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Abstract. To improve e-commercial recommender systems, researchers
have never stopped exploring the interactions between users and items.
Unfortunately, most existing methods only explore one or some certain
components of the entire interactions. In fact, the entire interaction pro-
cess is much richer and more complex, including but not limited to “who
purchases what items in which merchant under what interaction envi-
ronments”. Furthermore, many interactions have common features, thus
forming a scene, a kind of prior knowledge for predicting user interac-
tions. In this paper, we make the first attempt to study the scene-aware
recommendation, which provides better recommendations with the en-
tire interaction modeling and the scene prior knowledge. To this end,
we propose a novel gated hypergraph neural network for Scene-aware
Recommendation (SREC). Particularly, we first construct a heteroge-
neous scene hypergraph to model the entire interactions and scene prior
knowledge. Then we propose a novel scene-aware gate mechanism-based
hypergraph neural network to enrich their representations. Finally, we
design a separable score function to predict the matching scores among
user, scene, merchant and interaction environments for training and in-
ference procedures. Extensive experiments demonstrate that our SREC
can fully leverage the scene prior knowledge and outperforms state-of-
the-art methods on real industrial datasets.
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1 Introduction

With the rapid development of online social media and e-commerce, the benefits
of Recommendation Systems (RSs) are well recognized as a basic service of e-
commerce platforms [13, 24], based on which users could filter out numerous
uninformative messages and facilitate decision-making [27].

Since the birth of the recommendation system, researchers have never stopped
exploring the interactions between users and items to accurately predict user

? Corresponding author.
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Fig. 1. (Left) Examples of entire interactions and scenes. The key features related to
the scene are marked in red. (Right) Applications of scenes in e-commercial platforms.

preferences and suggest items. For example, classic recommendation methods,
e.g., matrix factorization [18], mainly model users’ preferences towards items us-
ing only simple historical user-item interaction records such as ratings [6]. Since
these methods suffer from cold start and data sparsity problems [24], one or some
kinds of interaction information are introduced into RSs. Social recommenda-
tion [17, 10] and location-aware recommendation [2, 22] respectively leverage so-
cial friendships and location relationships to enrich the interaction information.
Similarly, context-aware recommendation [21, 4, 3, 5] incorporates contextual in-
formation, e.g., weather, location, etc., alongside the core data (users and items)
for better recommendations. Moreover, heterogeneous information network [24,
12, 15] is employed to fuse more variety of rich interaction attributes to learn
better user/item embeddings.

Despite the great success of these methods by exploring the interaction, in
practical applications, the interaction process is much richer and more complex,
and these methods only explore some certain components of the entire inter-
actions. For instance, in e-commercial applications, especially food delivery in-
dustry such as Meituan Waimai, UberEats, GrubHub, etc., an entire interaction
includes but is not limited to “who purchases what items in which merchant un-
der what interaction environments1”, which involves multiple entities (e.g., users,
merchants, items) and interaction environments (e.g., time period, location, sea-
son). As Figure 1 illustrates, a white-collar, Alex, bought fast food, pizza and
juice, for dinner at PizzaHut near his office building on a weekday to save time,
etc. Most previous studies only consider the user and item, e.g., “Alex, pizza and
juice”, while some further introduce one or some more interaction information,
e.g., “office building” in location-aware recommendation, “dinner, weekday” in
context-aware recommendation. They still fail to formally and explicitly model
the entire interactions.

Furthermore, we can find that many interactions have common features,
which form a scene. As Figure 1 illustrates, there are a series of interactions (e.g.,
entire interactions 1 and 2) containing the same features “white-collar, fast-food,

1 The term interaction environment refers to the properties specific to the interaction
itself, e.g., spatial and temporal properties.
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office building, weekday” respectively from the user profiles, merchant/item at-
tributes and interaction environments. Then we can summarize a scene named
“fast food at work”, representing a common prior knowledge that white-collars
likely prefer to buy fast food when being busy at work. Similarly, we can conclude
another scene named “afternoon coffee”, representing that young people tend to
buy coffee in the afternoon to keep awake. Scenes have begun to be employed to
e-commercial applications, especially food delivery applications, such as Meituan
Waimai as shown in Figure 1, and these scene information have been summa-
rized based on the entire interaction records through manual rules or statistical
methods. Scene is totally different from context in context-aware recommenda-
tion. Although the meaning of the context is extended from temporal-spatial
properties in early definitions [21] to click sequence [7], social relationships [17],
etc., it is still a supporting component of interaction. Differently, a scene is the
abstraction of a group of entire interactions involving users, merchants, items,
and interaction environments. Note that, in this work, we focus on the usage
of the scene prior knowledge tagged beforehand, and leave the automatically
extracting scene from interactions for future work.

