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ABSTRACT
With the rapid growth of interaction data, many clustering meth-
ods have been proposed to discover interaction patterns as prior
knowledge beneficial to downstream tasks. Considering that an
interaction can be seen as an action occurring among multiple
objects, most existing methods model the objects and their pair-
wise relations as nodes and links in graphs. However, they only
model and leverage part of the information in real entire inter-
actions, i.e., either decompose the entire interaction into several
pair-wise sub-interactions for simplification, or only focus on clus-
tering some specific types of objects, which limits the performance
and explainability of clustering. To tackle this issue, we propose to
Co-cluster the Interactions via Attentive Hypergraph neural net-
work (CIAH). Particularly, with more comprehensive modeling of
interactions by hypergraph, we propose an attentive hypergraph
neural network to encode the entire interactions, where an at-
tention mechanism is utilized to select important attributes for
explanations. Then, we introduce a salient method to guide the
attention to be more consistent with real importance of attributes,
namely saliency-based consistency. Moreover, we propose a novel
co-clustering method to perform a joint clustering for the repre-
sentations of interactions and the corresponding distributions of
attribute selection, namely cluster-based consistency. Extensive
experiments demonstrate that our CIAH significantly outperforms

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR ’22, July 11–15, 2022, Madrid, Spain.
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8732-3/22/07. . . $15.00
https://doi.org/10.1145/3477495.3531868

state-of-the-art clustering methods on both public datasets and real
industrial datasets.
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1 INTRODUCTION
In the age of rapid development of social media and surge of com-
plex network, there are more and more interaction data in all walks
of life such as user-item interaction network in recommendation,
citation network in academia, etc. An interaction can be seen as an
action occurring among multiple objects. Therefore, researchers
usually model the objects and their pair-wise relations as nodes
and links in graphs [4, 16, 22, 34].

As a fundamental data mining task, clustering on interaction
data (i.e., clustering on graph) can reveal valuable cluster patterns
as prior knowledge for downstream tasks or give some insights
to the research and industry [24, 33, 34, 36]. Early studies usually
only embed the structural information by graph embedding meth-
ods [7, 11] and then perform clustering over the objects. Then,
considering the advantages of attributes, researchers explore to
combine the strength of both structures and attributes for better

https://doi.org/10.1145/3477495.3531868
https://doi.org/10.1145/3477495.3531868


afternoon
office building

…McCafewhite-collar

User POI Item Contexts
Purchase for afternoon coffee

coffee

young
male

User POI Item Contexts
Purchase for sneakers

weekends
near school

…Nike sneakers
basketball shoes

Figure 1: Examples of entire interaction in the domain of
shopping.

clustering performance based on attributed graphs [4, 18, 38]. Re-
cently, more and more researches further develop heterogeneous
graph methods to more accurately model and encode interactions
by further considering the different types of nodes or links [16, 22].
Apart from the performance of clustering, the explainability of
clustering is also an important issue to help understand the reasons
behind model decisions [23]. Specifically, most methods attempt
to select important and concise attributes to explain the clustering
results [10, 21, 23].

Although clustering on interaction data has been extensively
developed, real interaction data is much more complicated. In real
applications, an entire interaction usually contains multiple attrib-
uted interaction objects and interaction attributes such as temporal-
spatial contexts. For example, as illustrated in Figure 1 in the domain
of shopping, an entire interaction includes, but is not limited to,
“who purchases what products in which store under what contexts”.
Moreover, each part of an entire interaction is significant and nec-
essary for discovering the patterns. As shown at the top of Figure 1,
white-collars often order coffee in the afternoon for efficient work.
If we ignore this condition of temporal context “afternoon”, onemay
conclude a one-sided pattern, thus probably leading to recommend-
ing coffee at midnight, which violates common sense. However,
existing clustering methods only model and leverage part of the
information in real interaction, i.e. either decompose the entire
interaction into several pair-wise sub-interactions for simplifica-
tion [22, 26], or only focus on clustering some specific types of
the interaction objects rather than the entire interaction [5, 25].
Therefore, the existing clustering methods cannot comprehensively
characterize and utilize the information in the entire interactions.
Furthermore, selecting important attributes from the entire interac-
tions will yield a more accurate explanation of the clustering results.
In contrast, based on incomplete interaction modeling, it may miss
some key information that is helpful for explanation, such as “af-
ternoon” in the above example. So far, however, there have been
few attempts to explore the rich attributes in entire interactions for
clustering explanations.

In this paper, we make the first attempt to cluster the entire
interactions, rather than simple interactions in traditional clustering
approaches. It can further provide the clustering explanations by

selecting key attributes from any part of the entire interactions.
It is not a trivial task due to the following challenges: (1) How to
effectively model and encode the entire interactions? Each entire
interaction involves an uncertain number of attributed objects and
interaction attributes as well as the relations amongmultiple objects.
Hence, it is insufficient to model and encode such entire interactions
by the aforementioned types of graphs and methods. (2) How to
select explainable key attributes from entire interactions? It is a
common solution for selecting attributes with attention mechanism.
However it is somehow questioning in terms of explanations, since
the attention weights are sometimes inconsistent with the real
importance of attributes [17], especially when dealing with the rich
attributes in entire interactions. (3) How to jointly improve the
performance and explainability of clustering on entire interactions?
As studied in previous work [17], in attention mechanism, there is
no strict correlation between the clusters and the distributions of
attribute selection, which harms the performance of clustering.

