
Learning to Distill Graph Neural Networks

Cheng Yang
Yuxin Guo

Beijing University of Posts and
Telecommunications

Beijing, China

Yao Xu
Researcher

Beijing, China

Chuan Shi∗

Jiawei Liu
Chunchen Wang

Beijing University of Posts and
Telecommunications

Beijing, China

Xin Li
Ning Guo
Researcher

Beijing, China

Hongzhi Yin
The University of Queensland

Brisbane, Australia

ABSTRACT

Graph Neural Networks (GNNs) can effectively capture both the

topology and attribute information of a graph, and have been ex-

tensively studied in many domains. Recently, there is an emerging

trend that equips GNNs with knowledge distillation for better ef-

ficiency or effectiveness. However, to the best of our knowledge,

existing knowledge distillation methods applied on GNNs all em-

ployed predefined distillation processes, which are controlled by

several hyper-parameters without any supervision from the per-

formance of distilled models. Such isolation between distillation

and evaluation would lead to suboptimal results. In this work, we

aim to propose a general knowledge distillation framework that

can be applied on any pretrained GNN models to further improve

their performance. To address the isolation problem, we propose to

parameterize and learn distillation processes suitable for distilling

GNNs. Specifically, instead of introducing a unified temperature

hyper-parameter as most previous work did, we will learn node-

specific distillation temperatures towards better performance of

distilled models. We first parameterize each node’s temperature by

a function of its neighborhood’s encodings and predictions, and

then design a novel iterative learning process for model distilling

and temperature learning. We also introduce a scalable variant of

our method to accelerate model training. Experimental results on

five benchmark datasets show that our proposed framework can be

applied on five popular GNNmodels and consistently improve their

prediction accuracies with 3.12% relative enhancement on average.

Besides, the scalable variant enables 8 times faster training speed

at the cost of 1% prediction accuracy.
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1 INTRODUCTION

Graph Neural Networks (GNNs) have become the state-of-the-art

technique for semi-supervised learning on graphs, and attracted

much attention over the last five years [2, 36]. Hundreds of GNN

models have been proposed and successfully used in various areas,

e.g., computer vision [20, 26], natural language processing [1, 17]

and data mining [7, 16].

In recent years, there is an emerging trend that equips GNNswith

knowledge distillation [11] to accelerate model inference and utilize

unlabeled data [34], thereby improving its efficiency or effective-

ness. Specifically, in typical knowledge distillation, a lightweight

model (i.e., student) learns knowledge by being trained to mimic

the soft predictions of a high-capacity model (i.e., teacher). From

the perspective of efficiency, knowledge distillation can be utilized

to compress a deep GCN [13] model into a shallow one for faster

inference [30]. From the perspective of effectiveness, knowledge

distillation can extract the knowledge of a GNNmodel (teacher) and

inject it into a non-GNN model (student), in order to use more prior

knowledge and unlabeled data for more precise predictions [29].

Besides the choices of teacher and student, the distillation pro-

cess, which determines how the soft predictions of teacher and

student models are matched in the loss function, is also vital to

the prediction performance of a distilled student on downstream

tasks [11]. For example, a global temperature hyper-parameter [11],

which softens the predictions of both teacher and student models, is

widely adopted in knowledge distillation to facilitate the knowledge

transfer. However, to the best of our knowledge, existing knowledge
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distillation methods applied on GNNs all employed predefined dis-

tillation processes, i.e.,with only hyper-parameters but without any

learnable parameters. In other words, the distillation processes are

designed heuristically or empirically without any supervision from

the performance of distilled students, which isolates distillation

from evaluation and thus would lead to suboptimal results.

In this work, we aim to propose a general knowledge distillation

framework that can be applied on any pretrained GNN models to

further improve their performance. Note that we focus on the dis-

tillation process rather than the choice of student models, and thus

simply let a student model have the same neural architecture with

its teacher as suggested by BAN [6]. To overcome the isolation prob-

lem between distillation and evaluation, instead of introducing the

global temperature as a hyper-parameter, we innovatively propose

to learn node-specific temperatures supervised by the performance

of distilled GNN students, as shown in Figure 1. Specifically, we

parameterize each node’s temperature by a function of its neigh-

borhood’s encodings and predictions. Due to the isolation problem

in traditional knowledge distillation frameworks [11], the partial

derivative of a distilled student’s performance with respect to node

temperatures does not exist, which makes it non-trivial to learn the

parameters in temperature parameterization. Therefore, we design

a novel iterative learning process, which alternatively performs

preparation, distillation and learning steps, for parameter training.

In the preparation step, we will compute the temperature for each

node with current parameters, and set up a knowledge distillation

loss based on node-specific temperatures; In the distillation step,

the parameters of the student model will be updated by the dis-

tillation loss; In the learning step, the parameters in temperature

modeling will be updated towards higher classification accuracy

of distilled GNN students. Moreover, we also introduce a scalable

variant of our method by heuristically updating the node-specific

temperatures.

We conduct experiments on five public benchmark datasets and

apply our framework on five typical GNN models for evaluation.

