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ABSTRACT
Heterogeneous Graph Neural Networks (HGNNs), as a kind of
powerful graph representation learning methods on heterogeneous
graphs, have attracted increasing attention of many researchers. Al-
though, several existing libraries have supported HGNNs, they just
provide the most basic models and operators. Building and bench-
marking various downstream tasks on HGNNs is still painful and
time consuming with them. In this paper, we will introduce Open-
HGNN, an open-source toolkit for HGNNs. OpenHGNN defines
a unified and standard pipeline for training and testing, which
can allow users to run a model on a specific dataset with just
one command line. OpenHGNN has integrated 20+ mainstream
HGNNs and 20+ heterogeneous graph datasets, which can be used
for various advanced tasks, such as node classification, link pre-
diction, and recommendation. In addition, thanks to the modu-
larized design of OpenHGNN, it can be extended to meet users’
customized needs. We also release several novel and useful tools
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and features, including leaderboard, autoML, design space, and
visualization, to provide users with better usage experiences. Open-
HGNN is an open-source project, and the source code is available
at https://github.com/BUPT-GAMMA/OpenHGNN.
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1 INTRODUCTION
Heterogeneous graph is a powerful data structure that can be ap-
plied in various real-world applications [10, 17, 21]. For example,
the e-commerce network, citation network, and social network
[15], etc, can be naturally modeled as heterogeneous graphs. In
recent years, Heterogeneous Graph Neural Networks (HGNNs), a
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Table 1: Common existing open-source GNN and HGNN toolkits.

Unified
Trainer

Heterogeneous
Graph Benchmark Design Space HyperParameters

Optimization Visualization

AutoGL [7] ! - - - ! -
GraphGym [22] ! ! - ! - -
OpenKE [8] - - - - - -
OpenAttHetRL [3] ! ! - - - -
CogDL [2] ! ! ! - ! -
HAO Unity [11] - ! - - - !
TFG [9] - - - - - -
OpenHINE2 ! ! - - - -
Our OpenHGNN ! ! ! ! ! !

powerful deep learning method to learn advanced latent represen-
tations of heterogeneous graphs, have made remarkable progress.
HGNNs can utilize complex heterogeneous graph structure and rich
semantic information, which have been widely applied to various
downstream tasks such as classification [6, 18, 19], link prediction
[13, 20, 23], and recommendation [4, 14, 24].

Despite the great success of HGNNs, there still lack an effective
toolkit to support the implementation, deployment, and evaluation
of these HGNNs. On one hand, the heterogeneous graphs, with
heterogeneity and rich attributes, are usually collected from dif-
ferent sources, resulting in different storage formats. People have
to put a lot of work on preprocessing data. On the other hand,
most of the HGNNs are sophisticatedly designed and the complex
heterogeneity causes very diverse HGNN architectures. Some ex-
isting toolkits and libraries, such as CogDL [2], PyG [5], TFG [9],
have been developed to help the users efficiently build and train
Graph Neural Networks (GNNs). We summarize the characteris-
tics of mainstream toolkits and libraries in Table 1. Most of them
concentrate on homogeneous graphs and each one has different
characteristics. But they only provide some specific features. For
example, GraphGym [22] only provides design space. It remains a
major inconvenience for researchers to implement algorithms and
empirically compare to baselines, and for beginners to quickly get
started learning HGNNs. There is urgent need for an easy-to-use
toolkit designed for HGNNs, which can provide standardized and
modularized training pipeline and meet the needs of both beginners
and advanced users.

Here, we are going to introduce OpenHGNN, an open-source
toolkit for HGNNs based on DGL [16] and PyTorch [12]. Our project
has gained 250+ stars on GitHub, and all the resources can be found
on the official website. OpenHGNN is specifically designed for
heterogeneous graph representation learning, integrating many
popular HGNNs and datasets. The goal of OpenHGNN is to build a
flexible and easy-to-use platform for HGNNs. With OpenHGNN, it
is effortless for researchers and engineers to train HGNNs, and also
for beginners to quickly learn to go deep into the field. OpenHGNN
adopts a modularized design, which means that it has excellent
extensibility. Users can develop based on OpenHGNN and modify
its sub-modules to meet their needs. With detailed documents and
demonstration examples, users can easily define a new model and

Figure 1: OpenHGNN Architecture

downstream tasks accordingly, such as coming up with a novel loss
function or changing the original dataset splitting criterion.

We summarize the characteristics of OpenHGNN as follows:
• Easy-to-Use: OpenHGNN provides easy-to-use interfaces
for running experiments. Users can start training a model
on a specific dataset with just one line command or a several
lines python script.

• Extensibility: OpenHGNN is modularizedly designed, and
users can define customized task/model/dataset to apply a
model to specific scenarios.

• Rich-Functional: It also integrates several useful tools to
help users have a more general and deeper insight into
HGNNs.

• Well-Orginazed Documents: We provide readable and
thorough documents1 about OpenHGNN, both for the be-
ginners and the proficient users.

