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ABSTRACT

Graph Structure Learning (GSL) recently has attracted considerable

attentions in its capacity of optimizing graph structure as well as

learning suitable parameters of Graph Neural Networks (GNNs) si-

multaneously. Current GSL methods mainly learn an optimal graph

structure (final view) from single or multiple information sources

(basic views), however the theoretical guidance on what is the opti-

mal graph structure is still unexplored. In essence, an optimal graph

structure should only contain the information about tasks while

compress redundant noise as much as possible, which is defined as

"minimal sufficient structure", so as to maintain the accurancy and

robustness. How to obtain such structure in a principled way? In

this paper, we theoretically prove that if we optimize basic views

and final view based on mutual information, and keep their perfor-

mance on labels simultaneously, the final view will be a minimal

sufficient structure. With this guidance, we propose aCompactGSL

architecture by MI compression, named CoGSL. Specifically, two

basic views are extracted from original graph as two inputs of the

model, which are refinedly reestimated by a view estimator. Then,

we propose an adaptive technique to fuse estimated views into the

final view. Furthermore, we maintain the performance of estimated

views and the final view and reduce the mutual information of every

two views. To comprehensively evaluate the performance of CoGSL,

we conduct extensive experiments on several datasets under clean

and attacked conditions, which demonstrate the effectiveness and

robustness of CoGSL.
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1 INTRODUCTION

Graph is capable of modeling real systems in diverse domains vary-

ing from natural language and images to network analysis. Nowa-

days, as an emerging technique, Graph Neural Networks (GNNs)

[12, 19, 32] have achieved great success with their characteristic

message passing scheme [10] that aims to aggregate information

from neighbors continually. So far, GNNs have shown superior per-

formance in a wide range of applications, such as node classification

[37, 38] and link prediction [39, 40].

It is well known that the performance of GNNs is closely related

to the quality of given graphs [9]. However, due to the complexity

of real information sources, the quality of graphs is often unreliable

[23]. On one hand, we are not always provided with graph struc-

tures, such as in natural language processing [5, 21] or computer

vision [29, 30]. In these cases, graphs are constructed by involving

prior knowledge, which is sometimes error-prone. On the other

hand, even though interactions between objects are extracted, spu-

rious edges are usually inevitably existed in graphs. For example, it

is very hard to analyze the molecular structure of unknown pro-

teins [1], so they are prone to be modeled with wrong or useless

connections. Furthermore, graphs sometimes suffer from malicious

attacks, such that original structures are fatally destroyed. With

attacked graphs, GNNs will be very vulnerable. As a result, various



drawbacks are prevalent in real graphs, which prohibits original

structure from being the optimal one for downstream tasks.

Recently, graph structure learning (GSL) has aroused consider-

able attentions, which aims to learn optimal graph structure and

parameters of GNNs simultaneously [43]. Current GSLmethods can

be roughly divided into two categories, single-view [9, 16, 17, 42]

based and multi-view based [4, 28, 34]. For the former, they usually

estimate the optimal structure from one view, i.e., the given adja-

cency matrix, by forcing the learned structure to accord with some

properties. For instance, Pro-GNN [17] learns the graph structure

with low rank, sparsity and feature smoothness constraints. For the

later, considering that the measurement of an edge based on only

one view may be biased, they aim to extract multiple basic views

from original structure, and then comprehensively estimate the

final optimal graph structure based on these views. As an example,

IDGL [4] constructs the structure by two type of views: normalized

adjacency matrix and similarity matrix calculated with node em-

beddings. Multi-view based methods are able to utilize multifaceted

knowledge to make the final decision on GSL.

Here, we focus on in-depth analysis of multi-view based GSL

methods, and aim to answer one fundamental question: how can

we estimate the optimal graph structure from multiple views in a

principled way? Despite that multiple views based GSL methods are

considered as a promising solution, there is still a lack of theoretical

guidance to determine what is "optimal" in principle. In essence,

an optimal graph structure should only contain the most concise

information about downstream tasks (e.g., node labels), no more

and no less, so that it can conduct the most precise prediction on

labels. If the learned structure absorbs the information of labels

as well as additional irrelevance from basic views, this structure

is more prone to adversarial attacks when small perturbations are

deployed on these irrelevant parts. While if the learned structure

only holds limited information about labels, themodel probably fails

to support downstream tasks. In summary, the optimal structure

should contain minimal but sufficient information of labels, and

we call it minimal sufficient structure, which makes a well balance

between effectiveness and robustness. Other GSL methods mainly

focus on the performance, while neglecting the compactness of

structure. Hence, the structures learnt from them inevitably contain

redundant noise, and are also vulnerable to perturbations.

However, it is technically challenging to obtain a minimal suf-

ficient graph structure. Particularly, two obstacles need to be ad-

dressed. (1) How to ensure the minimum and sufficiency of the

final view? To achieve the sufficiency, the final view should be fully

guided by labels, which makes it contain the information about

labels as much as possible. And for the minimum, considering that

the final view extracts information from basic views, we need to

constrain the information flow from basic views to final view, which

avoids irrelevant information and contributes to the conciseness of

the final view. Therefore, to be minimal and sufficient, we we need

to rethink on how to formulate the relations among basic views,

final view and labels. (2) How to ensure the effectiveness of basic

views? Considering that basic views are the information source of

final view, it is vital to guarantee the quality of basic views. On one

hand, basic views are also needed to contain the information about

labels, which can fundamentally guarantee the performance of final

view. On the other hand, these views also should be independent of

each other, so that they can eliminate the redundancy and provide

diverse knowledge about labels for final view. However, it is hard to

guarantee the raw basic views satisfy these requirements, implying

that we need to reestimate them..

In this paper, we study the problem of GSL with information

theory, and propose CoGSL, a framework to learn compact graph

structure with mutual information compression. Specifically, we

first carefully extract two basic views from original structure as

inputs, and design a view estimator to properly adjust basic views.

With the estimated basic views, we propose a novel adaptive non-

parameter fusion mechanism to get the final view. In this mech-

anism, the model will assign weights to basic views according to

its predictions on nodes. If it gives a more confident prediction on

one view, this view will be assigned with a larger weight. Then,

we propose a formal definition minimal sufficient structure. And

we theoretically prove that if the performances of basic views and

final view are guaranteed, we need to minimize the mutual informa-

tion (MI) between every two views simultaneously. To effectively

evaluate the MI between different views, we deploy a MI estimator

implemented based on InfoNCE loss [25]. In the end, we adopt a

three-fold optimization to practically initialize the principles. Our

contributions are summarized as follows:

• To our best knowledge, we are the first to utilize information

theory to study the optimal structure in GSL. We propose the

concept of "minimal sufficient structure", which aims to learn

the most compact structure relevant to downstream tasks in

principle, no more and no less, so as to provide a better balance

between accuracy and robustness.

• We theoretically prove that theminimal sufficient graph structure

heavily depends on modeling the relationships among different

views and labels. Based on this, we propose CoGSL, a novel frame-

work to learn compact graph structure via mutual information

compression.

