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Abstract
Graph neural networks (GNNs) have been widely
used in modeling graph structured data, owing to
its impressive performance in a wide range of prac-
tical applications. Recently, knowledge distillation
(KD) for GNNs has enabled remarkable progress
in graph model compression and knowledge trans-
fer. However, most of the existing KD methods
require a large volume of real data, which are not
readily available in practice, and may preclude their
applicability in scenarios where the teacher model
is trained on rare or hard to acquire datasets. To
address this problem, we propose the first end-to-
end framework for data-free adversarial knowledge
distillation on graph structured data (DFAD-GNN).
To be specific, our DFAD-GNN employs a genera-
tive adversarial network, which mainly consists of
three components: a pre-trained teacher model and
a student model are regarded as two discrimina-
tors, and a generator is utilized for deriving training
graphs to distill knowledge from the teacher model
into the student model. Extensive experiments on
various benchmark models and six representative
datasets demonstrate that our DFAD-GNN signifi-
cantly surpasses state-of-the-art data-free baselines
in the graph classification task.

1 Introduction
An increasing number of machine learning tasks require deal-
ing with a large amount of graph data, which capture rich
and complex relationships among potentially billions of el-
ements. Graph Neural Networks (GNNs) have become an
effective way to address the graph learning problem by con-
verting the graph data into a low dimensional space while
keeping both the structural and property information to the
maximum extent. Recently, the rapid evolution of GNNs
has led to a growing number of new architectures as well
as novel applications [Lu et al., 2021; Sun et al., 2018;
Wu et al., 2021].

However, training a powerful GNN often requires heavy
computation and storage. Hence it is hard to deploy them into
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resource-constrained devices, such as mobile phones. There
has been a large literature [Bahri et al., 2021] aiming to com-
press and speed-up the cumbersome GNNs into lightweight
ones. Among those methods, knowledge distillation [Hinton
et al., 2015] is one of the most popular paradigms for learn-
ing a portable student model from the pre-trained complicated
teacher by directly imitating its outputs.

Knowledge distillation (KD) is proposed by Hinton et al.
[Hinton et al., 2015] for supervising the training of a com-
pact yet efficient student model by capturing and transferring
the knowledge from a large complicated teacher model. KD
has received significant attention from the community in the
recent years [Yang et al., 2021; Gou et al., 2021]. Despite its
successes, KD in its classical form has a critical limitation.
It assumes that the real training data is still available in the
distillation phase. However, in practice, the original training
data is often unavailable due to privacy concerns. Besides,
many large models are trained on millions or even billions
of graphs [Lu et al., 2021]. While the pre-trained models
might be made available for the community at large, making
training data available also poses a lot of technical and policy
challenges.

An effective way to avert the above-mentioned issue is
using the synthetic graphs, i.e., data-free knowledge distil-
lation [Lopes et al., 2017; Liu et al., 2021]. Just as “data
free” implies, there is no training data. Instead, the data
is reversely generated from the pre-trained models. Data-
free distillation has received a lot of attention in the field
of computer vision [Fang et al., 2019; Lopes et al., 2017;
Fang et al., 2021], which is however rarely been explored
in graph mining. Note that Deng et al. [Deng and Zhang,
2021] have made some pilot studies on this problem and pro-
posed graph-free knowledge distillation (GFKD). Unfortu-
nately, GFKD is not an end-to-end approach. It only takes
the fixed teacher model into account, ignoring the information
from the student model when generating graphs. Moreover,
their method is based on the assumption that an appropriate
graph usually has a high degree of confidence in the teacher
model. In fact, the model maps the graphs from the data space
to a very small output space, thus losing a large amount of
information. Therefore, these generated graphs are not very
useful for distilling the teacher model efficiently which leads
to an unsatisfactory performance.

In this work, we propose a novel data-free adversarial



knowledge distillation framework for GNNs (DFAD-GNN).
DFAD-GNN uses a knowledge distillation method based on
GAN [Goodfellow et al., 2014]. As illustrated in Figure 1,
DFAD-GNN contains one generator and two discriminators:
one fixed discriminator is the pre-trained teacher model, the
other is the compact student model that we aim to learn. The
generator generates graphs to help transfer teachers’ knowl-
edge to students. Unlike previous work [Deng and Zhang,
2021], our generator can fully utilize both the intrinsic statis-
tics from the pre-trained teacher model and the customizable
information from the student model, which can help gener-
ate high quality and diverse training data to improve the stu-
dent model’s generalizability. The contributions of our pro-
posed framework can be summarized as follows: 1) We study
a valuable yet intractable problem: how to distill a portable
and efficient student model from a pre-trained teacher model
when the original training data is not available; 2) We propose
a novel data-free adversarial knowledge distillation frame-
work for GNNs (DFAD-GNN) in order to train a compact
student model using the generated graphs and a fixed teacher
model. To the best of our knowledge, DFAD-GNN is the first
end-to-end framework for data-free knowledge distillation on
graph structured data; and 3) Extensive experiments demon-
strate that our proposed framework significantly outperforms
existing state-of-the-art data-free methods. DFAD-GNN can
successfully distill a student model with 81.8%-94.7% accu-
racy of the teacher model on all six datasets.

2 Preliminary and Related Work
2.1 Graph Neural Networks
Graph Neural Networks (GNNs) have received consider-
able attention for a wide variety of tasks [Wu et al., 2020;
Zhou et al., 2020]. Generally, GNN models can be unified
by a neighborhood aggregation or message passing schema
[Gilmer et al., 2017], where the representation of each node
is learned by iteratively aggregating the embeddings (“mes-
sage”) of its neighbors.

As one of the most influential GNN models, Graph Convo-
lutional Network (GCN) [Kipf and Welling, 2016] performs
a linear approximation to graph convolutions. Graph Atten-
tion Network (GAT) [Veličković et al., 2017] introduces an
attention mechanism that allows weighing nodes in the neigh-
borhood differently during the aggregation step. GraphSAGE
[Hamilton et al., 2017] is a comprehensive improvement on
the original GCN which replaced full graph Laplacian with
learnable aggregation functions. Graph Isomorphism Net-
work (GIN) [Xu et al., 2018] uses a simple but expressive
injective multiset function for neighbor aggregation. These
GNNs above will be employed as our teacher models and stu-
dent models in the experiments.

2.2 Knowledge Distillation
Knowledge distillation (KD) aims to transfer the knowledge
of a (larger) teacher model to a (smaller) student model [Hin-
ton et al., 2015; Wu et al., 2022]. It was originally introduced
to reduce the size of models deployed on devices with lim-
ited computational resources. Since then, this line of research
has attracted a lot of attention [Gou et al., 2021]. Recently,

there are a few attempts that try to combine knowledge distil-
lation with graph convolutional networks (GCNs). Yang et al.
[Yang et al., 2021] proposed a knowledge distillation frame-
work which can extract the knowledge of an arbitrary teacher
model and inject it into a well-designed student model. Jing
et al. [Jing et al., 2021] proposed to learn a lightweight stu-
dent GNN that masters the complete set of expertise of mul-
tiple heterogeneous teachers. These works aim to improve
the performance of student models on semi-supervised node
classification task, rather than the graph classification task we
considered in this work. Furthermore, although the above-
mentioned methods obtained promising results, they cannot
be effectively launched without the original training dataset.
In practice, the training dataset could be unavailable for some
reasons, e.g. transmission limitations, privacy, etc. Therefore,
it is necessary to consider a data-free approach for compress-
ing neural networks.

