL [4] proposes to generate graphs and

learn metrics in an iterative manner to keep both feature smooth-

ness and label homophily. Unfortunately, these methods are all

to deal with homogeneous graphs, which cannot handle the rich

semantics within risk graphs. Limited work [40] has been done

in heterogeneous graphs by propagating the probability between

relevant nodes in views of attributes and topologies. However, the

high computational complexity and expensive memory cost make

it unaffordable when dealing with risk detection. Moreover, the

weak supervision also makes it difficult to train an effective GNN.

(a) E-commerce Graph
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Figure 2: The construction of risk graph. 𝑣1 and 𝑣4 are two
prohibited items and the others are normal ones.

3 PRELIMINARIES
Here we introduce the concepts of risk graphs, the problem of

prohibited item detection as well as graph homophily. The main

notations are summarized in Table 1.

In e-commerce platforms, graph modeling and representation

learning have been widely used in many tasks such as user align-

ment [42] and intent recommendation [6]. In risk scenarios, we

prefer to connect items by risk-relevant relations, where neighbor-

hoods are likely to share risk.

Definition 1. Risk Graph. A risk graph is denoted as G =

{V, E,𝑿 } whereV and E are the set of items and their edges, 𝑿 is
the attributes of nodes. The types of edges are all recorded as R. Notice
that |R | ≥ 2.

There are a lot of risk-relevant relations in industry and we select

the three representative relations for discussion. As shown in Fig-

ure 2(b), we connect independent items via several risk-relevant re-

lations, including (1) same seller to connect items belong to the same

seller, (2) same visitor to connect items which are visited by some

same visitors, and (3) relevant seller to connect items sold by relevant

sellers to overcome the multiple fake identifications of adversarial

sellers. Compared to traditional heterogeneous graphs [28], the

structures of risk graphs are often noisy and incomplete where

prohibited items usually connect with normal items rather than

other prohibited items due to adversarial efforts of illegal sellers

and the concentration of normal items.

Definition 2. Prohibited Item Detection [15]. Given a risk
graph G = {V, E,𝑿 }, label set 𝒀 , prohibited item detection is to learn
an effective identification function H : H(G) → 𝒀 |V | . 𝒀𝑖 ∈ {0, 1}
where 0 and 1 respectively label the normal and prohibited items.

To quantitatively evaluate the noisy and incomplete structures,

the ratio of same-labeled pairs (i.e., homophily) is often a good

choice in many scenarios [5, 24, 43, 44]. However, traditional ho-

mophily metric heavily suffers from imbalanced labels while there

are a large number of normal items and very few prohibited ones in

risk graph. Inspired by [21], we calculate the risk homophily metric

𝜌 on risk graphs as follows

𝜌 =
1

2

( [ |E𝑝𝑝 |
|E𝑝∗ |

−
𝒀𝑝

𝒀

]
+
+
[
|E𝑛𝑛 |
|E𝑛∗ |

− 𝒀𝑛
𝒀

]
+

)
, (1)

where E𝑝𝑝 and E𝑛𝑛 respectively denote the edges of both prohibited

or normal items, E𝑝∗ and E𝑛∗ denote the edges consisting of at least
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Figure 3: The overall architecture of RGSL. (a) is the risk graph consisting of topological structures G𝑇 and attribute similarity
graph G𝑡

𝐴
. (b) is the heterogeneous structure learning to remove noisy neighbors such as 𝑣 𝑗2 and 𝑣 𝑗4 and add attribute similar

neighbors such as 𝑣 𝑗5 and 𝑣 𝑗6 to construct node representation 𝑯𝑖 . (c) is the pairwise metric learning to classify edges between
candidate 𝑣𝑖 and its relevant prohibited seeds 𝑣𝑠1, 𝑣𝑠2 except 𝑣𝑠3. It further iteratively generates new G𝑡+1

𝐴
.

one prohibited/normal items, 𝒀 = 𝒀𝑝 ∪ 𝒀𝑛 denotes the labels where

𝒀𝑝 and 𝒀𝑛 are prohibited items and norm items, | · | is the count
option, Abs[·] is to extract the absolute information. Obviously, 𝜌

eases the influence from imbalance labels by considering both the

ratio of prohibited and norm items. The risk homophily can not

only evaluate graph structures but also guide iterative training at

the same time.