With the help of scenes, the recommendation system will benefit from the
following advantages: (1) the entire interaction between user and items can be
effectively characterized by scenes, since scene is a high-level abstraction of not
only user and item, but also merchant and interaction environments; (2) the
scenes bring more comprehensive prior knowledge about the entire interactions,
so that avoid improper recommendation due to incomplete priors (e.g., recom-
mend coffee to a coffee lover even late at night); (3) the scenes can make the
recommendation list more interpretable and well-organized as shown in Figure
1. In a word, we can provide better recommendations with the entire interaction
modeling and the scene prior knowledge. We name this recommendation setting
that introduces scene prior knowledge as scene-aware recommendation. Different
from existing studies, which are limited on modeling interactions and hence fail-
ing to leverage the scene prior knowledge, we model the entire interactions from
a more comprehensive perspective and successfully make full use of the scenes.

In this paper, we make the first attempt to study the scene-aware recom-
mendation. However, this is challenging due to the following reasons: Firstly,
each entire interaction involves multiple entities (user, merchant, item) and in-
teraction environments (time period, location, season, etc.) as well as complex
relations among them. How to model such complex entire interactions? Sec-
ondly, each specific entity is involved in multiple scenes since user preferences
have always been changing (e.g., “Alex” is involved in two interactions of differ-
ent scenes in Figure 1). How to correctly extract the scene-specific information
from each entity and make full use of it? Thirdly, the scene is already known
in training samples, but in real applications, it is unknown to which scene the
user’s potential behavior will belong. How to bridge this gap and correctly infer
the possible scenes for users while predicting user preference?

To tackle the aforementioned challenges, we propose a novel gated hyper-
graph neural network for Scene-aware RECommendation, named SREC. Par-
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ticularly, we first construct a heterogeneous scene hypergraph to model the entire
interactions among users, merchants, items and interaction environments to-
gether with the scenes, which both comprehensively models the complex rela-
tionships among them all and appropriately incorporates the scene prior knowl-
edge. Then we propose a novel gated hypergraph neural network to learn the
representations of user, merchant and scene with a scene-aware gate mechanism
designed to effectively discern different scene-specific information. Finally, we
propose an effective separable score function to support a two-stage inference in
line with practical requirements that firstly infers the proper scene before the
final recommendation. The main contributions are summarized as follows:

(1) To the best of our knowledge, this is the first attempt to study scene-aware
recommendation which provides better recommendation with the entire in-
teraction modeling and the scene prior knowledge.

(2) We propose a novel gated hypergraph neural network for scene-aware rec-
ommendation. It first constructs a heterogeneous scene hypergraph to model
the entire interactions and the scenes, then designs a gated hypergraph neu-
ral network followed by a separable score function to predict user preference
with the help of scenes.

(3) Extensive experiments verify that our SREC can make full use of the entire
interaction modeling and scene prior knowledge, thus greatly outperforming
state-of-the-art (SOTA) methods for two settings on real industrial datasets.

2 Preliminary

As mentioned above, in e-commercial applications, an interaction usually forms
”who purchases what items in which merchant under what interaction environ-
ments”, commonly involving a user, a merchant, several items and the interaction
environments. In order to model the interaction comprehensively, we formalize
it as an entire interaction.

Definition 1. Entire Interaction. Given a 4-tuple < U ,M, I, C > (denoted
as Γ for short, U , M, I and C denoting the set of users, merchants, items and
interaction environments, respectively), an entire interaction τ ∈ Γ is formulated
as τ =< u,m, i, c >, representing a user u ∈ U purchased some items i ⊂ I in
the merchant m ∈M under the interaction environments c ⊂ C.

Note that U , M , I may contain attribute information, which is default to
make the definition clearer. Different from the traditional recommendation meth-
ods that only users and items are explicitly modeled, we also explicitly model
merchants and interaction environments. They are somehow underestimated as
implicit auxiliary attributes in traditional e-commercial apps, but have essential
influence for location-based services, e.g., Meituan Waimai. Considering the in-
teraction environment “afternoon”, for instance, people are likely to drink coffee
in the afternoon but hardly at night. Furthermore, we find that many interactions
have common features, thus forming a scene, which is formalized as follows.
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Definition 2. Scene. A scene s ∈ S is defined as a set of entire interactions
that have common features. Therefore, each entire interaction can be labeled with
a scene by the scene function ψ : Γ → S.

As Figure 1 shows, each scene indicates a kind of common purchase pat-
terns, e.g., “scene 1” represents “young white-collars often choose fast food at
work on weekdays”. The scenes are usually obtained by summarizing the en-
tire interaction records through manual rules or statistical methods in industrial
applications. Therefore, each entire interaction τ can be tagged with one of
the predefined scenes by the manual-defined scene function ψ(τ). Therefore,
we can provide better recommendations with the entire interaction modeling
and scene prior knowledge. We name this recommendation setting scene-aware
recommendation. In this work, we only focus on recommending merchants, an
urgent practical task for industrial applications like food delivery, while the item
recommendation is left as future work.