Techniques addressing data-free knowledge distillation
have relied on training a generative model to synthesize fake
data. One recent work named graph-free KD (GFKD) [Deng
and Zhang, 2021] has proposed a data-free knowledge distil-
lation for graph neural network. GFKD learns graph topol-
ogy structures for knowledge distillation by modeling them
with a multinomial distribution. The training processes in-
clude two independent steps: (1) first, it uses a pre-trained
teacher model to generate fake graphs; (2) afterwards, it uses
these fake graphs to distill knowledge into the compact stu-
dent model. However, those fake graphs are optimized by
an invariant teacher model without considering the student
model. Therefore, they are not very useful for distilling the
student model efficiently. In order to generate high quality
diverse training data to improve the student model’s general-
izability, we propose a data-free adversarial knowledge dis-
tillation framework for GNNs (DFAD-GNN). Our genera-
tor is trained end-to-end which not only uses the pre-trained
teacher’s intrinsic statistics but also obtains the discrepancy
between teacher model and student model. We remark that
the key differences between GFKD and our model lies in the
training process and the generator.

2.3 Graph Generation
Data-free knowledge distillation involves the generation of
training data. Motivated by the power of Generative Ad-
versarial Networks (GANs) [Goodfellow et al., 2014], re-
searchers have used them for generating graphs. Bojchevski
et al. proposed NetGAN [Bojchevski et al., 2018], which uses
the GAN framework to generate random walks on graphs. De
Cao and Kipf proposed MolGAN [De Cao and Kipf, 2018],
which generates molecular graphs using a simple multi-layer
perceptron (MLP).

In this work, we build on a min-max game between two
adversaries who try to optimize opposite loss functions.
This approach is analogous to the optimization performed
in GANs to train the generator and discriminator. The key
difference is that GANs are generally trained to recover an
underlying fixed data distribution. However, our generator
chases a moving target: the distribution of data which is most
indicative of the discrepancies of the current student model
and its teacher model.
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Figure 1: The framework of DFAD-GNN.

3 DFAD-GNN Framework
As shown in Figure 1, DFAD-GNN mainly consists of three
components: one generator and two discriminators. One
fixed discriminator is the pre-trained teacher model T , the
other is the compact student model S that we aim to learn.
More specifically, the generator G takes samples z from a
prior distribution and generates fake graphs. Then the gen-
erated graphs are used to train a student model under the su-
pervision of the teacher model.

3.1 Generator
The generator G is used to synthesize fake graphs that maxi-
mize the disagreement between the teacher T and the student
S. G takes D-dimensional vectors z ∈ RD sampled from a
standard normal distribution z ∼ N (0, I) and outputs graphs.
For each z, G outputs an object: F ∈ RN×T that defines node
features, where N is the node number and T is node feature
dimension. Then we calculate adjacency matrix A as follows:

A = σ
(
FF⊤) , (1)

where σ(·) is the logistic sigmoid function. We transform the
range of A from [0, 1] to {0, 1} with a threshold τ . If the
element in A is larger than τ , it is set as 1, otherwise 0.

The loss function used for G is the same as that used for
S, except that the goal is to maximize it. In other words,
the student is trained to match the teacher’s predictions and
the generator is trained to generate difficult graphs for the
student. The training process can be formulated as:

max
G

min
S

Ez∼N (0,1)[D(T (G(z)),S(G(z)))], (2)

where D (·) indicates the discrepancy between the teacher T
and the student S. If generator keeps generating simple and
duplicate graphs, student model will fit these graphs, resulting
in a very low model discrepancy between student model and
teacher model. In this case, the generator is forced to generate
difficult and different graphs to enlarge the discrepancy.

3.2 Adversarial Distillation
Overall, the adversarial training process consists of two
stages: the distillation stage that minimizes the discrepancy
D; and the generation stage that maximizes the discrepancy
D, as shown in Figure 1. We detail each stage as follows.

Algorithm 1 DFAD-GNN
Input: A pre-trained teacher model,T (X; θt)
Output: A comparable student model,S (X; θs)

1: Randomly initialize a student model S (X; θs) and a gen-
erator G (z; θg)

2: for Epochs do
3: // Distillation Stage
4: for k steps do
5: Generate graphs X from z with G (z; θg)
6: Calculate model discrepancy with LDIS

7: Update θs to minimize discrepancy with ∇θsD
8: end for
9: //Generation Stage

10: Generate graphs X from z with G (z; θg);
11: Calculate negative discrepancy with LGEN

12: Update θg to maximize discrepancy with ∇θg −D
13: end for

Distillation Stage
In this stage, we fix the generator G and only update the stu-
dent S in the discriminator. We sample a batch of random
noises z and construct fake graphs with generator G. Then
each graph X is fed to both the teacher and the student model
to produce the output qt and qs, where q is a vector indicating
the scores of different categories.

In our approach, the choice of loss involves similar factors
to those outlined in GANs: multiple works have discussed
the problem of vanishing gradients as the discriminator be-
comes strong in case of GAN training [Arjovsky and Bottou,
2017]. Most prior work in model distillation optimized over
the KullbackLeibler Divergence (KLD) and Mean Square Er-
ror (MSE) between the student and the teacher model. How-
ever, as the student model matches more closely the teacher
model, these two loss functions tend to suffer from vanish-
ing gradients. Specifically, back-propagating such vanishing
gradients through the generator can harm its learning. For
our approach, we minimize the Mean Absolute Error (MAE)
between qt and qs, which provides stable gradients for the
generator so that the vanishing gradients can be alleviated.
In our experiment, we empirically find that this significantly
improves student’s performance over other possible losses.
Now we can define the loss function for distillation stage as
follows:

LDIS = Ez∼pz(z)

[
1

n
∥T (G(z))− S (G(z))∥1

]
. (3)

Generation Stage
The goal of the generation stage is to push the generation of
new graphs. In this stage, we fix the two discriminators and
only update the generator. We encourage the generator to
produce more confusing training graphs. The loss function
used for generator is the same as for student except that the
goal is to maximize it:

LGEN = −LDIS . (4)

With the generation loss, the error first back-propagates



through the discriminator (the teacher and the student model),
then through the generator to optimize it.

3.3 Optimization
The whole distillation process is summarized in Algorithm
1. DFAD-GNN trains the student and the generator by it-
erating over the distillation stage and the generation stage.
Based on the learning progress of the student model, the gen-
erator crafts new graphs to further estimate the model dis-
crepancy. The competition in this adversarial game drives
the generator to discover more knowledge. In the distillation
stage, we update the student model for k times so as to ensure
its convergence. Note that compared with the conventional
method GFKD [Deng and Zhang, 2021], the time complexity
of DFAD-GNN mainly lies on the matrix multiplication of
the generator, i.e., O(TN2) where N is the number of nodes
and T is the node feature dimension. Although our method
has higher time complexity, the performances are much bet-
ter. In addition, because there are not too many nodes in most
real world graph-level applications (usually less than 100),
we remark that our complexity is acceptable in practice.

4 Experiments
4.1 Datasets
We adopt six graph classification benchmark datasets in-
cluding three bioinformatics graph datasets, i.e., MUTAG,
PTC MR, and PROTEINS, and three social network graph
datasets, i.e., IMDB-BINARY, COLLAB, and REDDIT-
BINARY. The statistics of these datasets are summarized in
Table 1. To remove the unwanted bias towards the training
data, for all experiments on these datasets, we evaluate the
model performance with a 10-fold cross validation setting,
where the dataset split is based on the conventionally used
training/test splits [Niepert et al., 2016; Zhang et al., 2018;
Xu et al., 2018] with LIBSVM [Chang and Lin, 2011]. We
report the average and standard deviation of validation accu-
racies across the 10 folds within the cross-validation.