To tackle the aforementioned issues, we propose to Co-cluster
the Interactions via AttentiveHypergraph neural network (CIAH).
Specifically, for modeling the entire interactions, we construct a
hypergraph to connect an arbitrary number of nodes by hyper-
edges, which are suitable to represent entire interaction. Then,
we propose an attentive hypergraph neural network to explicitly
learn the representations of entire interactions (hyperedges), where
an attention mechanism is adopted to select important attributes
for explanations. To address the inconsistency between attention
weights and true importance, enlightened by salient methods being
regarded as the ground-truth of importance in the field of computer
vision [27, 29], we propose a saliency-based consistency to make the
distribution of attribute selection (i.e., attention weights) be consis-
tent with the salient importance. Moreover, in order to ensure the
correspondence between the clusters and distributions of attribute
selection, motivated by [38], we propose a cluster-based consistency:
the entire interactions within the same cluster should share similar
distributions of attribute selection, while those in different clusters
are dissimilar. To this end, we propose a novel co-clustering method
to perform a joint clustering for the representations of entire inter-
actions and the corresponding distributions of attribute selection to
improve both the performance and explainability of clustering. In
summary, the main contributions of this paper can be summarized
as follows:

• To the best of our knowledge, this is the first attempt to cluster
the entire interactions, which can discover more comprehensive
and explainable cluster pattern from complex interaction data.

• To this end, we propose a novel co-clustering method for en-
tire interactions based on attentive hypergraph neural network,
namely CIAH.With hypergraph modeling, it designs an attentive
hypergraph neural network followed by a novel co-clustering
process with a saliency-based and a cluster-based consistencies.

• Extensive experiments have demonstrated the effectiveness of
our method for clustering the entire interactions. Furthermore, of-
fline and online recommendation experiments verify its practical
value in downstream applications.
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Figure 2: Illustration of CIAH (object attributes and interaction attributes are default to make the hypergraph clearer).

2 RELATEDWORK
In terms of the clustering methods on graph, in early studies, meth-
ods usually perform a network embedding method to learn the rep-
resentation of interaction objects and then apply clustering meth-
ods [7, 11]. Then, recent studies explore to combine the strength of
both attributes and structures, and design attributed graph methods
for better clustering performance such as statistical method [38],
graph neural networks [4], etc. Recently, more andmore researchers
further consider the different types of nodes or links, and better
model the interactions via heterogeneous graph [2, 16, 22]. However,
these methods still only model and leverage part of the information
in entire interactions, thus limiting the clustering performance.

The explanations of clustering also attract widespread atten-
tion to reveal model decisions. Existing methods usually provide
clustering explanations by finding/selecting concise attributes in-
volved in the interactions, which can be divided into two groups.
One group is known as post-modeling explainability [6, 21], but is
questioned that it cannot provide direct insight into the model deci-
sions [23]. The other group usually integrates decision trees [23] or
rule-learning module [10] into the clustering methods to select key
attributes and performs pre-modeling explainability. These meth-
ods are specialized to some specific clustering methods and cannot
be simply generalized to our clustering of entire interactions. Dif-
ferently, we choose attention mechanism, which is widely used in
deep neural networks, to select attributes from entire interactions.

Recently, some researchers further generalized graph represen-
tation methods into hypergraph and developed hypergraph neural
network methods so that more complex and extensive information
can be leveraged [3, 8, 9, 15, 31, 37, 40]. However, these methods
only focus on some specific types of objects and cannot learn the
representations of entire interactions. In addition, they can nei-
ther select important attributes to provide explanations, since the
attention-based hypergraph methods mostly target at node level
rather than feature level[3, 40]. Therefore, they are not suitable for
our task.

3 PRELIMINARY
In this section, we define the basic aforementioned concepts. As
stated above, an entire interaction can be seen as an action that
occurred among multiple attributed interaction objects under some
interaction attributes such as temporal-spatial contexts, etc. We
formalize the entire interactions as follows.

Definition 1. Entire Interaction. Given the set of objectsN , the
set of object attributes A𝑜 and the set of interaction attributes A𝑖 , an
entire interaction 𝑒 = (N𝑒 ,A𝑜

𝑒 ,A𝑖
𝑒 ) is a tuple including all involved

objects N𝑒 = {𝑛1, · · · , 𝑛 |N𝑒 | |𝑛 𝑗 ∈ N} with their attributes A𝑜
𝑒 =

{𝑎1, · · · , 𝑎 |N𝑒 | |𝑎 𝑗 ⊂ A𝑜 } and corresponding interaction attributes
A𝑖

𝑒 ⊂ A𝑖 .

Due to the complexity of entire interactions, existing methods
only model and leverage part of the information in entire interac-
tions for simplification. In this work, we aim to directly cluster the
entire interactions. Therefore, the problem can be formalized as
follows.

Definition 2. Clustering on Entire Interactions. Given a
set of entire interactions E = {𝑒1, · · · , 𝑒 |E |} and the number of clus-
ters 𝐶 , the goal of clustering on entire interactions is to partition E
into 𝐶 disjoint subsets, such that the entire interactions 𝑒𝑠 , 𝑒𝑡 ∈ E
within the same cluster have similar distribution of attribute selec-
tion 𝑃 (𝐴𝑒𝑠 ) ≈ 𝑃 (𝐴𝑒𝑡 ), while those in different clusters are dissimilar,
where A𝑒 = A𝑜

𝑒 ∪ A𝑖
𝑒 and 𝑃 (·) is a categorical distribution repre-

senting the distribution of attribute selection.

Hence, the clusters are obtained by summarizing all the involved
objects and attributes, and become more explainable by the key
attributes according to the distribution of attribute selection.

4 METHODOLOGY
In this section, we propose a novel attentive hypergraph-based
co-clustering method for entire interactions. As illustrated in Fig-
ure 2, we first construct a hypergraph to model the entire interac-
tions, where each entire interaction is represented as a hyperedge
connecting all its involved objects. Then we design an attentive



hypergraph neural network to explicitly learn the representations
of entire interactions (hyperedges) and meanwhile select the associ-
ated key attributes by attentionmechanism.Moreover, we propose a
saliency-based consistency to make the distributions of attribute se-
lection be consistent with real importance of attributes by a salient
method, i.e., the integrated gradient [29] is introduced to guide
the attention. Finally, a novel co-clustering method is proposed to
perform a joint clustering for both the entire interactions and cor-
responding distributions of attribute selection for the cluster-based
consistency.

