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Abstract

Traditional recommendation usually focuses on uti-
lizing only one target user behavior (e.g., purchase)
but ignoring other auxiliary behaviors (e.g., click,
add to cart). Early efforts of multi-behavior rec-
ommendation often emphasize the differences be-
tween multiple behaviors, i.e., they aim to extract
useful information by distinguishing different be-
haviors. However, the commonality between them,
which reflects user’s common preference for items
associated with different behaviors, is largely ig-
nored. Meanwhile, the multi-behavior recommen-
dation still severely suffers from limited supervi-
sion signal issue. In this paper, we propose a
novel self-supervised graph collaborative filtering
model for multi-behavior recommendation named
S-MBRec. Specifically, for each behavior, we ex-
ecute the GCNs to learn the user and item em-
beddings. Then we design a supervised task, dis-
tinguishing the importance of different behaviors,
to capture the differences between embeddings.
Meanwhile, we propose a star-style contrastive
learning task to capture the embedding common-
ality between target and auxiliary behaviors, so as
to alleviate the sparsity of supervision signal, re-
duce the redundancy among auxiliary behavior, and
extract the most critical information. Finally, we
jointly optimize the above two tasks. Extensive
experiments, in comparison with state-of-the-arts,
well demonstrate the effectiveness of S-MBRec,
where the maximum improvement can reach to
20%.

1 Introduction

Personalized recommender system has become a widely de-
ployed technology in today’s web platforms and applications
to alleviate the issue of information overload nowadays. Most
recommendation models are designed based on single behav-
ior (called single-behavior recommendation model), i.e., one
type of association between users and items. For example,
as shown in Figure 1(a), only purchase behavior is used in

*CorrespondingAuthor.

e
-

shoshos
dh-Ta

~

(a)

Figure 1: Examples of single-behavior and multi-behavior in e-
commerce scene. (a) is single-behavior and (b) is multi-behavior.
The red line indicates purchase behavior, the blue line indicates
click behavior, and the green line indicates add to cart behavior.

building recommendation model. However, in the real scene,
user behavior is usually more than one type. For example, as
shown in Figure 1(b), in addition to purchase behavior, click
and add to cart can also reflect users’ preferences to a certain
extent. We usually consider the purchase behavior as target
behavior and other types of behaviors as auxiliary behaviors.
Recently, more and more works realize that only utilizing pur-
chase behavior is distant from satisfactory, and the auxiliary
behavior holds great potential to help predict target behavior
[Gao et al., 2019].

In order to take full advantage of these various types of
behavior, some multi-behavior recommendation models have
emerged in recent years [Gao et al., 2019; Jin er al., 2020]. A
straightforward approach is to directly model all types of be-
haviors and apply the single-behavior recommendation model
without considering the differences between behaviors [He et
al., 2020]. In order to distinguish the semantics of different
behaviors, some works assign different learnable weights to
different edges to model the importance of the behaviors [Xia
et al., 2021al. In addition, some recent studies provide an
embedding representation for each behavior, which can co-
operate with the node embedding to participate in graph con-
volution operation [Chen et al., 2021].

Despite their success, these models still face the following
disadvantages. Firstly, they mainly focus on effectively fus-
ing multiple behaviors and capturing the differences of these
behaviors. However, they mostly ignore to exploit the com-
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monality of these behaviors, which are also very important
for recommendation performances. For example, as shown in
Figure 1(b), there must be differences between items associ-
ated with user ug through target behavior purchase and those
associated with auxiliary behavior add to cart, which leads to
user’s different behaviors towards them. But at the same time,
these items are connected to the user u3 through any behavior,
so they also have certain commonalities (e.g., identical style
or price interval) for ug. These commonalities can reflect the
overall preferences of users in different behaviors which often
play decisive roles in whether users conduct target behavior
(e.g., purchase). So we need to mine the commonalities be-
tween the target behavior and other behaviors, and integrate
the commonalities into target behavior to enhance the quality
of embeddings under the target behavior, which can achieve
higher-precision recommendation effect. Therefore, how to
capture the commonality between target and auxiliary behav-
iors is an important yet not well explored problem.