4 METHODOLOGY
4.1 Overview
Figure 3 illustrates the overall architecture of RGSL. In this ar-

chitecture, given a risk graph consisting of several experiential

risk-relevant relations in Figure 3(a), we respectively design the

heterogeneous structure learning, pairwise metric learning and

iterative training mechanism to overcome the two challenges (i.e.,

weak structures and weak supervision). Specifically, (1) since the

constructed risk graphs in e-commerce are susceptible to noise and

incomplete, in Figure 3(b), we design the heterogeneous structure

learning which evaluates importance of neighborhoods in not only

topologies (e.g., G𝑇 ) but also attributes (e.g., G𝐴) and adaptively

remove/add low-/high-quality connections for effective message

passing. (2) To handle the weak supervision in expression, as shown

in Figure 3(c), we design the pairwise metric learning to learn dis-

tance from candidates to their related prohibited items. Further-

more, we iteratively learn the risk-relevant representations and

generate risk similarity graphs iteratively to keep the consistency

of feature smoothness and label homophily indeed.

4.2 Heterogeneous Structure Learning
We begin with the heterogeneous structure learning to augment

risk graphs for effective message passing. Although structure learn-

ing [33, 41] has been employed to handle noisy and incomplete

graphs, unfortunately, most existing approaches are on homoge-

neous graphs which fail to evaluate the impact of semantics inside

multiple risk-relevant relations when adding or removing edges.

Thereby, aiming at obtaining high-quality structures, we construct

the attribute similarity graph of enormous items and further design

the heterogeneous similarity measure to find similar neighborhoods

from both heterogeneous topologies and attribute graphs.

At first, we calculate the Euclidean distance between different

items based on attributes 𝑿 , and construct confident attribute sim-

ilarity graph G𝐴 by ranking and preserving top-20 connections

of nodes to ensure efficiency. Besides, we respectively randomly

sample several neighborhoods for each type of risk-relevant rela-

tions to keep efficient structure learning. Notice that, the G𝐴 will

be iteratively optimized since the initialized structures suffer from

many adversarial attacks.

To evaluate the quality of heterogeneous topological and confi-

dent attributed neighbors of items, we design the heterogeneous

similarity measure in a multi-head mechanism, taking multimodal

characteristics into consideration. Specifically, given an item 𝑣𝑖 , we

encode the basic representation 𝒉𝑖 ∈ R1×𝑑 of its attributes as

𝒉𝑖 = 𝜎 (𝑿𝑖𝑾 + 𝑏), (2)

where 𝑿𝑖 ∈ R1×𝑑𝑎 where 𝑑𝑎 denotes the size of attributes, 𝑾 ∈
R𝑑𝑎×𝑑 and𝑏 are learnable parameters,𝑑 is the dimension of item rep-

resentations, 𝜎 (·) is the activation function and we choose RELU(·)
in this work.

Then we transform 𝒉𝑖 as a multi-head tensor, i.e., 𝒉𝑖 ∈ R𝑀×1× 𝑑
𝑀

where𝑀 is the total number of heads, and then calculate the simi-

larity of 𝑣 𝑗 to 𝑣𝑖 at𝜓 -typed relation as

𝚪𝜓 (𝑣𝑖 , 𝑣 𝑗 ) = 𝑓 (𝛾𝜓𝒉𝑖𝑾𝜓𝒉
𝑇
𝑗 ), (3)

where 𝚪𝜓 (𝑣𝑖 , 𝑣 𝑗 ) ∈ R𝑀×1×1
denotes the multi-head impact of 𝑣𝑖

upon type-𝜓 connection, 𝑾𝜓 ∈ R𝑀× 𝑑
𝑀
× 𝑑

𝑀 is the type-𝜓 projec-

tion tensor, 𝛾𝜓 is the prior factor to denote the general signifi-

cance of each meta relation, and here we set
1√
𝑀/𝑑

. 𝑓 (·) is to keep

Γ𝜓 (𝑣𝑖 , 𝑣 𝑗 ) ∈ (0, 1) which is sigmoid(·) used in this work.
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Moreover, we obtain the learned heterogeneous similarity graph

by filtering noisy topological edges and adding confident uncon-

nected pairs, namely,

𝒂𝑖, 𝑗,𝜓 =


𝚪𝜓 (𝑣𝑖 , 𝑣 𝑗 ),

∑
𝑚

𝚪
(𝑚)
𝜓

(𝑣𝑖 , 𝑣 𝑗 )/𝑀 > 𝜖,

0 otherwise,

(4)

where 𝒂𝑖, 𝑗,𝜓 denotes the learned edge weight, 𝜖 denotes the thresh-

old value for adding/removing edges, 𝚪
(𝑚)
𝜓

(𝑣𝑖 , 𝑣 𝑗 ) is the𝑚th
simi-

larity.

