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Abstract. As the popularity of Location-based Services increases, Point-
of-Interest (POI) recommendations receive higher requirements to char-
acterize the users, POIs and interactions. Although many recent graph
neural network-based (GNN-based) studies have tried working on tem-
poral and spatial factors, they still cannot seamlessly handle the tem-
poral locality and spatial consistency. To tackle this issue, we propose
a novel Memory-enhanced Period-aware Graph neural network for gen-
eral POI Recommendation (MPGRec). Specifically, it exploits the advan-
tages of the GNN module in characterizing user preferences. Moreover,
we develop a period-aware gate mechanism after the GNN information
propagation to characterize the temporal locality, and devise a dynamic
memory module to extract, store and disseminate global information
for spatial consistency. Furthermore, we propose a reading and writing
strategy to merge the GNN module and memory module into a uni-
fied framework. Extensive experiments are conducted on four real-world
datasets, and the experimental results demonstrate the effectiveness of
our method.
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1 Introduction

With the popularity of Location-based Services, Point of interest (POI) recom-
mendation has already drawn lots of research attention [3, 8, 5, 15].

There exist two research branches of POI recommendation. One focuses on
sequential characteristics for temporal POI visit behavior mining, namely se-
quential POI recommendation [5, 2, 1, 11]. The other focuses on the general char-
acteristics of the users, POIs and interactions under temporal and spatial factors.
Some existing works also refer to it as general POI recommendations [8]. In this
work, we study the general POI recommendation problem. Owing to the rapid
development of graph neural networks (GNNs), GNN-based recommendation ap-
proaches have attracted the interest of many researchers, which have advanced
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performance in capturing the general characteristics of interactions [4, 18, 7, 16,
14, 17]. Therefore, some recent studies [3, 8, 9] begin to explore GNN models for
general POI recommendation, which introduce spatio-temporal contexts into the
graph construction or message passing mechanism. In this way, GNNs can well
characterize the user preferences under temporal and spatial factors.

Despite the great success of the existing methods, they still fail to consider
the following two characteristics. (1) The interactions between users and POIs
are not exactly the same among different time periods, e.g., morning and evening.
We name this characteristic temporal locality. However, most GNN-based meth-
ods [3, 8] will aggregate neighbor information of all time periods and finally
embed them into a single representation. It causes the information specific to
different time periods to be confused, thus the temporal locality information also
being ignored. (2) There is overlapping information among users and POIs that
have not directly interacted or even are far away from each other, which can
be treated as valuable and global information. We call this characteristic spatial
consistency. However, existing GNN-based methods [3, 8] only pass messages for
nodes on explicit interaction relationships (i.e., edges). It makes the nodes diffi-
cult to exploit valuable and global information from remote nodes, thus leading
to difficulties in capturing spatial consistency.

Based on the above discussion, we propose to study the general POI recom-
mendation based on the GNN framework to consider the temporal locality and
spatial consistency. However, this is challenging due to the following questions.
(1) How to correctly distinguish information related to different time periods in
the GNN, so as to consider temporal locality? On the one hand, the GNN model
cannot be trained on subgraphs divided by time period, since it separates the
information related to different time periods into independent channels. On the
other hand, it will still lead to a confusingly mixing of information to make time-
specific transformations based on the whole graph like [3] for the neighbor infor-
mation. Therefore, a special period-aware mechanism is needed that propagates
the information of different periods, but outputs the information of a specific
period for recommendation. (2) How to make GNN not limited to the explicit
interaction relationships in graph, thus further considering spatial consistency?
In the field of computer vision, the memory networks [12, 10] are recently ex-
plored to record global information across samples to improve few-shot learning
tasks. Enlightened by it, we can transfer this idea to leverage a memory module
to extract and store global node information that satisfies spatial consistency.
Ultimately, it can serve as a springboard to propagate information to other
nodes that are not explicitly connected. (3) How to merge the GNN module and
Memory module into a unified framework? The existing memory approaches [6]
are mainly implemented by a learnable parameter matrix, whose information is
learned from the optimizer rather than the GNN. This results in an information
gap between the memory module and the GNN module, which prevents them
from becoming a unified framework. Therefore, we propose a dynamic memory
module, which stores the valuable and global information learned from GNN in
memory and then feeds back into user/POI representations.
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Fig. 1. Illustration of MPGRec.