• We validate the effectiveness of CoGSL compared with state-

of-the-art methods on seven datasets. Additionally, CoGSL also

outperforms other GSL methods on attacked datasets, which

further demonstrates the robustness of CoGSL.

2 RELATEDWORK

Graph Neural Network. Graph neural networks (GNNs) have

attracted considerable attentions recently, which can be broadly di-

vided into two categories, spectral-based and spatial-based. Spectral-

based GNNs are inheritance of graph signal processing, and define

graph convolution operation in spectral domain. For example, [2]

utilizes Fourier bias to decompose graph signals; [7] employs the

Chebyshev expansion of the graph Laplacian to improve the effi-

ciency. For another line, spatial-based GNNs greatly simplify above

convolution by only focusing on neighbors. For example, GCN [19]

simply averages information of one-hop neighbors. GraphSAGE

[12] only randomly fuses a part of neighbors with various poolings.

GAT [32] assigns different weights to different neighbors. More

detailed surveys can be found in [36].

Graph Structure Learning. Graph structure learning aims to

estimate a better structure for original graph, which can date back

to previous works in network science [13, 22]. In this paper, we

mainly focus on GNN based graph structure learning models. LDS



[9] jointly optimizes the probability for each node pair and GNN

in a bilevel way. Pro-GNN [17] aims to obtain a clear graph by

deploying some regularizers, such as low-rank, sparsity and fea-

ture smoothness. IDGL [4] casts the GSL as a similarity metric

learning problem. GEN [34] presents an iterative framework based

on Bayesian inference. However, these methods do not provide a

theoretical view to show what the optimal structure is.

3 THE PROPOSED MODEL

In this section, we elaborate the proposed model CoGSL for GSL,

and the overall architecture is shown in Fig. 1(a). Our model begins

with two basic views. Then, we design a view estimator to optimize

two basic views separately. With two estimated views, we propose

an adaptive fusion technique to generate final view based on the

confidence of predictions. Next, we formally propose the concept

"minimal sufficient structure", and make a proposition to guarantee

the final view to be minimal and sufficient.

3.1 Problem definition

Let G = (V, 𝜉) represent a graph, where V is the set of N nodes

and 𝜉 is the set of edges. All edges formulate an original adjacency

matrix 𝑨 ∈ R𝑁×𝑁 , where 𝐴𝑖 𝑗 denotes the relation between nodes

𝑣𝑖 and 𝑣 𝑗 . Graph G is often assigned with node feature matrix

𝑿 = [𝑥1, 𝑥2, . . . , 𝑥𝑁 ] ∈ R𝑁×𝐷 , where 𝑥𝑖 means the D dimensional

feature vector of node 𝑖 . In semi-supervised classification, we only

have a small part of nodes with labels Y𝐿 . The traditional goal of

graph structure learning for GNNs is to simultaneously learn an

optimal structure and GNN parameters to boost downstream tasks.

As one typical architecture, GCN [19] is usually chosen as the

backbone, which iteratively aggregates neighbors’ information.

Formally, the 𝑘𝑡ℎ GCN layer can be written as:

𝐺𝐶𝑁 (𝑨,𝑯 (𝑘) ) = 𝑫−1/2𝑨𝑫−1/2𝑯 (𝑘−1)𝑾𝑘 , (1)

where 𝑫 is the degree matrix of 𝑨, and𝑾𝑘 is weight matrix. 𝑯 (𝑘)
represents node embeddings in the 𝑘𝑡ℎ layer, and 𝑯 (0) = 𝑿 . In

this paper, we simply utilize𝐺𝐶𝑁 (𝑽 ,𝑯 ) to represent this formula,

where 𝑽 is some view and 𝑯 is the node features or embeddings.

3.2 The selection of basic views

Given a graph G, CoGSL starts from extracting different structures.

In this paper, we mainly investigate four widely-studied structures:

(1) Adjacencymatrix, which reflects the local structure; (2) Diffusion

matrix, which represents the stationary transition probability from

one node to other nodes and provides a global view of graph. Here,

we choose Personal PageRank (PPR), whose closed-form solution

[14] is 𝑺 = 𝛼 (𝑰 − (1−𝛼)𝑫−1/2𝑨𝑫−1/2)−1, where 𝛼 ∈ (0, 1] denotes
teleport probability in a random walk, 𝑰 is a identity matrix, and 𝑫
is the degree matrix of 𝑨; (3) Subgraph, which is special for large

graph. We randomly keep a certain number of edges to generate a

subgraph; (4) KNN graph, which reflects the similarity in feature

space. We utilize original features to calculate cosine similarity

between each node pair, and retain top-k similar nodes for each

node to construct KNN graph.

These four views contain the different properties from various

angles, and we carefully select two of them as two basic views 𝑽1
and 𝑽2, which are the inputs of CoGSL.

3.3 View Estimator

Given two basic views 𝑽1 and 𝑽2, we need to further polish them

so that they are more flexible to generate the final view. Here, we

devise a view estimator for each basic view, shown in Fig. 1(b).

Specifically, for basic view 𝑽1, we first conduct a GCN [19] layer to

get embeddings 𝒁1 ∈ R𝑁×𝑑𝑒𝑠 :

𝒁1 = 𝜎 (𝐺𝐶𝑁 (𝑽1,𝑿 )), (2)

where 𝜎 is non-linear activation. With embedding 𝒁1, probability

of an edge between each node pair in 𝑽1 can be reappraised. For

target node 𝑖 , we concatenate its embedding 𝒛1𝒊 with embedding 𝒛1𝒋
of another node 𝑗 , which is followed by a MLP layer:

𝑤1
𝑖 𝑗 =𝑾1 · [𝒛1𝒊 | |𝒛1𝒋 ] + 𝑏1, (3)

where𝑤1
𝑖 𝑗 denotes the weight between 𝑖 and 𝑗 ,𝑾1 ∈ R2𝑑𝑒𝑠×1 is map-

ping vector, and 𝑏1 ∈ R2𝑑𝑒𝑠×1 is the bias vector. Then, we normalize

the weights for node 𝑖 to get the probability 𝑝1𝑖 𝑗 between node 𝑖 and

other node 𝑗 . Moreover, to alleviate space and time expenditure, we

only estimate limited scope 𝑆1. For example, for adjacency matrix,

KNN or subgraph, we only inspect their k-hop neighbors, and for

diffusion matirx, we only reestimate top-h neighbors for each node

according to PPR values. Here, h and k are hyper-parameters. So,

𝑝1𝑖 𝑗 is calculated as:

𝑝1𝑖 𝑗 =
exp(𝑤1

𝑖 𝑗 )∑
𝑘∈𝑆1 exp(𝑤1

𝑖𝑘
) . (4)

In this way, we construct a probability matrix 𝑷1, where each en-

try is calculated by eq. (4). Combined with original structure, the

estimated view is as follows:

𝑽 1
𝒆𝒔 = 𝑽1 + 𝜇1 · 𝑷1, (5)

where 𝜇1 ∈ (0, 1) is a combination coefficient, and the 𝑖th row

of 𝑽 1
𝒆𝒔 , denoted as 𝑽 1

𝒆𝒔_𝒊 , shows new neighbors of node 𝑖 in the

estimated view. Estimating 𝑽2 is similar to 𝑽1 but with a different

set of parameters, and we can get the estimated view 𝑽 2
𝒆𝒔 finally.