Furthermore, by normalizing 𝒂𝑖, 𝑗,𝜓 over all neighborhoods for

each head as 𝒂𝑖, 𝑗,𝜓 , we design the heterogeneous message passing

to construct final representations of nodes with adaptive neighbor-

hoods, namely

𝑯𝑖 = HeteAGG(𝒉𝑖 , {𝒂𝑖, 𝑗,𝜓𝒉 𝑗𝑾
𝐻
𝜓
|𝑣 𝑗 ∈ N𝑖,𝜓 ,𝜓 ∈ R ∪ {𝐴}}), (5)

where 𝑾𝐻
𝜓

∈ R𝑚× 𝑑
𝑀
× 𝑑

𝑀 denotes the type-𝜓 projection tensor to

consider rich semantics, the total edge types contain the attributed

type 𝐴 besides topological R, HeteAGG(·) is the heterogeneous ag-
gregator and we choose the popular mean-pooling here for message

passing. Notice that, inspired by [44], we concatenate rather than

add node and neighborhood representations to ease low homophily

of structures. In addition, we transform 𝑯𝑖 with size 1-by-𝑑 by

concatenating all heads finally.

4.3 Pairwise Metric Learning
Besides good structures to construct node representation with ef-

fective message passing, GNNs also require plenty of fine-grained

supervised information for parameter optimization. However, be-

cause of limited human resources, items in risk graphs are labeled

with simple binary value (i.e., prohibited or not) , while prohibited

items indeed belong tomultiple subcategories of risks, as mentioned

in Section 1.

To enrich the supervised information in both size and expres-

sion, a natural idea is to transform node classification into metric

learning [36], which learns the distance of same-labeled or different-

labeled items. However, there are multiple subcategories of each

risk, implying the quite difference of prohibited items. Moreover,

existing labeling often equally treat both prohibited and normal

items, while the relevance among normal items contributes little to

risk detection. Here we introduce the pairwise metric learning of

multiple subcategories as follows.

Given the observed labeled items V𝐿 ∈ V with their classifica-

tion 𝒀 , we first select the prohibited items as seedsV𝑆 , namely,

V𝑆 = {𝑣𝑖 |𝑣𝑖 ∈ V𝐿 ∧ 𝒀𝑖 = 1}. (6)

Then we calculate the relevance from all labeled items to pro-

hibited seeds, and select several most relevant seeds to construct

pairwise instances. The attribute-based relevance 𝑟𝑎 (𝑣𝑖 , 𝑣 𝑗 ) is cal-
culated by cosine similarity as

𝑟𝑎 (𝑣𝑖 , 𝑣𝑠 ) =
𝑿𝑖𝑿𝑠

| |𝑿𝑖 | | · | |𝑿𝑠 | |
, (7)

where 𝑣𝑖 ∈ 𝑽𝐿 and 𝑣𝑠 ∈ 𝒀𝑆 . We rank pairs of 𝑣𝑖 according to

𝑟𝑎 (𝑣𝑖 , 𝑣𝑠 ) and select top-𝑛 pairs as pairwise labels. Besides, the

connected labeled pairs in multiple relations can also be chased as

labels. We label the pairs 𝒀𝑖, 𝑗 = 𝒀𝑖 .