Dataset #Graphs #Classes Avg#Graph Size
MUTAG 188 2 17.93
PTC MR 344 2 14.29

PROTEINS 1113 2 39.06
IMDB-BINARY 1000 2 19.77

COLLAB 5000 3 74.49
REDDIT-BINARY 2000 2 427.62

Table 1: Summary of datasets.

4.2 Generator Architecture
We adopt a generator with fixed architecture for all experi-
ments. The generator takes a 32-dimensional vector sampled
from a standard normal distribution z ∼ N (0, I). We pro-
cess it with a 3-layer MLP of [64,128,256] hidden units re-
spectively, tanh is taken as the activation function. Finally,
a linear layer is used to map the 256-dimensional vectors to
N × T -dimensional vectors and reshape them as node fea-
tures F ∈ RN×T . Throughout our experiments, we take the
average number of nodes in the training data as N and test
the effect of N in the ablation experiment.

(a) PROTEINS (b) COLLAB

Figure 2: Performance of different teachers to different students on
PROTEINS and COLLAB.

4.3 Teacher/Student Architecture
To demonstrate the effectiveness of our proposed framework,
we consider four GNN models as teacher and student models
for a thorough comparison, including: GIN, GCN, GAT and
GraphSAGE. Although the GNN model does not always re-
quire a deep network to achieve good results, however, from
Appendix B, there is no fixed layer and hidden units that can
make six datasets achieve the best performance on four dif-
ferent models. For fair comparison, we use 5 layers with 128
hidden units for teacher models. For the student model, we
conduct experiments to gradually reduce the number of lay-
ers l ∈ {5, 3, 2, 1} and gradually reduce the number of hidden
units h ∈ {128, 64, 32, 16}. We use a graph classifier layer
which first builds a graph representation by averaging all node
features extracted from the last GNN layer and then passing
this graph representation to an MLP.

4.4 Implementation
For training, we use Adam optimizer with weight decay 5e-4
to update student models. The generator is trained with Adam
without weight decay. Both student and generator are using
a learning rate scheduler that multiplies the learning rate by a
factor 0.3 at 10%, 30%, and 50% of the training epochs. The
number of updates k of the student model in Algorithm 1 is
set to 5. The threshold τ is empirically set to 0.5.

4.5 Baselines
We compare with the following baselines to demonstrate the
effectiveness of our proposed framework.

Teacher: The given pre-trained model which serves as the
teacher in the distillation process.

KD: The generator is removed, and the student model is
trained on 100% original training data in our framework.

RANDOM: The generator’s parameters are not updated
and the student model is trained on the noisy graphs generated
by the randomly initialized generator.

GFKD: GFKD is a data-free KD for GNNs by modeling
the topology of graph with a multinomial distribution [Deng
and Zhang, 2021].

4.6 Experimental Results
We have pre-trained all datasets on GCN, GIN, GAT and
GraphSAGE with 5 layers and 128 hidden units (5-128 for
short), and found that GIN performs best on all datasets (De-
tailed experimental results can be found in the Appendix B).



Datasets MUTAG PTC MR PROTEINS IMDB-BINARY COLLAB REDDIT-Binary

Teacher GIN-5-128 GIN-5-128 GIN-5-128 GIN-5-128 GIN-5-128 GIN-5-128
96.7±3.7 75.0±3.5 78.3±2.9 80.1±3.7 83.5±1.2 92.2±1.2

Student GIN-5-32 GIN-1-128 GIN-5-32 GIN-1-128 GIN-5-32 GIN-1-128 GIN-5-32 GIN-1-128 GIN-5-32 GIN-1-128 GIN-5-32 GIN-1-128
(6.7%×m) (20.6%×m) (6.7%×m) (20.6%×m) (6.7%×m) (20.6%×m) (6.7%×m) (20.6%×m) (6.7%×m) (20.6%×m) (6.7%×m) (20.6%×m)

KD 96.7±5.1 95.3±4.6 76.6±5.9 77.0±8.1 76.0±5.1 78.8±3.2 80.4±3.4 82.0±3.5 82.8±1.6 83.6±1.9 90.4±2.2 91.7±1.9
RANDOM 67.9±8.0 62.9±8.5 60.1±9.1 61.0±8.5 60.8±9.4 60.2±9.2 61.6±5.8 60.2±6.4 57.3±4.3 59.9±3.4 69.6±4.3 64.5±5.6

GFKD 77.8±11.1 72.6±10.4 65.2±7.7 62.1±7.0 61.3±4.0 62.5±3.6 67.2±5.5 65.1±5.4 64.7±3.3 64.1±3.0 70.2±3.4 68.1±3.9
DFAD-GNN 87.8±6.9 85.6±6.7 71.0±3.1 69.7±3.5 70.0±4.2 69.9±5.3 73.1±4.3 74.9±3.1 72.1±2.7 71.2±2.0 75.4±2.4 75.7±2.3

(90.8%×t) (88.5%×t) (94.7%×t) (92.9%×t) (89.4%×t) (89.3%×t) (91.3%×t) (93.5%×t) (86.3%×t) (85.3%×t) (81.8%×t) (82.1%×t)
Student GCN-5-32 GCN-1-128 GCN-5-32 GCN-1-128 GCN-5-32 GCN-1-128 GCN-5-32 GCN-1-128 GCN-5-32 GCN-1-128 GCN-5-32 GCN-1-128

(3.3%×m) (10.6%×m) (3.3%×m) (10.6%×m) (3.3%×m) (10.6%×m) (3.3%×m) (10.6%×m) (3.3%×m) (10.6%×m) (3.3%×m) (10.6%×m)
KD 86.7±9.4 82.2±10.2 70.9±7.3 70.0±6.9 74.5±3.8 75.5±4.0 79.7±3.6 81.1±3.2 81.7±1.1 82.1±2.2 88.2±2.3 87.8±2.4

RANDOM 58.9±19.3 55.6±21.1 59.4±10.1 55.6±8.1 59.2±8.4 57.9±8.0 52.3±2.4 55.1±2.8 55.6±4.4 55.3±5.5 59.3±3.7 57.7±4.2
GFKD 70.0±11.2 69.1±10.3 65.0±8.2 61.9±8.5 62.9±7.7 61.4±8.8 63.5±5.3 65.2±5.7 65.7±2.6 64.2±1.9 65.3±2.6 65.1±2.7

DFAD-GNN 74.1±9.3 76.4±8.8 67.7±2.9 67.9±3.5 67.2±5.0 65.7±3.7 69.5±4.8 68.6±5.4 70.3±1.2 69.8±1.8 69.9±1.3 70.4±1.9
(76.2%×t) (79.0%×t) (90.3%×t) (90.5%×t) (85.8%×t) (83.9%×t) (86.8%×t) (85.6%×t) (84.2%×t) (83.6%×t) (75.8%×t) (76.4%×t)

Student GAT-5-32 GAT-1-128 GAT-5-32 GAT-1-128 GAT-5-32 GAT-1-128 GAT-5-32 GAT-1-128 GAT-5-32 GAT-1-128 GAT-5-32 GAT-1-128
(164.6%×m) (84.5%×m) (164.6%×m) (84.5%×m) (164.6%×m) (84.5%×m) (164.6%×m) (84.5%×m) (164.6%×m) (84.5%×m) (164.6%×m) (84.5%×m)