3.4 View Fusion

Then, the question we would like to answer is: given two estimated

views, how can we effectively fuse them in an adaptive way for

each node? We utilize the confidence of predictions as the evidence

to fuse estimated views, and assign a larger weight to the more con-

fident view. In this way, the final view can make a more confident

prediction and get more effectively trained. Specifically, we first

utilize two-layer GCNs to obtain predictions of each view:

𝑶1 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐺𝐶𝑁 (𝑽 1
𝒆𝒔 , 𝜎 (𝐺𝐶𝑁 (𝑽 1

𝒆𝒔 ,𝑿 )))),
𝑶2 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐺𝐶𝑁 (𝑽 2

𝒆𝒔 , 𝜎 (𝐺𝐶𝑁 (𝑽 2
𝒆𝒔 ,𝑿 )))),

(6)

where 𝜎 is activation function, and for node 𝑖 , its predictions on
these two views are 𝒐1𝒊 and 𝒐2𝒊 . Next, we show two cases to analyze

how to assign weights to estimated views based on node predictions.

In the first case, 𝒐1𝒊 presents a sharp distribution (e.g. [0.8, 0.1, 0.1]

for three-way classification), while 𝒐2𝒊 is a smoother distribution (e.g.

[0.4, 0.3, 0.3]). During the fusion, if we assign larger weight to 𝑽 2

𝒆𝒔_𝒊 ,

the final view still give an uncertain result, and the model cannot be

trained effectively. So in this case, we suggest to emphasize 𝑽 1

𝒆𝒔_𝒊 .
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Figure 1: The overview of our proposed CoGSL. (a) Model framework. (b) View estimator. (c) Adaptive fusion.

For the second case, predictions 𝒐1𝒋 and 𝒐2𝒋 of node 𝑗 are [0.5, 0.4,

0.1] and [0.5, 0.25, 0.25], respectively. Although they have the same

maximal value, there is a larger margin between maximal value

and submaximal value in 𝒐2𝒋 , so 𝑽 2

𝒆𝒔_𝒋 is a more confident view. In

conclusion, if one estimated view has a higher maximal value and a

larger margin between maximal value and submaximal value, it is a

more confident view, which should be assigned with larger weight.

With above analysis, we propose an adaptive fusion for each node,

shown in Fig. 1(c). Specifically, we focus on node 𝑖 to explain our

fusion mechanism. First, we calculate the importance 𝜋1 of 𝑽 1

𝒆𝒔_𝒊 :

𝜋1𝑖 = 𝑒
𝜖
(
𝜆 log𝑜1𝑖,𝑚+(1−𝜆) log(𝑜1𝑖,𝑚−𝑜1𝑖,𝑠𝑚)

)
, (7)

where 𝑜1𝑖,𝑚 and 𝑜1𝑖,𝑠𝑚 denote the maximal and submaximal values of

prediction 𝒐1𝒊 , 𝜖 and 𝜆 are hyper-parameters. The eq. (7) has three

advantages: (1) If the prediction of one view has a higher maximal

value and a larger margin between maximal and submaximal values,

this view is prone to make confident decision, and it will lead the

fusion. (2) This mechanism fully takes account of each node, so

it achieves the adaptive fusion. (3) This mechanism of calculating

importance does not introduce new parameters, so it alleviates

over-fitting to some extent. Similarly, we can get the importance 𝜋2𝑖
of 𝑽 2

𝒆𝒔_𝒊 . Next, we normalize the importance and get the weights:

𝛽1𝑖 =
𝜋1𝑖

𝜋1𝑖 + 𝜋2𝑖
𝑎𝑛𝑑 𝛽2𝑖 =

𝜋2𝑖
𝜋1𝑖 + 𝜋2𝑖

. (8)

Finally, we generate the final view for node 𝑖 based on weights:

𝑽★𝒊 = 𝛽1𝑖 · 𝑽 1

𝒆𝒔_𝒊 + 𝛽2𝑖 · 𝑽 2

𝒆𝒔_𝒊 . (9)

We likewise copy above operations to get the fusion for other nodes,

and the final view 𝑽★ is the combination of these fusion results.

3.5 Learning a minimal sufficient structure 𝑉★

3.5.1 Theoretical Motivation and Formulation. Up to now, we have

discussed how to adaptively fuse basic views to generate final view

𝑽★, which will be used for downstream tasks. The next issue is

how to guide the training of 𝑽★, and what the principle should

be obeyed to deal with the relations between basic views and final

view? Please review that we expect the learnt 𝑽★ only contains the

message about labels and filters superfluous noise. In other words,

we seek a 𝑽★ that is the minimal sufficient statistics [31] to label

Y𝐿 in information theory. The formal definition is given as follows:

Definition 1. (Minimal Sufficient Structure) Given two vari-

ables𝑈 and𝑉 , I(U; V) meansmutual information (MI), H(U) is entropy,

and H(U| V) is conditional entropy. A structure 𝑽★ is the minimal

sufficient structure if and only if I(𝑽★; Y𝐿) = H(Y𝐿) and H(𝑽
★| Y𝐿)

= 0.

In this definition, 𝐼 (𝑽★;Y𝐿) = 𝐻 (Y𝐿) means 𝑽★ shares all the

information about 𝐻 (Y𝐿), and 𝐻 (𝑽★ |Y𝐿) = 0 guarantees that 𝑽★

does not contain any other information except𝐻 (Y𝐿). To gain such

minimal sufficient structure, we have the following proposition.

Proposition 1. Given the estimated basic views 𝑽 1
𝒆𝒔 and 𝑽 2

𝒆𝒔 ,

final view 𝑽★, and labels Y𝐿 related to downstream task, 𝑽★ is a

minimal sufficient structure to Y𝐿 if the following two principles are

satisfied:

1. 𝐼 (𝑽 1
𝒆𝒔 ;Y𝐿) = 𝐼 (𝑽 2

𝒆𝒔 ;Y𝐿) = 𝐼 (𝑽★;Y𝐿) = 𝐻 (Y𝐿)
2. minimize 𝐼 (𝑽 1

𝒆𝒔 ; 𝑽
2
𝒆𝒔 ) + 𝐼 (𝑽 1

𝒆𝒔 ; 𝑽
★) + 𝐼 (𝑽 2

𝒆𝒔 ; 𝑽
★)

For node classification task, the first principle will build the

relationships between 𝑽 1
𝒆𝒔 , 𝑽

2
𝒆𝒔 , 𝑽

★ and Y𝐿 based on MI. In this

way, the information of Y𝐿 will be totally contained in 𝑽 1
𝒆𝒔 , 𝑽

2
𝒆𝒔

and 𝑽★, which makes them hold sufficient information about Y𝐿 .