Secondly, most of recommendation models are based on
a supervised paradigm [Wang er al., 2019], where the ob-
served target behaviors between users and items are usually
regarded as supervised signals. However, sparse supervised
signals cannot guarantee the quality of graph learning. Even
with multiple behaviors, the above problem still exists. There
are some efforts in single-behavior recommendation to solve
the problem [Wu er al., 20211, which split the single-behavior
graph into two views to carry out contrastive learning. How-
ever, these methods cannot be directly applied to the multi-
behavior recommendation, because they ignore the impact of
auxiliary behavior on target behavior and abandon their syn-
ergy. Therefore, it is particularly important to develop a new
scheme to solve this problem in the field of multi-behavior
recommendation.

In this paper, we propose a novel model named S-MBRec,
a multi-behavior recommendation model that considers the
discrepancies and commonalities of multiple behaviors from
the perspective of two types of tasks, and can effectively alle-
viate the problem of sparse supervised signals as well. Specif-
ically, for each behavior, we execute the GCNs [Kipf and
Welling, 2016] to learn the user and item embeddings. In
order to distinguish the importance of different behaviors,
supervised task is considered and we use automatic learn-
ing weights to aggregate the embeddings under multiple be-
haviors. At the same time, considering the commonalities
between multiple behaviors and effectively alleviating the
problems of data sparsity, we propose a star-style contrastive
learning task, which only performs contrastive learning be-
tween the target and each auxiliary behavior. Finally, we
jointly optimize these two tasks.

We summarize the contributions of this work as below:

* Based on the multi-behavior recommendation scenario,
different from previous works distinguishing the differ-
ences of each type of behavior, we make the first effort to
study how to retain the commonality of them, and solve
the problem of data sparsity simultaneously.

* We propose a novel multi-behavior recommendation
model named S-MBRec, consisting of supervised and
self-supervised learning tasks. In particular, we design a

star-style contrastive learning strategy, which constructs
a contrastive view pair for target and each auxiliary be-
havior subgraph respectively.

¢ The effectiveness of our S-MBRec model is verified on
three real-world datasets, which proves that our model
advances the recommendation performance compared
with other baselines.

2 Related Work

In recent years, using Graph Neural Networks (GNNs) to
solve the recommendation problem has become an extremely
important field [Gao er al., 2021]. Tt is capable of capturing
high-order similarity among users and items as well as struc-
tural connectivity. In this way, high-quality embeddings for
users and items can be obtained, which is critical to the rec-
ommendation performance. For example, NGCF [Wang et
al., 2019] proposes a spatial GNN in recommendation and ob-
tains superior performance compared with conventional CF
methods. LightGCN [He et al., 2020] learns the embeddings
of users and items and calculates the weighted sum of the
embedding of all layers as the final embedding.

Meanwhile, multi-behavior recommendation is a new
branch of recommender system research. Compared with
the single-behavior recommendation model, the newly added
behaviors in the multi-behavior recommendation model can
be regarded as auxiliary behaviors. By adding auxiliary be-
haviors, the performance of users’ accurate recommendation
of target behaviors can be improved [Chen er al., 2020a;
Wang et al., 2021]. Most of the multi-behavior recommenda-
tion methods with GNNs are based on heterogeneous graphs
[Jin et al., 2020]. MB-GMN [Xia et al., 2021b] empowers
the user-item interaction learning with the capability of un-
covering type-dependent behavior representations, which au-
tomatically distills the behavior heterogeneity and interaction
diversity for recommendations. Summarizing existing multi-
behavior recommendation methods, they do not consider cap-
turing the commonality of multiple behaviors, and the prob-
lem of data sparsity still exists.