4.1 Hypergraph for Entire Interactions
As illustrated in left of Figure 2, we model the entire interactions as
a hypergraph, where each hyperedge represents an entire interac-
tion, connecting all types of its involved objects. Specifically, for an
entire interaction 𝑒1 involving 5 objects 𝑛1, · · · , 𝑛5, we build a hy-
peredge to connect them. Besides, we attach their object attributes
𝑎 𝑗 ( 𝑗 = 1, · · · , 5) to the node features, and attach the interaction
attributes A𝑖

𝑒1 such as tempera-spatial contexts (should be seen
as the attributes of entire interactions rather than objects) to hy-
peredge features. Therefore, such a hyperedge and its connecting
nodes together with their features can represent an instance of
entire interactions.

4.2 Attentive Hypergraph Neural Network
The framework of graph neural networks can effectively leverage
neighboring nodes/edges for information augmentation. However,
most existing hypergraph neural networks can only learn explicit
representations of nodes while ignoring to embed the hyperedges.
Therefore, we design a hypergraph neural network to explicitly
learn the representations of both nodes and hyperedges. Meanwhile,
an attention mechanism is adopted to select the key attributes.

4.2.1 Initialization. In order to facilitate the attention mechanism
to select attributes, we initial the representations of hyperedges
and nodes as feature matrices rather than vectors. Formally, 𝒆 (0)

𝑖
∈

R𝑓𝑖×𝑑 and 𝒏(0)
𝑗

∈ R𝑓𝑗×𝑑 denote the initial 𝑑-dimensional represen-
tations of hyperedge 𝑒𝑖 and node𝑛 𝑗 , respectively, where each row of
the featurematrix denotes a specific attribute of the node/hyperedge.

4.2.2 Layer-wise Aggregation. Given a hypergraph with incidence
matrix 𝑯 ∈ R |N |×|E | , let 𝑫𝑒 , 𝑫𝑛 and𝑾 denote the diagonal ma-
trices of the edge degrees, the node degrees and the pre-defined
weights of hyperedges (default is 1), respectively. As studied in
previous works [9, 37], the spectral hypergraph convolution can be
simplified and formulated as

𝒀 = 𝑫−1/2
𝑛 𝑯𝑾𝑫−1

𝑒 𝑯⊤𝑫−1/2
𝑛 𝑿𝚯, (1)

where 𝑿 denotes the feature matrix of nodes and 𝚯 is the trainable
filter parameter. This form can be also understood as the following
information aggregation rule: The node features are first aggre-
gated according to hyperedges by multiplying matrix 𝑯⊤, forming
hyperedge features. Then the updated node features are obtained
by aggregating features of their belonging hyperedges, achieved
by multiplying 𝑯 .

Inspired by this calculation procedure, we parameterize this in-
formation aggregation process as a two-stage attentive aggregation

rule from layer 𝑙 to layer 𝑙 + 1 as follows:

𝒆 (𝑙+1)
𝑖

= att(𝒆 (𝑙)
𝑖
, {𝒏(𝑙)

𝑗
| 𝑛 𝑗 ∈ 𝑒𝑖 }), (2)

𝒏(𝑙+1)
𝑗

= att(𝒏(𝑙)
𝑗
, {𝒆 (𝑙+1)

𝑖
| 𝑛 𝑗 ∈ 𝑒𝑖 }) . (3)

Taking Eq. (2) as an example, the updated embedding 𝒆 (𝑙+1)
𝑖

of
hyperedge 𝑒𝑖 is aggregated from itself and its connecting nodes
{𝒏(𝑙)

𝑗
| 𝑛 𝑗 ∈ 𝑒𝑖 }. In order to recognize and select important attributes

during clustering entire interactions, we concatenate the feature
matrices of both this hyperedge and its connecting nodes on rows
into a combined feature matrix 𝑿 (𝑙)

𝑖
1 and then apply a feature-

aware soft attention. Formally,

𝑿 (𝑙)
𝑖

= concat(𝒆 (𝑙)
𝑖
, {𝒏(𝑙)

𝑗
| 𝑛 𝑗 ∈ 𝑒𝑖 }), (4)

𝜶 (𝑙)
𝑖

= softmax(𝑿 (𝑙)⊤
𝑖

· 𝒂 (𝑙) ), (5)

𝒆 (𝑙+1)
𝑖

= att(𝒆 (𝑙)
𝑖
, {𝒏(𝑙)

𝑗
| 𝑛 𝑗 ∈ 𝑒𝑖 }) = 𝜶 (𝑙)⊤

𝑖
· 𝑿 (𝑙)

𝑖
, (6)

where 𝒂 (𝑙) ∈ R𝑑 is the parameter vector in attention. Through the
feature-aware soft attention, we can obtain the updated embedding
of hyperedge 𝒆 (𝑙+1)

𝑖
∈ R1×𝑑 and the corresponding distribution of

attribute selection 𝜶 (𝑙)
𝑖

for entire interaction 𝑒𝑖 . Similarly, we can
also obtain the node embedding 𝒏(𝑙+1)

𝑗
.

4.2.3 Outputs. Since each layer represents a specific order of rela-
tions, we sum the embeddings from each layer as the final represen-
tation both for entire interactions and nodes, i.e., 𝒆𝑖 =

∑
𝑙 𝒆

(𝑙+1)
𝑖

and
𝒏 𝑗 =

∑
𝑙 𝒏

(𝑙+1)
𝑗

. For simplicity, we just use the attention weights in

the first layer 𝜶 𝑖 = 𝜶 (0)
𝑖

as the distribution of attribute selection
towards entire interaction 𝑒𝑖 .