Compared with pretrained teacher model or the student distilled by

a global temperature hyper-parameter, experimental results show

that on average our distilled GNN student has 3.12% and 2.40% rela-

tive improvements in prediction accuracy, respectively. Compared

with our full model, the scalable variant enjoys 8 times faster train-

ing speed at the cost of 1% prediction accuracy. We also compare

our algorithm with state-of-the-art knowledge distillation methods

on GNNs, showing consistent improvement for all the five GNN

models. Ablation studies and the analysis on learned temperatures

further demonstrate the effectiveness of our framework.

Our contributions are summarized as follows:

• To our knowledge, this is the first work to propose a learn-

able distillation process supervised by the performance of distilled

students, for knowledge distillation frameworks applied on GNNs.

• We propose a novel algorithm based on an iterative process of

preparation, distillation and learning steps, to train node-specific

temperatures for better distillation performance. A scalable variant

is also proposed as a trade-off between speed and accuracy.

• Experimental results on five benchmark datasets show that our

proposed framework can be successfully applied on five popular

GNN models to further improve their prediction accuracy, which

demonstrates the generality and effectiveness of our method.

2 RELATEDWORK

2.1 Graph Neural Networks

Graph Neural Networks (GNNs) can effectively characterize the

structural semantics via the message passing mechanism [8]. In

this subsection, we will introduce some typical GNN models, which

are also chosen as the teacher/student models in our experiments.

GCN [13] is one of the most famous GNNmodels, which adapted

convolutional neural network to non-Euclidean domain and can

be seen as a low-pass filter from the spectral view [15]. GAT [23]

introduced attention mechanism to capture the different impor-

tance of neighbors. GraphSAGE [9] sampled a fixed number of

neighbors to improve efficiency, and designed diverse aggregation

methods to improve flexibility. Besides, there are some GNNmodels

that disentangled neighbor aggregation and feature transformation.

APPNP [14] performed feature transformation operations before

neighbor aggregations, thus increasing the depth of neighbor aggre-

gation while avoiding overfitting. SGC [24] removed the non-linear

mapping function between each layer, thus aggregating multi-layer

neighbor information before feature transformation, which can

improve the computational efficiency.

2.2 Knowledge Distillation

Knowledge distillation [11] was originally proposed for model com-

pression, where a light-weight student model is trained tomimic the

soft predictions of a pretrained teacher model. The student can ben-

efit from the knowledge of the teacher, so it is more computationally

efficient without sacrificing much prediction performance [18].

Besides the motivation of compressing models, recent studies [6,

27] found that a student can even outperform its teacher if they

are parameterized identically. In other words, a model can achieve

better prediction performance, if it learns from a pretrained teacher

model with the same architecture rather than ground truth labels.

For possible explanations of this phenomenon, learning towards

soft predictions of a teacher can be interpreted as early stopping [4]

or label smoothing [35], and thus has better generalization ability.

Recently, there have been several works applying knowledge

distillation to improve the efficiency or effectiveness of GNNs. For

efficiency, [30] proposed a local structure preserving module to dis-

till the topological structure from a deep GCN to a shallow one. [28]

designed a peer-aware module to help shallow student models to

explore the rich structural information during distillation. [12] de-

signed a gradient-based topological semantics alignment loss and

a slimmable graph convolution layer to support distillation from

diversified teachers. [32] proposed to bring GNNs and multi-layer

perceptrons together via knowledge distillation to solve graph de-

pendency issue. For effectiveness, [34] considered both node reliabil-

ity and edge reliability to make better use of high quality data. [29]

designed a non-GNN student model to utilize more structure-based

and feature-based prior knowledge. [3] proposed a multi-level self-

distillation framework to retain high discrepancy of consecutive

layers. [33] designed a reception-aware decoupled GNN model and

ensembled several students to construct a powerful teacher. [10]

proposed a trainable discriminator that tells student and teacher

apart based on adversarial training. [5] employed reinforcement

learning to design a new knowledge distillation framework without

the need of a well-optimized teacher GNN.
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Figure 1: An illustration of (a) the typical framework [11] for distilling GNNs [28–30]; and (b) our proposed distillation

framework. Instead of introducing a unified temperature hyper-parameter, we will learn node-specific temperatures supervised

by the performance of distilled GNN student based on a novel iterative workflow. Note that the true labels used in the typical

framework is divided to two subsets in our framework, and thus we did not employ additional training data.

To the best of our knowledge, existing knowledge distillation

methods applied on GNNs all employed predefined distillation pro-

cesses, which are designed heuristically and controlled by several

hyper-parameters. In contrast, we aim to parameterize and learn

distillation processes under the supervision of distilled students’

performance. In addition, these work all employed a unified tem-

perature hyper-parameter, while we propose to learn node-specific

temperatures as trainable parameters. To our knowledge, even in a

broader scope of knowledge distillation applications (e.g., computer

vision), little work has explored such learnable instance-specific

temperatures guided by the performance of distilled students. In

this work, we focus on the distillation of GNNs and leave the ex-

ploration of combining other neural architectures as future work.