KD 87.8±8.9 82.2±10.2 73.2±5.5 69.7±6.8 76.6±3.4 74.5±4.6 80.7±3.0 79.9±2.8 80.3±1.5 81.5±1.2 90.9±1.9 90.6±2.0
RANDOM 63.9±17.3 57.5±20.3 60.0±7.1 59.4±6.7 59.8±6.4 60.6±5.6 53.6±4.5 52.9±2.1 56.3±3.6 58.1±3.3 57.6±4.1 55.8±4.3

GFKD 72.5±13.8 70.4±11.9 63.2±6.5 62.7±7.0 62.2±6.8 62.8±7.9 63.7±4.6 64.4±5.2 66.2±2.3 64.9±3.7 67.8±3.5 68.3±4.4
DFAD-GNN 76.9±6.9 77.3±5.9 66.4±3.9 68.0±4.7 67.8±4.9 66.0±4.7 68.4±3.9 68.0±4.7 71.1±1.6 70.5±2.5 73.5±2.6 72.3±2.7

(79.5%×t) (79.9%×t) (88.5%×t) (90.7%×t) (86.6%×t) (84.3%×t) (85.4%×t) (84.9%×t) (85.1%×t) (84.4%×t) (79.7%×t) (78.4%×t)

Student GraphSAGE
-5-32

GraphSAGE
-1-128

GraphSAGE
-5-32

GraphSAGE
-1-128

GraphSAGE
-5-32

GraphSAGE
-1-128

GraphSAGE
-5-32

GraphSAGE
-1-128

GraphSAGE
-5-32

GraphSAGE
-1-128

GraphSAGE
-5-32

GraphSAGE
-1-128

(5.9%×m) (11.1%×m) (5.9%×m) (11.1%×m) (5.9%×m) (11.1%×m) (5.9%×m) (11.1%×m) (5.9%×m) (11.1%×m) (5.9%×m) (11.1%×m)
KD 87.8±12.1 82.8±9.8 75.6±5.3 70.3±6.6 76.3±3.5 75.7±4.5 80.8±2.6 80.1±2.5 81.2±1.7 81.5±2.5 90.1±1.7 89.5±1.9

RANDOM 62.2±17.4 57.8±22.7 61.1±7.0 59.9±6.9 57.4±8.5 55.7±6.3 52.6±2.8 53.2±2.9 54.6±3.6 55.5±2.7 54.6±4.5 54.4±4.0
GFKD 67.7±12.9 68.1±12.1 62.5±5.9 63.0±6.6 63.3±7.7 61.8±7.9 62.3±5.2 63.1±6.0 63.3±2.3 64.7±3.2 63.6±3.8 64.0±3.7

DFAD-GNN 76.5±7.3 75.9±6.5 66.9±3.7 67.5±3.9 69.0±6.1 67.8±5.4 67.5±4.9 69.0±3.4 68.9±1.1 69.6±2.1 71.3±3.1 69.1±2.9
(79.1%×t) (78.5%×t) (89.2%×t) (90.0%×t) (88.1%×t) (86.6%×t) (84.3%×t) (86.1%×t) (82.5%×t) (83.4%×t) (77.3%×t) (74.9%×t)

Table 2: Test accuracies (%) on six datasets. GIN-5-128 means 5 layers GIN with 128 hidden units. (6.7%×m) under student model means
percentage of student model parameters to teacher model parameters, m is the number of teacher model parameters. (90.8%×t) under DFAD-
GNN means percentage of student model accuracy to teacher model accuracy, t is the accuracy of the corresponding teacher network.

(a) PROTEINS (b) COLLAB

Figure 3: Evaluation of different loss functions (teacher model is
GIN-5-128).

Therefore, we adopt GIN as the teacher model in Table 2.
We choose two representative architecture 1-128 and 5-32 for
four kinds of student models (More experiments with other
architectures can be found in the Appendix D).

From Table 2, it can be observed that KD’s performance is
very close to even outperforms the teacher model. That’s be-
cause KD is a data-driven method which uses the same train-
ing data as the teacher model for knowledge distillation. This
also implies that the loss function of our DFAD-GNN is very
effective in distilling knowledge from the teacher model to
the student model, as we apply the same loss function in both
KD and our DFAD-GNN.

We also observe that RANDOM delivers the worst per-
formance as the generator is not updated during the training
process, thus the generator will not be able to generate dif-
ficult graphs as the student model progresses. Consequently,
the student model fail to learn enough knowledge from the
teacher, resulting in poor results.

In terms of the efficacy of our DFAD-GNN, Table 2 shows

(a) PTC MR (b) IMDB-BINARY

Figure 4: Training with different percentages of real data. The in-
tersection of two lines indicates the needed percentage of the real
training data to achieve our data-free performance.

that our DFAD-GNN consistently outperforms the recent
data-free method GFKD [Deng and Zhang, 2021]. We con-
jecture the potential reason that DFAD-GNN can significantly
outperform GFKD is the teacher encodes the distribution
characteristics of the original input graphs under its own fea-
ture space. Simply inverting graphs in GFKD tends to overfit
to the partial distribution information stored in this teacher
model. As a consequence, their generated fake graphs are
lacking of generalizability and diversity. In contrast, our gen-
erated graphs are more conducive to transferring the knowl-
edge of the teacher model to the student model.

In terms of the stability, it can be seen from Table 2 that the
standard deviation of our DFAD-GNN is the smallest among
all the data-free baselines and across all datasets, indicating
that our model can obtain relatively stable prediction results.

Another interesting observation is that the performance of
the compressed model is not necessarily worse than the more
complex model. As can be seen from Table 2, that perfor-
mance of a more compressed student model with 5-32 is not



(a) PTC MR (b) IMDB-B

Figure 5: Influence of the node number N (Note that, the GFKD
randomly sample the number of nodes from [10, 22] for each graph).

necessarily worse than the student model with 1-128. There-
fore, we speculate that the performance of the student model
may have no obvious relationship with the degree of model
compression, which requires further investigation.

4.7 Model Analysis
Model Comparison. Here, we select PROTEINS and COL-
LAB with the most training data on molecular datasets and
social datasets respectively for cross-training among the four
kinds of models. It can be seen from Figure 2, when GIN
is used as a teacher model, the overall performance of the
student model is better, no matter which type of the student
model is adopted. When GIN is used as a student model, the
performance of the student model is significantly improved
compared to other student models. We speculate there may
be two reasons: (1) Under the same number of layers and
hidden units, the GIN model has more parameters than GCN
and GraphSAGE, so GIN owns more powerful learning ca-
pability. Note that although GAT has more parameters than
GIN, it may be better at calculating node attention weights
and then performing node classification tasks; (2) GIN is pro-
posed to solve the problem of graph isomorphism. For our
small molecule graphs and social network graphs, GIN is
more powerful than other models in graph classification tasks.

Choice of Loss Function. The choice of loss is of
paramount importance to a successful distillation. We ex-
plore five potential loss functions, including logit-MAE (cal-
culate MAE with pre-softmax activations, L-MAE for short),
softmax-MAE (calculate MAE with softmax outputs, S-MAE
for short), MSE, KLD, and Cross Entropy (CE for short).
These losses are commonly used in the knowledge distilla-
tion literature [Gou et al., 2021]. Figure 3 shows that using
the MAE achieves significantly better test accuracies com-
pared to other loss functions. Generally speaking, it is bet-
ter to calculate MAE before softmax, because logits contain
more information. As mentioned earlier, when the student
model matches more closely to the teacher model, other loss
functions tend to suffer from vanishing gradients [Fang et al.,
2019]. Specifically, backpropagating such vanishing gradi-
ents through the generator can harm its learning. To prevent
gradients from vanishing, we use the MAE computed with
the teacher and student logits.

