GammaGL: A Multi-Backend Library for Graph Neural Networks

Yaoqi Liu Cheng Yang Tianyu Zhao
Beijing University of Posts and Beijing University of Posts and Beijing University of Posts and
Telecommunications Telecommunications Telecommunications
Beijing, China Beijing, China Beijing, China
yaoqiliu@bupt.edu.cn Peng Cheng Laboratory tyzhao@bupt.edu.cn
Shenzhen, China
yangcheng@bupt.edu.cn
Hui Han Siyuan Zhang Jing Wu
Beijing University of Posts and Beijing University of Posts and Beijing University of Posts and
Telecommunications Telecommunications Telecommunications
Beijing, China Beijing, China Beijing, China
hanhui@bupt.edu.cn 1580124318@qqg.com buptthxy@163.com
Guangyu Zhou Hai Huang Hui Wang
Beijing University of Posts and Beijing University of Posts and Peng Cheng Laboratory
Telecommunications Telecommunications Shenzhen, China
Beijing, China Beijing, China wangh06@pcl.ac.cn
1029175863 @qq.com hhuang@bupt.edu.cn
Chuan Shi*
Beijing University of Posts and
Telecommunications
Beijing, China
Peng Cheng Laboratory
Shenzhen, China
shichuan@bupt.edu.cn

ABSTRACT

Graph Neural Networks (GNNs) have shown their superiority in
modeling graph-structured data, and gained much attention over
the last five years. Though traditional deep learning frameworks
such as TensorFlow and PyTorch provide convenient tools for im-
plementing neural network algorithms, they do not support the
key operations of GNNs well, e.g., the message passing computa-
tion based on sparse matrices. To address this issue, GNN libraries
such as PyG are proposed by introducing rich Application Program-
ming Interfaces (APIs) specialized for GNNs. However, most current
GNN libraries only support a specific deep learning framework as
the backend, e.g., PyG is tied up with PyTorch. In practice, users
usually need to combine GNNs with other neural network com-
ponents, which may come from their co-workers or open-source

“The corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGIR °23, July 23-27, 2023, Taipei, Taiwan.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9408-6/23/07...$15.00
https://doi.org/10.1145/3539618.3591891

codes with different deep-learning backends. Consequently, users
have to be familiar with various GNN libraries, and rewrite their
GNNs with corresponding APIs. To provide a more convenient
user experience, we present Gamma Graph Library (GammaGL), a
GNN library that supports multiple deep learning frameworks as
backends. GammaGL uses a framework-agnostic design that allows
users to easily switch between deep learning backends on top of
existing components with a single line of code change. Following
the tensor-centric design idea, GammaGL splits the graph data into
several key tensors, and abstracts GNN computational processes
(such as message passing and graph mini-batch operations) into a
few key functions. We develop many efficient operators in Gam-
maGL for acceleration. So far, GammaGL has provided more than 40
GNN examples that can be applied to a variety of downstream tasks.
GammaGL also provides tools for heterogeneous graph neural net-
works and recommendations to facilitate research in related fields.
We present the performance of models implemented by GammaGL
and the time consumption of our optimized operators to show
the efficiency. Our library is available at https://github.com/BUPT-
GAMMA/ GammaGL.

CCS CONCEPTS

» Computer systems organization — Embedded systems; Re-
dundancy; Robotics; « Networks — Network reliability.

https://doi.org/10.1145/3539618.3591891

SIGIR °23, July 23-27, 2023, Taipei, Taiwan.

KEYWORDS

Graph Neural Networks, Deep Learning, Frameworks

ACM Reference Format:

Yaoqi Liu, Cheng Yang, Tianyu Zhao, Hui Han, Siyuan Zhang, Jing Wu,
Guangyu Zhou, Hai Huang, Hui Wang, and Chuan Shi. 2023. GammaGL: A
Multi-Backend Library for Graph Neural Networks. In Proceedings of the
46th International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR °23), July 23-27, 2023, Taipei, Taiwan. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3539618.3591891

1 INTRODUCTION

Graph is a relational data structure with a set of nodes and edges,
and can be used to model many real-world scenarios, e.g., social rela-
tion network, citation network, and e-commerce network. To model
graph-structured data, Graph Neural Networks (GNNs) can learn
effective representations of nodes, edges, or graphs based on deep
learning, and have achieved state-of-the-art (SOTA) performance
in many graph-based tasks in the last five years [22, 31, 36, 59].

Traditional deep learning frameworks like TensorFlow [1] and
PyTorch [34] make it easier and faster to build deep learning al-
gorithms without knowing underlying details. However, imple-
menting GNNs with these traditional frameworks will cause low-
efficiency issues due to the following challenges:

o Most deep learning frameworks provide data management
for regular data like images or texts. But graphs are non-
Euclidean, irregular, and more complex. For example, a het-
erogeneous graph contains graph topology, type information,
and features. Typical deep learning frameworks do not have
a proper way to store and query graphs.

e Real-world graphs are usually sparse. Using the calculation
methods for dense data will lead to a waste of computing
and memory resources. Typical deep learning frameworks
usually lack enough support for calculating sparse data.

e Real-world graphs have a large number of nodes that can
reach millions or even billions. Graph mini-batch training
is a solution to extend the algorithms under memory limits.
However, graph mini-batch training involves graph slicing,
which needs the consideration of node-dependent properties
and makes it non-trivial to get the data for the current batch
like images or texts.

To address the above challenges, several GNN libraries like
PyTorch-Geometric (PyG) [13] and Deep Graph Library (DGL) [44]
were proposed and can provide tools like graph data management,
sparse data operation, and large-scale graph training. Some toolkits
like CogDL [7], TorchDrug [58], and Recbole-GNN [54, 55] can also
help users to implement GNN algorithms for different applications.
We list some mainstream GNN libraries and toolkits in Table 1.

However, most current GNN libraries only support a specific
deep learning framework as the backend, e.g., PyG is tied up with
PyTorch. In practice, it would be much more convenient for users
if the library can switch between different deep-learning backends.
For example, users usually need to combine GNNs with other neu-
ral network components, which may come from their co-workers
or open-sourced codes with different deep learning backends. In
this case, users have to be familiar with various GNN libraries,
and rewrite their GNNs with corresponding APIs. Moreover, some

Yaoqi Liu, Cheng Yang, Tianyu Zhao, Hui Han, Siyuan Zhang, Jing Wu, Guangyu Zhou, Hai Huang, Hui Wang, and Chuan Shi

users may have hardware limitations, e.g., they only have Huawei-
Ascend instead of Nvidia-GPU. Note that the supported hardware
devices of GNN libraries are determined by the backends. Most
existing GNN libraries are based on TensorFlow or PyTorch, and
only support Nvidia-GPU hardware. Supporting multiple backends
will also increase the hardware usability of a GNN library.