Meanwhile, we perform the second principle to constrain the shared

information among views, which finally realizes aminimal 𝑽★. Now,
we prove the effect of the second principle:

Proof. At the beginning, we introduce some basic properties

in information theory [6], which describe entropy 𝐻 (𝑋 ), condi-
tional entropy 𝐻 (𝑌 |𝑋 ), joined entropy 𝐻 (𝑋,𝑌 ), mutual informa-

tion 𝐼 (𝑋 ;𝑌 ) and conditional mutual information 𝐼 (𝑋 ;𝑍 |𝑌 ).
(1) Nonnegativity:

𝐻 (𝑋 |𝑌 ) ≥ 0; 𝐼 (𝑋 ;𝑌 |𝑍 ) ≥ 0

(2) Chain rule of entropy and MI:

𝐻 (𝑋,𝑌 ) = 𝐻 (𝑋 ) + 𝐻 (𝑌 |𝑋 )
𝐼 (𝑋 ;𝑌, 𝑍 ) = 𝐼 (𝑋 ;𝑌 ) + 𝐼 (𝑋 ;𝑍 |𝑌 )



(3) Multivariate mutual information:

𝐼 (𝑋1;𝑋2; . . . ;𝑋𝑛+1) = 𝐼 (𝑋1; . . . ;𝑋𝑛) − 𝐼 (𝑋1; . . . ;𝑋𝑛 |𝑋𝑛+1)
Then, we have the following proof:

First, we have 𝐼 (𝑽★; 𝑽 1
𝒆𝒔 ; 𝑽

2
𝒆𝒔 ) > 0, because these three views

share the information of Y𝐿 at least, which is guaranteed by the

first principle. So, we have:

𝐼 (𝑽 1
𝒆𝒔 ; 𝑽

2
𝒆𝒔 ) + 𝐼 (𝑽 1

𝒆𝒔 ; 𝑽
★) + 𝐼 (𝑽 2

𝒆𝒔 ; 𝑽
★)

> 𝐼 (𝑽 1
𝒆𝒔 ; 𝑽

2
𝒆𝒔 ) + 𝐼 (𝑽 1

𝒆𝒔 ; 𝑽
★) + 𝐼 (𝑽 2

𝒆𝒔 ; 𝑽
★) − 2𝐼 (𝑽★; 𝑽 1

𝒆𝒔 ; 𝑽
2
𝒆𝒔 )

= 𝐼 (𝑽 1
𝒆𝒔 ; 𝑽

2
𝒆𝒔 ) + 𝐼 (𝑽★; 𝑽 1

𝒆𝒔 |𝑽 2
𝒆𝒔 ) + 𝐼 (𝑽★; 𝑽 2

𝒆𝒔 |𝑽 1
𝒆𝒔 )

= 𝐼 (𝑽★; 𝑽 1
𝒆𝒔 ; 𝑽

2
𝒆𝒔 ) + 𝐼 (𝑽 1

𝒆𝒔 ; 𝑽
2
𝒆𝒔 |𝑽★) + 𝐼 (𝑽★; 𝑽 1

𝒆𝒔 |𝑽 2
𝒆𝒔 )

+ 𝐼 (𝑽★; 𝑽 2
𝒆𝒔 |𝑽 1

𝒆𝒔 )
= 𝐼 (𝑽★; 𝑽 1

𝒆𝒔 ) + 𝐼 (𝑽★; 𝑽 2
𝒆𝒔 |𝑽 1

𝒆𝒔 ) + 𝐼 (𝑽 1
𝒆𝒔 ; 𝑽

2
𝒆𝒔 |𝑽★)

= 𝐼 (𝑽★; 𝑽 1
𝒆𝒔 , 𝑽

2
𝒆𝒔 ) + 𝐼 (𝑽 1

𝒆𝒔 ; 𝑽
2
𝒆𝒔 |𝑽★)

= 𝐻 (𝑽★) − 𝐻 (𝑽★ |𝑽 1
𝒆𝒔𝑽

2
𝒆𝒔 ) + 𝐼 (𝑽 1

𝒆𝒔 ; 𝑽
2
𝒆𝒔 |𝑽★)

In the last step, 𝐻 (𝑽★ |𝑽 1
𝒆𝒔𝑽

2
𝒆𝒔 ) = 0. This is because 𝑽★ is an

adaptive combination of 𝑽 1
𝒆𝒔 and 𝑽

2
𝒆𝒔 , and if 𝑽

1
𝒆𝒔 and 𝑽

2
𝒆𝒔 are known,

there is no uncertainty in 𝑽★. Thus, we have:

𝐼 (𝑽 1
𝒆𝒔 ; 𝑽

2
𝒆𝒔 ) + 𝐼 (𝑽 1

𝒆𝒔 ; 𝑽
★) + 𝐼 (𝑽 2

𝒆𝒔 ; 𝑽
★) > 𝐻 (𝑽★) + 𝐼 (𝑽 1

𝒆𝒔 ; 𝑽
2
𝒆𝒔 |𝑽★) .

(10)

Furthermore, we can expand 𝐻 (𝑽★) to 𝐻 (𝑽★,Y𝐿), because the

information of Y𝐿 is totally contained in 𝑽★, according to the first

principle. Next, we have the following derivation:

𝐻 (𝑽★) + 𝐼 (𝑽 1
𝒆𝒔 ; 𝑽

2
𝒆𝒔 |𝑽★)

=𝐻 (𝑽★,Y𝐿) + 𝐼 (𝑽 1
𝒆𝒔 ; 𝑽

2
𝒆𝒔 |𝑽★)

=𝐻 (Y𝐿) + 𝐻 (𝑽★ |Y𝐿) + 𝐼 (𝑽 1
𝒆𝒔 ; 𝑽

2
𝒆𝒔 |𝑽★).

(11)

According to eq. (10) and eq. (11), we have:

𝐼 (𝑽 1
𝒆𝒔 ; 𝑽

2
𝒆𝒔 ) + 𝐼 (𝑽 1

𝒆𝒔 ; 𝑽
★) + 𝐼 (𝑽 2

𝒆𝒔 ; 𝑽
★)

> 𝐻 (Y𝐿) + 𝐻 (𝑽★ |Y𝐿) + 𝐼 (𝑽 1
𝒆𝒔 ; 𝑽

2
𝒆𝒔 |𝑽★),

(12)

In inequation 12, 𝐻 (𝑽★ |Y𝐿) ≥ 0 and 𝐼 (𝑽 1
𝒆𝒔 ; 𝑽

2
𝒆𝒔 |𝑽★) ≥ 0 ac-

cording to nonnegativity shown above. 𝐻 (Y𝐿) is a constant, be-
cause the information ofY𝐿 is fixed. Ideally, both of𝐻 (𝑽★ |Y𝐿) and
𝐼 (𝑽 1

𝒆𝒔 ; 𝑽
2
𝒆𝒔 |𝑽★) equal to 0 by continuously minimizing the original

formula. This means given labels Y𝐿 , 𝑽
★ does not include other

information any more, and become a minimal sufficient structure.