Definition 3. Scene-aware Recommendation. Given the entire interac-
tions labeled with |S| scenes, i.e., < Γ ;S >, for a user u under interaction en-
vironments c, scene-aware recommendation aims to predict a merchant m with
the help of scenes S, i.e., P (m|c, u;S).

Note that scene-aware recommendation is different from existing recommen-
dation. Previous recommendation settings, e.g., session-based recommendation,
are mostly meant to predict m based on a given u, i.e., P (m|u), while some oth-
ers, e.g., context-aware recommendation, only further consider the interaction
environments, i.e., P (m|c, u). Our scene-aware recommendation will leverage the
scene prior knowledge, thus forming P (m|c, u;S).

3 Methodology

In this section, we first present an overview for the proposed SREC. The basic
idea is that, as illustrated in Figure 2, with comprehensively modeling entire
interactions together with the scenes, we design a novel gated hypergraph neural
network to enrich the representations of users, merchants and scenes, followed
by a score function to make the scene bridge the given user and corresponding
interaction environments to the recommended merchants.

In detail, to model the entire interactions among users, merchants, items,
interaction environments and scenes, we construct a heterogeneous scene hyper-
graph based on the entire interaction records, where each hyperedge and its type
represent an entire interaction and the corresponding scene. Next, a novel gated
hypergraph neural network enriches the representations of users, merchants and
scenes by aggregating the hypergraph-based neighboring information. During
aggregation, a scene-aware gate mechanism is designed to effectively discern dif-
ferent scene-specific information and make full use of them correctly. Noting
that we only explicitly enrich the embeddings of users, merchants and scenes in
this work to reduce computing costs, since our task focuses on recommending
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Fig. 2. Illustration of the proposed model SREC.

merchant to user. Finally, only after an interaction occurs can it be confirmed
which scene this interaction will belong to, i.e., the scene is not available that
the user’s following purchase will belong to. Therefore, we design a separable
score function to firstly infer proper scenes and then recommend merchants.

3.1 Heterogeneous Scene Hypergraph

Since each entire interaction involves multiple entities and interaction environ-
ments, we model them and scenes via a heterogeneous scene hypergraph.

Specifically, we first build a graph with three types of nodes, i.e., user, mer-
chant and item nodes. To model the historical interaction records, we add a
hyperedge for each entire interaction, e.g., a hyperedge e = {u1,m1, i1, i2} is
built for entire interaction τ1 in Figure 2. Naturally, we attach the entity at-
tributes to the node features, and can attach the interaction environments to
hyperedge features. Then, the scene tagged on each entire interaction ψ(τ1) is
attached to the hyperedge type (refer to the hyperedge color in Figure 2). There-
fore, each hyperedge and its connecting nodes together with their features can
represent an entire interaction instance. Furthermore, two types of edges are
added to enrich the information of the heterogeneous scene hypergraph. Particu-
larly, we establish edges between a certain user and his/her clicking merchants to
model the user’s short-term historical behaviors within a session. Edges are built
between a certain merchant and some items, representing sales relationship. In
summary, the heterogeneous scene hypergraph has three types of nodes (users
U , merchantsM, items I), two types of undirected edges for click and sale, and
|S| types of attributed hyperedges.

3.2 Embedding Layer

We propose to initialize the representations of users, merchants, items, inter-
action environments and scenes with their attributes, since the attribute-based
representations can alleviate the cold start problem for both entities and scenes.
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Taking a user u ∈ U as an example, we first embed each feature field into a
low-dimensional space and then fuse them into node embedding. Formally,

ei = 1/q · xi · F i, i = 1, 2, · · · , F, (1)

u = h(e1, e2, · · · , eF ), (2)

where F is number of feature fields, xi is the one-/multi-hot encoding of the
i-th field, F i is attribute embedding matrix, q is the number of non-zero ele-
ments of xi. Following traditional settings [7], average function is adopted as
the field aggregation function. Besides, we further add a layer normalization for
fast convergence, formally, h = LayerNorm ◦AVG.

Similarly, we can embed merchant, item, interaction environment and scene
as dense embeddings m, i, c and s based on their attributes2, respectively.