3 Our Proposed Method

3.1 Problem Definition

We define graph G = (V, E), in which nodes V consists of
user nodes u € U and item nodes ¢ € I. The edges in E
is user-item interaction edges in GG. Assume that there are K
(K > 2) behaviors between users and items, and the edges
under the k*"(1 < k < K) behavior is represented as Ej,. At
the same time, E, together with all users and items nodes can
be extracted to generate a subgraph G, = (V, Ey), which is
formalized as an interaction matrix Ry € RIUVI*H| We as-
sume that the first behavior is target behavior, and other K —1
behaviors are auxiliary behaviors. Our goal is to predict the
possibility of interaction between user and item under target
behavior with the help of all types of behavior.

3.2 Overall Framework

Figure 2 shows the overall framework of our S-MBRec
model. As we can see, we first split the subgraphs of the
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Figure 2: The model architecture of S-MBRec. (We take an exam-
ple that K = 3, i.e., there are three kinds of behavior, in which the
first is target behavior and the other two are auxiliary behaviors.)

multi-behavior graph, and perform GCNs operations on each
subgraph so as to get the node embedding under each behav-
ior subgraph. Then we set up two tasks: adaptive supervised
task and star-style self-supervised task. In supervised task,
in order to distinguish the importances of different behaviors
and capture the differences between embeddings, we intro-
duce automatic learning weight coefficients to fuse the em-
beddings under each behavior with a supervised loss function
to control this task. In self-supervised task, in order to cap-
ture the commonality between target and auxiliary behaviors
and alleviate data sparsity, we perform contrastive learning
on the target behavior subgraph and each auxiliary behavior
subgraph to form a star-style contrastive structure, and then
use multiple contrastive learning loss functions to control this
task. Finally, we jointly optimize the two tasks.

3.3 Node Representation Learning

Firstly, we need to learn the embedding representation of
users and items under each subgraph (behavior). For the k"
behavior graph Gy, we can get the adjacency matrix Ay cor-
responding to the matrix Ry, as below,

A= (IQE lf)’“>, ()

Then we can obtain the multi-layer message propagation for-
mula of GCNs, as below,

X3 — oA xPWy), ®))

— 1 1
where A, = D), 2(Ax + I)D,, ? is a normalized adja-
cency matrix with self-connections, in which Dy is a |V |*|V|
degree matrix of the k*" behavior, and |V| = |U| + |I|. I
is a |V| % |V| identity matrix. X,gl) e RVI*? s the embed-
ding matrix of nodes under the k*" behavior in the [*" layer of
convolution, in which d indicates embedding dimension. Wy,
and o are the parameter of model training and a non-linear
activation function, respectively. In order to ensure that the
short-range neighbor nodes contribute more to the generated

embeddings, we use a function f to merge the results of all
layers as below,

X5, = f(XOD), 3)

where [ = [0, ..., L]. X}, consists of user embedding matrix
Xy € RY*? and item embedding matrix Xy € RII*e,
The common designs of f are last layer only [Ying et al.,
2018], concatenation [Wang er al., 2019], and weighted sum
[He er al., 2020], and we choose the concatenation operation
in this paper.

3.4 Adaptive Supervised Task

In this section, we integrate the representation of nodes under
different behaviors with an automatic learning weight coeffi-
cient which considers the number and impact intensity of dif-
ferent types of behaviors, so as to automaticly distinguish the
strength of multiple behaviors. Finally, we use a supervised
learning loss function to control the optimization of this mod-
ule, so as to improve the embedding similarity of associated
users and items under the target behavior.

Firstly, we design a coefficient of semantic fusion a,, for
the k" behavior of user u, in which not only we need to con-
sider the proportion of the k** behavior of user u in all behav-
iors, but also the strength of different behaviors (for all users)
also needs to be identified, as below,

B exp(wy, * Ny)
auk} - K
D et €XTP(Wiy * Ny

; 4)

where wy, is considered as a strength weight of behavior &
which is the same for all users and has the ability of automatic
learning in the model. n, is the number of associations of
user » under behavior k.