Percentage of Training Data. Although in the above re-
ported results, we assume that the student cannot obtain any
training data. However, in practice, student may have partial

(a) IMDB-B real graph (b) PTC MR real graph

(c) IMDB-B fake graph (d) PTC MR fake graph

Figure 6: Graph visualization on IMDB-B and PTC MR (The first
row are real graphs, the second row are fake graphs we generated).

access to the training data. To reflect the practical scenario
of knowledge distillation, we conduct extra experiments on
PTC MR and IMDB-B, by varying the percentage of train-
ing data from 0.5% to 100%, while keeping other hyper-
parameters the same as in the previous experiments. As il-
lustrated in Figure 4, PTC MR requires 17.1% of real data to
achieve our results, while IMDB-B requires only 5.6%. This
is because PTC MR has less data, thus the percentage of real
data required is higher than IMDB-B.

Number of generated nodes. To explore the influence of
node number N on the model performance, we conduct ex-
periments with varying sizes of N on PTC MR and IMDB-B.
It can be seen from Figure 5 that the model performs better
when N takes the value near the average number of nodes
in the training set. Far from the average number, the perfor-
mance will decrease correspondingly due to a large deviation
from real data.

Visualization of Generated Graphs. The generated
graphs and real graphs of IMDB-B and PTC MR are shown
in Figure 6. Although the generated graphs are not exactly
the same as the real graphs, they can be used to generate a
student model with relatively good performance.

5 Conclusion

This paper introduces a data-free adversarial knowledge dis-
tillation framework on graph neural network for model com-
pression. Without any access to real data, we successfully
reduce the discrepancy and obtain a student model with rel-
atively good performance. Our extensive experiments on
graph classification demonstrate that our framework can be
effectively applied to different network architectures. In the
future, we will extend this work to multi-teacher scenarios
and continue to explore how to generate more complex graphs
under various generator structures.
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Bottou. Towards principled methods for training
generative adversarial networks. arXiv preprint
arXiv:1701.04862, 2017.

[Bahri et al., 2021] Mehdi Bahri, Gaétan Bahl, and Stefanos
Zafeiriou. Binary graph neural networks. In CVPR, pages
9492–9501, 2021.

[Bojchevski et al., 2018] Aleksandar Bojchevski, Oleksandr
Shchur, Daniel Zügner, and Stephan Günnemann. Net-
gan: Generating graphs via random walks. In ICML, pages
610–619. PMLR, 2018.

[Chang and Lin, 2011] Chih-Chung Chang and Chih-Jen
Lin. Libsvm: a library for support vector machines. ACM
transactions on intelligent systems and technology (TIST),
2(3):1–27, 2011.

[De Cao and Kipf, 2018] Nicola De Cao and Thomas Kipf.
Molgan: An implicit generative model for small molecular
graphs. arXiv preprint arXiv:1805.11973, 2018.

[Deng and Zhang, 2021] Xiang Deng and Zhongfei Zhang.
Graph-free knowledge distillation for graph neural net-
works. ArXiv, abs/2105.07519, 2021.

[Fang et al., 2019] Gongfan Fang, Jie Song, Chengchao
Shen, Xinchao Wang, Da Chen, and Mingli Song.
Data-free adversarial distillation. arXiv preprint
arXiv:1912.11006, 2019.

[Fang et al., 2021] Gongfan Fang, Kanya Mo, Xinchao
Wang, Jie Song, Shitao Bei, Haofei Zhang, and Mingli
Song. Up to 100x faster data-free knowledge distillation.
arXiv preprint arXiv:2112.06253, 2021.

[Gilmer et al., 2017] Justin Gilmer, Samuel S Schoenholz,
Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In ICML, pages
1263–1272. PMLR, 2017.

[Goodfellow et al., 2014] Ian Goodfellow, Jean Pouget-
Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial nets. NeurIPS, 27, 2014.

[Gou et al., 2021] Jianping Gou, Baosheng Yu, Stephen J
Maybank, and Dacheng Tao. Knowledge distillation:
A survey. International Journal of Computer Vision,
129(6):1789–1819, 2021.

[Hamilton et al., 2017] William L Hamilton, Rex Ying, and
Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Con-
ference on Neural Information Processing Systems, pages
1025–1035, 2017.

[Hinton et al., 2015] Geoffrey Hinton, Oriol Vinyals, and
Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[Jing et al., 2021] Yongcheng Jing, Yiding Yang, Xinchao
Wang, Mingli Song, and Dacheng Tao. Amalgamating
knowledge from heterogeneous graph neural networks. In
CVPR, pages 15709–15718, 2021.

[Kipf and Welling, 2016] Thomas N Kipf and Max Welling.
Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[Liu et al., 2021] Yuang Liu, Wei Zhang, Jun Wang, and
Jianyong Wang. Data-free knowledge transfer: A survey.
arXiv preprint arXiv:2112.15278, 2021.

[Lopes et al., 2017] Raphael Gontijo Lopes, Stefano Fenu,
and Thad Starner. Data-free knowledge distillation for
deep neural networks. arXiv preprint arXiv:1710.07535,
2017.

[Lu et al., 2021] Yuanfu Lu, Xunqiang Jiang, Yuan Fang,
and Chuan Shi. Learning to pre-train graph neural net-
works. In AAAI, volume 35, pages 4276–4284, 2021.

[Niepert et al., 2016] Mathias Niepert, Mohamed Ahmed,
and Konstantin Kutzkov. Learning convolutional neural
networks for graphs. In International conference on ma-
chine learning, pages 2014–2023. PMLR, 2016.

[Sun et al., 2018] Lichao Sun, Yingtong Dou, Carl Yang,
Ji Wang, Philip S Yu, Lifang He, and Bo Li. Adversarial
attack and defense on graph data: A survey. arXiv preprint
arXiv:1812.10528, 2018.
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6 Appendix
This supplementary material is organized as follows:

• Sec. A provides the number of model’s parameters in
the table 2 and the learning rate of each dataset;

• Sec. B provides the pre-training results of teacher model
on three molecular datasets with different architectures;

• Sec. C describe why L1 loss provides stable gradients
for the generator so that the vanishing gradients can be
alleviated.

• Sec. D shows the experimental results of gradually re-
ducing the number of layers and gradually reducing the
number of hidden units in the student network accord-
ing to the teacher network on all datasets. Another dif-
ference from Table 2 is that we also did an experiment
when the teacher model is GCN-5-128.

• Sec. E shows the performance of training with different
loss functions on the molecular datasets.

• Sec. F gives the percentage range of real data required
to achieve our data-free performance on the molecular
datasets.

A Learning Rate And Model Parameters
Table 3 shows the learning rate of the generator and student
model used in training for each dataset.

Dataset lrS lrG
MUTAG 0.5 0.005
PTC MR 0.1 0.005

PROTEINS 5 5e-5
REDDIT-BINARY 5 5e-5
IMDB-BINARY 1 0.005

COLLAB 0.1 0.05

Table 3: Generator and student model learning rate for each dataset.