To address the aforementioned challenges, we propose a novel Memory-enhanced
Period-aware Graph neural network to solve the task of general POI Recommen-
dation (MPGRec). Specifically, first of all, a user-POI interaction graph is built
to depict the user interaction history. Then, a novel memory-enhanced period-
aware graph neural network is proposed to learn the user and POI embeddings.
To further characterize the temporal locality, we develop a period-aware gate
mechanism after information propagation to separate the mixed information of
different periods. Moreover, a dynamic memory module is devised to extract and
store the valuable and global information from the GNN module and accordingly
send it back to all nodes, which takes the spatial consistency into account. Fi-
nally, we propose a writing strategy and a reading strategy to merge the GNN
module and memory module into a unified framework, where the writing strategy
is to extract global information learned by the GNN and store it in memory, and
the reading strategy is to send the information that is valuable to a particular
node. The main contributions are summarized as follows:

– We propose a novel Memory-enhanced Period-aware Graph neural network for
POI recommendation (MPGRec). It designs a period-aware gate mechanism
for temporal locality and a dynamic memory module for spatial consistency.

– We propose a writing / reading strategy for the dynamic memory module,
which merges GNN module and memory module into a unified framework.

– Experimental results on four benchmark datasets show that our MPGRec sig-
nificantly outperforms state-of-the-art baselines and demonstrate the effec-
tiveness of the proposed method.

2 Methodology

In this section, we present the proposed MPGRec. Specifically, as illustrated
in Figure 1, based on a user-POI interaction graph, a novel memory-enhanced
period-aware graph neural network is proposed to learn the user and POI em-
beddings. In detail, a period-aware gate mechanism is designed for the temporal
locality to filter out information related to other periods after the message pass-
ing process in GNN. Meanwhile, a dynamic memory module is introduced to
store and disseminate the valuable and global information learned by the GNN



4 Yang et al.

module for all nodes, which takes advantage of spatial consistency. Finally, in
order to merge the GNN module and memory module into a unified framework,
we propose a writing strategy based on the principle of maximizing the expres-
siveness of memory and a reading strategy based on the principle of information
correlation, which enables the memory to extract global information learned by
the GNN and also enables the GNN to successfully benefit from the memory.

2.1 Problem Formulation and Graph Construction

In this paper, we focus on the task of general POI recommendation [3], which
aims to recommend POIs to a given user at a specific time period. Formally, let
U = {u1, . . . , u|U|} denote a set of users, P = {p1, . . . , p|P|} denote a set of POIs,
and T = {t1, . . . , t|T |} denote a set of time periods which are obtained by divid-
ing the timestamps into a specific range. Given a user u ∈ U and current time
period t ∈ T , the problem is defined to recommend POIs p ∈ P that u would be
interested at t. We are aware of that explicit consideration for user/POI location
might improve the POI recommendation [3, 8], but we leave this extension in the
future since it is not the key point focused in this work.

For modeling the user interaction history, similar to existing GNN-based
recommendation methods [4], we construct a user-POI interaction graph, where
each edge representing an interaction instance connects its corresponding user
and POI. Formally, following [4], the user-POI interactions are modeled as a
graph G = (V, E). V = U

⋃
P represents the vertex set, where U is user set, and

P is POI set. For each interaction instance that a user u ∈ U interacted a POI
p ∈ P, we build an edge e = (u, p) ∈ E to represent it. Note that following [4],
we do not explicitly model the time period t into the graph.

2.2 Memory-enhanced Period-aware Graph Neural Network

Formally, the neighborhood aggregation and output rule of the l-th layer can be
abstracted as follows,

v(l+1)
u = fagg(v

(l)
u , {v(l)

p |p ∈ Nu};M (l)
u ), v̂(l+1)

u = gout(v
(l+1)
u ; t), (1)

v(l+1)
p = fagg(v

(l)
p , {v(l)

u |u ∈ Np};M (l)
p ), v̂(l+1)

p = gout(v
(l+1)
p ; t), (2)

where vu and vp are the aggregated embeddings of user u and POI p by ag-
gregation function fagg while v̂u and v̂p are the output embeddings by period-
aware mechanism function gout. Nu and Np are the corresponding neighbors,

and M (l)
u ∈ RK×D and M (l)

p ∈ RK×D are the memory matrices of K slots for
user and POI vertices, respectively. D denotes the embedding size and t ∈ T
denotes the current time period.