3 METHODOLOGY

In this section, we will first formalize GNNs and the correspond-

ing evaluation task. Then we will introduce the most popular

knowledge distillation framework [11] with a temperature hyper-

parameter as our basis. Afterward, we will present our algorithm for

learning node-specific temperatures towards better performance of

distilled GNN students. Finally, we will introduce a scalable variant

of our method by heuristically updating node-specific temperatures.

3.1 Preliminaries

3.1.1 Semi-supervised Learning on Graphs. Node classifica-

tion, which aims at classifying unlabeled nodes in a graph given

labeled ones and the graph structure, is a typical semi-supervised

learning task on graphs and widely adopted in the evaluation of

many GNN models [25, 31].

Formally, given a connected graph 𝐺 = (𝑉 , 𝐸) where 𝑉 is the

vertex set and 𝐸 is the edge set, node classification is to predict the

label of each node 𝑣 in the unlabeled node set 𝑉𝑈 ⊂ 𝑉 based on

graph structure 𝐺 , labeled node set 𝑉𝐿 = 𝑉 \𝑉𝑈 and node features

X ∈ R |𝑉 |×𝑑 . Here each row x𝑣 ∈ R𝑑 of matrix X represents the

𝑑-dimensional feature of node 𝑣 . Let 𝑌 be the set of node labels,

then the ground truth label of each node 𝑣 can be denoted as a

|𝑌 |-dimensional one-hot vector y𝑣 .

3.1.2 Graph Neural Networks. GNNs can encode each node 𝑣
into a |𝑌 |-dimensional logit vector f𝑣 by iteratively aggregating the

neighborhood information, i.e., the message passing mechanism.

In this work, our proposed algorithm is not designed for a specific

GNN model and thus can be applied on any GNNs. Therefore, we

simply formalize a GNN encoder in a black-box form as

f𝑣;Θ = GNN(𝑣 |𝐺,X;Θ) ∈ R |𝑌 | , p𝑣;Θ = softmax(f𝑣;Θ), (1)

where Θ is the learnable parameters in the GNN and p𝑣;Θ is the

predicted label distribution normalized by the softmax operator.

Then GNNs will minimize the distance between ground truth

label y𝑣 and predicted label p𝑣;Θ for each labeled node 𝑣 ∈ 𝑉𝐿 , and
usually employ the cross entropy loss to train the parameters Θ:

min
Θ

∑

𝑣∈𝑉𝐿

L𝐶𝐸 (y𝑣, p𝑣;Θ), (2)

L𝐶𝐸 (y𝑣, p𝑣;Θ) = −

|𝑌 |∑

𝑖=1

y𝑣 [𝑖] · log p𝑣;Θ [𝑖], (3)

where y𝑣 [𝑖] and p𝑣;Θ [𝑖] are the 𝑖-th entry of vector y𝑣 and p𝑣;Θ.

3.2 Knowledge Distillation on GNNs

In this work, we focus on the study of distillation process instead

of the choice of student models. Thus we simply let the teacher and

student models have the same neural architecture as suggested by

BAN [6], and denote them as GNN𝑇 and GNN𝑆 with parametersΘ𝑇
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andΘ𝑆 , respectively. Given pretrained parametersΘ𝑇 of the teacher

model GNN𝑇 (learned by Eq. (2)), we will train the parametersΘ𝑆 of

the student model GNN𝑆 by matching the soft predictions between

GNN𝑇 and GNN𝑆 . Formally, the knowledge distillation framework

aims at optimizing

min
Θ𝑆

∑

𝑣∈𝑉

L𝐶𝐸 (p𝑣;Θ𝑇 , p𝑣;Θ𝑆 ) + 𝜆
∑

𝑣∈𝑉𝐿

L𝐶𝐸 (y𝑣, p𝑣;Θ𝑆 ), (4)

where the first term is the cross entropy with the teacher’s predic-

tions, the second term is the cross entropy with ground truth labels

on 𝑉𝐿 , and 𝜆 is the balance hyper-parameter.

Note that many knowledge distillation methods since [11] will

soften both teacher and student’s predictions p𝑣;Θ𝑇 , p𝑣;Θ𝑆 in the first

term of Eq. (4) before distillation, by introducing extra temperature

hyper-parameters:

p𝑣;Θ𝑇 (𝜏
𝑇
𝑣 ) = softmax(f𝑣;Θ𝑇 /𝜏

𝑇
𝑣 ),

p𝑣;Θ𝑆 (𝜏
𝑆
𝑣 ) = softmax(f𝑣;Θ𝑆 /𝜏

𝑆
𝑣 ),

(5)

where 𝜏𝑇𝑣 , 𝜏
𝑆
𝑣 ∈ R+ are temperature hyper-parameters. A temper-

ature of 1 corresponds to the original softmax operation. Larger

temperatures will produce softer predictions (towards uniform dis-

tribution), while smaller temperatures will produce harder predic-

tions (towards one-hot distribution). In the most popular distillation

framework [11], all the temperatures are set as the same hyper-

parameter 𝜏 , i.e., 𝜏𝑇𝑣 = 𝜏𝑆𝑣 = 𝜏 for every node 𝑣 . By tuning the global
temperature hyper-parameter, the distilled GNN student is evalu-

ated and expected to have better performance than the teacher.