In the subsequent sections, we describe each characteristic of
OpenHGNN in detail. The framework of OpenHGNN will be in-
troduced in Section 2. Section 3 describes several novel features of
OpenHGNN. In Section 4 we will give some examples of how to
use and develop based on OpenHGNN. Finally, Section 5 presents
the conclusions and our future work.
1https://openhgnn.readthedocs.io
2https://github.com/BUPT-GAMMA/OpenHINE
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2 OPENHGNN FRAMEWORK
In this section, we present the design of OpenHGNN, as shown in
Fig.1. Our framework is built on PyTorch [27] and DGL, which are
the most popular deep learning libraries for graphs. We abstract
three main modules trainerflow, model, and task in OpenHGNN.
The trainerflow, based on model and task, unifies and performs the
training procedures for HGNNs. We will explain each module in
the following part of this section.

2.1 TrainerFlow
In OpenHGNN, trainerflow is an abstraction of a predesigned work-
flow that trains and evaluates a model on a given task. It can be
very flexible to cover arbitrary HGNNs training settings. The train-
erflow consists of two main components, which are named model
and task. HGNNs in OpenHGNN are usually build base on PyTorch
and DGL. They will perform forward propagation and output the
nodes embeddings, or probability distributions that will be used to
calculate the loss. Task is an abstraction of loss function, metric and
dataset as mentioned above. The two components will be described
in detail later. Based on the design of the unified trainerflow and
decoupled modules, we could do arbitrary combinations of models,
datasets, optimizers, loss functions, etc. For example, if we want to
apply HAN [19] to a new dataset, all we need to do is just assigned
a new dataset name that OpenHGNN has supported. If we want to
design a new HGNN or loss function, we just need to write the core
DGL-style codes and OpenHGNN will automatically call it in the
predesigned pipeline. Then OpenHGNN will automatically perform
training and testing with s few simple settings of trainerflow.

There also are some other necessary components, such as fea-
ture preprocessing, heterogeneous graph sampler, optimizer, and
experiments logger. Heterogeneous graph datasets, unlike homo-
geneous ones, usually contain feature loss nodes, making HGNNs
cannot be directly applied to this kind of dataset. OpenHGNN can
help users solve this problem by generating node embedding in
the feature preprocessing step. The HeteroGraphSampler as well
as mini-batch training procedures in trainerflow makes HGNNs
scalable to datasets that could not be loaded into memory. The
logger module is also important for OpenHGNN, and users usually
need to track the training history and analyze the performance to
get a comprehensive understanding of HGNNs. With the unified
trainerflow, OpenHGNN allows native support for users to leverage
these tools without much effort.

2.2 Task
Datasets, loss functions, and evaluation metrics are usually bound
to each other and closely related to downstream tasks for HGNNs.
So asmentioned above, we abstracted task as themodule to encapsu-
late these components as well as some extra information. Currently,
we support three downstream tasks, namely node classification,
link prediction, and recommendation, which are the most widely
applied scenarios for HGNNs.

The loss function is necessary for any deep learning model and
has been well supported by PyTorch. It will not be described in
detail here. There are more or fewer differences in evaluation met-
rics used by different HGNNs to demonstrate the superior abil-
ity in a specific aspect. However, neither DGL nor PyTorch offers

standard evaluation metrics, which brings inconvenience to users.
OpenHGNN provides a variety of common evaluation metrics, in-
cluding score of accuracy, recall, MRR, etc. The Dataset instance
will automatically download, read to memory, and preprocess to a
DGLHeteroGraph instance support the overall training process. It
not only maintains input data but also train/test/evaluate split, label
information, etc. In OpenHGNN, we have collected and integrated
20+ heterogeneous graph datasets that are frequently used in re-
search area, which meet the common needs of most users. Apart
from built-in datasets, OpenHGNN also supports users to customize
their datasets by simply subclassing built-in abstract base dataset
classes with customized dataset APIs. An example can be found in
our documents website.

2.3 Model
Model in OpenHGNN plays the role of encoder that output the node
embedding for given input heterogeneous graph data. It mainly
contains two parts: model builder and forward propagation. In the
model builder part, we should initialize the essential components,
e.g., creating a HeteroEmbedLayer layer for the featureless nodes.
Forward propagation consists of plenty of complex tensor calcula-
tions, because of the complex properties of heterogeneous graphs.
This can be confusing for unskilled developers.

Therefore, we abstract and define several HGNN layers that can
be combined in the model. HGNN layers will provide users with
great flexibility and convenience because we don’t have to care
about implementation details in HGNNs, but only about how to
designmodel architecture.We have implemented and integrated 20+
HGNN models and 10+ HGNN layers in OpenHGNN, and we will
continue contributing to it, including the latest published models
based on deep learning and classic models, such as heterogeneous
network embedding methods.

3 NOVEL FEATURES
OpenHGNN is not just a collection of dozens of models. We also
developed several related tools around HGNNs to give users more
convenience and have deeper insights into HGNNs.