3.3 Gated Hypergraph Neural Network

To show the intuition of the gated hypergraph neural network, we illustrate three
observations based on the e-commercial data, being described in accordance with
the left part in Figure 2: (1) Apparently, the entities belonging to a certain
interaction are related to each other, e.g., a node u1 and its neighbors m1, i1, i2
under the hyperedge τ1 are related. (2) Each user (merchant, or item) will have
interactions of different scenes, but the reasons why it belongs to one specific
scene may be completely different from another. For instance, u1 is included
in both τ1 and τ2), but the reason why it belongs to the scene s1 could be
completely different from s2. (3) Different users (merchants, or items) who have
the interactions of the same scene are also related, i.e., two unconnected nodes
are related by the same hyperedge type, e.g., u1 and u2 are related under scene
s1. Therefore, the scenes are exactly required by the gate mechanism, namely
scene-aware gate mechanism, which could filter out irrelevant information to
a specific scene while strengthen the relevant information during neighboring
information propagation. In the following, we will introduce the propagation
rule for user, merchant and scene, respectively.
User Modeling. In our hypergraph, if the central node u is a user node, it
has three types of connections: user-click-merchant, user-hyperedge-merchant3

and user-hyperedge-item. For user-click-merchant connections, following previ-
ous work [16], we apply Transformer to capture the user behavior information:

ub = Transformer (m1,m2, · · · ,mn) , (3)

where n is the number of sampled neighbors. For the other two types of hyperedge-
based connections, we design a scene-aware gate mechanism to filter out irrel-
evant information to a specific scene and allow the propagation of scene-aware

2 We take the scene attributes from the common features of its containing entire
interactions.

3 User-hyperedge-merchant represents a series of connection forms: user-s1-merchant,
user-s2-merchant, · · · , and similarly for user-hyperedge-item.
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information. Next, following [7], we use the average function to aggregate for
reducing the computational complexity. Formally,

usm = AVG({mj � sj |j = 1, 2, · · · , n}), (4)

usi = AVG({ij � sj |j = 1, 2, · · · , n}), (5)

where � denotes element-wise product, mj and ij represent the neighbors based
on user-hyperedge-merchant and user-hyperedge-item connections, respectively,
and sj is the representation of corresponding hyperedge type, i.e., scene. Hence,
the scene-specific information will be amplified by the gating sj , while irrelevant
information will be blocked. Now, we have three type-level embeddings ub,usm
and usi for user node u. Then we utilize a Multi-Layer Perception (MLP) to
fuse them together, and update it to the raw user embedding u, formally,

u′ = u +MLP (ub ⊕ usm ⊕ usi), (6)

where ⊕ denotes the operation of concatenation.
Merchant Modeling. If the central node is a merchant node, it has four types
of connections: merchant-clicked-user, merchant-sell-item, merchant-hyperedge-
user and merchant-hyperedge-item. For merchant-clicked-user and merchant-
sell-item connections, we also use average function to obtain the type-level em-
beddings mu and mi. For merchant-hyperedge-user and merchant-hyperedge-
item connections, we similarly apply the scene-aware gate mechanism followed by
average function to obtain the hyperedge-based type-level embeddings msu and
msi. Finally, we apply another MLP to the four type embeddings and update
its output to the raw merchant embedding, formally,

m′ = m +MLP (mu ⊕mi ⊕msu ⊕msi). (7)

Scene Modeling. According to observation (3), even two unconnected users
(or merchants) will have some common characteristics because some of their be-
longing interactions are of the same scene. A straightforward solution is to design
a cross-hyperedge propagation, which allows information flowing along with the
type of hyperedges. However, this will lead to an inefficient computing process.
Since each user/merchant is not bounded to a certain scene, we need to calculate
the user/merchant representations based on all possible scenes. If this process is
computed dynamically, it will extremely reduce the online efficiency. If we pre-
calculate the user/merchant embeddings of all candidate scenes, it will require
large storage space, i.e., each user/merchant needs to store |S| embeddings.

Therefore, we explore another solution instead: since the common charac-
teristics among the user/merchants are scene-specific, we could just incorpo-
rate them into the scene representation. Similarly, denoting uj and mj as the
users/merchants included into the hyperedge assigned with scene s ∈ S, we have

su = AVG({uj � s|j = 1, 2, · · · , n}), (8)

sm = AVG({mj � s|j = 1, 2, · · · , n}), (9)

s′ = s +MLP (su ⊕ sm). (10)
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3.4 Separable Score Function

After obtaining the enriched embeddings of users, merchants and scenes, here
we focus on how to evaluate the match score among the triple <user, scene,
merchant> and the corresponding interaction environments. To avoid searching
for the best from all the possible triples, we need to design a score function
f(m|c, u; s) = P (m|c, u; s) which meets the following requirements:

Separability. f should be separable: it can be split into a two-way sub-
function g(s|c, u) to predict match score between the user and candidate scenes,
while f further predicts match score among user, scene and merchant.

Reusability . f and g should be reusable: when calculating f , some calcula-
tion results of g should be available and useful to improve online efficiency.