Naturally, the loss with pairwise labels is defined as follows,

L𝑃𝑊 = −
∑
<𝑖,𝑠>

𝒀𝑖,𝑠 · 𝑙𝑜𝑔(�̂�𝑖,𝑠 ) + (1 − 𝒀𝑖,𝑠 )𝑙𝑜𝑔(1 − �̂�𝑖,𝑠 ), (8)

where �̂�𝑖,𝑠 is the prediction of pair < 𝑣𝑖 , 𝑣𝑠 >, calculated by

�̂�𝑖,𝑠 = MLP(𝑯𝑖 | |𝑯𝑠 ), (9)

where 𝑯𝑖 and 𝑯𝑠 calculated by Eq. (5) respectively denote the repre-

sentation of 𝑣𝑖 and 𝑣𝑠 , MLP(·) denotes the Multi-Layer Perceptron

and we set the number of layers to 2 in this paper.

4.4 The Iterative Unified Framework
Due to adversarial attacks of illegal sellers, prohibited and normal

items are often very similar, and hence the attribute similarity graph

generated in Section 4.2 is likely to be low homophily. Since the ho-

mophily of structures influences performances of GNNs deeply [44],

we propose to learn risk-aware embedding of items and generate

corresponding confident attribute graph G𝑡
𝐴
iteratively, to keep

both feature smoothness and label homophily during training.

Given representations of items 𝑯 𝑡−1
from (𝑡 − 1)th epoch, we

generate attribute similarity graph in 𝑡 th epoch as

G𝑡
𝐴,𝑖, 𝑗 =

{
1, rank𝑖 (𝑠𝑡𝑖, 𝑗 ) ≤ 𝑘
0 otherwise,

(10)

where G𝑡
𝐴,𝑖, 𝑗

denotes the connection of 𝑣𝑖 and 𝑣 𝑗 at 𝑡 th epoch,

rank𝑖 (·) is the descending ranking operation of 𝑣𝑖 , and 𝑠
𝑡
𝑖, 𝑗

denotes

the cosine similarity of 𝑯 𝑡
𝑖
and 𝑯 𝑡

𝑗
. We select top-k confident pairs

of 𝑣𝑖 .

By modeling and integrating heterogeneous structure learning

and pairwise training into a iterative unified framework, both the

graph structures and GNNs can be optimized at the same time. The

optimized objective is

L𝑡 = L𝑡
𝑃𝑊 (G𝑇 ,G𝑡

𝐴) + 𝜉 · Ω(𝚯), (11)

where L𝑡
𝑃𝑊

(G,G𝑡
𝐴
) denotes the iterative pairwise loss of Eq. (8)

with the corresponding G𝑡
𝐴
, G0

𝐴
= G𝐴 , L0 (G𝑇 ,G0

𝐴
) = L𝑃𝑊 , 𝜉

denotes the regularization of all learnt parameters𝚯, and Ω denotes

the L2 regularization to keep generalization and avoid over-fitting.

We adopt Adam [18] to minimize L𝑡
in a distributed batch-wise

training manner to ensure both effectiveness and efficiency. In

addition, when inferring, we calculate the average probability of

unlabeled candidates to prohibited seeds as the final prediction.

4.5 Complexity Analysis
Since attribute similarity graphs are generated offline. the major

computational complexity of RGSL is from heterogeneous structure

learning and pairwise training. For heterogeneous structure learn-

ing, the complexity is O((|R|+1)×𝑛×𝑑×𝑑𝑎×𝑚×|𝒀 |) where𝑛 is the
size of neighbors of each meta relation, 𝑑𝑎 and 𝑑 are the dimension

of attributes and representations. For pairwise training, the excep-

tion of complexity is O(([𝑘 (1−𝜖) + 1]𝑛× |𝒀 | × (|R| + 1) × 2𝑑2 ×𝑀)
where 𝑘 is the size of pairwise labels. Obviously, the computational

complexity is linear with the scale of supervised items, implying

the scalability of our RGSL.
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Table 2: Description of datasets.

Dataset Medicine Cheat Theft
#Nodes 9,268,306 12,838,322 10,991,736

# Same Seller 1,756,013 3,207,579 4,500,577

# Relevant Seller 3,546,395 4,461,413 6,077,735

# Same Visitor 2,075,251 4,770,026 6,261,145

# Labels 975,193 1,236,492 1,344,712

Label Rate 10.52% 9.63% 12.23%

Prohibition Ratio 3.84% 1.93% 2.43%

Homophily 0.2036 0.1943 0.1319

5 EXPERIMENTS
In this section, we conduct extensive experiments on real-world

datasets, and do the ablation study and parameter analysis to show-

case the advantages of our design choices. In addition, besides

offline evaluation, our RGSL have been deployed on real-world

e-commerce platforms and do online testing. Since traditional GSL

approaches would suffer from too expensive time cost, we select

MLP for comparison online.