In this work, we introduce Gamma Graph Library (GammaGL), a
multi-backend library for GNNs based on TensorLayerX (TLX)! [30],
a deep-learning framework encapsulating four backends. We sum-
marize the features of GammaGL as follows:

e Multi-backend support: GammaGL supports multiple deep
learning backends, including TensorFlow [1], PyTorch [34],
PaddlePaddle [33], MindSpore?. GammaGL allows users to
switch between different backends with a single line of code
change. Thus, a GNN will be implemented with the same
script across different backends. After specifying a backend
in GammaGL, users can also use other APIs in the backend
simultaneously.

o Tensor-centric: Most GNN libraries and toolkits adopt tensor-
centric design principles such as PyG. To provide users with
familiar interfaces and help them learn our library quickly,
GammaGL also utilizes tensor-centric APIs and is friendly
to users familiar with existing GNN libraries.

e Heterogeneous GNN models: Compared with typical ho-
mogeneous graphs, heterogeneous graphs contain richer
information on node and edge types, and are widely used in
modeling recommendation systems, e.g., the interactions
among users, items, and sellers can be represented as a
heterogeneous graph. GammaGL also implements popu-
lar heterogeneous graph neural network models, tools, and
pipelines to assist relevant research and applications.

e Recommendation pipeline: Graph-based recommenda-
tion is one of the most popular recommendation scenarios.
GammaGL provides several graph-based recommendation
models and a training pipeline for users. Users may utilize
the pipeline and tools to design and evaluate their graph-
based recommendation models.

We will introduce GammaGL in detail in the following sections.
The core design of GammaGL will be described in Section 2. In
Section 3, we will make a comparison with other GNN libraries and
show our features. Section 4 will conduct experiments on popular
graph tasks and present the performance of our efficient operators.

2 SYSTEM DESIGN

In this section, we will present the system design of GammaGL.
As shown in Figure 1, GammaGL is built on TensorLayerX [30],
a multi-backend AI framework, which covers most deep learning
features. However, as TensorLayerX lacks functions for GNN, we
design three key components: data management, message passing
paradigm, and sampling operators for building GNN models. We
also implement and encapsulate computation operations across
backends. We will introduce each key module in the following
parts.

!https://github.com/tensorlayer/TensorLayerX
Zhttps://github.com/mindspore-ai/mindspore

https://doi.org/10.1145/3539618.3591891

GammaGL: A Multi-Backend Library for Graph Neural Networks

SIGIR ’23, July 23-27, 2023, Taipei, Taiwan.

Table 1: Open-source GNN libraries and toolkits. (framework-neutral means supporting multi-backend but requires more code
modifications when switching backends, while framework-agnostic means supporting multi-backend with a single line of code

change when switching backends.)

. Programming | Heterogeneous | Efficient Message | Efficient Sampling | Recommendation
Multi-Backend g;Style i GI%IN Passing Operatir Operatorp ¢ Pipeline
PyG [13] - tensor-centric v v v -
DGL [44] framework-neutral | graph-centric v v v -
PGL [33] - graph-centric v v v -
TFG [24] - tensor-centric - - v -
Graph-learn [56] - tensor-centric v v v -
CogDL [7] - tensor-centric v v - -
TorchDrug [58] - tensor-centric - - - -
StellarGraph [11] - tensor-centric v - v -
Spektral [17] - tensor-centric - - -
RecBole-GNN [54, 55] - tensor-centric v - v
GammaGL framework-agnostic | tensor-centric v v v v

Models

\ Pre-Defined Models and Examples I

I User-Defined Models]

4

Message Passing
Message Reduce Update
Function || Function || Function

z

{ ops.segment_xxx OR ops.scatter_xxx]

Sampling

[Mini-Batching } [Neighbor Sampling]

[| (s
4 4
Storage & Query
[Graph/HeteroGraph/BatchGraph
f

| Transforms |

[Datasets J

Figure 1: The architecture of GammaGL.

2.1 Multi-backend Support

To satisfy the diversity of users’ commands, the most exciting design
principle of GammaGL is supporting multi-backend. Each module
in GammaGL is compatible with four mainstream backends with a
unified APL, which allows users to switch backends by setting an
environment variable. Next, we will introduce the design of our
multi-backend support.

Like most domain packages, GammaGL is built on top of the deep
learning frameworks, enjoying most deep learning features (e.g.,
automatic differentiation, rich neural networks, and operation, data
management). To support different backends, GammaGL is built on
TensorLayerX, which is a multi-backend deep learning framework
that encapsulates TensorFlow [1], PyTorch [34], PaddlePaddle [33],
MindSpore, and so on. Besides, it allows users to run the code on
different hardware like Nvidia-GPU, Huawei-Ascend, Cambricon,
and more.

Although TensorLayerX provides rich deep learning APIs to
implement neural networks across backends, it still lacks the nec-
essary functions for GNN implementation, which is a common
problem for traditional frameworks like Tensorflow, and PyTorch.
Therefore, GammaGL builds three key modules to support GNN
implementation based on native operators of TensorLayerX, which
could also support different backends. Besides, for efficiency, Gam-
maGL also implements and encapsulates computation operations
across backends, which will be introduced later. As for modules
outside of GNN, GammaGL could directly use the operations in
existing frameworks without reinventing the wheel.

2.2 Data Management

Although most deep learning frameworks provide data manage-
ment features, they are only suitable for regular data like images
and texts and unfriendly for irregular data like graphs. GammaGL
builds the data management module to abstract graph data and pro-
cess datasets, which offer data storage and query for other modules.

2.2.1 Graph Data Abstration. The basic graph data structures in
GammaGL are Graph, HeteroGraph, and BatchGraph, which are used
for homogeneous, heterogeneous, and batch graphs, respectively.
In this part, we will describe the details of the data storage.

Graph. In graph theory, researchers study graphs with a set
of nodes and edges, ie, G = (V,E), where V means node sets,
& means edges representing nodes connectivity. GammaGL in-
troduces G = (A, X,Y), where A € RIVIXIVl is the adjacency
matrix representing the connectivity of a graph, as shown in Eq.
(1). Although A contains rich structural information, it is far from
enough to store feature (or attribute) information in deep learning.
So X € RIVI*4 is defined to represent the node feature matrix used
in core computation named Message Passing in GNN, where d is
the feature dimension. To optimize the model, the label information
is introduced, e.g., Y is the node label matrix.