Consistency . f and g should be consistent: if f returns a large score, g
should also return a relatively large score. This ensures that the “correct” mer-
chant will not be directly filtered out when g selects the related scenes.

Here we discuss the two most widely used score functions: MLP and inner
product. The former usually obtains a satisfactory performance due to strong
fitting capability, but it is not separable due to its deep structure. Noticing the
latter is actually the sum of element-wise multiplication of two vectors, it is easy
to expand for multiple inputs and meanwhile keep reusable. Formally, we have

g(s|c, u) = sum(c� u� s), f(m|c, u; s) = sum(c� u� s�m), (11)

where each element of c,u,m and s is constrained to be non-negative real num-
bers to meet consistency requirement. In our work, we apply hard sigmoid func-
tion before the element-wise product to satisfy the non-negative condition. In
the following, we present a brief proof for the above claim.

Theorem 1. If there exists δ subject to f ≥ δ, g will have a low bound with the
non-negative constraint.

Proof. Considering the j-th dimension of the d-dimensional vectors c, u, s and
m, suppose the upper bound of mj is σj . Then, we have cj , uj , tj ,mj ≥ 0 and
mj ≤ σi. Suppose there exists a positive real number δj subject to cj ·uj ·sj ·mj ≥
δj > 0. Then we get cj · uj · sj ≥ δj

mj
≥ δj

σj
. Therefore, for the entire vector, we

have g =
∑d
j=1 cj · uj · tj ≥

∑d
j=1

δj
σj
≥

∑d
j=1 δj

maxj(σj)
= δ

σ . Here, δ =
∑d
j=1 δj and

σ = maxj(σj). That is, if we have f ≥ δ, g will have a low bound δ/σ.

Classification Setting & Model Training. Through the above modules, we
can obtain the match score among user, scene and merchant under interaction
environments by function f . In other words, in this case, the entire interaction
and the scene are already given, hence we can directly predict their matching
scores. We name this setting “classification”, which is, following existing methods
[7], also applied for model training. Formally, given a sample < m, c, u; s >:

ŷ = sigmoid(f(m|c, u; s)), (12)

L =
∑

j∈Y+∪Y−

(yj log ŷj + (1− yj) log(1− ŷj)), (13)
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Table 1. Statistics of Datasets

Dataset #Train #Test Train User/Merchant/Item/Scene Test User/Merchant/Item/Scene

1-day 1.13M 1.19M 153K / 32K / 409K / 263 160K / 33K / 427K / 263
3-day 3.51M 1.25M 381K / 41K / 892K / 283 168K / 33K / 453K / 265
5-day 6.13M 1.32M 589K / 45K / 1.27M / 288 172K / 33K / 479K / 257
7-day 8.55M 1.15M 746K / 47K / 1.54M / 294 155K / 33K / 419K / 258

where yj and ŷj are the true label and prediction of the sample j. Y+ and Y− are
the positive and negative instance sets, respectively. The set of negative instances
is composed of training triples with either the user, scene or merchant replaced.
We will discuss in detail our negative sampling strategy in Section 4.2.
Inference Setting. As mentioned before, in practical applications, we will
first recall highly related ks scenes based on a given user and interaction envi-
ronments with g. Then the most related km merchants based on each selected
scene above can be recommended with function f . Finally, we will recommend
ks · km merchants in all. We name this procedure “inference”, formally,

{ŝj |j = 1, 2, · · · , ks} = Topks g(s|c, u), (14)

{m̂j |j = 1, 2, · · · , km} = ∪ŝ∈{ŝj}Topkm f(m|c, u; ŝ). (15)

4 Experiments

4.1 Experimental Setup

Datasets. A real-world large-scale dataset is built from the food delivery in-
dustry, i.e., Meituan Waimai platform. We collect 8-day orders of user purchases
of foods and the corresponding click records before the purchase in Beijing Dis-
trict. Each order is an interaction instance, mostly containing a user, a merchant,
several items and corresponding interaction environments, and has been already
tagged with a scene based on some hand-craft rules and manual efforts. Then
we use these orders to build a heterogeneous scene hypergraph as described in
Section 3.1. For better validation, we split the whole data into several different
scales of data: we use different periods (from 1 to 7 days) as the training data
(about 10% data from the training set is extracted for validation) and predict
the next one day. Therefore, we have four datasets marked as 1-day, 3-day,
5-day and 7-day. To get robust results, we vary the size of each training set
from 50% to 100%. The detailed statistics of the data are reported in Table 1.
Baselines. We compare SREC with the following four groups of methods and
their variants: recommendation methods without scenes: AutoInt [19], NIRec [12];
variant recommendation methods with scenes: AutoIntS , MEIRec [7], NIRecS ;
graph embedding methods: HAN [25], HGAT [14]; hypergraph-based methods:
Hyper-SAGNN [31], Hyper-SAGNNS . They are detailed as follows: AutoInt is
SOTA feature-based Click-Through-Rate model. MEIRec and NIRec are meta-
path-guided heterogeneous graph neural network based approaches for context-
aware recommendation, while HAN and HGAT are both SOTA heterogeneous



Gated Hypergraph Neural Network for Scene-aware Recommendation 11

Table 2. AUC comparisons of different methods. The last row indicates the improve-
ments (%) compared to the best baseline (underlined).