5.1 Datasets
We collect the two-week web-scale datasets in three risk scenar-

ios including illegal medical device (i.e., “Medicine”), cheating and
counterfeiting equipment (i.e., “Cheat”) and theft tool (i.e., “Theft”),
from a popular second-hand commodity trading platform.

For each risk dataset, we empirically construct a risk graph

to preserve the risk-relevant semantics between billions of items,

and adopt word2vec [23] to embed the description of items as

512-dimensional numerical features. Next, we introduce how to

construct training, validation and test instances. For offline experi-

ments , the instances are randomly divided into training and testing

with rate 9:1. The detailed statistics of these datasets are described

in Table 2. Besides offline experiments, we also evaluate the per-

formance of our method by designing online testing of one-week

online dataset.

5.2 Experimental Settings
5.2.1 Baselines. We compare with eight representative baseline

methods including traditional LR and current powerful MLP which

have been deployed on e-commerce platforms, six outstanding

GNNs including homogeneousGNNs ( GraphSAGE [11] andGAT [30]),

GSL based homogeneous GNNs (GAUG [41] and GRCN [37]), and

heterogeneous GNNs (HAN [32] and HGT [13]).

• Logistic Regression (LR) is a traditional machine learning

algorithm with good interpretability used in industry for

classification.

• Multi-Layer Perception (MLP) is a classic deep learning

algorithm which detects the nonlinear relevance of item

features via multi-layer neural networks for classification.

• GraphSAGE [11] is a representative GNNmodel which con-

struct node representations by gathering information from

neighborhoods following feature smoothness assumption.

• GAT [30] is an eminent GNN framework which calculates

the relevance between nodes and their neighborhoods via

attention mechanism to keep noise reduction.

• GRCN [37] is a GSL based GNN which performs edge ad-

dition and edge re-weighting based on both attributes and

topologies. Notice that, the basic GNN model is GraphSAGE

in this work to keep the efficiency.

• GRUG [41] is a GSL model as well and it integrates self-

supervisedGNN to reverse topological structureswith embedding-

based adjacency matrix. Notice that, we utilize GRUG-M as

the comparison and the basic GNN model is set as Graph-

SAGE in this work.

• HAN [32] is a popular heterogeneous GNN which designs a

hierarchical message passing consisting of both node-level

and semantic-level attention mechanisms of heterogeneous

neighbors.

• HGT [13] is a widely used heterogeneous graph transformer

to deal with heterogeneous interaction graphs based on het-

erogeneous mutual attention mechanism to aggregate infor-

mation considering both edge and node types.

• RGSL. This is our proposed model consisting of heteroge-

neous structure learning and pairwise training to handle the

problem of low-quality structure and few simple labeling in

prohibited item detection scenarios.

5.2.2 Implementation Details. We train and test all baselines and

our RGSLwith Tensorflow 1.12 on PAI platform
2
with Tesla GeForce

GTX 1080 Ti Cluster. Besides, we utilize AliGraph [45] API to load

the very large risk graphs and do neighborhood sampling in a

distributed system. All parameters of these models are randomly

initializedwith Gaussian distribution and optimizedwith Adam [18]

to keep fair comparison. We set the number of workers to 8, the

batch size to 1024, the learning rate to 0.005, the feature embedding

𝑑 to 512, the regularization weight 𝛾 to 0.01 and the dropout rate

to 0.4. The sample size 𝑛 in homogeneous GNNs (i.e., GraphSAGE,

GAT, GRCN and GRUG) is set to 5. For heterogeneous GNNs (i.e.,

HAN, HGT and RGSL), we set the sample size of each relation to

5. All methods are optimized until in convergence. We generate 5

pairs for each candidate in RGSL and set the maximum iteration

up to 20 and the iterations 𝑇 to 3. The hyper-parameter sensitivity

will be discussed in Section 5.5.

5.2.3 Evaluation Metrics. In offline experiments, we select the

Max-F1 (the max F1 value by varying the threshold of recalled

items), Average Precision (AP) and Area Under Curve (AUC) as
the metrics to evaluate global performance of all test instances.