Graph used to represent real-world scenarios is usually sparse,
which means most elements of the adjacency matrix A are zero.
Therefore, GammaGL denotes graph structure with a sparse matrix
in a coordinate (COO) format. Specifically, a triplet (i, j, k) can

SIGIR °23, July 23-27, 2023, Taipei, Taiwan.

represent a nonzero element in A, where (i, j) is the edge index,
and k is the edge weight, which corresponds to the k in EQ.(1). If
not considering node type or edge type, GammaGL models graph as
a homogeneous graph with (edge_index, edge_weight, x, y), where
edge_index with edge_weight, x, and y correspond to the matrix A,
X, and Y, respectively.

|k (j)e&k#£0
Aij ‘{ 0 (iL)¢E W

Processing the adjacency matrix with the COO sparse matrix
has the following advantages:

e Compared with dense matrices, COO sparse matrices can
save more memory consumption in most graphs.

e The core computation of GNN is message passing, which
means the computation complexity is proportional to the
number of edges. The COO sparse matrix in GNN will reduce
the computation compared with the dense matrix.

HeteroGraph. Heterogeneous graphs are graphs with more than
one node type or edge type, which contain richer semantic infor-
mation and a more complex structure. As a powerful method, Het-
erogeneous Graph Neural Network (HGNN) models are applied in
many scenarios with more complex model structures such as graph-
based recommendations. Providing enough HGNN-related APIs
will facilitate the development of HGNN and other applications.
Heterogeneous graphs can be treated as a set of relational sub-
graphs, which is a set of nodes and edges with the same edge type.
Therefore, in GammaGL, heterogeneous graphs are represented as
HeteroGraph, which contains multi-relational sub-graphs [53]. As
for differences in types and dimensionality, the feature of nodes
will be processed into a dictionary with node type as the key, and
features as the value. To summarize, A heterogeneous graph can
be modeled as (edge_index_dict, edge_weight_dict, x_dict, y_dict),
where the elements are nested with a dictionary. The other design
principle is similar to that of the Graph object.

BatchGraph. The graph-level task aims to research a batch of
graphs. However, due to the different number of nodes in graphs,
calculating on a batch of graphs simultaneously with traditional
deep learning frameworks is not easy. In GammaGL, we put the ad-
jacency matrix of each graph into the diagonal of a chunking matrix,
and we concatenate the node features of graphs in the node dimen-
sion so that we can carry out training on multiple graphs in parallel.
The object that contains multiple graphs in GammaGL is Batch-
Graph. A BatchGraph can be modeled as (edge_index, edge_weight,
x, 3, offset), where edge_index, edge_weight, x, and y are inheriting
from Graph or HeteroGraph. offset is an integer vector that is used
to determine which nodes each graph contains. For example, The
i-th graph contains nodes with IDs from offset[i] to offset[i+1].

2.2.2 Dataset Management. Although traditional deep learning
frameworks like PyTorch have provided data management modules,
they still lack the core functions for graph data pre-processing and
transformation. For example, users wish to add metapath in hetero-
geneous graphs to support some GNN models like HAN [46], which
is difficult using modules in deep learning frameworks. Therefore,
the graph dataset management module is provided in GammaGL.
With this module, users can do any complex pre-processing or
transformation operations.

Yaoqi Liu, Cheng Yang, Tianyu Zhao, Hui Han, Siyuan Zhang, Jing Wu, Guangyu Zhou, Hai Huang, Hui Wang, and Chuan Shi

The dataset module is used for downloading, processing, sav-
ing, and loading data from external resources. GammaGL supports
a lot of built-in datasets covering various applications like node
classification, link prediction, graph classification, and APIs for
customized datasets.

As some common operations like downloading, and file manage-
ment have already been done in our base class, users can create
their datasets by inheriting the base class and making their adjust-
ments. For example, users can specify the downloading URLs, and
perform the pre-processing operations they expect.

2.3 Message Passing Module

GNN message passing is considered the most popular computation
paradigm in GNN at present. Most of the GNN algorithms can be
expressed as three steps: message creation, neighbor aggregation,
and feature update. Here are the detailed expressions:

m{+D = [0) (xl.(l),xj(.l),wél)) ,(i,e,j) € &
R = p ({m(lH) : (i,e, j) € 8}) (2)

xJ(.l+1) =y (h(l+l),x](.l)) ,jeV

where ¢ is the message creation function, p is the neighbor aggrega-

tion function, ¢ is the feature update function, i and j is the source
()

and target node, e is the edge, x;

[, and w‘gl) is the edge weight of edge e in layer [.

The message passing module, as the computational core com-
ponent of GNNs, determines the computational efficiency of GNN
libraries. Traditional deep learning frameworks lack the support for
GNN computation as the GNN computation is essentially sparse,
while traditional deep learning frameworks and TensorLayerX focus
on dense tensor computation, and provide less support for sparse
computation. Therefore, we have developed a unified message-
passing module across four backends, which can be considered an
extension of TensorLayerX. We have also optimized the inefficient
operators by using underlying optimization to be compatible with
hardware after comparing the efficiency of operators under dif-
ferent backends. Moreover, following the design of PyG and DGL,
we have developed efficient fused operators [49]. As shown in Eq.
(2), in the message creation step, common methods are gathering
features from nodes and packing them into message tensors, which
consumes more memory. By fusing the message creation and neigh-
bor aggregation, we can avoid edge data generation and improve
the efficiency of the computation.

MessagePassing is the base class for message passing in Gam-
maGL which contains functions message, aggregate, and update that
correspond to the three steps in Eq. (2). All graph neural layers de-
signed based on message passing need to inherit from this class and
override some of the functions as needed. The detailed description
is listed here.

is the feature of node i in layer

o message: The message function is mainly used in the process
of message creation and sending to the edge. For example,
the message function in GCN [29] returns the features of
the source node itself, and the message function in GAT [41]

GammaGL: A Multi-Backend Library for Graph Neural Networks

calculates the attention coefficients of the source and tar-
get nodes through the attention mechanism and uses the
coefficients as the weights of the sent messages.

o aggregate: The aggregate function is responsible for the pro-
cess of aggregating messages from neighbor edges, which
generally takes the form of sum, mean, max, min, LSTM [23],
etc. GCN, and GAT all use the sum method.

o update: The update function usually returns the input value
itself. In some cases, such as models that require adding resid-
ual connections, the update function needs to be modified.

For fused operations, we also provide method message_aggregate,
which integrates the process of message creation and neighbor
aggregation. Using this method can improve the efficiency of some
concise aggregation models, such as GCN [29], SGC [48], etc.

2.4 Sampling Operator

Real-world graphs are usually large and may contain millions or
billions of nodes. Directly applying GNN on a such large graph will
result in out-of-memory (OOM). In computer vision, researchers
can directly split images into multi-batches and train models with
a mini-batch of images so that a common computer can train the
model. Traditional deep learning frameworks and TensorLayerX
provide mini-batch APIs for these independent data. However,
graph is data-dependent, which means the random splitting causing
information lack could not be simply applied to graphs. To get the
embedding of target nodes, we need to sample the neighbors of
these nodes while traditional deep learning frameworks lack such
domain-specific operations. Therefore, it is necessary to develop a
sampling module to deal with this challenge.