Method
1-day 3-day 5-day 7-day

50% 75% 100% 50% 75% 100% 50% 75% 100% 50% 75% 100%

AutoInt .5785 .5868 .5891 .5841 .5838 .5846 .5884 .5904 .5895 .5839 .5834 .5839
NIRec .6589 .6712 .6877 .7075 .7295 .7433 .7319 .7534 .7719 .7502 .7664 .7742

AutoIntS .6781 .6803 .6892 .6842 .6913 .6987 .7135 .7198 .7203 .6906 .6939 .7001
MEIRec .7497 .7565 .7634 .7393 .7567 .7658 .7814 .7761 .7956 .7956 .7851 .7891
NIRecS .7118 .7597 .7660 .7880 .7975 .8072 .8138 .8151 .8213 .8342 .8398 .8390

HAN .7459 .7569 .7652 .7138 .7230 .7310 .8103 .8193 .8258 .8132 .8137 .8144
HGAT .7471 .7584 .7675 .7627 .7667 .7697 .7846 .7839 .7923 .8255 .8336 .8390

Hyper-SAGNN .7061 .7130 .7133 .7270 .7327 .7378 .7318 .7350 .7360 .7560 .7591 .7583
Hyper-SAGNNS .7579 .7660 .7649 .7882 .7944 .7980 .8147 .8186 .8176 .8350 .8367 .8340

SREC .8083 .8087 .8097 .8695 .8702 .8787 .8944 .8915 .8970 .8992 .9032 .8995
Improvement 6.64 5.57 5.50 10.32 9.11 8.85 9.79 8.80 8.62 7.68 7.55 7.21

graph embedding models. Hyper-SAGNN is a SOTA hypergraph-based model
for link prediction. For fair comparisons, we further modify the above methods to
be accessible to the same information as ours (such as interaction environments,
scenes, etc.) since the absence of any information harms the performance. Par-
ticularly, we add a channel of scene information to AutoInt and Hyper-SAGNN,
denoting as AutoIntS and Hyper-SAGNNS . For graph-based models, we trans-
form the hypergraph into a heterogeneous graph: a summary node is introduced
for each interaction instance, whose type and attributes depend on the corre-
sponding scene and interaction environments, i.e., we transform the hyperedges
into summary nodes, and link the summary nodes with the nodes related the
corresponding interaction instance. For meta-path based methods, we select the
following meta-paths based on experiments: UMU, USU, UMIMU, MUM, MIM,
MSM, SUS, SMS, SIS.
Settings and Metrics. We evaluate model performance for both settings. For
classification setting, following previous work [7], we use Area Under receiver
operator characteristic Curve (AUC) for evaluation. We use HR@K (Hit Ratio)
to evaluate under the inference setting. Without loss of generality, we set K as 10
(ks) for scenes and 100 (ks · km) for merchants in this work, denoting HR@10-S
and HR@100-M, respectively. This is computed only on the positive sample set.
Detailed Implementation. For our method, we set the dimension of attribute
embeddings, linear transformations and 2-layer MLPs all as 64. We use 8 hidden
neurons and 8 heads in the transformer. For all baselines, we also set the hidden
dimensions as 64 for fair comparison. We set the batch size as 2048, and set the
learning rate as 0.0001 with Adam optimizer.

4.2 Experimental Results

Main Results We evaluate the AUC performance based on the constructed
negative samples in Table 2. We can conclude as follows: (1) SREC significantly
outperforms all the competitive baselines. Compared to the best performance
of baselines, SREC gains 5.50% - 10.32% improvement in the four datasets.
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Table 3. HR@K comparisons for the recall of scenes and merchants.