4.2.4 Salient Guidance. Due to the inconsistency between atten-
tion weights and true importance [17], the distribution of attribute
selection may be also questioning. Inspired by the salient explana-
tion in the field of computer vision [29], where the salient method
is regarded as the ground-truth of importance compared with the
vanilla attention weights, we introduce integrated gradients to
guide attention. Formally,

L𝑔𝑟𝑎𝑑 =
∑︁
𝑒𝑖 ∈E

𝐾𝐿( SoftMax(IG(𝜶 𝑖 ))∥𝜶 𝑖 ), (7)

where SoftMax function is used to transform the gradients into
a distribution, then KL-divergence is applied to let it teach the
distribution of the attention weights. Here IG denotes the inte-
grated gradients under 0 base vector. For each element 𝛼𝑖𝑘 of 𝜶 𝑖

that represents the weight of the 𝑘-th attribute in the 𝑖-th entire
interaction,

IG(𝛼𝑖𝑘 ) =
 𝒙 (𝑘) ⊙

∫ 1

0

𝜕𝐹 (𝑡 · 𝒙 (𝑘) )
𝜕𝒙 (𝑘) 𝑑𝑡

 , (8)

where 𝒙 (𝑘) represents the 𝑘-th row of the combined feature matrix
𝑿 (𝑙)
𝑖

in Eq. 4 and ⊙ denotes Hadamard product. Here 𝐹 denotes the
proposed attentive hypergraph neural network.

1In the first layer,𝑿 (0)
𝑖

∈ R(𝑓𝑖+
∑
𝑗 𝑓𝑗 )×𝑑 , while in the other layers𝑿 (𝑙 )

𝑖
∈ R(1+∑𝑗 1)×𝑑

since the attentive sumation operation.



4.3 Co-Clustering on Entire Interactions
Considering the clusters are sometimes inconsistent with the distri-
butions of attribute selection [17], we propose a novel co-clustering
method to jointly cluster both entire interactions and their corre-
sponding attention weights, which ensures the cluster-based con-
sistency.

After going through the above modules, we have obtained the
representation of entire interactions with the corresponding distri-
bution of attribute selection. In particular, given the 𝑖-th interaction
representation 𝒆𝑖 and the 𝑢-th trainable cluster centroid 𝝁𝑢 , fol-
lowing existing deep cluster methods [4, 35], we can measure the
similarity between them based on Student’s t-distribution kernel
as follows:

𝑞𝑖𝑢 =
(1 +

𝒆𝑖 − 𝝁𝑢
2 /𝑣)− 𝑣+1

2∑
𝑠 (1 +

𝒆𝑖 − 𝝁𝑠
2 /𝑣)− 𝑣+1

2
, (9)

where 𝑣 is the degrees of freedom of the Student’s t-distribution,
and following [4], we let 𝑣 = 1 for all cases. 𝑞𝑖𝑢 can be considered
as the probability of assigning interaction 𝑖 to cluster 𝑢, i.e., a soft
assignment. We treat 𝑄𝑒𝑚𝑏 = [𝑞𝑚𝑢 ] ∈ R |E |×𝐶 as the distribution
of the assignments of all interactions. Then we can optimize 𝑄𝑒𝑚𝑏

by learning from the high confidence assignments, forming as a
target distribution 𝑃𝑒𝑚𝑏 = [𝑝𝑖𝑢 ]:

𝑝𝑖𝑢 =
𝑞2
𝑖𝑢
/∑𝑡 𝑞𝑡𝑢∑

𝑠 (𝑞2𝑖𝑠/
∑
𝑡 𝑞𝑡𝑠 )

. (10)

Through minimizing the KL divergence between 𝑄𝑒𝑚𝑏 and 𝑃𝑒𝑚𝑏 ,
the target distribution 𝑃𝑒𝑚𝑏 can help the model achieve high co-
hesion and low coupling of clusters [4], thus achieving clustering
procedure.

However, in our task, we aim to ensure each cluster one-to-one
corresponds to a distribution of attribute selection, i.e., the cluster-
based consistency. Therefore, for the distribution of attribute selec-
tion 𝜶 of each entire interaction, we can also similarly compute
the assignment distribution 𝑄𝑤𝑔𝑡 = [𝑞′

𝑖𝑢
] and target distribution

𝑃𝑤𝑔𝑡 = [𝑝 ′
𝑖𝑢
] for attention weighs. Specifically, given the distri-

bution of attribute selection 𝜶 𝑖 corresponding to the 𝑖-th entire
interaction, we have

𝑞′𝑖𝑢 =
(1 + ∥𝜶 𝑖 − 𝝂𝑢 ∥2 /𝑣)−

𝑣+1
2∑

𝑠 (1 + ∥𝜶 𝑖 − 𝝂𝑠 ∥2 /𝑣)−
𝑣+1
2
, (11)

𝑝 ′𝑖𝑢 =
𝑞′2𝑖𝑢/

∑
𝑡 𝑞

′
𝑡𝑢∑

𝑠 (𝑞′2𝑖𝑠/
∑
𝑡 𝑞

′
𝑡𝑠 )
, (12)

where 𝝂𝑢 is the 𝑢-th cluster centroid for attention weights. Finally,
in order that these two groups of distributions can guide each other
until convergence, we propose a groundbreaking co-cluster method
by exchanging their target distributions. Formally, we minimize
the following equation:

L𝑐𝑙𝑢 = 𝐾𝐿(𝑃𝑒𝑚𝑏 ∥𝑄𝑤𝑔𝑡 ) + 𝐾𝐿(𝑃𝑤𝑔𝑡 ∥𝑄𝑒𝑚𝑏 ) . (13)

Through the above objective function, we can achieve individual
clustering for entire interactions and attention weights, and mean-
while make them learn from each other. We will give a brief proof
at the end of this section.

4.4 Model Training
For self-supervised training of our model, with the calculated hy-
peredge embeddings and node embeddings, we reconstruct the
incidence matrix 𝐻 of the hypergraph with a distance-based con-
trastive loss:

𝑑𝑖 𝑗 = ∥𝒆𝑖 − 𝒏 𝑗 ∥, (14)

L𝑠𝑒𝑙 𝑓 =
1
2

∑︁
𝑖, 𝑗

𝑦𝑖 𝑗𝑑
2
𝑖 𝑗 + (1 − 𝑦𝑖 𝑗 )max(0,𝑚 − 𝑑𝑖 𝑗 )2, (15)

where 𝑦𝑖 𝑗 denotes the existence of a relationship between node
𝑖 and hyperedge 𝑗 , and𝑚 is the margin hyper-parameter. In this
work, we set𝑚 = 1 for all the cases. Then by merging the above
sub-objective functions, we jointly train our model by the salient
guidance, co-clustering and self-supervision modules. Therefore,
we can conclude the following loss function,

L = L𝑠𝑒𝑙 𝑓 + 𝛾𝑐L𝑐𝑙𝑢 + 𝛾𝑔L𝑔𝑟𝑎𝑑 + 𝜂∥Θ∥, (16)

where 𝛾𝑐 and 𝛾𝑔 are the loss coefficients. For simplicity, we set
𝜂 = 0.1 for the regularization for model parameters ∥Θ∥.