We have designed NeighborSampler to sample neighbors for a
batch of target nodes. The sampling procedure will not involve
the gradient descent algorithm, which means this module is inde-
pendent of the deep learning framework. To sample neighbors effi-
ciently, GammaGL develops operations with Cython and achieves
parallel sampling on GPU. Next, we construct batches of bipartite
graphs with the sampled nodes and extract corresponding node
features. Last, we feed these bipartite graphs with features into the
model and train the model as usual.

2.5 Implemented GNN Models

Based on the key components of GammaGL, we have implemented
40+ GNN models covering various methods like supervised, un-
supervised, random walk, and heterogeneous graph learning. The
models are listed in Table 2. The performance in Section 4 can
demonstrate the effectiveness of our implementation.

3 CONNECTION AND DIFFERENCE WITH
OTHER GNN LIBRARIES

Several GNN libraries have emerged in recent years. For example,
PyTorch-Geometric (PyG) [13] and Deep Graph Library (DGL) [44]
are the most widely used libraries. tf_geometric [24], Spekral [17],
and StellarGraph [11] are libraries based on TensorFlow. Paddle
Graph Library (PGL) [33] is an efficient and easy-to-use GNN library
based on PaddlePaddle. Graph-learn [56] is a distributed framework
designed for the development and application of large-scale GNNs.

SIGIR ’23, July 23-27, 2023, Taipei, Taiwan.

Table 2: Implemented GNNs in GammaGL.

GCN [29] GAT [41]
GraphSAGE [19] GCNII [8]
ChebNet [12] JKNet [51]
DGCNN [47] APPNP [16]
AGNN [39] SIGN [14]
. . GNN-FiLM [5] DropEdge [36]
Supervised Learning HardGAT [15] Mil))cHogp 2]
HCHA [3] GATv2 [6]
GEN [45] FAGCN [4]
SGC [438] GAE [28]
VGAE [28] SEAL [52]
GIN [50] PNA [10]
GPRGNN [9] GRACE [57]
Unsupervised Learning Gﬁs}éiﬁl\gz[f]ﬂ M];EEII’I[’ 4[22]7]
InfoGraph [38]
Random Walk Model Node2Vec [18] DeepWalk [35]
RGCN [37] HAN [46]
HGT [25] SimpleHGN [32]
HGNN HPN [26] LightGCN [22]
CompGCN [40]

Here, we will give a detailed discussion about the connection and
difference between GammaGL and these libraries.

3.1 Framework-agnostic

Most libraries or toolkits shown in Table 1 only support a sin-
gle backend. In practical applications, users prefer a certain deep
learning framework for its unique features or API style and some
modules outside of the GNN library may be implemented with
other deep learning frameworks. Users who want to use these
GNN libraries or toolkits have to use the backend they support or
convert the implemented modules to the corresponding code im-
plementation. However, in GammaGL, users do not have to worry
about this problem. Users can choose their preferable deep learning
framework among the four backends.

Although DGL can support multi-backend, it is a framework-
neutral design, which means only graph-related operations are
general to multi-backend, while other modules are associated with
backends. As a result, for a complete GNN training procedure,
users need to modify part of the codes when switching different
backends. For example, we can see from Figure 2, which gives an
example of implementing the GCN convolution layer using DGL
with PyTorch and Tensorflow, respectively. Users who want to
switch the backends in DGL need to modify part of the code. We
summarize the changes as follows:

o The parent class to be inherited, e.g., modify torch.nn.Module
to tensorflow.keras.layers.Layer in line 1.

o The parameters and the initialization in lines 6, 7, and 8.

e The tensor operations related to the deep learning frame-
works in line 15.

SIGIR °23, July 23-27, 2023, Taipei, Taiwan.

(torch.nn)8
2 s >
GraphConv, self). init ()
in_feats in_feats

out_feats - out_feats
self.weight = nn.Para r(th.Te

)8

or(in_feats, out_feats))

torch.nn.init.xavier_uniform_(self.weight)

(, s ,
graph.local_scope():
feat_src, feat_dst = expand_as_pair(feat, graph)

weight None:

weight sel f.weight
feat_src = torch.matmul(feat_src, weight)
graph.srcdatal] = feat_src
graph.update_all(fn.copy_u("),

fn. sum(5))
rst graph.dstdata[1
rst

None) :

Yaoqi Liu, Cheng Yang, Tianyu Zhao, Hui Han, Siyuan Zhang, Jing Wu, Guangyu Zhou, Hai Huang, Hui Wang, and Chuan Shi

(tf.keras.layers)

t s s)i
(GraphConv, self). init_ ()
f._in_feats - in_feats
self._ out_feats = out_feats
xinit = tf.keras.initializers.glorot_uniform()
self.weight = tf.Variable(xinit(
(in_feats, out_feats), Yo True)
(s . s None):
graph.local_scope():
feat_src, feat_dst = expand as_pair(feat, graph)
weight None:
weight self.weight
feat_src = tf.matmul(feat_src, weight)
graph.srcdata[1 feat_src
graph.update_all(fn.copy_u(9 o
fn.sum(5))
rst - graph.dstdatal 1
rst

Figure 2: The implementation of GCN convolution with PyTorch and Tensorflow in DGL. (The implementation on the left is
using PyTorch and the right is Tensorflow, which is the full name of tf.)

s 5 DL
(GCNConv, self)._ init_ ()
in_channels in_channels
sel f.out_channels out_channels

self.linear = tlx.layers.Linear(out_channels
in_channels,
»
None)
5 5% , None, None):
x = self.linear(x)
out = self.propagate(x, edge_index, weights,
num_nodes)
out

_(self, ,
~(GCNConv, self). init ()
in_channels = in_channels
self.out_channels out_channels
self.linear = pyg.nn.dense.linear(

in_channels,
out_channels,

False,
)
(s X c None, None) :
x = self.linear(x)
out self.propagate(edge_index, X, edge_weight,
size)
out

Figure 3: The implementation of GCN convolution with GammaGL and PyG. (The implementation on the left is using GammaGL

and the right is PyG.)

However, the design of GammaGL is truly framework-agnostic.
The code implemented in GammaGL not only supports multi-
backend but also needs a single line of code change when switching
different backends. We can refer to the left code in Figure 3. Our
implementation has already supported the four backends. Users
only need to modify a single line to specify their backend without
changing other codes. Here are two ways to specify backends in
GammaGL.