In the following paragraphs, Eq.(1) is taken as an example to illustrate the
calculation procedure. Given a target node u and current time period t, suppose

that the memory reader outputs a set of information denoted as M̂
(l)

u ∈ RK×D

for target user u and the corresponding information weight vector α ∈ RK×1
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after memory module calculations (which will discuss in detail in the next sub-
section). fagg is defined as follows,

fagg(v
(l)
u , {v(l)

p |p ∈ Nu};M (l)
u ) =

∑
p∈Nu

1√
|Nu|

√
|Np|

v(l)
p +α⊤M̂

(l)

u . (3)

It is worth noting that in the above formula, the first term represents the neigh-
bor information propagation of the GNN model. The second term represents the
enhancement of the memory module.

Additionally, since the neighbors are of various time periods, the obtained
representations are mixed up with different information specific to different time
periods, thus causing other time-related information to become noise for the
current time period tu. Therefore, we apply a period-aware gating function gout
after the information propagation, which is calculated as follows,

v̂(l+1)
u = gout(v

(l+1)
u ; t) = v(l)

u ∥(v(l)
u ⊙ gt) ∈ R2D, (4)

where gt is the trainable gating vector towards the current time period t in the
period-aware gating function gout(·; ·). Symbol ∥ denotes the concatenation op-
eration to retain both the time period-specific information for temporal locality
and the general information for other characteristics. In this paper, we use dif-
ferent groups of gating vectors for user and POI nodes, but share in different
model layers. Consequently, there are a total of 2|T | gating vectors.

Inspired by LightGCN [4], we do not explicitly integrate the self-connection
information during message passing, but instead, combine this by summing the
embeddings from each layer to form the final representation. Formally,

v̂u =
∑L

l=0
wlv̂

(l)
u , v̂i =

∑L

l=0
wlv̂

(l)
i , (5)

where v̂(0) = v(0)||v(0), L denotes the number of model layers, wl ⩾ 0 denotes
the importance of the l-th layer embedding in constituting the final embedding.
Following [4], we set wl uniformly as 1/(L+ 1).

2.3 Dynamic Memory Module

In this subsection, we present the proposed dynamic memory network designed
for spatial consistency. Specifically, the core of the reading strategy is to de-
termine which information in memory is relevant to a target node and how
important it should be. Traditional memory methods mostly choose attention
module to read memory and assign corresponding importance. We argue that the
non-negativity of attention weights limits the capabilities of memory. Therefore,
we propose a reader with a correlation-based reading strategy. Formally, given
the current information stored in a K-slot memory M ∈ RK×D, the target node
representation v ∈ RD, the output messages M̂ and corresponding correaltion
weights α in Eq. (3) are defined as follows,

M̂ = M ·W (l)
v , α =

1

K
hardtanh((MW

(l)
k ) · (vW (l)

q )⊤/D), (6)
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where W (l)
v , W

(l)
k , W (l)

q is the parameter matrix for value, key, query, respec-
tively. Different from the similarity-based readers that usually use the softmax
function, we choose the hardtanh function to measure correlation, where positive
weight α represents positive correlation, while negative weight represents nega-
tive correlation. Thereby, the ability of memory enhancement increases since it
relaxes the non-negative constraint on the weights.

As for writing strategy, the intuition is that more nodes can benefit from the
memory only when information stored in memory should have the greatest possi-
ble coverage, which is named the principle of maximum memory expressiveness.
Obviously, the K records with the maximum memory expressiveness should have
the smallest sum of the pair-wise correlations with each other. To this end, the
writing strategy finds a memory slot having the most overlapping information
with others, and updates it with the least overlapping information. Formally,
given the current information stored in the K-slot memory M ∈ RK×D and the
representation matrix V ∈ RN×D of N nodes outputted by the GNN module,

m∗ = argmax
i

∑
j ̸=i

|corr(mi,mj)| , (7)

where mi ∈ R1×D denotes a slot of M , and the correlation is measured by
corr(x,y) = x⊤y. Note that information with strong negative correlation is
also worth storing, since our correlation-based reader allows negative weights.
Finally, the information that is most worthy of being written in memory should
have the least overlapping information with the existing slots, formally,

v∗ = argmin
i

∑
mj ̸=m∗

|corr(vi,mj)| , (8)

where vi denotes a row of matrix V . In order to ensure the updating convergence
of memory, the above update operation will be performed if and only if∑

mj ̸=m∗
|corr(m∗,mj)| >

∑
mj ̸=m∗

|corr(v∗,mj)| . (9)