3.3 Learning Node-specific Temperatures

Instead of introducing the global temperature as a hyper-parameter,

we innovatively propose to learn node-specific temperatures as

trainable parameters for better distillation performance. We will

first present how we introduce learnable parameters in temperature

parameterization, and then design a novel algorithm for parameter

training based on an iterative learning process.

3.3.1 Temperature Parameterization. Directly assigning each

node a free parameter as node-specific temperature would lead to

serious overfitting problem. Therefore, we assume that nodes with

similar encodings and neighborhood predictions should have simi-

lar distillation temperatures. In practice, each node 𝑣 ’s temperature

can be parameterized by a function with respect to the following

features: (1) the student’s logit vector f𝑣;Θ𝑆 of 𝑣 , which directly char-
acterizes the current prediction status of the GNN student; (2) the

L2-norm of f𝑣;Θ𝑆 , where a larger norm usually indicates a harder

predicted distribution due to the exponential operator in the soft-

max function; and (3) the prediction entropy of 𝑣 ’s neighbors, which
describes the label diversity in node 𝑣 ’s neighborhood. Intuitively,
all the above features will affect the confidence of model predictions

and thus should be considered in temperature parameterization.

Formally, we set all the student temperatures 𝜏𝑆𝑣 to 1 for more cal-

ibrated predictions [35], and parameterize the teacher temperature

𝜏𝑇𝑣 of node 𝑣 as

𝜏𝑇𝑣;Θ𝑆 ,Θ𝑇 ,Ω
= MLP(Concat(f𝑣;Θ𝑆 , | |f𝑣;Θ𝑆 | |2, 𝑒𝑣;Θ𝑇 );Ω), (6)

where MLP(·;Ω) denotes a multi-layer perception with parameters

Ω, Concat() is the concatenation operator, | | · | |2 is the L2-norm,

and 𝑒𝑣;Θ𝑇 is defined as the entropy of the average predictions of 𝑣 ’s
neighbors:

𝑒𝑣;Θ𝑇 = L𝐶𝐸 (
1

|𝑁𝑣 |

∑

𝑢∈𝑁𝑣

p𝑢;Θ𝑇 ,
1

|𝑁𝑣 |

∑

𝑢∈𝑁𝑣

p𝑢;Θ𝑇 ), (7)

where 𝑁𝑣 is the set of 𝑣 ’s neighbors.
Here f𝑣;Θ𝑆 and | |f𝑣;Θ𝑆 | |2 depend on the student parameter Θ𝑆 ,

while 𝑒𝑣;Θ𝑇 is a node-specific constant since the teacher parame-

ter Θ𝑇 is pretrained and fixed. We use the teacher instead of the

student to model the prediction entropy for better numerical stablil-

ity. We will investigate the effect of each concatenated component

f𝑣;Θ𝑆 , | |f𝑣;Θ𝑆 | |2, 𝑒𝑣;Θ𝑇 , and discuss the learned temperatures in our

experiments. In addition, to avoid the gradient explosion or van-

ishment issue, we also restrict the temperatures within range [𝑙, 𝑟 ]
by a function based on sigmoid operation (𝑟 − 𝑙)𝜎 (·) + 𝑙 . Note that
alternative formulations of temperature modeling may also exist,

but we find that the three terms used in Eq. (6) are sufficient for

enhancing the performance and all contribute to the improvement.

3.3.2 Iterative Learning Process. In order to supervise the train-

ing of node-specific temperatures, we partition the labeled node set

𝑉𝐿 into two disjoint sets 𝑉𝐷𝑖𝑠 and 𝑉𝑇𝑒𝑚𝑝 : 𝑉𝐷𝑖𝑠 is still used in the

second term of Eq. (4) for distillation, while 𝑉𝑇𝑒𝑚𝑝 is used for eval-

uating distilled students and learning node temperatures. Formally,

the loss for the distillation part can be written as

L𝐷𝑖𝑠 (Θ𝑆 ,Ω) =
∑

𝑣∈𝑉

L𝐶𝐸 (p𝑣;Θ𝑇 (𝜏
𝑇
𝑣;Θ𝑆 ,Θ𝑇 ,Ω

), p𝑣;Θ𝑆 )

+ 𝜆
∑

𝑣∈𝑉𝐷𝑖𝑠

L𝐶𝐸 (y𝑣, p𝑣;Θ𝑆 ),
(8)

and the loss for evaluating distilled students and supervising tem-

peratures is

L𝑇𝑒𝑚𝑝 (Θ𝑆 ) =
∑

𝑣∈𝑉𝑇𝑒𝑚𝑝

L𝐶𝐸 (y𝑣, p𝑣;Θ𝑆 ) . (9)

However, due to the isolation between distillation and evaluation,

the evaluation loss L𝑇𝑒𝑚𝑝 is only related to the parameters ΘS

of student model and the partial derivative 𝜕L𝑇𝑒𝑚𝑝/𝜕Ω does not

exist, which makes it impossible to learn the temperatures via back-

propagation.