Meanwhile, 𝑽 1
𝒆𝒔 and 𝑽 2

𝒆𝒔 only share the information of 𝑽★. So, 𝑽 1
𝒆𝒔

and 𝑽 2
𝒆𝒔 only share the message about Y𝐿 , and they will provide

the most diverse knowledge for 𝑉★. �

3.5.2 Iterative Optimization. Based on Proposition 1, we design

a three-fold optimization objective: (1) Optimize parameters Θ of

classifiers for each view to improve the accuracy onY𝐿 ; (2) Optimize

parameters Φ of MI estimator to approach the real MI value; (3)

Optimize parameters Ω of view estimator to maintain classification

accuracy and minimize the MI between every two views.

Optimize Θ. Please recall that predictions of 𝑽 1
𝒆𝒔 and 𝑽 2

𝒆𝒔 have

been obtained according to eq. (6), denoted as 𝑶1 and 𝑶2. Similarly,

we also can get the predictions of 𝑽★:

𝑶★ = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐺𝐶𝑁 (𝑽★, 𝜎 (𝐺𝐶𝑁 (𝑽★,𝑿 )))). (13)

GCN

GCN

V
Projection

InfoNCE Loss

Figure 2: An illustration to show the process ofMI estimator.

(Take 𝑽★ and 𝑽 1
𝒆𝒔 for example)

The parameters of𝐺𝐶𝑁 s involved in eq (6) and eq. (13) are regarded

as the parameters Θ of classifiers together. Θ can be optimized by

evaluating the cross-entropy error over Y𝐿

min
Θ

L𝑐𝑙𝑠 = −
∑

𝑶 ∈{𝑶1,𝑶2,𝑶★ }

∑
𝑣𝑖 ∈Y𝐿

𝑦𝑖 ln 𝒐𝒊, (14)

where 𝑦𝑖 is the label of node 𝑣𝑖 , and 𝒐𝒊 is its prediction.
Optimize Φ. In view of the second principle, we need to mini-

mize MI values of every two views. However, estimating precise

MI is hard [26]. Recently, InfoNCE [3, 15, 25] has been proved as a

lower bound of real MI. If InfoNCE loss is minimized, we can ap-

proximately approach the real MI. Here, we design a corresponding

MI estimator. The whole process of MI estimator is shown in Fig.

2. Specifically, for 𝑽★, we first conduct one-layer GCN to get node

embeddings based on 𝑽★:

𝑯★ = 𝜎 (𝐺𝐶𝑁 (𝑽★,𝑿 )), (15)

where 𝜎 is PReLU activation, 𝑋 is the feature matrix.The embed-

dings 𝑯 1 and 𝑯 2 based on 𝑽 1
𝒆𝒔 and 𝑽 2

𝒆𝒔 can be obtained in a sim-

ilar way. The parameters of above three GCNs are different, but

{𝑯★,𝑯 1,𝑯 2} have the same embedding dimension. Then we deploy

a shared two-layer MLP to project these embeddings into the same

space where MI estimation is employed, and get the projected em-

beddings 𝑯★
𝒑 , 𝑯 1

𝒑 and 𝑯 2
𝒑 , respectively. For example, the projected

embeddings 𝑯★
𝒑 is got as follows:

𝑯★
𝒑 =𝑾1 · 𝜎 (𝑾0 · 𝑯★ + 𝑏0) + 𝑏1, (16)

where 𝜎 is non-linear activation, and {𝑾0,𝑾1, 𝑏0, 𝑏1} are shared
parameters. Then, inspired by GCA [44], we take 𝑯★

𝒑 and 𝑯 1
𝒑 for

example to give the InfoNCE loss as follows:

𝐿(𝑽★, 𝑽 1
𝒆𝒔 )

= − 1

2|𝐵 |
|𝐵 |∑
𝑖=1

[
log

𝑒𝑠𝑖𝑚 (𝒉★𝒑𝒊 ,𝒉1𝒑𝒊 )/𝜏

𝑒𝑠𝑖𝑚 (𝒉★𝒑𝒊 ,𝒉1𝒑𝒊 )/𝜏 +∑
𝑘≠𝑖 𝑒

𝑠𝑖𝑚 (𝒉★𝒑𝒊 ,𝒉1𝒑𝒌 )/𝜏

+ log 𝑒𝑠𝑖𝑚 (𝒉1𝒑𝒊 ,𝒉★𝒑𝒊 )/𝜏

𝑒𝑠𝑖𝑚 (𝒉1𝒑𝒊 ,𝒉★𝒑𝒊 )/𝜏 +∑
𝑗≠𝑖 𝑒

𝑠𝑖𝑚 (𝒉1𝒑𝒊 ,𝒉★𝒑𝒋 )/𝜏

⎤⎥⎥⎥⎥⎦ ,
(17)

where 𝑠𝑖𝑚(𝑢, 𝑣) is cosine similarity of vector 𝑢 and 𝑣 , and 𝜏 is tem-

perature coefficient. 𝒉★𝒑𝒊
and 𝒉1𝒑𝒊

are the projected embeddings of

node 𝑖 based on 𝑽 1
𝒆𝒔 and 𝑽

2
𝒆𝒔 , respectively. 𝐵 is a batch of nodes that

randomly sampled. This formula means if we maximize the similar-

ity of embeddings of the same node but from different views, while

minimize the similarity with other nodes in the same batch, we can

approximatively approach real MI between 𝑽★ and 𝑽 1
𝒆𝒔 . Similarly,



we can calculate 𝐿(𝑽★, 𝑽 2
𝒆𝒔 ) and 𝐿(𝑽 1

𝒆𝒔 , 𝑽
2
𝒆𝒔 ), and the objective to

optimize MI estimator is shown here:

L𝑀𝐼 = 𝐿(𝑽★, 𝑽 1
𝒆𝒔 ) + 𝐿(𝑽★, 𝑽 2

𝒆𝒔 ) + 𝐿(𝑽 1
𝒆𝒔 , 𝑽

2
𝒆𝒔 ). (18)

By minimizing the above equation, the MI estimator Φ, including
parameters in eq. (15) and the following shared MLP, is well trained.

Optimize Ω. Given trained classifiers and MI estimator, we con-

tinuously optimize parameters Ω of view estimator. Under the

guidance of proposition 1, we have the following loss:

min
Ω

L𝑐𝑙𝑠 − 𝜂 · L𝑀𝐼 , (19)

where 𝜂 is a balance parameter. With this optimization, 𝑽 1
𝒆𝒔 and

𝑽 2
𝒆𝒔 only share the information of 𝑽★, and 𝑽★ only reserves useful

information while filters noise as far as possible.

To effectively train the CoGSL, we alternatively and iteratively

perform the above three-fold optimization, where a profile of the

whole process is shown in appendix B. We can optimize the pro-

posed CoGSL via back propagation with stochastic gradient descent.