Table 4 shows the detail number of parameters of the model
in Table 2. We can see that the model with the most model
parameters under the same architecture is GAT, followed by
GIN, and GCN is the least. GAT has the most parameters
but does not work well under our framework. There are two
possible reasons: the first may be because GAT has too many
parameters and it is difficult to train, and the second may be
because GAT is more suitable for node classification tasks.
Because it calculates the attention weight of neighbor nodes,
it is more suitable for distinguishing node types.

Teacher GIN-5-128
167687

Student GAT-1-128 GCN-1-128 GIN-1-128 GraphSAGE-1-128
141698 17794 34563 18690

Student GAT-5-32 GCN-5-32 GIN-5-32 GraphSAGE-5-32
276066 5602 11207 9922

Table 4: Number of model parameters
.

B Pre-training Of The Teacher Model
Table 5 shows the accuracy of pre-training on the molecular
datasets of teacher models with different architectures. It can
be seen that there is no specific framework for teachers to
perform best, so in order to unify, we have chosen a 5-128
framework for the teacher model.

C Why L1 Provides Stable Gradients
Given the output qt and qs, the gradient of |qsi − qti | with re-
spect to θs is ∇θs |qsi − qti | = sign (qsi − qti)∇θsqsi . It simply
multiplies the gradients with the sign of qsi − qti when qsi is
very close to qti , which provides stable gradients for the gen-
erator so that the vanishing gradients can be alleviated. For
other loss functions such as MSE, its gradient decreases as
the loss approaches zero, which will deactivate the learning
of generator and result in a dying min-max game. Therefore,
L1 loss works better than others.

D More Experimental Results
Table 6 shows the experimental results of the student model
gradually reducing the number of layers or gradually reduc-
ing the number of hidden units when the teacher model is
GCN and GIN. It can be seen that no matter what architec-
ture the student model is, our model can always achieve better
performance than GFKD.

What’s more, It can be found that when the teacher model
is GCN and the student model is GIN, in some cases the effect
of the student model obtained by our method is very good.
(For example, when the teacher is GCN-5-128 and the stu-
dent is GIN-5-32 on the MUTAG, the accuracy of the student
model is 98.8% of the teacher model; on the PTC MR, when
the teacher is GCN-5-128 and the student is GIN At -3-128,
the accuracy of the student model is 103.6% of that of the
teacher model.

E Results on different loss function
Table 7 shows the detailed results obtained by training on dif-
ferent losses on the molecular dataset. It can be seen that the
MAE used in our model has achieved the best performance.

F Training data percentage
Table 8 shows the range of the percentage of real training
data required to achieve our data-free effect on the molecular
datasets. It can be seen that when the dataset is PTC MR, our
model performs better than the data-driven method on some
architectures. As illustrated in Figure 7, the red line repre-
sents the accuracy of student model with the increasing per-
centage of the training dataset, and the blue line represents
our data-free result. The intersection of these two lines indi-
cates what percentage of the real training data is needed to
achieve our data-free performance. It can be observed that
when the student model is GCN and GIN, more training data
is required.



Dataset PROTEIN PTC MR MUTAG
Model GCN GraphSAGE GAT GIN GCN GraphSAGE GAT GIN GCN GraphSAGE GAT GIN
1-16 0.785±0.048 0.75±0.051 0.743±0.052 0.791±0.039 0.682±0.075 0.697±0.063 0.647±0.06 0.718±0.066 0.878±0.078 0.833±0.096 0.811±0.114 0.956±0.048
1-32 0.795±0.038 0.75±0.048 0.746±0.049 0.784±0.031 0.671±0.071 0.685±0.084 0.656±0.065 0.715±0.065 0.872±0.056 0.822±0.096 0.817±0.114 0.95±0.046
1-64 0.79±0.039 0.749±0.046 0.744±0.049 0.785±0.038 0.697±0.059 0.703±0.077 0.676±0.088 0.715±0.056 0.883±0.063 0.844±0.092 0.822±0.096 0.961±0.05
1-128 0.789±0.045 0.753±0.045 0.745±0.05 0.786±0.033 0.682±0.066 0.697±0.076 0.665±0.085 0.726±0.051 0.900±0.054 0.85±0.056 0.833±0.086 0.961±0.05
2-32 0.788±0.045 0.757±0.045 0.755±0.042 0.79±0.037 0.676±0.051 0.685±0.063 0.647±0.082 0.721±0.07 0.878±0.065 0.85±0.093 0.822±0.111 0.972±0.037
2-64 0.787±0.043 0.765±0.045 0.759±0.041 0.786±0.03 0.691±0.067 0.682±0.057 0.659±0.075 0.732±0.046 0.883±0.039 0.861±0.057 0.839±0.072 0.956±0.048
2-128 0.791±0.044 0.762±0.045 0.757±0.049 0.791±0.035 0.691±0.066 0.691±0.065 0.641±0.073 0.738±0.059 0.900±0.065 0.844±0.065 0.839±0.107 0.961±0.036
3-32 0.787±0.038 0.762±0.046 0.757±0.045 0.782±0.036 0.674±0.073 0.688±0.067 0.682±0.069 0.741±0.052 0.894±0.046 0.856±0.079 0.828±0.107 0.956±0.042
3-64 0.789±0.042 0.764±0.048 0.759±0.045 0.795±0.035 0.703±0.082 0.694±0.062 0.650±0.088 0.744±0.042 0.894±0.052 0.872±0.066 0.878±0.078 0.972±0.028
3-128 0.788±0.046 0.762±0.045 0.757±0.036 0.79±0.042 0.688±0.076 0.691±0.069 0.665±0.056 0.738±0.043 0.894±0.063 0.861±0.076 0.872±0.07 0.967±0.037
5-32 0.785±0.046 0.768±0.044 0.755±0.038 0.786±0.036 0.688±0.046 0.700±0.054 0.656±0.098 0.753±0.07 0.894±0.046 0.889±0.09 0.867±0.097 0.972±0.051
5-64 0.787±0.038 0.768±0.042 0.750±0.038 0.786±0.04 0.697±0.06 0.706±0.049 0.641±0.052 0.729±0.066 0.883±0.039 0.889±0.075 0.872±0.086 0.972±0.037
5-128 0.780±0.04 0.769±0.039 0.77±0.04 0.783±0.029 0.700±0.051 0.703±0.074 0.668±0.101 0.750±0.035 0.911±0.051 0.900±0.074 0.878±0.078 0.967±0.037

Table 5: The accuracy of teacher models with different architectures on PROTEINS, PTC MR and MUTAG datasets.

Datasets PROTEINS MUTAG PTC MR IMDB-BINARY COLLAB REDDIT-BINARY
Teacher model GCN-5-128 GIN-5-128 GCN-5-128 GIN-5-128 GCN-5-128 GIN-5-128 GCN-5-128 GIN-5-128 GCN-5-128 GIN-5-128 GCN-5-128 GIN-5-128

Teacher 0.780±0.04 0.783±0.029 0.911±0.051 0.967±0.037 0.700±0.051 0.75±0.035 0.799±0.031 0.801±0.037 0.829±0.013 0.835±0.012 0.883±0.016 0.922±0.012
Student model GIN-5-128 GIN-5-128 GIN-5-128 GIN-5-128 GIN-5-128 GIN-5-128 GIN-5-128 GIN-5-128 GIN-5-128 GIN-5-128 GIN-5-128 GIN-5-128

KD 0.774±0.034 0.787±0.041 0.922±0.067 0.967±0.051 0.725±0.06 0.768±0.038 0.818±0.035 0.800±0.042 0.833±0.017 0.830±0.016 0.890±0.019 0.920±0.016
GFKD 0.649±0.048 0.634±0.032 0.811±0.075 0.722±0.134 0.650±0.056 0.609±0.072 0.644±0.058 0.642±0.06 0.658±0.039 0.664±0.038 0.677±0.034 0.690±0.039