Command line
TL_BACKEND=tensorflow python train.py

Python Script

Support tensorflow, torch, paddle, mindspore
import os

os.environ['TL_BACKEND'] = 'tensorflow'

3.2 Tensor-centric

Most of the GNN libraries and toolkits utilize a tensor-centric design.
For example, PyG the most widely used GNN library provides
tensor-centric API. GammaGL also adopts the tensor-centric design.
As many users are familiar with these APIs, our APIs are designed
to be as similar as possible to the design of other libraries and
toolkits. The code snippet presented in Figure 3 gives an example
of implementing a toy graph convolution layer with GammaGL
and PyG. We can find that the code in GammaGL is similar to PyG.
Moreover, if users want to import the modules from other libraries

that are based on the backend we support, they can directly use
them without modifying too many lines of code in GammaGL.

Some other libraries like DGL use graph-centric design, which
takes graphs as the central object. Graph-centric design can improve
software consistency but can be more difficult for beginners to
understand. We can compare Figure 2 and Figure 3, the graph-
centric and the tensor-centric code example. The algorithms are
built around the graph in DGL, while the algorithms are built around
the tensor in GammaGL.

3.3 Heterogeneous GNN

Heterogeneous graphs are powerful data structures to model real-
world scenarios such as recommendations. They often contain com-
plex structures and rich semantic information. HGNNs can be used
to learn the representations of heterogeneous graphs and are getting
popular for their excellent performance. However, processing het-
erogeneous graphs is difficult. On the one hand, the source data can
be stored in different formats. On the other hand, the complexity of
HGNNS s leads to a diversity of heterogeneous graph structures [20].

Some GNN libraries like TFG, TorchDrug, and Spektral do not
have any modules for HGNNSs. Other libraries like DGL and PyG
take heterogeneous graphs as a Python dictionary of relational sub-
graphs. They also provide useful tools to pre-process heterogeneous
graphs and implement HGNN algorithms.

In GammaGL, we use a similar design to PyG and DGL. We store
heterogeneous graphs as a dictionary. We have implemented some

GammaGL: A Multi-Backend Library for Graph Neural Networks

utilities for heterogeneous graphs pre-processing. We also provide
more HGNN examples for users to choose from compared with
PyG and DGL.

Table 3: Description of the datasets.

#Nodes #Edges #Ntypes | #Etypes | #Graphs
Cora 2,708 10,556 1 1 1
PubMed 19,717 88,648 1 1
MUTAG avg17.9 | avg39.6 1 1 188
IMDB-BINARY | avg 19.8 avg 193.1 1 1 1,000
IMDB 11,616 17,106 3 2 1
ogbn-arxiv 169,343 1,166,243 1 1 1
Reddit 232,965 | 114,615,892 1 1 1

3.4 Recommendation

The graph-based recommendation is a downstream task of GNN.
Many GNN models for recommendations are emerging. However,
many GNN libraries and toolkits do not provide a pipeline for
recommendations except Recbole-GNN, which is a toolkit specially
designed for graph-based recommendations.

In GammaGL, we provide a graph-based recommendation pipeline,
which contains data processing like data downloading and negative
sampling, several models for the graph-based recommendation, and
the definition of loss functions.

4 EVALUATION

To verify the consistency of performance across different back-
ends, we conduct several experiments on different tasks, like node
classification, link prediction, and graph classification, which are
mainstream GNN research scenarios. Besides, we also give the time
consumption of our efficient operators compared with PyG and
DGL operators.

All of the datasets we used are listed in Table 3. The datasets Cora
and PubMed are used for node classification and link prediction.
The datasets MUTAG and IMDB-BINARY are used for graph classifi-
cation, which contain multiple graphs so the number of nodes and
edges are averaged. The datasest Cora, PubMed, ogbn-arxiv, and
Reddit are used to test the efficiency of our operators.

4.1 Node Classification

Under a semi-supervised setting, the node classification task is to
classify the nodes utilizing a small part of node labels and graph
structure information. To reduce variance, we repeat 5 times, and
report average and standard deviation results.

We first conduct node classification experiments on homoge-
neous GNN models like GCN [29], GAT [41], GraphSAGE [19],
AGNN [39], SGC [48] with dataset Cora and PubMed. As shown
in Table 4, the performance of the models implemented in Gam-
maGL shows a high reproducibility of the results reported in the
respective papers and are consistent under different backends. The
performance ranking order of models is almost consistent across
different backends.

We also conduct node classification tasks on heterogeneous GNN
models like RGCN [37], HGT [25], HAN, HPN [26] with dataset
IMDB under the same setting. Table 7 lists the performance of these

SIGIR ’23, July 23-27, 2023, Taipei, Taiwan.

models. Some results like the RGCN results may not be satisfactory
as the implementation of HGNN is complex and it may not be
suitable for this dataset. The other results show the effectiveness of
the HGNN models in GammaGL.

4.2 Link Prediction

Link prediction is an important task in GNNs, which is applied in
many scenarios like recommendations. The task usually splits ex-
isting edges as train/valid/test edges. We evaluate models GAE [28]
and VGAE [28] on dataset Cora and PubMed under four backends.
We repeat 5 times, and report the average and standard deviation
of the area under the ROC curve (AUC) in Table 5. Due to the ran-
dom split, the variance resulting from the backend is larger than
the node classification task. However, the errors across different
backends are almost less than 1%.

4.3 Graph Classification

Graph-level tasks could be applied in many promising scenarios,
like drug discovery. We choose models infograph [38] and GIN [50],
which is designed for graph classification, to run on dataset MUTAG
and IMDB-BINARY with four backends. Similar to node classifica-
tion, we also run five times to get the average accuracy and list
them in Table 6. Although the variance of GIN is much larger than
infograph, different backends represent the variance of the same
size, which verifies the consistency of implementation in different
backends of GammaGL.

105g
: PyG
104 9948.4 GammaGL
- 1989.9
3.
’g 10%+ 518.4
© 10%: 67.4 90.6
£ 31.7
[. 13.2
10%+ a4,
0.
10%+ 0.5, 5
: : OOM
cora pubmed ogbn-arxiv cora pubmed ogbn-arxiv
CPU GPU

Figure 4: The time consumption of PyG.scatter_max and
GammaGL.segment_max. (The left outcome is running on
CPU and the right is running on GPU, OOM means out of
memory.)

4.4 Efficiency Experiment

Traditional deep learning frameworks and TensorLayerX do not of-
fer high-level API for message passing and sampling operations, so
we optimize and develop some low-level operators and encapsulate
them into APIs for high-level applications.

SIGIR °23, July 23-27, 2023, Taipei, Taiwan.