Method
1-day 3-day 5-day 7-day

50% 75% 100% 50% 75% 100% 50% 75% 100% 50% 75% 100%

HAN
HR@10-S .3910 .3678 .4148 .3652 .3608 .3809 .1455 .1904 .2655 .2604 .2858 .2493
HR@100-M .0123 .0505 .1048 .0392 .0728 .0949 .0107 .0307 .1678 .0614 .0881 .1079

HGAT
HR@10-S .3696 .3851 .4284 .3598 .3324 .3910 .1123 .1398 .1609 .2690 .2542 .2821
HR@100-M .0796 .0549 .0950 .0336 .0325 .0581 .0235 .0613 .0411 .0643 .1274 .0919

SREC
HR@10-S .9588 .9756 .9720 .9884 .9922 .9913 .9927 .9920 .9936 .9926 .9913 .9936
HR@100-M .2576 .2615 .2849 .5234 .5439 .5886 .6560 .6916 .6912 .7113 .7503 .7249

Moreover, when fewer training instances (50%, 75%) are provided, our SREC
achieves a higher improvement. It indicates the effectiveness of our completely
modeling of interactions and integrating scene prior knowledge, which makes
our model more robust. (2) The scene prior knowledge is greatly useful. Com-
pared with the methods access to scene prior knowledge, those without scene
prior knowledge exhibit an obvious performance drop. It demonstrates the su-
periority to considerate scenes than to direct recommend merchants and the sig-
nificance of this scene-aware recommendation problem. (3) The more accurate
and comprehensive the interaction modeling is, the better the performance is.
In detail, the graph-based models are better than the traditional feature-based
model due to the consideration of the interactive relations between entities.
Next, the hypergraph-based model HYPER-SAGNNS further performs better
in most cases, which verifies the better modeling of entire interactions within
scenes as hyperedges, since introducing a summary node cannot correctly model
the entire interaction. Moreover, the huge performance gap between HYPER-
SAGNNS and SREC verifies the necessity of our scene-aware gate mechanism
to distinguish the mixed scene-related information.

Evaluation of Inference In practice, we cannot search for the best from all
the possible <user, scene, merchant> triples in terms of efficiency, thus requir-
ing the inference setting. Here we measure the inference performances for scenes
and merchants, i.e., HR@10-S and HR@100-M. Since only HAN and HGAT sup-
port the inference procedure, which can export relatively fixed embeddings for
users, merchants and scenes, we compare our SREC with these two baselines on
the four datasets. As reported in Table 3, our method consistently outperforms
greatly in terms of both scenes and merchants, while HAN and HGAT only
achieve limited and unrobust performance for inference. We believe this huge
performance gap is caused by the following reasons: (1) The three requirements
of our separable score function play a vital role to ensure the effective inference
procedure. (2) It is essential to comprehensively model the entire interactions by
hyperedges. Introducing summary node for each interaction will forcibly divide
the indivisible whole interaction relation into several pair-wise sub-relations, re-
sulting in information loss. (3) The information relevant to different scenes is
mixed in every single entity. For a particular scene, the information relevant to
other scenes becomes noise on the contrary.
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Table 4. AUC and HR@100-M comparisons of our variants.

Variant
1-day 3-day 5-day 7-day

AUC HR@100 AUC HR@100 AUC HR@100 AUC HR@100

SREC .8097 .2849 .8787 .5886 .8970 .6912 .8995 .7249
SREC \ GNN .7649 .1981 .7691 .2266 .7844 .3171 .7726 .3929
SREC \ Scene .7493 .2071 .8072 .2757 .8656 .4375 .8811 .4984
SREC \ Gate .8002 .2113 .8122 .3388 .8664 .6164 .8888 .6062
SREC-ReLU .5107 .0019 .5010 .0016 .5134 .0018 .5029 .0010
SREC-None .8960 .0034 .9213 .0057 .9219 .0112 .9246 .0054

SREC-
M

SREC-
hardM

SREC-
scene

SREC-
user

SREC

(a) 1-day

0

50

100

8.0 4.2

99.6

3.8

97.2

19.8 23.1

0.3

17.0
28.5

HR@10-S
HR@100-M

SREC-
M

SREC-
hardM

SREC-
scene

SREC-
user

SREC

(b) 3-day

0

50

100

2.4
17.9

99.6

4.0

99.1

21.9

49.5

0.3

46.9
58.9

HR@10-S
HR@100-M

SREC-
M

SREC-
hardM

SREC-
scene

SREC-
user

SREC

(c) 5-day

0

50

100

7.8 11.7

99.6

6.9

99.4

30.9

61.0

0.2

64.0 69.1

HR@10-S
HR@100-M

SREC-
M

SREC-
hardM

SREC-
scene

SREC-
user

SREC

(d) 7-day

0

50

100

8.2 10.3

99.7

12.8

99.4

25.3

68.0

0.3

63.6
72.5

HR@10-S
HR@100-M

Fig. 3. HR@K (%) of SREC with different negative sampling strategies.