We have obtained embedding matrix X and X under
behavior k, in which the embedding of user v and item ¢ is
represented by &, and x;; respectively. Then we will merge
representations under all behaviors. For user u, with the co-
efficient a,,;, of k' behavior, we can integrate all behaviors
to generate the final representation of user u as below,

K
eu:a{W(Z auk*wuk)+b}, @)

m=1

where W and b are the weight and bias of neural network.
However, the fusion between multiple behaviors of item is
different from that of user, because the features of items are
static. Therefore, we can combine the representations of item
¢ under different behaviors through concatenation operation,
as below,

e; = g{Cat(a:ik)}, (6)

where k = [1, ..., K], g is a Multi-Layer Perceptron (MLP),
and C'at denotes the concatenation operation between K vec-
tors.

To optimize the current module, we use the pairwise
Bayesian Personalized Ranking (BPR) loss [Rendle et al.,
2012], which makes the similarity between associated nodes



higher than that of non-association nodes. BPR loss function
is as below,

Lo = Z —log {U(ezei — ez;ej)} , @)

(u,i,j)€0

where O = {(u,14,7)|(u,i) € O4, (u,j) € O_} is training
data, and O is the observed interactions. O_ = (U x V) —
O, which represents all unobserved interactions.

3.5 Star-style Self-supervised Task

In this section, we introduce self-supervised learning task.
Assume there are K behaviors, we usually need to perform
contrastive learning for any two behaviors, i.e., there are
K (K — 1) contrastive learning pairs and the complexity will
be O(K?). However, considering that the main goal is to
capture the relationships between the target and auxiliary be-
haviors, we propose a star-style contrastive structure, i.e., we
only need to perform contrastive learning between the target
and each auxiliary behavior subgraph. By this way, we can
capture the commonalities of these multiple behaviors and
use them to enhance the representing ability of embeddings
under target behavior.

So far, we have obtained the embeddings of users and items
under each subgraph by GCNs in Eq.(3). A very impor-
tant step in contrastive learning is to select reasonable pos-
itive and negative examples. Most practices are that the posi-
tive pairs emphasize the consistency between different views
of the same node, while the negative pairs enforce the di-
vergence among different nodes. However, users (or items)
with similar associated information under the target behavior
should also be regarded as positive example. So we intro-
duce point-wise mutual information (PMI) [Yao et al., 2019]
to calculate the similarity between two users (or items) under
target behavior. PMI of users is calculated as below

N e D)
PMI(u,u') =1 gp(u)p(u’)’ (®)
_ ()]
ny _ H(w) 0 I

where I(u) is the item set associated with user u, and I(u) N
I(u') denotes the item set associated with both users u and
u’. In this way, the similarity of any two users under target
behavior can be calculated. On the basis of retaining the tradi-
tional positive pairs selection scheme, we stipulate that users
whose similarity is higher than a threshold ¢ can also be used
as a positive pair. The PMI calculation method of the items is
consistent with that of the users. For the selection of negative
examples, we adopt the strategy of random selection.

After finding the positive and negative examples, we adopt
the contrastive loss, InfoNCE [Gutmann and Hyvirinen,
2010], to maximize the agreement of positive pairs and mini-
mize that of negative pairs. When the first target behavior and

Dataset| User | Item [Interaction| Behavior Type

Beibei [21716] 7977 | 3.36x10°
Taobao [48749|39493| 2.0x10°
Yelp [1980022734| 1.4x10°

{View, Cart, Purchase }
{Click, Cart, Purchase}
{Tip, Dislike, Neutral, Like}

Table 1: Statistics of experimented datasets

auxiliary behavior k¥’ (k' = [2, ..., K]) carry out contrastive
learning, the loss function is as below,

> eap{(Tur) Turns /7))

; +eU
user | — —log™ , (11
i = 2 e ey P
uev u—eU
where (Tyk,Ty+p) is the the positive pair and

(ks Ty—1) is the negative pair. 7 is a hyper-parameter,
known as the temperature coefficient in softmax. Anal-
ogously, we can obtain the contrastive loss L™, ,. By
combining all the loss functions under the users and items,
the loss function of the self-supervised task can be obtained
as below,
K
Lost =Y (Lo + LE ). (12)
k'=2

3.6 Joint optimization

In order to combine the above two tasks, we jointly optimize
the recommendation model, which is as below,

L="Ly+ Mo+ |02, (13)

where © denotes all trainable parameters in two tasks; A
and p are hyperparameters to control the proportion of self-
supervised task and Lo regularization, respectively.