To address this problem, we propose a novel iterative learning

process by alternatively performing the following preparation, dis-

tillation and learning steps:

Preparation step: We first calculate the temperature 𝜏𝑇𝑣;Θ𝑆 ,Θ𝑇 ,Ω
for each node 𝑣 according to Eq. (6), and then set up the distillation

loss as Eq. (8).

Distillation step: For model distillation, we update the parameters

Θ𝑆 through a single step of back-propagation:

Θ′
𝑆 := Θ𝑆 − 𝛼

𝜕L𝐷𝑖𝑠 (Θ𝑆 ,Ω)

𝜕Θ𝑆
, (10)

where 𝛼 is the learning rate for distillation step.

Learning step: We evaluate L𝑇𝑒𝑚𝑝 with the updated parameter

Θ′
𝑆 , and then perform back-propagation on Ω by the chain rule:

Ω′ := Ω − 𝛽
𝜕L𝑇𝑒𝑚𝑝 (Θ

′
𝑆 )

𝜕Θ′
𝑆

𝜕Θ′
𝑆

𝜕Ω
, (11)

where 𝛽 is the learning rate for learning step.
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Algorithm 1 Learning to Distill GNNs

Input: Graph 𝐺 = (𝑉 , 𝐸), node features X, labeled node set 𝑉𝐿 ,
unlabeled node set 𝑉𝑈 , teacher GNN model with pretrained

parameters Θ𝑇 ;

Output: Distilled GNN student with learned parameters Θ𝑆 ;

1: Randomly initialize Θ𝑆 and Ω;

2: Randomly split labeled node set 𝑉𝐿 into two disjoint sets 𝑉𝐷𝑖𝑠

and 𝑉𝑇𝑒𝑚𝑝 ;

3: Initialize the parameterized temperatures with Ω by Eq. (6);

4: while warmup do

5: Update Θ𝑆 according to Eq. (8) and (10);

6: end while

7: while not converge do

8: Compute the parameterized temperatures by Eq. (6);

9: Compute the loss of distillation part as Eq. (8);

10: Update Θ𝑆 as Eq. (10) and obtain Θ′
𝑆 ;

11: Compute the loss of learning part as Eq. (9) with Θ′
𝑆 ;

12: Update Ω according to Eq. (11) and obtain Ω′;

13: Overwrite Θ𝑆 and Ω with Θ′
𝑆 and Ω′;

14: end while

15: return distilled student parameter Θ𝑆 .

Here we decompose the partial derivative ofL𝑇𝑒𝑚𝑝 with respect

toΩ into the product of 𝜕L𝑇𝑒𝑚𝑝 (Θ
′
𝑆 )/𝜕Θ

′
𝑆 and 𝜕Θ′

𝑆/𝜕Ω, which can
be calculated by the partial derivative of Eq. (9) and (10), respectively.

By iteratively executing the preparation, distillation and learning

steps, we can train node-specific temperatures parameterized by Ω

towards better prediction performance of distilled students.

3.3.3 Implementation Details. We name our proposed frame-

work as LTD (Learning To Distill). The pseudo code of LTD is

shown in Alg. 1. We bisect the labeled node set 𝑉𝐿 into 𝑉𝐷𝑖𝑠 and

𝑉𝑇𝑒𝑚𝑝 , i.e., |𝑉𝐷𝑖𝑠 | = |𝑉𝑇𝑒𝑚𝑝 |. Compared with the traditional distil-

lation loss in Eq. (4), 𝑉𝑇𝑒𝑚𝑝 will affect the parameters in the GNN

student indirectly and thus alleviate the overfitting issue. We will

run 20 epochs of distillation without updating Ω as warmup, and

then perform the iterative learning process. The time complexity of

each iteration in LTD is linear with respect to the number of nodes

and edges. Code and more implementation details are provided in

https://github.com/BUPT-GAMMA/LTD.

3.4 Scalable Variant

For faster distillation, we introduce a simplified version of LTD,

named LTD+, by heuristically updating node-specific temperatures.

3.4.1 Heuristic Temperature Update. In order to calculate an

appropriate temperature for each node, we need to use the features

considered in the temperature parameterization of LTD. Formally,

the temperature 𝜏𝑇𝑣 of node 𝑣 is calculated as:

𝜏𝑇𝑣;Θ𝑆 ,Θ𝑇 ,Ω
= 𝜇 ·

1

Max(f𝑣;Θ𝑆 )
+ 𝜈 ·

1

| |f𝑣;Θ𝑆 | |2
+ 𝛾 · 𝑒𝑣;Θ𝑇 , (12)

where 𝜇, 𝜈,𝛾 > 0 are balance hyper-parameters, and Max(·) returns

the maximum value of a vector. The formation is inspired by the

learned temperatures of LTD, where nodes with smallerMax(f𝑣;Θ𝑆 ),

| |f𝑣;Θ𝑆 | |2 and larger 𝑒𝑣;Θ𝑇 will have higher temperatures.

Table 1: Dataset statistics.