Comparison of Variants We compare SREC with 2 groups of variants to
validate the design of its modules: One group is used to verify the effectiveness
of our propagation rule. The other group aims to verify the design of constraints
in our separable score function. As reported in Table 4, we can draw the fol-
lowing conclusions. Firstly, the performances of SREC\GNN, SREC\Scene and
SREC\Gate, which are removed any neighboring information, scene type-specific
information or scene-aware gate mechanism respectively, are limited in terms of
both AUC and HR metrics, thus verifying the design of our propagation rule in
gated hypergraph neural network. Secondly, ReLU, as a straightforward solution
to for non-negative constraint, cannot improve the performance if replace hard-
sigmoid activation in the separable score function with it, i.e., SREC-ReLU. Even
worse, ReLU will cause large-scale death of neurons and thus the model cannot
be trained, because its gradient in the negative range is 0 and the operation
of element-wise product among multiple vectors will worsen this phenomenon.
Moreover, the AUC metric gets better if the activation function hardsigmoid
is directly removed, i.e., SREC-None, but the HR@K performance obtains a
severe drop. Because the embedding space is limited by the hardsigmoid func-
tion, thereby removing it will strengthen the ability of fitting data (refer to the
improvement on AUC). However, this constraint is indispensable to ensure the
successful recall (refer to the performance drop on HR@K).

Impact of Negative Sampling Strategy In our task, the model need learn
based on triples <user, scene, merchant>, thus requiring a best negative sam-
pling strategy. We have explored four negative sampling strategies: For each
triple, SREC-M randomly replaces the merchant without any constraint; SREC-
hardM replaces the merchant under the constraints of the same interaction en-
vironments; SREC-scene randomly replaces the scene; SREC-user replaces the
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user also under interaction environment constraints. The AUC metric is mean-
ingless since the negative instances are different. Therefore, we choose HR@K
metric on the positive instances in the test set for evaluation. As depicted in Fig-
ure 3, the poor performance of SREC-M indicates that without any constraint is
too simple to generate negative samples, while the performance of SREC-hardM
is much better. Moreover, the result of SREC-scene shows that it is helpful for
improving the HR@10-S to directly replace the scene, but it causes a lot of
outrageous scene-merchant combinations, such as nutritious breakfast is paired
with a barbecue restaurant. In our testing, we find SREC-user can effectively
help correct scene-merchant pairing, although its effect is not ideal. Therefore,
we combine the above three strategies to construct negative samples, to improve
both the scene recalling and merchant recommendation. As shown in Figure 3,
this strategy combination at the expense of a little loss of HR@10-S, in exchange
for a great improvement in HR@100-M.

5 Related Work

We first introduce some related recommendation methods, and then discuss the
recent hypergraph-based methods.

Researchers have always been exploring the interactions between users and
items for better recommendation. Since the classic methods such as matrix fac-
torization [18] suffer from cold start and data sparsity problems [24], many kinds
of interaction information are studied, e.g., social friendships [17, 10], location re-
lationships [2, 26, 22], contextual information [21, 4, 3, 5], etc. HIN-based recom-
mendation is then proposed to integrate any type of interaction information [24,
12], attracting more research interests recently. However, the interaction process
in real applications is still much richer and more complex, and these methods
only explore some certain components of the entire interactions.

Hypergraph expands the concept of edge in graph into hyperedge that con-
nects multiple nodes, thus having a strong ability to model a complex interaction
among multiple entities [9]. HGNN [8] and HyperGCN [29] were the first to ex-
pand graph convolution to hypergraph, thereby inspiring researchers’ enthusiasm
for hypergraph neural network [1, 20, 31]. Recently, some researchers have begun
to explore hypergraph-based methods for recommendation. For example, DHCF
[11] developed a dual-channel learning strategy based on hypergraph that ex-
plicitly defined the hybrid high-order correlations, while [30] further integrates
self-supervised learning into the training of the hypergraph convolutional net-
work. There are also studies focusing on finer-grained recommendations, such
as HyperRec for next-item recommendation [23], DHCN for session-based rec-
ommendation [28], etc. However, these methods still fail to comprehensively
model the user’s behaviors, thereby they can neither leverage the scene prior
knowledge, limiting the performance of recommendation. Consequently, we are
the first to fill this gap: A novel gated hypergraph neural network is proposed
in this paper for scene-aware recommendation.
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6 Conclusion

In this paper, we make the first attempt to study the scene-aware recommenda-
tion, where the entire interactions are modeled comprehensively and the scenes
are introduced to guide the recommendation. Specifically, we propose a novel
gated hypergraph neural network for scene-aware recommendation (SREC). It
first constructs a heterogeneous scene hypergraph to comprehensively model
the entire interactions and incorporate the scene prior knowledge, followed by
a novel gated hypergraph neural network to learn the representations of users,
merchants and scenes. Finally, it designs a separable score function to predict the
match score, thus recommending the merchants. Extensive experiments demon-
strate our SREC outperforms SOTA methods for both classification and infer-
ence on the real industrial datasets. In the future, we will explore clustering
approaches for automatically discovering and tagging scenes in an unsupervised
manner to reduce the costs of expert annotations.
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