4 Experimental Results and Analysis

In this section, we will test the effectiveness of our proposed
model on real-world datasets and compare it with other ex-
isting advanced models. Finally, we conduct a series of para-
metric and ablation study to analyze of our model.

4.1 Experimental settings

DataSet. In order to evaluate the superior performance of S-
MBRec, we verify the effect of our model on three real-world
datasets: Beibei ! [Xia ef al., 2021b], Taobao 2 [Xia et al.,
2021b] and Yelp 3 [Xia et al., 2021al. We describe the data
details as below,

e Beibei. There are three behaviors in this dataset, in-
cluding view, add to cart and purchase, and purchase is
the target behavior.

e Taobao. There are three behaviors in this dataset, in-
cluding click, add to cart and purchase, and purchase is
the target behavior.

* Yelp. There are four behaviors in this dataset, including
tip, dislike, neutral and like, and like is the target behav-
ior.

"https://www.beibei.com/
Zhttps://tianchi.aliyun.com/dataset/dataDetail ?datald=649
3https://www.yelp.com/dataset/download



Single-Behavior Models Multi-Behavior Models Our Model
Dataset Metric NCF | NGCF | ENMF | LightGCN | NMTR | EHCF | RGCN | MB-GMN | S-MBRec

Recall@10 | 0.0251 | 0.0389 | 0.0377 0.0452 0.0462 | 0.0459 | 0.0480 | 0.0497 0.0529
Recall@40 | 0.0554 | 0.0754 | 0.0633 0.1211 0.1366 | 0.1271 | 0.1263 0.1498 0.1647

Beibei | Recall@80 | 0.0641 | 0.0933 | 0.0812 0.1939 0.1992 | 0.1923 | 0.1912 0.2017 0.2740
NDCG@10 | 0.0117 | 0.0121 | 0.0109 0.0127 0.0129 | 0.0134 | 0.0123 0.0139 0.0148
NDCG@40 | 0.0164 | 0.0154 | 0.0171 0.0187 0.0193 | 0.0214 | 0.0226 0.0397 0.0429
NDCG@80 | 0.0228 | 0.0206 | 0.0312 0.0334 0.0423 | 0.0439 | 0.0443 0.0465 0.0615
Recall@10 | 0.0141 | 0.0219 | 0.0198 0.3177 0.0369 | 0.0295 | 0.0372 0.0438 0.0608
Recall@40 | 0.0204 | 0.0297 | 0.0224 0.0405 0.0487 | 0.0599 | 0.0706 0.0873 0.1027

Taobao | Recall@80 | 0.0311 | 0.0763 | 0.0459 0.0795 0.0983 | 0.1030 | 0.1527 0.1559 0.1647
NDCG @10 | 0.0094 | 0.0105 | 0.0129 0.0216 0.0237 | 0.0284 | 0.0214 0.0326 0.0391
NDCG@40 | 0.0141 | 0.0162 | 0.0226 0.0287 0.0305 | 0.0374 | 0.0304 0.0398 0.0464
NDCG@80 | 0.0196 | 0.0206 | 0.0248 0.0265 0.0336 | 0.0390 | 0.0448 0.0476 0.0583
Recall@10 | 0.0114 | 0.0175 | 0.0163 0.0148 0.0197 | 0.0186 | 0.0205 0.0243 0.0259
Recall@40 | 0.0375 | 0.0398 | 0.0407 0.0676 0.0724 | 0.0705 | 0.0843 0.0879 0.1135