DFAD-GNN 0.720±0.042 0.702±0.033 0.900±0.078 0.856±0.062 0.729±0.037 0.736±0.057 0.757±0.04 0.750±0.054 0.754±0.018 0.740±0.017 0.772±0.020 0.770±0.020
Student model GIN-3-128 GIN-3-128 GIN-3-128 GIN-3-128 GIN-3-128 GIN-3-128 GIN-3-128 GIN-3-128 GIN-3-128 GIN-3-128 GIN-3-128 GIN-3-128

KD 0.782±0.045 0.789±0.045 0.928±0.060 0.962±0.05 0.720±0.055 0.775±0.052 0.821±0.043 0.812±0.033 0.836±0.014 0.845±0.014 0.900±0.021 0.921±0.019
GFKD 0.673±0.041 0.643±0.043 0.772±0.13 0.678±0.126 0.662±0.051 0.613±0.058 0.668±0.040 0.630±0.054 0.662±0.036 0.654±0.032 0.682±0.036 0.701±0.040

DFAD-GNN 0.714±0.036 0.705±0.037 0.894±0.058 0.899±0.066 0.725±0.062 0.718±0.033 0.745±0.029 0.743±0.048 0.749±0.015 0.733±0.016 0.765±0.025 0.767±0.019
Student model GIN-2-128 GIN-2-128 GIN-2-128 GIN-2-128 GIN-2-128 GIN-2-128 GIN-2-128 GIN-2-128 GIN-2-128 GIN-2-128 GIN-2-128 GIN-2-128

KD 0.787±0.040 0.782±0.036 0.913±0.049 0.961±0.05 0.725±0.051 0.78±0.091 0.811±0.037 0.817±0.029 0.844±0.011 0.837±0.014 0.893±0.017 0.919±0.016
GFKD 0.667±0.052 0.649±0.039 0.789±0.121 0.678±0.138 0.662±0.053 0.612±0.085 0.643±0.050 0.622±0.049 0.652±0.037 0.658±0.044 0.669±0.038 0.692±0.04

DFAD-GNN 0.704±0.039 0.717±0.026 0.889±0.061 0.861±0.109 0.716±0.042 0.703±0.035 0.749±0.041 0.733±0.032 0.747±0.013 0.729±0.018 0.768±0.022 0.759±0.021
Student model GIN-1-128 GIN-1-128 GIN-1-128 GIN-1-128 GIN-1-128 GIN-1-128 GIN-1-128 GIN-1-128 GIN-1-128 GIN-1-128 GIN-1-128 GIN-1-128

KD 0.790±0.044 0.788±0.032 0.915±0.052 0.953±0.046 0.714±0.062 0.77±0.081 0.809±0.028 0.820±0.035 0.841±0.016 0.836±0.019 0.897±0.023 0.917±0.019
GFKD 0.668±0.041 0.625±0.036 0.811±0.103 0.726±0.104 0.644±0.045 0.621±0.070 0.654±0.057 0.651±0.054 0.648±0.031 0.641±0.03 0.672±0.034 0.681±0.039

DFAD-GNN 0.702±0.052 0.699±0.053 0.861±0.076 0.856±0.067 0.713±0.036 0.697±0.035 0.739±0.046 0.749±0.031 0.751±0.016 0.712±0.02 0.759±0.025 0.757±0.023
Student model GIN-5-64 GIN-5-64 GIN-5-64 GIN-5-64 GIN-5-64 GIN-5-64 GIN-5-64 GIN-5-64 GIN-5-64 GIN-5-64 GIN-5-64 GIN-5-64

KD 0.761±0.053 0.785±0.045 0.919±0.055 0.972±0.037 0.718±0.051 0.771±0.063 0.801±0.035 0.808±0.042 0.839±0.020 0.829±0.018 0.898±0.019 0.910±0.020
GFKD 0.658±0.056 0.667±0.049 0.733±0.108 0.689±0.127 0.665±0.063 0.606±0.059 0.665±0.047 0.649±0.045 0.659±0.038 0.648±0.036 0.663±0.040 0.687±0.032

DFAD-GNN 0.716±0.050 0.716±0.059 0.894±0.052 0.867±0.044 0.722±0.067 0.721±0.030 0.744±0.041 0.734±0.032 0.733±0.014 0.718±0.021 0.749±0.019 0.760±0.026
Student model GIN-5-32 GIN-5-32 GIN-5-32 GIN-5-32 GIN-5-32 GIN-5-32 GIN-5-32 GIN-5-32 GIN-5-32 GIN-5-32 GIN-5-32 GIN-5-32

KD 0.771±0.034 0.760±0.051 0.912±0.056 0.967±0.051 0.698±0.027 0.766±0.059 0.805±0.031 0.804±0.034 0.827±0.015 0.828±0.016 0.887±0.020 0.904±0.022
GFKD 0.641±0.032 0.613±0.040 0.772±0.063 0.778±0.111 0.655±0.058 0.652±0.077 0.667±0.054 0.672±0.055 0.652±0.035 0.647±0.033 0.669±0.036 0.702±0.034

DFAD-GNN 0.697±0.041 0.700±0.042 0.900±0.042 0.878±0.069 0.715±0.051 0.710±0.031 0.727±0.050 0.731±0.043 0.737±0.018 0.721±0.027 0.750±0.021 0.754±0.024
Student model GIN-5-16 GIN-5-16 GIN-5-16 GIN-5-16 GIN-5-16 GIN-5-16 GIN-5-16 GIN-5-16 GIN-5-16 GIN-5-16 GIN-5-16 GIN-5-16

KD 0.743±0.041 0.751±0.05 0.899±0.069 0.961±0.05 0.706±0.051 0.759±0.079 0.795±0.032 0.799±0.027 0.823±0.017 0.825±0.018 0.881±0.023 0.908±0.018
GFKD 0.637±0.033 0.614±0.042 0.789±0.108 0.689±0.139 0.647±0.047 0.589±0.081 0.627±0.053 0.621±0.059 0.643±0.032 0.643±0.037 0.654±0.031 0.667±0.039

DFAD-GNN 0.686±0.041 0.696±0.052 0.878±0.065 0.800±0.071 0.721±0.038 0.685±0.051 0.699±0.039 0.712±0.05 0.729±0.013 0.715±0.023 0.746±0.018 0.748±0.020

Table 6: Student model gradually reducing the number of layers or gradually reducing the number of hidden units when the teacher model is
GCN and GIN.

(a) GAT-5-32 (b) GCN-5-32 (c) GIN-5-32 (d) GraphSAGE-5-32

(e) GAT-5-32 (f) GCN-5-32 (g) GIN-5-32 (h) GraphSAGE-5-32

Figure 7: Different percentage of PTC MR and IMDB-BINARY on four student models ((a)-(d) is PTC MR and (e)-(h) is IMDB-BINARY).