Dataset Citeseer Cora Pubmed A-Computers A-Photo

# Nodes 2,110 2,485 19,717 13,381 7,487

# Edges 3,668 5,069 44,324 245,778 119,043

# Features 3,703 1,433 500 767 745

# Classes 6 7 3 10 8

3.4.2 Connections between LTD+ and LTD. The full model

LTD has a more elaborately designed learning process of node

temperatures, and can empirically help student models achieve

better performance. Inspired by the learned temperatures of LTD,

we propose LTD+ as a simple yet efficient variant, which enjoys a

faster model training speed at the cost of prediction accuracy. As a

trade-off between speed and accuracy, LTD+ is particularly suitable

to large scale graphs or deep GNN models.

4 EXPERIMENTS

In this section, we conduct experiments on five benchmark datasets

to answer the following research questions (RQs):

• RQ1: Can the GNN students distilled by our LTD outperform

those distilled by other knowledge distillation frameworks? How

about the efficiency of LTD and LTD+ compared with other distil-

lation frameworks?

• RQ2: How does our LTD perform under different settings (i.e.,

ablation studies, distinct combinations of GNN teacher/student)?

• RQ3: What patterns can we observe from learned parameters

of LTD (i.e., node-specific temperatures)?

4.1 Experimental Setup

4.1.1 Datasets. In our experiments, we employ five benchmark

datasets widely used in previous works [19, 29]. The statistical

information of the five datasets is shown in Table 1.

4.1.2 Teacher/Student Models. We use GCN, GAT, GraphSAGE,

APPNP, SGC as teacher/student models and set them as [29].

4.1.3 Experimental Settings. We conduct experiments on the

most popular task for evaluating GNNs, i.e., semi-supervised node

classification. For each dataset, we use 40 nodes per class as the

training data, 10 nodes per class as the validation data, and all

the rest nodes for testing. For each combination of GNN model

and dataset, we will pretrain a GNN model as the teacher and fix

its parameters. After the distillation, we will evaluate the distilled

students learned by different frameworks. For evaluation metric,

we will report the classification accuracy as previous work [13, 23].

4.2 Analysis of Main Results (RQ1)

4.2.1 Comparison with the Traditional Distillation Frame-

work. First of all, to validate our motivation of learning node-

specific distillation temperatures, we will test the following frame-

works based on different GNN teacher/student models:

• FT (Fixed Temperature): All nodes use the same temperature as

a hyper-parameter, which is adopted in most knowledge distillation

frameworks.

• LTDw/o LS: The proposed LTD method without learning steps,

i.e., the parameter Ω is never updated after initialization.
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Table 2: Classification accuracies with GNN models as GAT and GraphSAGE.

Dataset
GNN Framework variants

+Impv.
GNN Framework variants

+Impv.
GAT FT LTDw/o LS LTD LTD+ SAGE FT LTDw/o LS LTD LTD+

Citeseer 0.7525 0.7564 0.7044 0.7735 0.7630 2.26% 0.7276 0.7409 0.7613 0.7746 0.7613 1.75%

Cora 0.8520 0.8534 0.8356 0.8656 0.8614 1.43% 0.8426 0.8501 0.8482 0.8703 0.8576 2.38%

Pubmed 0.7944 0.8048 0.8144 0.8274 0.8098 1.60% 0.8189 0.8271 0.7362 0.8401 0.8347 1.57%

A-Computers 0.8091 0.8079 0.7823 0.8304 0.8234 2.63% 0.7829 0.7999 0.7934 0.8144 0.8019 1.81%

A-Photo 0.9094 0.9194 0.9145 0.9316 0.9248 1.33% 0.9146 0.9194 0.9059 0.9306 0.9232 1.22%

Table 3: Classification accuracies with GNN models as APPNP and SGC.

Dataset
GNN Framework variants

+Impv.
GNN Framework variants

+Impv.
APPNP FT LTDw/o LS LTD LTD+ SGC FT LTDw/o LS LTD LTD+

Citeseer 0.7530 0.7508 0.7641 0.7851 0.7691 2.75% 0.7238 0.742 0.7536 0.7873 0.7602 4.47%

Cora 0.8581 0.8585 0.8333 0.8693 0.8660 1.26% 0.8454 0.8562 0.8534 0.8660 0.8632 1.14%

Pubmed 0.8301 0.8313 0.8258 0.8436 0.8391 1.48% 0.8205 0.7944 0.7939 0.8405 0.8249 2.44%

A-Computers 0.8095 0.8141 0.8061 0.8363 0.8250 2.73% 0.8047 0.8326 0.7821 0.8528 0.8330 2.43%

A-Photo 0.9225 0.9304 0.9261 0.9337 0.9316 0.35% 0.9118 0.9165 0.9084 0.9297 0.9254 1.44%

Table 4: Classification accuracies with GNN model as GCN.

Dataset
GNN Framework variants

+Impv.
GCN FT LTDw/o LS LTD LTD+

Citeseer 0.7359 0.7547 0.7586 0.7851 0.7613 3.49%

Cora 0.8534 0.8600 0.8614 0.8721 0.8651 1.24%

Pubmed 0.7989 0.8029 0.7897 0.8191 0.8118 2.02%

A-Computers 0.8594 0.8468 0.8443 0.8645 0.8600 0.59%

A-Photo 0.9223 0.9231 0.9032 0.9324 0.9275 1.01%

• LTD: The proposed method.