Besides, for the consideration of efficiency and stability, the writer updates 1 ⩽
k ≪ K slots once a step according to the above rules. Note that for initialization,
we randomly selectK node representations from GNN module to build the initial
memory, and then it will be trained by the above writing strategy.

2.4 Model Training

After propagating L layers, the user embeddings v̂u and POI embeddings v̂p

have been obtained. In this section, for model training, we employ the Bayesian
Personalized Ranking (BPR) loss [13], which is a pairwise loss that encourages
the prediction of an observed entry to be higher than its unobserved counter-
parts. Formally,

LBPR = −
∑

u∈U ;p∈Nu;q/∈Nu

lnσ(ŷup − ŷuq), where ŷup = v̂⊤
u v̂p, (10)

Adam optimizer is adopted to train the model in a mini-batch manner.
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3 Experiments

3.1 Experimental Setup

Table 1. Statistics of datasets.
Dataset # User # POI # Interaction Density

Foursquare 830 1,090 21,367 2.4E-02
Gowalla 29,859 40,989 1,027,464 8.4E-04
Yelp 72,093 41,234 1,842,016 6.2E-04
Meituan 200,000 3,559 1,240,419 1.7E-03

Datasets To evaluate the effective-
ness of MPGRec, we conduct exper-
iments on four benchmark POI rec-
ommendation datasets: Foursquare,
Gowalla, Yelp and Meituan1. For
datasets Foursquare, Gowalla and
Yelp, we use the datasets released by a public tool RecBole [19], and elimi-
nate those users with less than 10 check-in POIs, as well as those POIs with
less than 10 visitors. We process their check-in timestamps at equal time inter-
vals to obtain 4 periods. For dataset Meituan, we use the raw dataset without
elimination. The statistics after preprocessed are reported in Table 1.

Evaluation Metrics In the experiments, we randomly select 70%, 10% and
20% of interactions of each user for training, validation and testing, respectively.
We choose the following widely used evaluation metrics: Recall@N, NDCG@N
and HR@N for N=1, 3, 5, 10 and 20. Following [4], all items that are not inter-
acted with by a user are the candidates and a prediction is correct only when
the item and the corresponding time period are both correct.

Baselines We select the following baselines for POI recommendation to val-
idate the effectiveness of our model: GNN-based general recommendation meth-
ods: LightGCN [4], SimGCL [18], HMLET [7]; GNN-based POI recommendation
method: STGCN [3]; memory-based method: MMCF [6].

Implementation Detail Following existing settings [4] for fair comparison,
we set the dimension of node embeddings D = 64, the number of layers L = 2 for
all datasets for all methods. For our model, we set the number of memory slots
K = 50 and update k = 2 slots once a training step. L2 regularization coefficient
is set 1e−5. The learning rate is set 1e−3 for Foursquare, 5e−4 for Gowalla and
Yelp, 1e−4 for Meituan. The batch size is set 2048.

3.2 Overall Results

Table 2 shows the recommendation performance on the four datasets. The ob-
servations and conclusions are discussed as follows.

In all cases, the proposed MPGRec outperforms all the baselines across four
datasets on all metrics. Specifically, MPGRec has achieved an average improve-
ment of 20.5%, 5.4%, 3.7% and 5.3% on the four datasets, respectively, which
validates the effectiveness and robustness of our model. In detail, MPGRec has a
larger improvement ratio when the N (for top N) is smaller, e.g., in terms of Re-
call@N on Meituan, the performance has more than double improvement when
N=1 than N=3. We attribute it to the consideration of both temporal locality
and spatial consistency, which benefits MPGRec to make more accurate pre-
dictions. Besides, the GNN-based methods, especially the powerful LightGCN,

1 https://www.biendata.xyz/competition/smp2021 1/
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Table 2. Overall recommendation performance on the four datasets. The best and
second best results are bold and underlined, respectively. We also report improvement
of MPGRec compared to the best baseline method.