4.5 Theoretical Analysis for Co-clustering
In the following, we provide a brief theoretical analysis to illustrate
why our proposed co-cluster is effective.

Theorem 1. The objective function Eq. (13) is equivalent to finding
a solution that satisfies: 𝑄𝑒𝑚𝑏 = 𝑃𝑒𝑚𝑏 , 𝑄𝑤𝑔𝑡 = 𝑃𝑤𝑔𝑡 and cluster-
based consistency 𝑄𝑒𝑚𝑏 = 𝑄𝑤𝑔𝑡 .

Proof. The objective function Eq. (13) is essentially to solve the
following system of equations,{

𝑄𝑒𝑚𝑏 = 𝑃𝑤𝑔𝑡 = 𝑃 (𝑄𝑤𝑔𝑡 )
𝑄𝑤𝑔𝑡 = 𝑃𝑒𝑚𝑏 = 𝑃 (𝑄𝑒𝑚𝑏 )

(17)

where 𝑄 ∈ R |E |×𝐶 and 𝑃 : R |E |×𝐶 → R |E |×𝐶 is rewritten as a
function of 𝑄 according to Eq. (10) for ease of description.

Obviously, it is only necessary to prove that if 𝑃 locally converges
to a certain solution𝑄∗ with a given initial value, then the composite
function 𝑃 ◦ 𝑃 will also locally converge to 𝑄∗ at the same initial
value. Because in this case, we have

𝑄∗ = 𝑄𝑒𝑚𝑏 = 𝑃 (𝑄𝑤𝑔𝑡 ) = 𝑃 ◦ 𝑃 (𝑄𝑒𝑚𝑏 ) = 𝑃 (𝑄𝑒𝑚𝑏 ) = 𝑃𝑒𝑚𝑏 . (18)

Similarly, we have 𝑄𝑤𝑔𝑡 = 𝑃𝑤𝑔𝑡 . Hence we can achieve the cluster-
based consistency 𝑄𝑒𝑚𝑏 = 𝑃𝑤𝑔𝑡 = 𝑄𝑤𝑔𝑡 .

Note that the convergence is determined by the 𝑃 function. In
fact, due to that the neural network is equivalent to its permutation
by dimension, the convergence of 𝑃 function is not unique in the
matrix space 𝐴 = R |E |×𝐶 . However, denoting R as the set of rota-
tions that maintains invariance, the quotient space𝐴/R is a Banach
space and 𝑃 has unique convergence in this quotient space and
becomes a contraction mapping. According to Banach Fixed-point
Theorem, since (𝐴/R, ∥ · ∥) is a non-empty complete metric space,
where ∥ · ∥ is the metric function, such as Euclidean distance in
this work, there exists the 𝐿 ∈ [0, 1) in the neighborhood 𝑁𝑄∗ of
𝑄∗, such that ∀𝑄𝑥 , 𝑄𝑦 ∈ 𝑁𝑄∗ , we have

∥𝑃 (𝑄𝑥 ) − 𝑃 (𝑄𝑦)∥ ⩽ 𝐿∥𝑄𝑥 −𝑄𝑦 ∥. (19)



Table 1: Statistics of Datasets. # HE, # Attr. and # Cate. denote
the number of hyperedges, attributes and categories.

Dataset # Nodes # HE # Attr. # Cate.

ACM
Paper 4,025

4,025 1,902 3Author 7,167
Field 60

IMDB
Movie 4,661

4,661 1,256 3Actor 5,841
Director 2,270

MT-4
User 37,748

40,000 5789 4POI 17,994
Item 123,629

MT-9
User 79,967

90,000 5945 9POI 25,834
Item 245,064

Then, we can derive

∥𝑃 ◦ 𝑃 (𝑄𝑥 ) − 𝑃 ◦ 𝑃 (𝑄𝑦)∥ ⩽ (20)

𝐿∥𝑃 (𝑄𝑥 ) − 𝑃 (𝑄𝑦)∥ ⩽ 𝐿2∥𝑄𝑥 −𝑄𝑦 ∥. (21)

Therefore, 𝑃 ◦ 𝑃 will also converge to 𝑄∗, which means Eq. (18)
holds. Besides, 𝑃 ◦ 𝑃 has a faster convergent speed 𝐿2. □

5 EXPERIMENTS
5.1 Experimental Setup
5.1.1 Datasets. We conduct the experiments on two public datasets
and two industrial datasets. The statistics are reported in Table 1
and the descriptions are detailed as follows.
• ACM. The ACM dataset2 contains 4,025 papers with two other
types of nodes: author and field. We build a hypergraph where
each hyperedge connects a paper and all its corresponding au-
thors and fields, thus representing an entire interaction towards
a paper. Therefore, we can label the hyperedges according to the
category of its containing paper. The attribute of each paper is
the bag-of-words representation of abstract while the attributes
of other nodes and hyperedges are one-hot representation since
their features are not provided by the dataset.

• IMDB. The IMDB dataset [39] contains 4,661 movies with two
other types of nodes: actors and directors. Similar to ACM, we
also build a hypergraph where each hyperedge representing an
entire interaction towards a movie connecting its actors and
directors. We label the hyperedges according to the category of
its containing movie. The attribute of each movie is the bag-of-
words representation of its plots while the attributes of other
nodes and hyperedges are one-hot representation.