3.1 LeaderBoard and BenchMark
We release a leaderboard for popular heterogeneous graph datasets
named Open Heterogeneous Graph Benchmark (OHGB3) for link
prediction and node classification task. In node classification task
we release 4 datasets that are ohgbn-acm, ohgbn-imdb ohgbn-yelp2,
and ohgbn-Freebase. We choose 10 baselines models, and eval-
uate their score of Macro-F1 and Micro-F1 on these datasets. In
link prediction task we release 2 datasets that are ohgbl-MTWM and
ohgbl-yelp1, and the metric we applied is roc-auc score.

3.2 Auto Machine Learning
Hyperparameters optimization (HPO) is an important feature for
HGNNs toolkit, since most HGNNs, with more complicated de-
sign, utilize more hyperparameters than usual GNNs in general.
We integrate a popular library, Optuna [1] into OpenHGNN to en-
able HPO. Optuna is an automatic hyperparameters optimization
3https://github.com/BUPT-GAMMA/OpenHGNN/blob/main/openhgnn/dataset/
ohgb.md
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Figure 2: Metapath statistics (left) and degree distribution
(right) of DBLP dataset

software framework, particularly designed for machine learning.
In OpenHGNN, we have implemented hyperparameters search
based on it and user can start a trail in just a few steps. The key
of the use HPO is to define a search space, which is the range
of each hyperparameter that we should declare in python script
./openhgnn/auto/hpo_space.py. After defining the search space,
all we need to do is just to set –use_hpo in the command line. Then
the search space will be automatically utilized by OpenHGNN to
start searching and output the best results. For specific usage, we
put it in Section 4.

3.3 Design Space for HGNNs
Following GraphGym [22], we release a platform Space4HGNN [25]
for designing and evaluating HGNNs. We believe Space4HGNN
can significantly facilitate the research field of HGNNs. It offers a
standardized evaluation pipeline for HGNNs, much like GraphGym
for homogeneous GNNs. We also offer parallel launching for faster
experiments. Its highlights are summarized below.

3.3.1 Modularized HGNN Implementation. Space4HGNN is easily
extendable, allowing future developers to plugin more choices of
design dimensions (e.g., a new graph convolution layer). Addition-
ally, it is easy to import new design dimensions to Space4HGNN,
such as score function in link prediction.

3.3.2 Standardized HGNN Evaluation. Space4HGNN offers a stan-
dardized evaluation pipeline for diverse architecture designs and
HGNNs. Benefiting from OpenHGNN, we can evaluate diverse
datasets in different tasks easily.

3.4 Visualization Tools
We offer some tools to help users visualize the features of the hetero-
geneous graphs, e.g., degree distribution and mete-path statistics.
These tools allow users to analyze the basic properties of the dataset
and fine-tune the model accordingly. Here we give an example of
DBLP in Fig.2, which contains 4 node types and 6 edge types, and
the total number of nodes and edges are 26,128 and 239,566 respec-
tively.

4 OPENHGNN IN PRACTICE
In this section, we will introduce the basic usage of OpenHGNN
and we will give some examples.

OpenHGNN is convenient for researchers to test model perfor-
mances as baselines in one command. Here is an example:
python main.py -m HAN -d acm4HAN -t node_classification

Users can choose dataset, model, and task through parameters
setting, and OpenHGNN will automatically load dataset and per-
form model training and evaluation. Furthermore, with the inte-
grated library, Optuna, by defining the search space of hyperpa-
rameters in ./openhgnn/auto/hpo_space.py and passing the pa-
rameter --use_hpo, OpenHGNN will start to searching and output
the best results. OpenHGNN also offers the best hyperparame-
ters and the pretrained model checkpoint for most of the mod-
els, and we can use it just by passing --use_best_config and
--load_from_pretrained to the main function.

In addition to supporting command line training, it provides
python APIs for user programming. We can set dataset, model, and
hyperparameters with the python APIs, which call the low-level
OpenHGNN APIs (e.g., trainerflow).
import openhgnn
dataset = openhgnn.build_dataset( # build dataset

task='node_calssification',
dataset_name='HGBn-acm')

model = openhgnn.build_model( # build model
model_name='HAN')

trainerflow = openhgnn.build_flow( # build trainerflow
config='conf.yaml',
model=model,
dataset=dataset)

trainerflow.train() # start training

OpenHGNN also support customized usage by creating new
tasks and developing new models based on existing framework and
APIs, which provides users with good extensibility. Due to space
limitations, for more detail usages please refer to our documents.

5 CONCLUSION AND FUTUREWORK
This paper introduces an open-source toolkit OpenHGNN, which
is extensive, flexible, and easy-to-use. We define a trainerflow for
OpenHGNN, a general pipeline that trains and evaluates a model
on several tasks, including node classification, link prediction, and
recommendation. Users can experiment with mainstream HGNNs
and heterogeneous graph datasets integrated in OpenHGNN with
just one line of command. We also provide a reproducible leader-
board, as well as useful tools for hyperparameters optimization,
design space, and visualization, which can help users understand
and explore more characteristics of HGNN in many aspects.In the
future, more models for HGNN and datasets will be continuously
integrated into OpenHGNN. Besides, we will release more tools
and features for HGNNs.
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