Model
Recall@N NDCG@N HR@N

1 3 5 10 20 1 3 5 10 20 1 3 5 10 20

Dataset: Foursquare

LightGCN 0.0214 0.0506 0.0700 0.0997 0.1563 0.0347 0.0456 0.0533 0.0645 0.0814 0.0347 0.0905 0.1222 0.1760 0.2634
SimGCL 0.0243 0.0495 0.0704 0.1153 0.1707 0.0372 0.0461 0.0548 0.0707 0.0874 0.0372 0.0860 0.1227 0.1926 0.2800
HMLET 0.0211 0.0475 0.0693 0.1158 0.1731 0.0362 0.0431 0.0522 0.0697 0.0866 0.0362 0.0804 0.1176 0.1946 0.2775
STGCN 0.0184 0.0421 0.0571 0.0966 0.1455 0.0327 0.0385 0.0440 0.0588 0.0736 0.0327 0.0719 0.0960 0.1664 0.2479
MMCF 0.0178 0.0513 0.0711 0.0997 0.1521 0.0341 0.0440 0.0526 0.0631 0.0773 0.0345 0.0877 0.1193 0.1697 0.2535
MPGRec 0.0301 0.0613 0.0840 0.1378 0.1954 0.0493 0.0571 0.0662 0.0857 0.1030 0.0493 0.1071 0.1438 0.2278 0.3172

Impr. 23.87% 19.49% 18.14% 19.00% 12.88% 32.53% 23.86% 20.80% 21.22% 17.85% 32.53% 18.34% 17.20% 17.06% 13.29%

Dataset: Gowalla

LightGCN 0.0278 0.0555 0.0750 0.1087 0.1559 0.0592 0.0602 0.0663 0.0775 0.0916 0.0592 0.1159 0.1541 0.2178 0.2973
SimGCL 0.0243 0.0509 0.0697 0.1037 0.1490 0.0546 0.0558 0.0615 0.0727 0.0862 0.0546 0.1077 0.1431 0.2040 0.2762
HMLET 0.0258 0.0527 0.0712 0.1058 0.1535 0.0560 0.0573 0.0628 0.0745 0.0888 0.0560 0.1107 0.1474 0.2119 0.2906
STGCN 0.0178 0.0377 0.0514 0.0762 0.1101 0.0388 0.0408 0.0450 0.0532 0.0634 0.0388 0.0823 0.1114 0.1619 0.2270
MMCF 0.0031 0.0078 0.0115 0.0208 0.0366 0.0071 0.0084 0.0098 0.0131 0.0179 0.0071 0.0187 0.0279 0.0495 0.0852
MPGRec 0.0290 0.0583 0.0787 0.1167 0.1691 0.0613 0.0631 0.0695 0.0821 0.0978 0.0613 0.1221 0.1620 0.2300 0.3146

Impr. 4.32% 5.05% 4.93% 7.36% 8.47% 3.55% 4.82% 4.83% 5.94% 6.77% 3.55% 5.35% 5.13% 5.60% 5.82%

Dataset: Yelp

LightGCN 0.0102 0.0232 0.0335 0.0532 0.0821 0.0196 0.0228 0.0268 0.0337 0.0426 0.0196 0.0446 0.0645 0.1018 0.1451
SimGCL 0.0105 0.0212 0.0284 0.0415 0.0590 0.0184 0.0205 0.0232 0.0278 0.0329 0.0184 0.0377 0.0505 0.0746 0.1060
HMLET 0.0117 0.0233 0.0314 0.0478 0.0719 0.0211 0.0232 0.0262 0.0320 0.0391 0.0211 0.0436 0.0599 0.0919 0.1364
STGCN 0.0018 0.0062 0.0096 0.0181 0.0353 0.0109 0.0111 0.0118 0.0144 0.0202 0.0109 0.0310 0.0445 0.0789 0.1353
MMCF 0.0103 0.0237 0.0337 0.0531 0.0751 0.0191 0.0234 0.0277 0.0332 0.0395 0.0190 0.0460 0.0648 0.1001 0.1441
MPGRec 0.0121 0.0250 0.0349 0.0543 0.0827 0.0222 0.0248 0.0286 0.0355 0.0439 0.0222 0.0470 0.0662 0.1033 0.1546