4 EXPERIMENTS

4.1 Experimental Setup

Datasets We employ seven open datasets, including three aca-

demic networks (i.e., Citeseer [19], Wiki-CS [24] and MS Academic

[20]), three non-graph datasets (i.e., Wine, Breast Cancer (Cancer)

and Digits) available in scikit-learn [27] and a blog graph Polblogs

[17]. The basic information about datasets is summarized in appen-

dix A.1. Notice that for non-graph datasets, we construct a KNN

graph as an initial adjacency matrix as in [4].

Baselines We compare the proposed CoGSL with three cate-

gories of baselines: MI based unsupervised methods {DGI [33], GCA

[44]}, classical GNN models {GCN [19], GAT [32], GraphSAGE [12]}

and three graph structure learning based methods {Pro-GNN [17],

IDGL [4], GEN [34]}.

Implementation Details For DGI and GCA, we firstly generate

node embeddings, and then evaluate embeddings following the way

stated in original papers. For three classical GNN models (i.e. GCN,

GAT, GraphSAGE), we adopt the implementations from PyTorch

Geometric library [8]. For Pro-GNN, IDGL and GEN, we use the

source codes provided by authors, and follow the settings in their

original papers with carefully tune. For the proposed CoGSL, we

use Glorot initialization [11] and Adam [18] optimizer. We carefully

select two basic views for different datasets as two inputs, which are

summarized in appendix A.3. We set the learning rate for classifiers

Θ and MI estimator Φ as 0.01, and tune it for view estimator Ω from

{0.1, 0.01, 0.001}. For combination coefficient 𝜇, we test ranging from
{0.1, 0.5, 1.0}. We set 𝜖 as 0.1 and search on 𝜆 from 0.1 to 0.9. Finally,

we carefully select total iterations 𝑇 from {100, 150, 200}, and tune

training epochs for each fold {𝜌Θ, 𝜌Φ, 𝜌Ω} from {1, 5, 10}.

For fair comparisons, we set the hidden dimension as 16 and ran-

domly run 10 times and report the average results for all methods.

For Pro-GNN, IDGL, GEN and our CoGSL, we uniformly choose

two-layer GCN as backbone to valuate the learnt structure. For the

reproducibility, we report the related parameters in appendix A.4.

4.2 Node Classification

In this section, we evaluate the proposed CoGSL on semi-supervised

node classification. For different datasets, we follow the original

splits on training set, validation set and test set. To more compre-

hensively evaluate our model, we use three common evaluation

metrics, including F1-macro, F1-micro and AUC. The results are

reported in Table 1, where we randomly run 10 times and report

the average results. The "-" symbol in Table 1 indicates that experi-

ments could not be conducted due to memory issue. As can be seen,

the proposed CoGSL generally outperforms all the other baselines

on all datasets, which demonstrates that CoGSL can boost node

classification in an effective way. The huge performance superior-

ity of CoGSL over backbone GCN implies that view estimator and

classifier are collaboratively optimized, and promote each other. In

comparison with other GSL frameworks, our performance improve-

ment illustrates that proposed principles are valid, and the learnt

minimal sufficient structure with more effective information and

less noise can offer a better solution.

4.3 Defense Performance

Here, we aim to evaluate the robustness of various methods. Cancer,

Citeseer and Wiki-CS are adopted. We focus on comparing GSL

models, because these models can adjust original structure, which

makes them more robust than other GNNs. Specifically, we choose

Pro-GNN from single-view based methods. And for multi-view

based methods, IDGL and GEN are both selected.

4.3.1 Attacks on edges. To attack edges, we adopt random edge

deletions or additions following [4, 9]. Specifically, for edge dele-

tions, we randomly remove 5%, 10%, 15% of original edges, which

retains the connectivity of attacked graph. For edge addition, we

randomly inject fake edges into the graph by a small percentages of

the number of original edges, i.e. 25%, 50%, 75%. In view of that our

CoGSL needs two inputs while other methods need one input, for

a fair comparison, we deploy attacks on each of two inputs sepa-

rately and on both of them together with the same percentages. We

choose poisoning attack [35], where we firstly generate attacked

graphs and then use them to train models. All the experiments

are conducted 10 times and we report the average accuracy. The

results are plotted in Fig. 3 and 4. Notice that we do not conduct

Pro-GNN on Wiki-CS because of time consuming (more than two

weeks for a result). Besides, the curves of "CoGSL_v1", "CoGSL_v2"

and "CoGSL_all" mean the results that one of inputs of CoGSL is

attacked and both of them are attacked, respectively.

From the figures, CoGSL consistently outperforms all other base-

lines under different perturbation rates by a margin for three cases.

We also find that as the perturbation rate increases, the margin

becomes larger, which indicates that our model is more effective

with violent attack. Besides, "CoGSL_all" also performs competi-

tive. Although both of its two inputs are attacked, "CoGSL_all" still

outperforms other baselines.

4.3.2 Attacks on features. To attack feature, we add independent

Gaussian noise to features as in [35]. Specifically, we firstly sample

a noise matrix𝑀𝑛𝑜𝑖𝑠𝑒 ∈ R
𝑁×𝐷 , where each entry is sampled from

𝑁 (0, 1). Then, we calculate reference amplitude 𝑟 , which is the

mean of maximal value of each node’s feature. We add ℵ · 𝑟 ·𝑀𝑛𝑜𝑖𝑠𝑒

to original feature matrix 𝑋 , and get the attacked feature matrix

𝑋𝑛𝑜𝑖𝑠𝑒 , where ℵ ∈ {0.1, 0.3, 0.5} is the noise ratio. We also conduct

poisoning settings and report the results in Table 2, where the

results of Pro-GNN onWiki-CS are not reported for the same reason



Table 1: Quantitative results (%±𝜎) on node classification.(bold: best; underline: runner-up)

Datasets Metric DGI GCA GCN GAT GraphSAGE LDS Pro-GNN IDGL GEN CoGSL

Wine

F1-macro 93.6±0.8 94.5±2.7 94.1±0.6 93.6±0.4 96.3±0.8 93.4±1.0 97.3±0.3 96.3±1.1 96.4±1.0 97.9±0.3

F1-micro 93.6±0.8 94.6±2.4 93.9±0.6 93.7±0.3 96.2±0.8 93.4±0.9 97.2±0.3 96.2±1.1 96.3±1.0 97.8±0.3

AUC 99.5±0.1 97.8±1.4 99.6±0.2 97.8±0.2 99.4±0.4 99.0±0.1 99.5±0.1 99.6±0.1 99.3±0.2 99.7±0.1

Cancer

F1-macro 85.7±1.9 93.4±1.2 93.0±0.6 92.2±0.2 92.0±0.5 83.1±1.5 93.3±0.5 93.1±0.9 94.1±0.8 94.6±0.3