• LTD+: The proposed scalable variant of LTD.

For the framework variant FT, we conduct a careful grid search of

global temperature 𝜏 from {0.001, 0.01, 0.1, 1, 4, 8, 12, 16, 20, 24} and
balance hyper-parameter 𝜆 from {0.1, 1, 50, 100, 200}, and employ

Adamoptimizerwith learning rate 0.01 for updating parameters. For

a fair comparison, we ensure that the number of hyper-parameter

trials in FT is more than that of our LTD.

We present the results on five benchmark datasets with five

GNN models in Table 2, 3 and 4. We bold the best results among

the teacher model and the three distilled students learned by dif-

ferent framework variants. The relative improvements over the

better model between teacher and FT are also reported. From the

experimental results, we have the following observations:

(1) The GNN students distilled by our proposed LTD framework

can achieve consistent improvements over all five GNN models

on the five datasets. Compared with the pretrained teacher model

and the student distilled by a fixed temperature hyper-parameter,

on average our distilled GNN student has 3.12% and 2.40% relative

improvements in prediction accuracy, respectively. This observation

verifies our motivation of learning node-specific temperatures and

demonstrates the effectiveness of our method.

(2) The scalable variant LTD+ consistently outperforms FT and

has a relative improvement of 1.11%. Also, the full model LTD has

a 1.2% relative advantage over LTD+. Therefore, both temperature

parameterization and adaptive learning are effective for prediction

performance.

(3) The performance of the framework variant LTDw/o LS is very

unstable due to the removal of learning steps. Compared with

LTDw/o LS, our method has 3.92% relative improvements on aver-

age, which demonstrates the necessity of temperature learning.

Therefore, our iterative learning process can guide the distillation

process towards better prediction performance of distilled students.

(4) Though we conduct a careful grid search for FT to select the

best temperature hyper-parameter, FT still performs worse than

the pretrained teacher in many cases, e.g., APPNP on Citeseer and

SGC on Pubmed. Hence learning node-specific temperatures is a

more reasonable choice for distilling GNNs than employing a fixed

global temperature.

(5) The performance of LTDw/o LS can outperform the teacher

GNN model in some cases, e.g., GAT and GraphSAGE on Citeseer

dataset. A possible reason is that our constructed node feature

provides informative prior knowledge for parameterizing node-

specific temperatures.

4.2.2 Comparison with State-of-the-art Distillation Frame-

works. To validate our motivation that modeling the distillation

process is important in distilling GNNs, we also compare our LTD

with two state-of-the-art distillation frameworks for GNNs:

• CPF [29]: Given a pretrained GNN teacher, CPF designs a stu-

dent model based on label propagation and feature transformation

to take advantage of prior knowledge.

• RDD [34]: Given a pretrained GNN teacher, RDD considers the

node/edge reliability and proposes to correct the teacher outputs.

•GraphAKD [10]:With the help of adversarial training, GraphAKD

designs a learnable distance function to measure the distribution

discrepancy of teacher and student.

• FreeKD [5]: Based on reinforcement learning, FreeKD enhances

the performance of GNNs without requiring an optimal teacher.

Figure 2 shows the average accuracies of the three frameworks.

We can see that LTD consistently performs the best for all five GNNs.

The relative improvement against the best performed baseline CPF

is 2.02%. These methods all employed predefined distillation pro-

cesses, while LTD can learn a distillation objective towards better
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(a) GCN (b) GAT (c) GraphSAGE (d) APPNP (e) SGC

Figure 2: Average classification accuracies of different distillation frameworks on five GNNmodels. The accuracies are averaged

over five datasets.

(a) Cora (b) Citeseer (c) Pubmed (d) A-Computers (e) A-Photo

Figure 3: Running time (in log scale) of different distillation frameworks with GCN teacher/student on five datasets.

(a) GCN (b) GAT (c) GraphSAGE (d) APPNP (e) SGC

Figure 4: Classification accuracies of different ablated models on Citeseer dataset. V0: our proposed method; V1: logit vector f𝑣
is removed; V2: L2-norm of f𝑣 is removed; V3: the neighborhood entropy 𝑒𝑣 is removed.

GCN
0.7359

GAT
0.7525

SAGE
0.7276

APPNP
0.7530

SGC
0.7238

Teacher

Student
GCN

GAT

SAGE

APPNP

SGC

Figure 5: The accuracy gains of LTD when the GNN teacher

and student have distinct architectures.

generalization ability. Meanwhile, LTD+ is also very competitive,

which has a 0.74% relative improvement over CPF. This experiment

shows the superiority of our method in distilling GNNs.

4.2.3 Analysis of Scalability. In order to verify the efficiency

of our model, we compare the running time of a single epoch for

different distillation frameworks in Figure 3. We can see that LTD+

and FT are the fastest, LTD and CPF are comparable, and RDD

is the slowest. It is worth noting that our scalable variant LTD+

runs 321.4/7.8/5.9 times faster than RDD/LTD/CPF. To conclude,

LTD offers the best prediction performance, while LTD+ is the cost

effective choice for large graphs.