Yelp | Recall@80 | 0.0498 | 0.0604 | 0.0535 0.0823 0.0634 | 0.0980 | 0.1090 0.1398 0.1548
NDCG@10 | 0.0044 | 0.0095 | 0.0102 0.0178 0.0190 | 0.0164 | 0.0214 0.0273 0.0287
NDCG@40 | 0.0141 | 0.0162 | 0.0126 0.0187 0.0305 | 0.0294 | 0.0204 0.0248 0.0337

NDCG @80 | 0.0164 | 0.0216 | 0.0227 0.0235 0.0354 | 0.0342 | 0.0398 0.0416 0.0438

Table 2: Overall model performance on Beibei, Taobao and Yelp datasets, with the metrics of Recall@K and NDCG@K (K=10, 40, 80).
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Figure 3: The result comparison of removing different auxiliary be-
haviors. (Take Beibei and Yelp datasets as examples, and the evalu-
ation index is Recall@80.)

In the above three datasets, there are at least five associa-
tions of target behavior, in which we randomly choose two
associations, one is test data and the other is verification data.
The rest are used for training. The statistics of the three
datasets are recorded in Table 1.

Baseline. We compare S-MBRec with several state-of-
the-art methods.The baseline can be divided into two cate-
gories: single-behavior models and multi-behavior models.
The single-behavior models include: NCF [He et al., 20171,
NGCF [Wang er al., 2019], ENMF [Chen er al., 2020al,
LightGCN [He et al., 2020]. The multi-behavior models in-
clude: NMTR [Gao et al., 2019], EHCF [Chen et al., 2020b],
RGCN [Schlichtkrull ef al., 2018], MB-GMN [Xia et al.,
2021b].

Evaluation Metrics. In order to fully evaluate the effec-
tiveness of our model, we adopt two representative evalua-

0.30 0.17
0.28 B Complete model 0.16 B Complete model
' Only St ' Only St

8 0.26 Only Sst g 0.15 Only Sst
©0.24 ©0.14
©0.22 ©0.13
Lo.20 o1

0.18 0.11

0.16 0.10

(a) Beibei (b) Yelp

Figure 4: The result comparison of removing different tasks. (Take
Beibei and Yelp datasets as examples, and the evaluation index is
Recall@80. St represents supervised task. Sst represents self-
supervised task.)

tion metrics in the field of recommendation: Recall@K and
NDCG@K [Krichene and Rendle, 2020].

Parameters Settings. Our S-MBRec model is implemented
in Pytorch. The model is optimized by the Adam opti-
mizer with learning rate of le=*. The training batch-size
is selected from {1024,2048,4096,6114}. The embedding
dim is searched from {64,128,256,512}. The task weight
parameter A is searched from {0.05,0.1,0.2,0.5,1.0},
and Lo regularization coefficient is selected in ranges of
{0.05,0.1,0.2,0.5,1.0}. The temperature coefficient 7 is
searched in {0.1,0.2,0.5,1.0}.

4.2 Overall Performance

We conduct a large number of experiments and recorded the
experimental results, which are shown in Table 2. In order
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Figure 5: Impact of A and 7 to our model under three datasets.

to fully evaluate the results, we take N=10, 40 and 80 re-
spectively in experiment. From Table 2, we summarize the
following observations:

Firstly, Table 2 shows that our model S-MBRec consis-
tently outperforms all the baselines. The average improve-
ment of our model to the second best result is approximately
14.1% on Beibei dataset, 20% on Taobao dataset and 15.4%
on Yelp dataset. The biggest difference between S-MBRec
and baseline model is that we not only need to distinguish the
importances of different behaviors, but also improve the simi-
larity of node representation under target and auxiliary behav-
ior subgraphs, So we consider that capturing the commonali-
ties between target and auxiliary behaviors can improve the
effect of recommendation. At the same time, all baseline
models are trained based on supervised tasks, which are lim-
ited by the problem of sparse supervision signals. So it can
be concluded that our model can well alleviate this problem
with the introduction of star-style self-supervised task among
multiple behaviors.