In online experiments, we choose ACC@1000 and ACC@10000

(i.e., the accuracy of top 1,000 or 10,000 recalled items by manually

reviewing) to showcase the improvement of RGSL to the deployed

MLP model. Notice that, the larger values of Max-F1, AP, AUC

ACC@1000 or ACC@10000 indicate the better performance.

5.3 Performance Evaluation
In this section, we empirically compare RGSL to several state-of-the-

art alternatives in three risk scenarios on e-commerce platforms.

2
https://www.aliyun.com/product/bigdata/product/learn

https://www.aliyun.com/product/bigdata/product/learn
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Table 3: Performance of baselines and RGSL for risk detection on the three datasets. The best performance is in bold and the
second best is underlined. Relative improvements of RGSL w.r.t. the second best are reported as well.

Dataset Metric LR MLP GraphSAGE GAT GAUG GRCN HAN HGT RGSL Improv.

Medicine

AP 0.1629 0.2925 0.2666 0.2624 0.2764 0.2792 0.2747 0.3128 0.3813 21.91%

Max-F1 0.2454 0.3489 0.3465 0.3486 0.3566 0.3558 0.3504 0.3895 0.4230 8.59%

AUC 0.9497 0.9679 0.9690 0.9703 0.9690 0.9683 0.9723 0.9758 0.9781 0.24%

Cheat

AP 0.0579 0.1055 0.1084 0.1123 0.1191 0.1119 0.1122 0.1168 0.1432 20.20%

Max-F1 0.1183 0.1752 0.1708 0.1765 0.1889 0.1803 0.1844 0.1903 0.2251 18.28%

AUC 0.9253 0.9416 0.9479 0.9496 0.9500 0.9474 0.9498 0.9528 0.9576 0.50%

Theft

AP 0.1292 0.1487 0.1746 0.1614 0.1448 0.1729 0.1618 0.1695 0.2106 20.64%

Max-F1 0.2234 0.2454 0.2578 0.2552 0.2516 0.2506 0.2616 0.2623 0.3064 16.81%

AUC 0.9284 0.9505 0.9606 0.9615 0.9619 0.9596 0.9481 0.9655 0.9677 0.24%
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Figure 4: Performance comparison of RGSL and its variants on the three risk scenarios.
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Figure 5: Adjusting the value of threshold 𝜖.

Table 3 presents the overall AP, Max-F1 and AUC results of different

methods, where the following two main observations can be made.

First, RGSL achieves the best performance on the three datasets

for prohibited item detection. Compared to the second best one, the

improvement is prominent from 20.20% up to 21.91% in AP, from

0.24% up to 0.50% in AUC and from 8.59% up to 18.28% in Max-F1.

This phenomenon is reasonable. Compared to homogeneous GNNs

and heterogeneous HAN and HGT, RGSL is able to optimize graph

structures for better message passing. Compared to GSL-based

GAUG and GRCN, RGSL is advantaged in pairwise training to

overcome weak supervised information and preserving semantics.

Due to the imbalanced labeling, AUC value is relatively large than

other metrics and the improvement is not very obvious.

Second, GSL-based baselines and our RGSL can perform better

than others in lower-homophily datasets Cheat and Theft. The
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𝐴

Figure 6: Adjusting the number of epochs 𝑇 .

homogeneous GAUG and GRCN can even perform better than

HAN, indicating the necessary to employ structure learning when

dealing with complex noisy graphs.

5.4 Variant Analysis
RGSL is to fully exploit attributes and topologies to learn graph

structures for effective neighborhood aggregation and integrate

with iterative pairwise labeling to mutually enrich supervised infor-

mation and enhance structure learning. In this section, we analyze

three kinds of RGSL variants to showcase the advantages of our de-

sign choices. (1) RGSL𝑁𝑊 replaces iterative pairwise training with

node-wise classification. (2) RGSL𝑃𝑊 ,𝐴 and RGSL𝑃𝑊 ,𝑇 respec-

tively only consider attributed or topological graphs. (3) RGSL𝑃𝑊
removes the iterative framework againstRGSL. The results of RGSL
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Figure 7: Case study in Medicine. Notice that, the deleted
edges are from G𝑇 and the added edges are from iterative
G𝑇
𝐴
.

and its variants in terms of AP and Max-F1 on the three datasets

are shown in Figure 4.