Yaoqi Liu, Cheng Yang, Tianyu Zhao, Hui Han, Siyuan Zhang, Jing Wu, Guangyu Zhou, Hai Huang, Hui Wang, and Chuan Shi

Table 4: The accuracy of node classification. (%)

Cora PubMed
Backend . .
Model TensorFlow | PyTorch | PaddlePaddle | Mindspore | TensorFlow | PyTorch | PaddlePaddle | Mindspore
GCN 81.92+0.83 | 81.86+0.55 81.83+0.22 81.50+£0.64 | 79.50+0.45 | 79.08+0.27 78.62+0.30 79.28+0.17
GAT 83.26£0.96 | 82.44+0.43 83.54+0.75 82.90+0.53 78.64+0.41 | 78.50+0.75 78.82+0.71 78.62+0.52
GraphSAGE 83.32+0.84 | 81.13+1.08 82.94+0.72 82.24+0.92 78.61£0.58 | 78.81+0.64 78.43+0.62 77.80+0.83
AGNN 83.28+0.64 | 83.00+0.65 83.48+0.35 83.16+0.43 79.02+0.82 | 79.10+0.20 78.94+0.43 79.80+0.40
SGC 81.45+0.37 | 81.69+0.18 81.65+0.20 81.62+0.32 79.10£0.00 | 79.16+0.05 79.17£0.05 78.83+0.12
Table 5: The AUC of link prediction. (%)
Cora PubMed
Backend . .
Model TensorFlow | PyTorch | PaddlePaddle | Mindspore | TensorFlow | PyTorch | PaddlePaddle | Mindspore
GAE 91.30+£0.85 | 92.02+0.44 91.16+0.73 91.05+0.58 81.92+0.83 | 81.86+0.55 81.83+0.22 81.50+0.64
VGAE 92.91£0.62 | 90.80+0.32 91.42+0.23 91.23+£0.47 83.26+£0.96 | 82.44+0.43 83.54+0.75 82.90+0.53
Table 6: The accuracy of graph classification. (%)
MUTAG IMDB-BINARY
Backend . .
Model TensorFlow | PyTorch | PaddlePaddle | Mindspore | TensorFlow | PyTorch | PaddlePaddle | Mindspore
infograph 89.20£0.25 | 90.65+0.20 89.20+0.53 89.56+0.36 72.00£0.15 | 72.15%0.23 72,13+£0.12 72.11+£0.14
GIN 89.76£5.59 | 89.39+4.22 90.10+5.72 89.49+5.56 83.80+£5.71 | 82.40+5.32 81.80+5.64 81.40+5.36
Table 7: The accuracy of HGNN on IMDB. (%) 105+
: 26323.6 PyG
Backend 104) CaMmaGE
Model TensorFlow | PyTorch | PaddlePaddle | Mindspore
RGCN 48.54+0.62 | 48.30+1.20 | 48.44%1.10 | 48.26+0.94 . SR s 0
HGT 55.9842.09 | 54.93+1.34 | 54513199 | 5471159 107 1
HAN 57.78£0.51 | 55.66£1.05 | 56.58+0.51 | 56.74+0.68 g :
HPN 58.05£0.38 | 57.23£0.47 | 57.75+0.34 | 57.51%0.36 o 102: 795
IS : 35.1
= : 16.3
107: By
. . : 1.9
4.4.1 Message Passing Operators. For message-passing operators, 100 - 0.9
we have developed the segment_max and segment_sum in the Py- : 0.3y, ool

Torch and PaddlePaddle backends, respectively. In addition, we
refer to the operator-fusion strategy used in PyG and DGL and de-
sign the fused operator spmm_sum to fuse the message creation and
aggregation, which can greatly reduce memory and time consump-
tion of message passing computation. We conduct our experiments
on CPU and GPU, respectively, with datasets Cora, PubMed, and
ogbn-arxiv by randomly assigning a 256-dimension feature to each
node. For segment_sum, we use the PaddlePaddle backend to test
our original implementation while PyG uses the PyTorch backend
as it does not support PaddlePaddle. For spmm_sum, we use PyTorch
as the backend to ensure the fairness of the test. Our experiment
environment is also listed below.

Machine Environment. Our experiments are conducted on
the servers with RTX 2080Ti (12GB version) and Intel(R) Xeon(R)
Silver 4210 CPU @ 2.20GHz. The software environment includes
torch 1.10.1+culll, tensorflow 2.8.0, paddlepaddle 2.3.2.post111,
mindspore 1.8.1, dgl 0.9.0, and torch-scatter 2.0.9.

cora pubmed ogbn-arxiv cora pubmed ogbn-arxiv

CPU GPU

Figure 5: The time consumption of PyG.scatter_sum and Gam-
maGL.segment_sum. (The left outcome is running on CPU
and the right is running on GPU, OOM means out of mem-

ory.)

Figure 4 and Figure 5 show the time consumption of PyG op-
erators, and the optimized implementation of segment_max and
segment_sum, respectively. The operators in PyG are scatter_max
and scatter_sum, but we do not get similar operators in DGL due to
its graph-centric design. For the segment_max operator, our opti-
mized implementation has achieved about 5x on CPU and 1.6X in
GPU compared with scatter_max in PyG. Our optimized operator

GammaGL: A Multi-Backend Library for Graph Neural Networks

PyG
3 e 873.4
10 E GammaGL :
330.4
m
S 2
~— 10°-=
(0] : 59.9
g : 46.0 38.1
'_
11.4
10 - 7.8
2.2 OOM
cora pubmed ogbn-arxiv

Figure 6: The time consumption of PyG.gather+scatter_sum,
DGL.copy u+sum, and GammaGL.spmm_sum. (Only tested
in GPU, OOM means out of memory.)

Table 8: Time consumption (s) of sampling in different GNN
libraries.

PyG DGL GammaGL

Full Sample (CPU) 11.00+0.50 | 9.80+0.20 | 11.65+0.20
Sub-graph Sample (CPU) | 10.50+0.30 | 9.50+0.20 | 11.20£0.20
GPU Sample 1.60+0.05 | 0.53+0.04 | 2.55+0.01

can still perform efficient operations, while operators in PyG would
run out of memory. For the segment_sum operator, it is about 15X
on CPU and 1.8x on GPU faster compared with the scatter_sum in
PyG.

From Figure 6, we can see the spmm_sum on GPU gets the best
performance compared with PyG and DGL. The copy_u+sum in
DGL can also generate a fused operator, which performs similar
functions. We get 30X faster compared with gather+scatter_sum in
PyG, and 8x compared with copy u+sum in DGL.

4.4.2 Sampling operators. The sampling operators in GammaGL
are developed using Cython without any deep learning framework.
We also implement sampling on GPU to speed up the sampling
process.

We perform experiments on the Reddit-self-loop dataset, with
the number of neighbors of the two layers 25 and 10, respectively.
The outcome is listed in Table 8. Although the time consumption in
PyG and DGL is less than that of our sampling operator, which is
because the operators implemented in PyG and DGL are optimized
with efficient C++ kernels, they run at the same order of magnitude.
Our GPU sampling operator is 4X faster than the CPU sampling.