• MT-4, MT-9. We build two real-world datasets of different levels
of difficulty from the food delivery industry, i.e., MeituanWaimai
platform3. We collect 40,000/90,000 orders of user purchases of
foods in Beijing District. Each order is an entire interaction in-
stance, containing a user, a POI (Point-of-Interest), several items
with attributes and corresponding interaction contexts, and is

2https://data.dgl.ai/dataset/ACM.mat
3https://waimai.meituan.com/

tagged with one of 4/9 purchasing scenes (such as white-collar
working meals, student afternoon coffee, etc.) as labels, denoting
asMT-4 andMT-9, respectively. Afterward, we use these orders to
build a hypergraph where each hyperedge connects its involved
attributed user, POI and items. The attributes of hyperedges are
the interaction contexts.

5.1.2 Baselines. To validate the effectiveness of our CIAH, we
compare it with the following 4 groups of methods.
• Methods only considering attributes: K-means [13]: It is a
classical clustering method based on the raw multi-hot features.
AE [14]: It performs K-means on the representations learned by
an auto-encoder.

• Methods only considering graph structure: node2vec [11]
and metapath2vec [7]: They perform a normal and metapath-
based random walk on graphs followed by Skip-Gram, respec-
tively, and then apply K-means on the learned node embeddings.

• Methods considering both graph structure and attributes:
ACMIN [38]: It is a SOTA approach for k-AGC (k-Attributed
Graph Clustering) task that yields clusters where the nodes
within the same cluster share similar topological and attribute
characteristics, while those in different clusters are dissimilar.
SDCN [4]: It combines the strengths of both attributes by autoen-
coder and structures by GCN for deep clustering with a delivery
operator and a dual self-supervised module. HGT [16]: It is a
SOTA heterogeneous graph embedding model that incorporates
the types of nodes and edges into the propagation step.

• Methods considering both hypergraph structure and at-
tributes: HGNN [9]: It is a hypergraph spectral convolution
network framework. We split its convolution into 2-stage for
explicit hyperedge representation. HGNN+: Since HGNN can-
not leverage the hyperedge attributes in datasets MT-4/9, we
convert the attributed hyperedge into an attributed virtual node
connected together with other original nodes. AHGAE [15]: It
is a hypergraph auto-encoder for relational data clustering. We
similarly modify it like HGNN and construct its variant AHGAE+.
For the methods only considering attributes, we fuse the at-

tributes of the hyperedge and its connecting nodes into a multi-hot
vector on the all attribute vocabulary as an entire interaction sam-
ple.

For the methods considering graph structure, for ACM and IMDB
datasets, we directly use the widely applied graph structure [16].
For MT-4/9 datasets, we transfer the hypergraph into a graph, i.e.,
we introduce a summary node to replace each of hyperedges and
link the summary nodes with the corresponding nodes that are
originally connected by hyperedges.

5.1.3 Metrics. The category of hyperedges (entire interactions) is
taken as the ground truth. Following [4], we employ two popular
metrics: Normalized Mutual Information (NMI) and Average Rand
Index (ARI). The average result and standard deviation are reported
based on 10 repeated tests.

5.1.4 Implementation Detail. We implement the proposed method
based on Tensorflow [1]. For our method, we set the dimension of
attribute embeddings as 64 for the public datasets ACM and IMDB
for fair comparison and 16 for the industrial datasets MT-4/9 for
saving memory. In order to facilitate the attribute selection module,



Table 2: Clustering results on 4 datasets (mean±std). The best and second best results are bold and underlined, respectively.

Method Information Metrics Dataset

Hyper- Graph Attr. ACM IMDB MT-4 MT-9

K-means ✗ ✗ ✓
NMI 37.47 ± 0.39 0.89 ± 0.06 31.05 ± 3.40 11.77 ± 2.77
ARI 28.83 ± 0.38 1.30 ± 0.06 28.50 ± 3.01 7.11 ± 1.62

AE ✗ ✗ ✓
NMI 30.62 ± 5.71 2.05 ± 0.63 4.92 ± 2.37 2.74 ± 0.96
ARI 27.29 ± 7.56 1.57 ± 0.80 4.38 ± 2.85 1.65 ± 0.75

node2vec ✗ ✓ ✗
NMI 38.51 ± 0.11 5.22 ± 0.71 0.01 ± 0.01 0.03 ± 0.01
ARI 31.08 ± 0.94 6.02 ± 0.45 0.01 ± 0.01 0.09 ± 0.03

metapath2vec ✗ ✓ ✗
NMI 19.96 ± 1.46 1.51 ± 0.59 14.32 ± 2.21 6.80 ± 0.77
ARI 21.00 ± 1.33 1.50 ± 0.69 4.77 ± 1.97 5.59 ± 0.28

ACMIN ✗ ✓ ✓
NMI 18.66 1.71 14.16 11.35
ARI 12.91 1.01 5.22 4.95

SDCN ✗ ✓ ✓
NMI 41.77 ± 0.73 3.37 ± 0.20 22.91 ± 6.35 7.08 ± 6.52
ARI 37.45 ± 0.67 2.73 ± 0.18 21.54 ± 9,92 4.82 ± 2.66

HGT ✗ ✓ ✓
NMI 47.49 ± 2.40 5.50 ± 0.06 27.25 ± 5.91 10.51 ± 6.50
ARI 42.90 ± 1.79 5.13 ± 0.04 25.57 ± 3.92 8.41 ± 3.58

HGNN ✓ ✓ ✓
NMI 29.62 ± 4.65 2.05 ± 0.01 11.26 ± 2.34 6.93 ± 1.21
ARI 28.21 ± 7.15 1.28 ± 0.05 10.52 ± 2.17 4.37 ± 1.80

HGNN+ ✓ ✓ ✓
NMI - - 32.56 ± 5.11 12.28 ± 4.49
ARI - - 30.07 ± 4.99 9.77 ± 1.62

AHGAE ✓ ✓ ✓
NMI 46.46 ± 2.92 1.73 ± 1.35 14.40 ± 4.16 2.12 ± 1.24
ARI 40.11 ± 3.27 1.44 ± 1.02 13.26 ± 3.72 1.32 ± 0.14

AHGAE+ ✓ ✓ ✓
NMI - - 29.34 ± 4.06 13.87 ± 4.37
ARI - - 26.81 ± 2.94 8.17 ± 2.50

CIAH ✓ ✓ ✓
NMI 54.77 ± 0.55 12.60 ± 0.70 39.29 ± 4.31 14.14 ± 3.02
ARI 45.25 ± 0.20 11.26 ± 0.86 36.54 ± 1.31 10.01 ± 1.98