Obviously, RGSL consistently outperforms all its variants. (1)

Compared with RGSL𝑁𝑊 , the advantages of RGSL is in pairwise

training to overcome the few size and poor expression of manual

labels. (2) Compared with RGSL𝑃𝑊 ,𝐴 and RGSL𝑃𝑊 ,𝑇 , the improve-

ment of RGSL results from its ability to fully integrate with multi-

plex relations and attributes for structure learning. (3) Compared

with RGSL𝑃𝑊 , our RGSL can iteratively add confident candidate

connections which address the gap of label homophily and feature

smoothness to a certain extent.

5.5 Parameter Analysis
There are two key parameters impacting the performance for pro-

hibited item identification, namely the threshold 𝜖 to filter connec-

tions and the number of epochs 𝑇 for iterative pairwise training.

To evaluate the impact of our filtering mechanism, we vary the

value of 𝜖 from 0 to 1 and report the AP and Max-F1 performance

of RGSL on the three datasets in Figure 5. Notice that 𝜖 = 0 and

𝜖 = 1 are two extreme cases where the former removes none edges

and the latter remove all connections. Obviously, RGSL achieves

the best performance with 𝜖 = 0.1 and too large value will leads to

very poor performance. This phenomenon demonstrates that our

heterogeneous structure learning has the ability to reduce noisy

neighborhoods besides adding valuable unconnected similar pairs.

To evaluate the impact of iterative training framework, we adjust

the number of epochs 𝑇 from 1 to 5, and report AP performance

of RGSL and homophily of iterative attributed graph on all three

datasets in Figure 6. There are two main observations. On the one

hand, when 𝑇 initially increases, the performance of RGSL is con-

tinuously improved, until reaching a saturation at about 𝑇 = 3,

indicating the effectiveness of constructing enhanced attributed

graph. On the other hand, the homophily of attributed graphs obvi-

ously increases by replacing attributes with label-wise embedding

of nodes, which implies the promotion of optimized structures to

better performance of tasks.

5.6 Case Study
In Figure 7, we showcase two representative cases in Medicine
dataset including Lipolytic Solution (LS) and Scar Cream (SC) to

visualize the advantages of our proposed RGSL. Notice that the

second best baseline HGT cannot identify them correctly. We can
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Figure 8: Online testing of RGSL and MLP.

easily find that the original neighbors from G𝑇 contains several

noisy information, such as the bag in Figure 7(a) and the card in

Figure 7(b). Besides, there are many risk-similar items would be

unconnected. Obviously, our RGSL has the ability to delete noisy

neighbors in G𝑇 and add similar similar items in G𝐴 at the same

time, making the message passing more effective.

5.7 Online Testing
We have deployed RGSL on real-world e-commerce platform for on-

line prohibited medicine device detection. Since existing GSL-based

methods suffer from heavy memory cost and high computational

complexity, we compare RGSL with current industrial solution (i.e.,

MLP) via online testing. As the predicted candidates are manu-

ally reviewed, it is unaffordable to evaluate the performance of all

candidates. For daily results, we rank the candidate items with 𝑌

and select top-10000 items for manually checking, and report the

ACC@1000 and ACC@10000 performance in Figure 8.

There are two major observations. First, the long-term observa-

tions show that RGSL outperforms MLP in all 7 days and demon-

strates the high industrial practicability of RGSL for detecting pro-

hibited items. Second, compared to MLP, the average improvement

of RGSL is up to 23.59% and 6.25% in ACC@1000 and ACC@10000.

This phenomenon indicates that our RGSL can reduce obvious

human resources, especially for top-1000 checking.

6 CONCLUSION
In this paper, we focus on prohibited item detection to guaran-

tee the health of e-commerce. We are the first to introduce graph

structure learning into risk scenarios to address this problem. To

handle the essential challenges of weak structures and weak su-

pervision, we design the novel RGSL consisting of heterogeneous

structure learning and pairwise training mechanism, and optimize

both structures and detection iteratively to keep the consistency of

label homophily and feature smoothness. Extensive results on both

offline and online experiments showcase the obvious advantages

of our proposed model.
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