5 CONCLUSION

We present Gamma Graph Library (GammaGL), a GNN library that
supports four deep-learning backends. GammaGL takes framework-
agnostic, and tensor-centric as the core design and develops several
efficient operators to optimize the GNN computation. GammaGL
has supported many models covering various applications. Now,
we are actively developing GammaGL and will continue to improve
each module in the future.

SIGIR ’23, July 23-27, 2023, Taipei, Taiwan.

ACKNOWLEDGMENTS

This work is supported in part by the National Natural Science
Foundation of China (No. U20B2045, U1936220, 62192784, 62172052,
62002029, 61772082).

REFERENCES

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.

2016. Tensorflow: a system for large-scale machine learning.. In Osdi, Vol. 16.

Savannah, GA, USA, 265-283.

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina

Lerman, Hrayr Harutyunyan, Greg Ver Steeg, and Aram Galstyan. 2019. Mixhop:

Higher-order graph convolutional architectures via sparsified neighborhood

mixing. In international conference on machine learning. PMLR, 21-29.

[3] Song Bai, Feihu Zhang, and Philip HS Torr. 2021. Hypergraph convolution and
hypergraph attention. Pattern Recognition 110 (2021), 107637.

[4] Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. 2021. Beyond low-frequency
information in graph convolutional networks. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, Vol. 35. 3950-3957.

[5] Marc Brockschmidt. 2020. Gnn-film: Graph neural networks with feature-wise
linear modulation. In International Conference on Machine Learning. PMLR, 1144—
1152.

[6] Shaked Brody, Uri Alon, and Eran Yahav. 2022. How Attentive are Graph Atten-
tion Networks?. In International Conference on Learning Representations.

[7] Yukuo Cen, Zhenyu Hou, Yan Wang, Qibin Chen, Yizhen Luo, Zhongming Yu,
Hengrui Zhang, Xingcheng Yao, Aohan Zeng, Shiguang Guo, Yuxiao Dong, Yang
Yang, Peng Zhang, Guohao Dai, Yu Wang, Chang Zhou, Hongxia Yang, and Jie
Tang. 2021. CogDL: A Toolkit for Deep Learning on Graphs. arXiv preprint
arXiv:2103.00959 (2021).

[8] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. 2020.
Simple and deep graph convolutional networks. In International conference on
machine learning. PMLR, 1725-1735.

[9] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. 2021. Adaptive Universal
Generalized PageRank Graph Neural Network. In International Conference on
Learning Representations.

[10] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Lio, and Petar Veli¢kovic.
2020. Principal neighbourhood aggregation for graph nets. Advances in Neural
Information Processing Systems 33 (2020), 13260-13271.

[11] CSIRO’s Data61. 2018. StellarGraph Machine Learning Library. https://github.

com/stellargraph/stellargraph.

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-

tional neural networks on graphs with fast localized spectral filtering. Advances

in neural information processing systems 29 (2016).

Matthias Fey and Jan Eric Lenssen. 2019. Fast graph representation learning with

PyTorch Geometric. arXiv preprint arXiv:1903.02428 (2019).

Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael

Bronstein, and Federico Monti. 2020. Sign: Scalable inception graph neural

networks. arXiv preprint arXiv:2004.11198 (2020).

Hongyang Gao and Shuiwang Ji. 2019. Graph representation learning via hard

and channel-wise attention networks. In Proceedings of the 25th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining. 741-749.

[16] Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Giinnemann. 2019.

Combining Neural Networks with Personalized PageRank for Classification on

Graphs. In International Conference on Learning Representations.

Daniele Grattarola and Cesare Alippi. 2021. Graph neural networks in tensorflow

and keras with spektral [application notes]. IEEE Computational Intelligence

Magazine 16, 1 (2021), 99-106.

[18] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In Proceedings of the 22nd ACM SIGKDD international conference on

Knowledge discovery and data mining. 855-864.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. Advances in neural information processing systems 30

(2017).

[20] Hui Han, Tianyu Zhao, Cheng Yang, Hongyi Zhang, Yaoqi Liu, Xiao Wang, and
Chuan Shi. 2022. OpenHGNN: An Open Source Toolkit for Heterogeneous Graph
Neural Network. In Proceedings of the 31st ACM International Conference on
Information & Knowledge Management. 3993-3997.

[21] Kaveh Hassani and Amir Hosein Khasahmadi. 2020. Contrastive multi-view

representation learning on graphs. In International conference on machine learning.

PMLR, 4116-4126.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng

Wang. 2020. Lightgen: Simplifying and powering graph convolution network for

recommendation. In Proceedings of the 43rd International ACM SIGIR conference

on research and development in Information Retrieval. 639-648.

—
2,

[12

(13

[14

[15

(17

[19

[22

https://github.com/stellargraph/stellargraph
https://github.com/stellargraph/stellargraph

SIGIR °23, July 23-27, 2023, Taipei, Taiwan.

[23]

[24]

[25]

[26

[27]

[28]

[29

[30]

[31

[32]

[33

[34]

[38

[39

[40]

[41

[42]

[43

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735-1780.

Jun Hu, Shengsheng Qian, Quan Fang, Youze Wang, Quan Zhao, Huaiwen Zhang,
and Changsheng Xu. 2021. Efficient graph deep learning in tensorflow with
tf_geometric. In Proceedings of the 29th ACM International Conference on Multi-
media. 3775-3778.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous
graph transformer. In Proceedings of the web conference 2020. 2704-2710.

Houye Ji, Xiao Wang, Chuan Shi, Bai Wang, and S Yu Philip. 2021. Heteroge-
neous graph propagation network. IEEE Transactions on Knowledge and Data
Engineering 35, 1 (2021), 521-532.

Ming Jin, Yizhen Zheng, Yuan-Fang Li, Chen Gong, Chuan Zhou, and Shirui
Pan. 2021. Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph
Representation Learning. In Proceedings of the Thirtieth International Joint Con-
ference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada,
19-27 August 2021, Zhi-Hua Zhou (Ed.). ijcai.org, 1477-1483.

Thomas N Kipf and Max Welling. 2016. Variational Graph Auto-Encoders. NIPS
Workshop on Bayesian Deep Learning (2016).

Thomas N. Kipf and Max Welling. 2017. Semi-supervised classification with
graph convolutional networks. (2017).

Cheng Lai, Jiarong Han, and Hao Dong. 2021. TensorLayer 3.0: A Deep Learning
Library Compatible With Multiple Backends. In 2021 IEEE International Conference
on Multimedia & Expo Workshops (ICMEW). IEEE, 1-3.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. 2018.
Learning deep generative models of graphs. arXiv preprint arXiv:1803.03324
(2018).

Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen, Wenzheng Feng, Siming
He, Chang Zhou, Jianguo Jiang, Yuxiao Dong, and Jie Tang. 2021. Are we really
making much progress? revisiting, benchmarking and refining heterogeneous
graph neural networks. In Proceedings of the 27th ACM SIGKDD conference on
knowledge discovery & data mining. 1150-1160.