Secondly, muti-behavior models generally outperform
single-behavior models, which fully reflects that adding aux-
iliary behavior enriches semantics and has positive effects
on predicting target behavior. Compared to the best single-
behavior method (LightGCN), our model has average im-
provements of 53.9% on Beibei dataset, 102.2% on Taobao
dataset and 76.5% on Yelp dataset, which also well verifies
the above conclusion.

4.3 Ablation Study

In order to more fully verify the perfection of our model func-
tion, we conduct the following ablation experiments.

Firstly, we explore the impact of auxiliary behavior. In or-
der to explore the importance of each auxiliary behavior in
our model, we remove each auxiliary behavior and then test
the experimental results. As shown in Figure 3, taking Beibei
and Yelp datasets as examples, we remove each auxiliary be-
havior respectively, and the experimental results are signifi-
cantly lower than our complete model. By analyzing the ex-
perimental result, we find that different auxiliary behaviors
have different effects on the prediction results of target behav-
ior. For example, in Beibei dataset, the prediction accuracy of
removing add to cart behavior is much lower than that of re-
moving view behavior, which shows that add to cart behavior
has a greater impact on user’s target behavior.

Secondly, we explore the importance of the two tasks in
our model. We remove them respectively, and then compare

the experimental results. As shown in Figure 4, taking Beibei
and Yelp datasets as examples, we find that the experimental
results decrease more significantly after removing the super-
vised task. So we can conclude that two tasks both play im-
portant roles in our model, in which the effect of supervised
task is more obvious. At the same time, the newly added
self-supervised task can also play a key role of assistance in
improving the overall effect.

4.4 Hyper-parameter Study

As our model jointly optimizes the supervised and self-
supervised tasks with hyperparameter A in Eq.(13), we first
explore the effect of A on the model performance. More-
over, we analyze the influence of temperature coefficient
7 in Eq.(11). The changing trend of the two parameters is
shown in Figure 5.

Firstly, we tune \ in {0.05,0.1,0.2,0.3,0.5, 1.0}, and then
check the corresponding results. As can be seen in Fig-
ure 5(a), when A < 0.1, the experimental results are obvi-
ously not satisfactory, which is because the proportion of self-
supervised task is relatively small, and its role can be ignored.
With A increasing from 0.1 to 0.2, it can be seen that the ex-
perimental results are greatly improved, which shows that the
proportion of the two tasks is gradually reasonable. When
A > 0.2, the experimental results show a decreasing trend,
which shows that the proportion of self-supervised task is too
large, reducing the impact of the traditional supervised task.In
conclusion, the two tasks play different roles in our model, in
which the proportion of supervised task is larger.

Next, we analyze how the experimental results change with
different parameter 7 in eq.(11). 7 controls the smoothness of
embedding similarity in eq.(11). We perform experiments on
three datasets and tune it in {0.05,0.1,0.2,0.5,0.8,1.0}. As
can be seen in Figure 5(b), As 7 gets closer to 0.1, the exper-
imental results gradually improve. When 7 is larger than 0.1,
the experimental results gradually decrease with the increase
of it. Obviously, 7 = 0.2 is the best choice for our model.
In fact, when the value of 7 is small, the similarity will be
sharped, while the similarity will be smooth with a large 7. It
can be seen that setting 7 = 0.2 can ensure a suitable smooth-
ness of similarity.

5 Conclusion

In this work, we propose a novel model named S-MBRec, a
multi-behavior recommendation model that considers the dis-
crepancies and commonalities of multiple behaviors from the
perspective of two types of tasks, and can cooperate with vari-
ous types of behavior data to effectively alleviate the problem
of sparse supervised signals. We conduct comprehensive ex-
periments, which show that the proposed method improves
recommender performance on three datasets.
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