Datasets PROTEINS MUTAG PTC MR
Teacher model GCN-5-128 GIN-5-128 GCN-5-128 GIN-5-128 GCN-5-128 GIN-5-128

Teacher 0.781±0.04 0.783±0.029 0.911±0.051 0.967±0.037 0.700±0.051 0.75±0.035
Student model GIN-5-128 GIN-5-128 GIN-5-128 GIN-5-128 GIN-5-128 GIN-5-128

logit-MAE 0.720±0.042 0.708±0.033 0.900±0.078 0.856±0.062 0.729±0.037 0.736±0.057
softmax-MAE 0.687±0.028 0.702±0.038 0.867±0.062 0.794±0.066 0.721±0.061 0.741±0.046

MSE 0.679±0.057 0.657±0.062 0.806±0.08 0.811±0.114 0.659±0.079 0.671±0.047
KLD 0.672±0.053 0.686±0.072 0.883±0.08 0.844±0.155 0.706±0.066 0.728±0.045

Cross Entropy 0.595±0.05 0.699±0.058 0.683±0.232 0.822±0.149 0.724±0.061 0.718±0.038
Student model GIN-3-128 GIN-3-128 GIN-3-128 GIN-3-128 GIN-3-128 GIN-3-128

logit-MAE 0.714±0.036 0.705±0.037 0.894±0.058 0.899±0.066 0.735±0.062 0.728±0.033
softmax-MAE 0.686±0.059 0.692±0.044 0.850±0.139 0.861±0.095 0.747±0.044 0.722±0.018

MSE 0.664±0.028 0.641±0.054 0.833±0.082 0.839±0.076 0.647±0.053 0.671±0.034
KLD 0.693±0.044 0.659±0.052 0.833±0.079 0.822±0.144 0.671±0.054 0.712±0.039

Cross Entropy 0.601±0.056 0.663±0.076 0.678±0.225 0.828±0.152 0.706±0.059 0.697±0.053
Student model GIN-2-128 GIN-2-128 GIN-2-128 GIN-2-128 GIN-2-128 GIN-2-128

logit-MAE 0.704±0.039 0.717±0.026 0.889±0.061 0.861±0.109 0.716±0.042 0.703±0.035
softmax-MAE 0.672±0.05 0.686±0.048 0.827±0.082 0.846±0.078 0.708±0.04 0.694±0.035

MSE 0.665±0.047 0.657±0.05 0.817±0.056 0.833±0.05 0.665±0.053 0.647±0.047
KLD 0.686±0.03 0.677±0.056 0.856±0.062 0.806±0.148 0.691±0.051 0.679±0.068

Cross Entropy 0.595±0.05 0.673±0.068 0.683±0.229 0.817±0.147 0.706±0.062 0.688±0.024
Student model GIN-1-128 GIN-1-128 GIN-1-128 GIN-1-128 GIN-1-128 GIN-1-128

logit-MAE 0.702±0.052 0.699±0.053 0.861±0.076 0.856±0.067 0.733±0.036 0.697±0.035
softmax-MAE 0.689±0.047 0.696±0.046 0.828±0.101 0.833±0.102 0.722±0.028 0.679±0.033

MSE 0.654±0.041 0.662±0.053 0.739±0.075 0.778±0.102 0.626±0.051 0.621±0.065
KLD 0.666±0.033 0.648±0.053 0.811±0.083 0.778±0.134 0.671±0.063 0.688±0.053

Cross Entropy 0.595±0.05 0.665±0.06 0.656±0.211 0.767±0.124 0.659±0.059 0.691±0.046
Student model GIN-5-64 GIN-5-64 GIN-5-64 GIN-5-64 GIN-5-64 GIN-5-64

logit-MAE 0.716±0.050 0.716±0.059 0.894±0.052 0.867±0.044 0.718±0.067 0.721±0.030
softmax-MAE 0.696±0.046 0.695±0.047 0.850±0.103 0.817±0.083 0.700±0.034 0.720±0.044

MSE 0.710±0.028 0.653±0.041 0.844±0.054 0.800±0.09 0.665±0.067 0.632±0.062
KLD 0.677±0.044 0.670±0.06 0.861±0.100 0.800±0.134 0.706±0.057 0.706±0.059

Cross Entropy 0.604±0.056 0.686±0.066 0.728±0.187 0.844±0.151 0.709±0.075 0.712±0.061
Student model GIN-5-32 GIN-5-32 GIN-5-32 GIN-5-32 GIN-5-32 GIN-5-32

logit-MAE 0.697±0.041 0.700±0.042 0.900±0.042 0.878±0.069 0.715±0.051 0.700±0.037
softmax-MAE 0.679±0.039 0.689±0.042 0.867±0.057 0.828±0.161 0.700±0.071 0.697±0.03

MSE 0.647±0.044 0.654±0.041 0.767±0.099 0.772±0.107 0.653±0.063 0.632±0.061
KLD 0.681±0.053 0.666±0.054 0.856±0.097 0.811±0.156 0.700±0.074 0.679±0.048

Cross Entropy 0.629±0.058 0.625±0.043 0.706±0.249 0.811±0.143 0.668±0.07 0.682±0.063
Student model GIN-5-16 GIN-5-16 GIN-5-16 GIN-5-16 GIN-5-16 GIN-5-16

logit-MAE 0.686±0.041 0.696±0.052 0.878±0.065 0.800±0.071 0.721±0.038 0.685±0.051
softmax-MAE 0.682±0.047 0.673±0.035 0.823±0.112 0.782±0.156 0.700±0.043 0.679±0.058

MSE 0.651±0.047 0.654±0.071 0.789±0.085 0.733±0.151 0.638±0.053 0.618±0.067
KLD 0.665±0.039 0.668±0.078 0.817±0.079 0.783±0.130 0.671±0.082 0.653±0.055

Cross Entropy 0.617±0.05 0.653±0.06 0.661±0.219 0.772±0.142 0.662±0.07 0.647±0.071

Table 7: The performance of different losses on PROTEINS, MU-
TAG and PTC MR. (Teacher model is GCN-5-128 and GIN-5-128,
Student model is GIN with gradually reduce the number of layers
and gradually reduce the number of hidden units)

.

Dataset Teacher model Student model % of training data

PROTEINS

GCN-5-128

GIN-1-128 4%∼5%
GIN-2-128 4%∼5%
GIN-3-128 7%∼8%
GIN-5-128 7%∼8%
GIN-5-16 7%∼8%
GIN-5-32 7%∼8%
GIN-5-64 10%∼20%

GIN-5-128

GIN-1-128 2%∼3%
GIN-2-128 1%∼2%
GIN-3-128 2%∼3%
GIN-5-128 4%∼5%
GIN-5-16 4%∼5%
GIN-5-32 3%∼4%
GIN-5-64 6%∼7%

MUTAG

GCN-5-128

GIN-1-128 30%∼40%
GIN-2-128 70%∼80%
GIN-3-128 40%∼50%
GIN-5-128 70%∼80%
GIN-5-16 70%∼80%
GIN-5-32 90%∼100%
GIN-5-64 70%∼80%

GIN-5-128

GIN-1-128 10%∼20%
GIN-2-128 8%∼9%
GIN-3-128 10%∼20%
GIN-5-128 8%∼9%
GIN-5-16 2%∼3%
GIN-5-32 20%∼30%
GIN-5-64 9%∼10%

PTC MR

GCN-5-128

GIN-1-128 50%∼60%
GIN-2-128 10%∼20%
GIN-3-128 >100%
GIN-5-128 >100%
GIN-5-16 >100%
GIN-5-32 >100%
GIN-5-64 >100%

GIN-5-128

GIN-1-128 10%∼20%
GIN-2-128 9%∼10%
GIN-3-128 9%∼10%
GIN-5-128 10%∼20%
GIN-5-16 8%∼9%
GIN-5-32 10%∼20%
GIN-5-64 9%∼10%

Table 8: The percentage of real training data that achieves the same
accuracy as data-free on molecular datasets
.
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