F1-micro 87.6±1.4 93.8±1.2 93.3±0.5 92.9±0.1 92.5±0.5 84.8±0.8 93.8±0.5 93.6±0.9 94.3±1.0 95.0±0.3

AUC 95.2±2.4 97.9±0.6 98.9±0.1 96.9±0.3 96.9±0.5 90.6±0.9 97.8±0.2 98.1±0.3 98.3±0.3 98.5±0.1

Digits

F1-macro 88.9±0.8 89.5±1.4 89.0±1.3 89.9±0.2 87.5±0.2 79.7±1.0 89.7±0.3 92.5±0.5 91.3±1.3 93.3±0.3

F1-micro 89.0±0.8 89.6±1.5 89.1±1.3 90.0±0.2 87.7±0.2 80.2±0.9 89.8±0.3 92.6±0.5 91.4±1.2 93.3±0.3

AUC 99.0±0.1 97.6±0.3 98.9±0.2 98.3±0.4 98.7±0.1 95.1±0.1 98.1±0.2 99.4±0.1 98.4±0.9 99.6±0.0

Polblogs

F1-macro 90.9±0.4 95.0±0.2 95.1±0.4 94.1±0.1 93.3±2.5 94.9±0.3 94.6±0.6 94.6±0.7 95.2±0.6 95.5±0.1

F1-micro 90.9±0.4 95.0±0.2 95.1±0.4 94.1±0.1 93.4±2.5 94.9±0.3 94.6±0.6 94.6±0.7 95.2±0.6 95.5±0.1

AUC 96.4±0.3 98.2±0.2 98.5±0.0 97.4±0.1 98.1±0.1 98.1±0.4 98.3±0.2 98.2±0.2 98.0±0.6 98.3±0.1

Citeseer

F1-macro 68.1±0.6 60.9±0.9 67.4±0.3 68.4±0.2 67.1±0.8 69.4±0.7 63.1±0.7 69.2±0.9 68.7±0.5 70.2±0.6

F1-micro 72.1±0.6 64.5±1.1 70.1±0.2 72.2±0.2 70.1±0.7 72.2±0.7 65.6±0.8 72.6±0.6 72.5±0.8 73.4±0.8

AUC 90.8±0.1 88.5±0.7 89.9±0.2 90.2±0.1 90.5±0.3 91.3±0.3 88.2±0.3 91.1±0.4 88.4±0.5 91.4±0.5

Wiki-CS

F1-macro 56.4±0.1 67.1±1.3 68.8±1.7 70.1±0.1 69.2±0.9 54.6±0.5 63.8±2.0 69.1±1.1 68.4±0.3 72.3±0.6

F1-micro 61.2±0.2 71.3±1.3 70.8±1.8 73.8±0.3 72.2±0.7 53.7±0.5 68.3±1.2 72.7±0.8 71.1±0.9 75.0±0.3

AUC 91.8±0.1 93.2±0.4 95.2±0.3 95.6±0.1 95.0±0.3 88.8±2.1 93.3±0.3 92.0±0.2 91.6±1.2 96.4±0.2

MS Academic

F1-macro 88.6±0.2 87.0±1.6 89.4±0.6 86.7±0.6 88.9±0.4 - - 89.6±0.6 89.8±0.8 90.5±0.4

F1-micro 91.4±0.2 89.8±1.2 91.9±0.5 89.0±0.4 91.1±0.2 - - 91.9±0.5 92.0±0.5 92.4±0.5

AUC 99.1±0.1 99.3±0.2 99.4±0.1 99.2±0.1 99.4±0.0 - - 99.6±0.1 98.8±0.3 99.4±0.1

(a) Cancer (b) Citeseer (c) Wiki-CS

Figure 3: Results of different models under random edge deletion.

(a) Cancer (b) Citeseer (c) Wiki-CS

Figure 4: Results of different models under random edge addition.

in section 4.3.1. Again, CoGSL consistently outperforms all other

baselines. Together with observations from 4.3.1, we can conclude

that CoGSL can approach the minimal sufficient structure, so it is

able to defend attacks from edges and features.

4.4 Model Analysis

4.4.1 Analysis of view estimator. Our model involves two basic

views as inputs, each of which will be reestimated with the view

estimator. To evaluate the effectiveness of view estimator, we firstly

train the model, and pick two final estimated views. After that, we

compare the performance of two original views, two final estimated

views and the final view. We conduct comparison on Citeseer and

Digits, and the results are given in Fig. 5, where𝑉 1_𝑜𝑟𝑖 and𝑉 2_𝑜𝑟𝑖
mean two original views, and 𝑉 1_𝑒𝑠 and 𝑉 2_𝑒𝑠 are two estimated

views. We can see that all estimated views gain an improvement

over corresponding original views, which indicates the effective-

ness of view estimator. Moreover, CoGSL always outperforms the

estimated views, and this proves the reliability of adaptive fusion

and following optimization principles.

4.4.2 Analysis of adaptive fusion. We propose an adaptive fusion

mechanism, which assigns weights to two estimated views based



Table 2: Quantitative results under feature attack.

Datasets F1-macro Pro-GNN IDGL GEN CoGSLL

Cancer

0.0 93.3 93.1 94.1 94.6

0.1 92.9 91.5 92.9 94.2

0.3 92.6 90.5 91.9 93.6

0.5 92.2 90.2 90.9 93.4

Citeseer

0.0 63.1 69.2 68.7 70.2

0.1 55.5 64.1 65.3 67.8

0.3 44.1 22.6 36.1 49.1

0.5 36.8 23.3 29.4 43.5

Wiki-CS

0.0 - 69.1 68.4 72.3

0.1 - 63.6 46.8 70.4

0.3 - 41.6 24.2 46.2

0.5 - 12.5 18.5 24.2

(a) Digits (b) Citeseer

Figure 5: Test on the effectiveness of view estimator.

on the confidence on them for each node as eq. (6)-(9) in section 3.4.

To verify the validation of this part, we design two more baselines.

One is to simply average two estimated views as the final view.

The other is to use attention mechanism to fuse them, where we

adopt a channel attention layer in [41]. We test on Citeseer and

Digits and show the results in Table 3, where "Adaption" refers to

adaptive fusion we introduce. We can see that our newly proposed

adaptive fusion is the best behaved of three ways. Also, we notice

that "Average" behaves better than "Attention", and we think this is

because "Attention" fusion involves some new parameters, which

increases the complexity of model and brings the risk of over-fitting.

Table 3: Quantitative results on different fusions.

Digits Citeseer

Fusion F1-ma F1-mi AUC F1-ma F1-mi AUC

Average 93.0 93.0 99.5 69.6 72.8 90.8

Attention 92.9 93.0 99.6 69.4 72.7 91.2

Adaption 93.3 93.3 99.6 70.2 73.4 91.4

4.4.3 Analysis of MI. We need to constrain the MI between views

are neither too weak or too strong, so that the final view contain

concise information, no more and no less. We notice that as a

balance parameter, 𝜂 in eq. (19) well controls the effect of MI loss. If

𝜂 increases, MI between views is heavily constrained, and vice versa.