∗ The two variants, HGNN+ and AHGAE+, cannot be used for datasets ACM and IMDB, since there are no hyperedge features in these two datasets.
So we use the symbol “-” to denote "no results".

we set the number of layers of our method as 1. For all baselines,
we set the hidden dimensions as 64 for fair comparison, and set the
number of layers as their suggested value (usually equal to 2). The
best coefficients of losses are searched from {0, 01, 0, 1, 1, 10, 50},
and we set 𝛾𝑐 = 1 for ACM and IMDB and 0.1 for MT-4/9, 𝛾𝑔 =

1, 50, 10, 10 for the four datasets respectively. In the training stage,
we apply Adam [20] for optimizing with the learning rate as 0.005
for ACM and IMDB and 0.002 for MT-4/9. All the experiments
are performed in NVIDIA Tesla P40 Cluster. To facilitate related
research, we release our implementation to the public4.

5.2 Clustering Results
Table 2 reports the clustering results on the public and industrial
datasets. As shown, our CIAH significantly outperforms all the
baselines by a large margin, which shows the effectiveness of our
proposed method on clustering entire interactions. In detail, we
can also conclude as follows.

On those datasets with fewer attributes, i.e., ACM and IMDB, the
structure-only methods, especially the classic node2vec, performs
better than the attribute-only methods K-means and AE. Besides,
methods considering both attribute and graph structure, e.g., HGT,

4https://github.com/ytc272098215/CIAH

generally further improve the cluster performance, illustrating the
advantages of considering attributes and structure simultaneously.
Though the hypergraph-based baselines only obtain relatively poor
performance, our CIAH still obtains the best performance, which
verifies that simply applying hypergraphs to integrate information
is not effective.

However, this is not the case on attribute-rich datasets, i.e., MT-4
and MT-9. The performance of attribute-only methods far exceeds
the structure-only methods and even the methods combining both
attributes and graph structure. Nevertheless, the hypergraph-based
methods can achieve obviously better results, which indicates the
necessity to model entire interactions as hypergraph. Especially in
the recommendation field, introducing a summary node for each
interaction can onlymodel the pair-wise interaction relations, while
an interaction is actually an indivisible whole. Thereby forcibly
dividing it into several pair-wise sub-relations causes information
loss, which again verifies the effectiveness of our model.

5.3 Analysis of Clustering Explanations
To analyze the explainability of our model, Table 3 illustrates sev-
eral quantitative metrics for explainability and the top 4 important
attributes of each category in dataset MT-4 according to the atten-
tion weights from CIAH, the “RMGrad” variant that ignores the



Table 3: Quantitative analysis of clustering explanations and
illustration of the top 4 key attributes. The most critical
attributes are in bold which are used to divide the dataset.

CIAH RMGrad CIAH\2
NDCG 0.8154 0.5154 0.2177
MRR 0.7500 0.3541 0.1251
NDCGpcc 0.5642 0.5328 0.3322

Cate. 1

Gender0 Gender0 WhiteCollar
Lunch AorType0 AorType0

AorType0 Lunch PriceHigh
PriceHigh PriceHigh Lunch

Cate. 2

Gender0 Gender0 Student
AfternoonTea AorType0 Gender0

AorType0 AfternoonTea PriceMed
PriceHigh PriceHigh PriceHigh

Cate. 3

Supper Gender1 WhiteCollar
Gender1 Supper Student
AorType0 WhiteCollar HousingEstate

WhiteCollar AorType0 Gender1

Cate. 4

Breakfast PriceMed WhiteCollar
AorType0 WhiteCollar AorType0

WhiteCollar AorType0 OfficeBuilding
Student Breakfast Breakfast

saliency-based consistency and variant “CIAH\2” that ignores the
two consistencies.

In order to quantify the explainability of attribute selection mod-
ule, we take criterion attributes (in bold) for dividing the dataset
into categories as ground-truth attributes, which are provided by
the dataset, and then use the ranking metrics to evaluate, i.e., Mean
Reciprocal Rank (MRR) and Normalized Discounted Cumulative
Gain (NDCG). Besides, in fact, some other attributes are also dis-
criminative for different categories. Therefore, to check whether our
model recognizes these second-important attributes, we also take
the Pearson correlation coefficient (PCC) between attributes and
categories as the ground truth for NDCG, here denoted as NDCGpcc.
As we can see, compared with our CIAH, the variant RMGrad ob-
tains lower MRR, NDCG, NDCGpcc and CIAH\2 performs the worst.
This demonstrates that the proposed two consistencies are helpful
for improving explainability.

For a more intuitively comparison, we also show the top 4 im-
portant attributes of each category. As shown in Table 3, they
cannot be fully recognized when the two consistencies are both
ignores. Fortunately, with the help of the cluster-based consistency
of co-clustering module, “RMGrad” successfully distinguishes them.
Moreover, our CIAH can assign greater weights to these key at-
tributes when the saliency-based consistency is further considered.
It verifies that the attention module can correctly extract important
attributes due to the guidance of the salient method and our co-
clustering method and its explainability can be gradually improved
by considering the two consistencies one by one.

5.4 Model Analysis
5.4.1 Comparison of Variants. In this subsection, we compare our
model CIAH with 3 variants to validate the design of each module.

Specifically, RMGrad is a variant that removes the gradient guided
module. Single replaces the proposed co-cluster module with an
ordinary clustering module, which only clusters hyperedge repre-
sentations. Dual denotes the variant that replaces the co-cluster
module with a dual clustering module, which individually clusters
hyperedge representations and attention weights with added an
extra constraint 𝑄𝑒𝑚𝑏 = 𝑄𝑤𝑔𝑡 by JS-divergence. As reported in
Figure 3, we can draw the following conclusions. Firstly, RMGrad
obtains an obvious performance drop, indicating the effectiveness
of our gradient-based attention module. Secondly, the performance
of Single is also limited, and hence verifies the consideration neces-
sity of the consistency between basic cluster and the corresponding
attention weight distribution. Finally, Dual still fails to outperform
the complete CIAH, in terms of both values and variances, which
demonstrates the effectiveness of the design of our co-cluster, which
can enhance each other’s clustering performance.