Yanjun Ma, Dianhai Yu, Tian Wu, and Haifeng Wang. 2019. PaddlePaddle: An
open-source deep learning platform from industrial practice. Frontiers of Data
and Domputing 1, 1 (2019), 105-115.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 701-710.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. 2020. DropEdge:
Towards Deep Graph Convolutional Networks on Node Classification. In ICLR.
https://openreview.net/forum?id=Hkx1gkrKPr

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolu-
tional networks. In The Semantic Web: 15th International Conference, ESWC 2018,
Heraklion, Crete, Greece, June 3—7, 2018, Proceedings 15. Springer, 593-607.
Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. 2020. Infograph: Un-
supervised and semi-supervised graph-level representation learning via mutual
information maximization. (2020).

Kiran K Thekumparampil, Chong Wang, Sewoong Oh, and Li-Jia Li. 2018.
Attention-based graph neural network for semi-supervised learning. arXiv
preprint arXiv:1803.03735 (2018).

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. 2020.
Composition-based Multi-Relational Graph Convolutional Networks. In Interna-
tional Conference on Learning Representations.

Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph attention networks. (2018).

Petar Velickovic, William Fedus, William L Hamilton, Pietro Lio, Yoshua Bengio,
and R Devon Hjelm. 2019. Deep graph infomax. ICLR (Poster) 2, 3 (2019), 4.
Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng
Zhang, Xing Xie, and Minyi Guo. 2018. Graphgan: Graph representation learning
with generative adversarial nets. In Proceedings of the AAAI conference on artificial
intelligence, Vol. 32.

Yaoqi Liu, Cheng Yang, Tianyu Zhao, Hui Han, Siyuan Zhang, Jing Wu, Guangyu Zhou, Hai Huang, Hui Wang, and Chuan Shi

[44] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou,

[45

[46

(48

[49

[50

[51

[53

[54

(56

[57

[58

]

Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang
Li, and Zheng Zhang. 2019. Deep Graph Library: A Graph-Centric, Highly-
Performant Package for Graph Neural Networks. arXiv preprint arXiv:1909.01315
(2019).

Ruijia Wang, Shuai Mou, Xiao Wang, Wanpeng Xiao, Qi Ju, Chuan Shi, and Xing
Xie. 2021. Graph structure estimation neural networks. In Proceedings of the Web
Conference 2021. 342-353.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu.
2019. Heterogeneous graph attention network. In The world wide web conference.
2022-2032.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and
Justin M Solomon. 2019. Dynamic graph cnn for learning on point clouds. Acm
Transactions On Graphics (tog) 38, 5 (2019), 1-12.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian
Weinberger. 2019. Simplifying graph convolutional networks. In International
conference on machine learning. PMLR, 6861-6871.

Zhigiang Xie, Minjie Wang, Zihao Ye, Zheng Zhang, and Rui Fan. 2022. Graphiler:
Optimizing Graph Neural Networks with Message Passing Data Flow Graph.
Proceedings of Machine Learning and Systems 4 (2022), 515-528.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How powerful
are graph neural networks? (2019).

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. 2018. Representation learning on graphs
with jumping knowledge networks. In International conference on machine learn-
ing. PMLR, 5453-5462.

Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph neural
networks. Advances in neural information processing systems 31 (2018).

Tianyu Zhao, Cheng Yang, Yibo Li, Quan Gan, Zhenyi Wang, Fenggqi Liang,
Huan Zhao, Yingxia Shao, Xiao Wang, and Chuan Shi. 2022. Space4hgnn: a
novel, modularized and reproducible platform to evaluate heterogeneous graph
neural network. In Proceedings of the 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval. 2776-2789.

Wayne Xin Zhao, Yupeng Hou, Xingyu Pan, Chen Yang, Zeyu Zhang, Zihan Lin,
Jingsen Zhang, Shuqing Bian, Jiakai Tang, Wengi Sun, Yushuo Chen, Lanling Xu,
Gaowei Zhang, Zhen Tian, Changxin Tian, Shanlei Mu, Xinyan Fan, Xu Chen, and
Ji-Rong Wen. 2022. RecBole 2.0: Towards a More Up-to-Date Recommendation
Library. In CIKM.

Wayne Xin Zhao, Shanlei Mu, Yupeng Hou, Zihan Lin, Yushuo Chen, Xingyu
Pan, Kaiyuan Li, Yujie Lu, Hui Wang, Changxin Tian, Yinggian Min, Zhichao
Feng, Xinyan Fan, Xu Chen, Pengfei Wang, Wendi Ji, Yaliang Li, Xiaoling Wang,
and Ji-Rong Wen. 2021. RecBole: Towards a Unified, Comprehensive and Efficient
Framework for Recommendation Algorithms. In CIKM. ACM, 4653-4664.

Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li, and
Jingren Zhou. 2019. AliGraph: a comprehensive graph neural network platform.
Proceedings of the VLDB Endowment 12, 12 (2019), 2094-2105.

Yangiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2020.
Deep graph contrastive representation learning. arXiv preprint arXiv:2006.04131
(2020).

Zhaocheng Zhu, Chence Shi, Zuobai Zhang, Shengchao Liu, Minghao Xu, Xinyu
Yuan, Yangtian Zhang, Junkun Chen, Huiyu Cai, Jiarui Lu, et al. 2022. Torchdrug:
A powerful and flexible machine learning platform for drug discovery. arXiv
preprint arXiv:2202.08320 (2022).

Yuanxin Zhuang, Lingjuan Lyu, Chuan Shi, Carl Yang, and Lichao Sun. 2022.
Data-Free Adversarial Knowledge Distillation for Graph Neural Networks. In
Proceedings of the Thirty-First International Joint Conference on Artificial Intelli-
gence, [JCAI-22, Lud De Raedt (Ed.). International Joint Conferences on Artificial
Intelligence Organization, 2441-2447. https://doi.org/10.24963/ijcai.2022/339
Main Track.

https://openreview.net/forum?id=Hkx1qkrKPr
https://doi.org/10.24963/ijcai.2022/339

	Abstract
	1 Introduction
	2 System Design
	2.1 Multi-backend Support
	2.2 Data Management
	2.3 Message Passing Module
	2.4 Sampling Operator
	2.5 Implemented GNN Models

	3 Connection and difference with other GNN libraries
	3.1 Framework-agnostic
	3.2 Tensor-centric
	3.3 Heterogeneous GNN
	3.4 Recommendation

	4 Evaluation
	4.1 Node Classification
	4.2 Link Prediction
	4.3 Graph Classification
	4.4 Efficiency Experiment

	5 Conclusion
	Acknowledgments
	References