So, we investigate the change of 𝜂 to substitute the change of real

MI between views, and the results are shown in Fig. 6, where we

report the results on Citeseer and Digits. In this figure, the area of

each point means relative size of MI between views. The shallower

the color of point is, the better the performance is. And the best

point is marked with a red star. We observe that the optimal point

is a medium value, neither a too strong or a too weak constraint.

Especially, when 𝜂 equals to zero, we mimic the situation of general

GSL methods, and we can see that the results are not very good in

this case. It implies that restricting MI between views is necessary.

(a) Digits (b) Citeseer

Figure 6: The investigation of change of MI.

4.4.4 Analysis of hyper-parameter. In this section, we explore the

sensitivity of h and k on Citeseer and Digits, introduced in sec-

tion 3.3. As shown in appendix A.3, the input views of Citeseer and

Digits are both adjacency matrix and diffusion matrix, plotted in

Fig. 7. For Digits, the optimal ℎ of adjacency matrix is 1-hop, and

the optimal 𝑘 of diffusion matrix is top 100. Similarly, for Citeseer,

the optimal points are 2-hop and top 40. We can see that a proper

estimation scope is indispensable. If the scope is too small, some

important structures are neglected. However if the scope is too

large, we can not distinguish the right connections effectively.

(a) Citeseer: adjacency matrix (b) Citeseer: diffusion matrix

(c) Digits: adjacency matrix (d) Digits: diffusion matrix

Figure 7: Impact of hyper-parameter scope.

5 CONCLUSION

In this paper, we theoretically study how to estimate a minimal suf-

ficient structure in GSL problem. We prove that if the performances

of basic views and final view are maintained, the mutual informa-

tion between every two views should be minimized simultaneously,

so that the learnt final view tends to be minimal sufficient struc-

ture. With this theory, we propose CoGSL, a framework to learn a

compact graph structure by compressing mutual information. Ex-

tensive experimental results, under clean and attacked conditions,

are conducted to verify the effectiveness and robustness of CoGSL.
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A DETAILS ON EXPERIMENTAL SETUP

In this section, for the reproducibility, we provide some basic infor-

mation about baselines and datasets. The implementation details,

including the detailed hyper-parameter values, are also provided.

A.1 Datasets

Table 4 shows the statistics of seven datasets used in our experi-

ments.

Table 4: The statistics of the datasets

Dataset Nodes Edges Classes Features Train/Val/Test

Wine 178 3560 3 13 10/20/148

Cancer 569 22760 2 30 10/20/539

Digits 1797 43128 10 64 50/100/1647

Polblogs 1222 33428 2 1490 121/123/978

Citeseer 3327 9228 6 3703 120/500/1000

Wiki-CS 11701 291039 10 300 200/500/1000

MS Academic 18333 163788 15 6805 300/500/1000

These seven datasets used in experiments can be found in these

URLs:

• Wine, Breast Cancer andDigits: https://scikit-learn.org/stable/

modules/classes.html#module-sklearn.datasets

• Polblogs: https://github.com/ChandlerBang/Pro-GNN

• Citeseer: https://github.com/tkipf/gcn

• Wiki-CS: https://github.com/pmernyei/wiki-cs-dataset

• MS Academic: https://github.com/klicperajo/ppnp

A.2 Baselines

The publicly available implementations of baselines can be found

at the following URLs:

• DGI: https://github.com/PetarV-/DGI

• GCA: https://github.com/CRIPAC-DIG/GCA

• GCN,GAT andGraphSAGE: https://pytorch-geometric.readthedocs.

io/en/latest/

• LDS: https://github.com/lucfra/LDS-GNN

• Pro-GNN: https://github.com/ChandlerBang/Pro-GNN

• IDGL: https://github.com/hugochan/IDGL

• GEN: https://github.com/BUPT-GAMMA/Graph-Structure-

Estimation-Neural-Networks

A.3 The selected input views

Table 5 shows the basic views we select for different datasets.

Table 5: The selected views for different datasets

Candidate Wine Cancer Digits Polblogs Citeseer Wiki-CS MS Academic

Adjacency matrix (𝐴)
√ √ √ √ √

Diffusion matrix (𝑆)
√ √ √ √ √

KNN graph (𝐾 )
√ √

Subgraph (𝐴𝑠𝑢𝑏 )
√ √

A.4 Hyperparameters Settings

We implement CoGSL in PyTorch, and list some important parame-

ter values used in our model in Table 6. In this table, ve_lr is the

learning rate of view estimator, and ve_drop is the dropout used in

estimating basic views. Notice that "-" of 𝐵 indicates that we use all

of nodes to calculate InfoNCE loss.

Table 6: The values of parameter used in CoGSL.

Dataset ve_lr ve_drop 𝑇 𝜌Θ 𝜌Φ 𝜌Ω 𝐵 𝜖 𝜆

Wine 0.001 0.8 100 1 5 1 - 0.1 0.5

Cancer 0.1 0.5 150 1 5 1 - 0.1 0.9

Digits 0.01 0.5 200 10 10 1 - 0.1 0.5

Polblogs 0.1 0.8 150 5 5 1 - 0.1 0.1

Citeseer 0.001 0.2 200 5 10 5 - 0.1 0.5

Wiki-CS 0.01 0.2 200 1 5 1 1000 0.1 0.1

MS Academic 0.0001 0.8 200 15 10 1 1000 1.0 0.2

B THREE-FOLD OPTIMIZATION

In this section, we detail the process of three-fold optimization,

shown in Algorithm 1.

Algorithm 1: The CoGSL Algorithm

Input :Basic views {𝑉1, 𝑉2}, feature matrix X, labels Y𝐿

Params :𝐵, total iterations 𝑇 ,
training epochs for each fold {𝜌Θ, 𝜌Φ, 𝜌Ω}

Output :final view 𝑉★, GCN parameters Θ

1 Initialize Θ, Φ and Ω;

2 for 𝑖 = 1 to 𝑇 do

3 for 𝑗 = 1 to 𝜌Ω do

4 % 𝑉𝑖𝑒𝑤 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔

5 Estimate {𝑉1, 𝑉2} as {𝑉
1
𝑒𝑠 , 𝑉

2
𝑒𝑠 } with eq (2)- (5);

6 Adaptively fuse 𝑉1 and 𝑉2 into 𝑉
★;

7 Update Ω with eq. (19);

8 end

9 Get {𝑉 1
𝑒𝑠 , 𝑉

2
𝑒𝑠 ,𝑉

★} after view estimating and fusion;

10 for 𝑘 = 1 to 𝜌Θ do

11 % 𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟𝑠 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔

12 Calculating predictions with eq. (6) and (13);

13 Update Θ with eq. (14);

14 end

15 for 𝑙 = 1 to 𝜌Φ do

16 %𝑀𝐼 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔

17 Randomly sample B nodes to calculate eq. (17);

18 Update Φ by minimizing eq. (18);

19 end

20 end

21 return 𝑉★ and Θ;