4.3 Analysis of Extensive Studies (RQ2)

We conduct additional experiments under different settings to fur-

ther demonstrate our effectiveness. As we only present the results

on Citeseer dataset for convenience.
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4.3.1 Ablation Studies. We conduct ablation studies to inves-

tigate the effect of each concatenated component in temperature

parameterization. As shown in Figure 4, we compare our full model

(V0) with three ablated models (V1-V3) where logit vector f𝑣;Θ𝑆 ,

L2-norm | |f𝑣;Θ𝑆 | |2 or neighborhood entropy 𝑒𝑣;Θ𝑇 is respectively

removed. Figure 4 shows that all the three components contribute

to the overall performance, which demonstrates the necessity of

each component for temperature modeling.

4.3.2 Performance with Distinct GNN Teacher/Student. To

further prove the generality of our LTD, we conduct additional

experiments when the GNN teacher and student have distinct ar-

chitectures. Figure 5 shows the results of 5× 5 = 25 teacher-student

combinations, and we have the following observations: (1) Our pro-

posed LTD can effectively improve the performance of pretrained

GNN teacher in all 25 combinations. (2) The simplest GNN, i.e.,

SGC, is the best student that works well with all five GNN teach-

ers. This observation also aligns with the assumption in [29] that

simpler student models can utilize more prior knowledge. (3) The

accuracies of most distilled students fall within a narrow range of

(0.775, 0.788), which shows that our LTD is not fastidious about

the implementations of GNN teacher/student.

4.4 Learned Temperature Analysis (RQ3)

We analyze the learned node-specific temperatures in 5 × 5 = 25

GNN-dataset combinations, and present the following case studies

based on GAT to illustrate how LTD helps learn a better distillation.

(1) First of all, to prove that the node temperatures are signifi-

cantly changed and truly node-specific after the training process,

we compute the Pearson correlation coefficient between randomly

initialized temperatures and learned ones. Taking Cora dataset as an

example, the correlation coefficient is only 0.02. The mean and stan-

dard deviation of node temperatures after training are 0.28 ± 0.26.
Note that a change of 0.1 in temperature could cause a hundredfold

increase in the exponential operator of softmax function. Therefore,

LTD can learn diverse node-specific temperatures for distilling.

(2) We observe that nodes in a “confusing” class (i.e., mixed with

other classes) tend to have higher temperatures. For example, we vi-

sualize the node embeddings learned by GAT teacher via t-SNE [21]

in Figure 6, and use node colors to indicate their labels. As shown

Figure 6(a), the blue nodes are mixed with the red ones, and we

find that 88%/83% of the red/blue nodes have higher temperatures

than the average temperature of all nodes. Similarly, in Figure 6(b),

75%/76% of the red/blue nodes are higher than average. This obser-

vation indicates that LTD is not confident with the predictions of

such nodes and thus will assign higher temperatures to soften their

label distributions towards uniform ones.

(3) We observe that nodes with a small L2-norm | |f𝑣 | |2 tend to

have higher temperatures. Taking Cora dataset as an example, we

select Top-50 nodes with the highest/lowest learned temperatures,

and find that the Pearson correlation coefficient between tempera-

ture and L2-norm | |f𝑣 | |2 in the selected 100 nodes is −0.77, which
indicates a strong negative correlation. We also notice that nodes

with a smaller L2-norm usually have fewer non-zero features, which

could be insufficient to support confident enough predictions.

(4) Note that we allow negative node temperatures which will

completely overwhelm the predictions in the pretrained teacher. We

(a) A-Computers (b) A-Photo

Figure 6: Visualization of node embeddings learned by GAT

teacher on A-Computers and A-Photo. The blue and red

classes overlap with each other, and their nodes have higher

learned temperatures.

observe that nodes with negative learned temperatures are likely

to be wrongly predicted by the GNN teacher. Taking A-Computers

dataset as an example, its accuracy is 0.81 for all nodes and only

0.50 for the nodes with negative learned temperatures. Hence, the

node-specific temperatures adopted in LTD are very flexible, and

can help correct the predictions of GNN teachers.

5 CONCLUSION

In this paper, we propose a novel knowledge distillation frame-

work LTD that can be applied on any pretrained GNN models to

further improve their prediction performance. Instead of introduc-

ing a global temperature hyper-parameter as most previous work

did, we innovatively propose to learn node-specific distillation

temperatures supervised by the performance of distilled students.

Specifically, we parameterize each node’s temperature by a func-

tion of its neighborhood’s encodings and predictions, and design

a novel iterative learning process for model distilling and parame-

ter learning. As a cost effective choice, the scalable variant LTD+

is proposed by heuristically updating node-specific temperatures.

We conduct experiments on five benchmark datasets and show

that our proposed framework can be successfully applied on five

popular GNN models. Extensive studies further demonstrate the

effectiveness and efficiency of our method.

For future work, we will investigate the feasibility of combining

our LTD with other knowledge distillation frameworks applied on

GNNs, since they all used a fixed temperature hyper-parameter.

Another direction is to explore other unsupervised evaluation tasks,

e.g., link prediction and clustering. Also, the proposed framework

could also be generalized to the distillation of other neural networks

(e.g., Transformer [22]) as well.
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