Impr. 3.42% 5.49% 3.56% 2.07% 0.73% 5.21% 5.98% 3.25% 5.34% 3.05% 5.21% 2.17% 2.16% 1.47% 6.55%

Dataset: Meituan

LightGCN 0.2797 0.3346 0.3538 0.3770 0.4005 0.3039 0.3202 0.3284 0.3365 0.3428 0.3039 0.3605 0.3801 0.4034 0.4265
SimGCL 0.2699 0.2975 0.3065 0.3189 0.3345 0.2949 0.2934 0.2971 0.3014 0.3055 0.2949 0.3221 0.3316 0.3447 0.3613
HMLET 0.2813 0.3330 0.3519 0.3764 0.4014 0.3064 0.3198 0.3280 0.3364 0.3431 0.3064 0.3594 0.3786 0.4027 0.4273
STGCN 0.1840 0.2663 0.3002 0.3396 0.3737 0.1995 0.2377 0.2522 0.2657 0.2749 0.1995 0.2879 0.3237 0.3650 0.3997
MMCF 0.2760 0.3487 0.3629 0.3740 0.3843 0.3053 0.3293 0.3352 0.3391 0.3418 0.3053 0.3766 0.3899 0.4004 0.4103
MPGRec 0.3056 0.3620 0.3766 0.3921 0.4117 0.3357 0.3492 0.3554 0.3608 0.3659 0.3357 0.3894 0.4033 0.4182 0.4374

Impr. 8.64% 3.81% 3.78% 4.01% 2.57% 9.56% 6.04% 6.03% 6.40% 6.65% 9.56% 3.40% 3.44% 3.67% 2.36%

SIMGCL and HMLET, have generally achieved sub-optimal results. However,
STGCN, which should be a SOTA method for POI recommendation, has never
achieved the expected performance. We analyze that this is due to the terri-
ble information mixing caused by its propagation rules, which in turn indicates
the effectiveness of our designs such as the period-aware mechanism. MMCF,
the SOTA memory-based method, has generally performed sub-optimally on
Meituan but poorly on Gowalla. This polarized phenomenon, on the one hand,
verifies the enhancement capability of the memory mechanism, and on the other
hand, reflects the insufficiency of memory that is implemented by a learnable
parameter matrix. This validates our design for the dynamic memory module.

3.3 Ablation Study

In this subsection, we compare our MPGRec with 4 variants to validate the char-
acteristics we have summarized and investigate the effectiveness of each proposed
module in our model. Due to the limited space of the paper, we only report the
performance on metric HR@N since the performances on other metrics are con-
sistent. Specifically, MPGRec\D is a variant that replace the proposed dynamic
memory module with the simple memory implemented as a trainable param-
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Fig. 2. Recommendation performance for ablation study.

eter matrix like [6]. MPGRec\M directly removes the entire memory module,
MPGRec\P removes the period-aware gate mechanim only, and MPGRec\MP

removes both. As reported in Figure 2, the recommendation performance de-
grades with each module removed or modified, which verifies the effectiveness
of each of the proposed modules. In detail, the performance of MPGRec\D is
sometimes even worse than MPGRec\M. This weird phenomenon is caused by
the information gap between memory and GNN module since its expressive-
ness depends on the optimizer. It confirms the effectiveness of our reading and
writing strategies in the dynamic memory module. Besides, the removal of ei-
ther the dynamic memory module (MPGRec\M) or the period-aware mechanism
(MPGRec\P) will reduce the performance, and removing both (MPGRec\MP)
obtains the worst performance. This phenomenon on the one hand proves the
necessity of the summarized characteristics; on the other hand, it also affirms
the module effectiveness of each of our designs.

4 Conclusion

In this paper, we study the general POI recommendation based on the GNN
framework and propose a novel Memory-enhanced Period-aware Graph neu-
ral network for general POI recommendation (MPGRec). In detail, it designs
a period-aware gate mechanism for temporal locality, and a dynamic memory
module for spatial consistency. Besides, we propose a correlation-based read-
ing strategy and a writing strategy to maximize memory expressiveness, which
merges the GNN module and memory module into a unified framework. Finally,
we conduct extensive experiments to verify the effectiveness of our MPGRec.
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