5.4.2 Impact of Different Model Depths. In this subsection, we
study the clustering performance of our model under different
depths of the hypergraph convolutional layer (e.g., CIAH with 1,2,3
layers). As shown in Figure 4, we have observed that increasing
the depth cannot substantially enhance the clustering performance.
In detail, the model may benefit from considering higher-order
neighbors as the depth increases, and then it may be limited by the
overfitting caused by the more increasing depth. Therefore, as can
be seen, the best performance occurs when the number of layers
is 2 for all datasets, while the sensitivities of the four datasets to
the layer numbers are not completely the same, depending on the
difficulty and complexity of the dataset. It is worth noting that
although the optimal performance occurs when our CIAH has 2
layers, we still we set the number of layers of our method as 1 in
other experiments in this paper, which is to make the attribute
selection module of the model have a stronger explainability.

5.4.3 Visualization. In this subsection, we adopt t-SNE [32] to
project the learned entire interaction embeddings and the distribu-
tions of attribute selection into a 2-dimensional space and visualize
them. Figure 5 and 6 visualize the embeddings of entire interac-
tions and the distributions of attribute selection from our CIAH. As
shown in Figures 5 and 6, an obvious clustering phenomenon can
be observed for both the entire interactions and the distributions
of attribute selection, especially on ACM and MT-4 datasets. In
addition, we also find that the clustering phenomena of the two
groups are relatively similar. There are clear division boundaries in
the clusters of entire interaction embeddings, and relatively clear
division boundaries can also be observed in the clusters of distri-
butions of attribute selection, especially in dataset ACM and MT-4.
This demonstrates the effectiveness of the proposed co-clustering
module for the cluster-based consistency, i.e. it achieves a one-
to-one correspondence between the clusters and corresponding
distribution of attribute selection.

5.5 Application on Recommendation
In this subsection, we take recommendation as an application exam-
ple to show the practical usage of clustering results. Specifically, we
conduct an offline click-through rate (CTR) prediction experiment
and an A/B online testing.
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Figure 3: Clustering results of different variants (mean and variance are given in bars and error bars, respectively).
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Figure 4: Clustering results with 1,2,3 propagation layers (mean and variance are given in lines and error bars, respectively).
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Figure 5: 2D t-SNE visualization of the entire interaction embeddings from CIAH on the four datasets.
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Figure 6: 2D t-SNE visualization of the distributions of attribute selection from CIAH on the four datasets.

5.5.1 Offline CTR Prediction. We select three typical models to
show the Area Under the Curve (AUC) performance without clus-
tering information, and adapt them to access this extra informa-
tion for comparison. Specifically, we choose a classic feature-based
method, DeepFM [12], a SOTA feature-based method, AutoInt [28],
and a heterogeneous graph neural network based context-aware

recommendation approach, NIRec [19]. For feature-based models,
let DeepFM+ and AutoInt+ denote the variants that the clustering
information is introduced by concatenation, i.e., as an extra input
channel. For graph-based model, NIRec+ denotes the variant that
the clustering information is introduced by a new type of nodes.
Since the metric AUC relies on the negative sampling strategy, we



Table 4: AUC comparisons. “+” represents that the clustering
information is added.

Method MT Dataset

50% 75% 100%
DeepFM 0.5832 0.5879 0.5912
DeepFM+ 0.6804 0.6823 0.6848
AutoInt 0.5785 0.5868 0.5891
AutoInt+ 0.6781 0.6803 0.6892
NIRec 0.6589 0.6712 0.6877
NIRec+ 0.7118 0.7597 0.7660

construct a new CTR dataset fromMeituanWaimai platform, where
positive samples are the user-POI pairs and negative samples are
generated by randomly replacing POIs in the positive samples. We
further vary the ratio of the training set to verify its robustness.
As shown in Table 4, compared with the vanilla baselines, the vari-
ants that can leverage the clustering information achieve better
performance. This noticeable improvement validates the benefits
of clustering information for downstream tasks.

Table 5: Online improvements.

Indicator PVCTR UVCTR UVCXR RPM

Improvement +0.88% +0.35% +0.44% +0.08%

5.5.2 Online A/B Testing. Moreover, we also carried out an evalua-
tion in the online A/B testing. We introduce the clustering informa-
tion into the recommendation system of MT App and focus on item
recommendation for users. Specifically, the compared online system
is a PLE [30]-based rank model with multiple features as input. For
comparison, we process the clustering assignments as a new kind
of feature and add it into the system (just like the aforementioned
DeepFM) for a three-day online A/B testing. The following online
indicators concerned by industry are reported in Table 5: CTR of
page view (PVCTR), CTR of unique visitor (UVCTR), scaled click
conversion rate of unique visitor (UVCXR) and revenue per mille
(RPM). It can be seen that after adding clustering information, there
are different degrees of performance improvement for the online
system in all metrics. The results demonstrate that the clustering in-
formation can improve the performance in the online recommender
system consistently.

6 CONCLUSION
In this paper, we make the first attempt to cluster the entire inter-
actions, which can extract more comprehensive and explainable
cluster pattern from real interaction data. Particularly, we propose
a Co-clustering method for the entire Interactions via Attentive
Hypergraph neural network (CIAH). With hypergraph modeling
for entire interactions, it designs an attentive hypergraph neural
network followed by a novel co-clustering process with a saliency-
based and a cluster-based consistencies for further improvements.
Extensive experiments verify the effectiveness of our CIAH on both

public datasets and real industrial datasets. Besides, a recommen-
dation experiment is taken as application example to show the
practical usage of clustering results. In future work, we will ex-
plore a more explainable solution for feature-level interactions than
simply stacking layers and a better usage in downstream tasks.
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