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Detecting communities of complex networks has been an effective way to identify substructures that could
correspond to important functions. Conventional approaches usually consider community detection as a single-
objective optimization problem, which may confine the solution to a particular community structure property.
Recently, a new community detection paradigm is emerging: multiobjective optimization for community detection,
which means simultaneously optimizing multiple criteria and obtaining a set of community partitions. The new
paradigm has shown its advantages. However, an important issue is still open: what type of objectives should be
optimized to improve the performance of multiobjective community detection? To exploit this issue, we first
proposed a general multiobjective community detection solution (called NSGA-Net) and then analyzed the
structural characteristics of communities identified by a variety of objective functions that have been used or
can potentially be used for community detection. After that, we exploited correlation relations (i.e., positively
correlated, independent, or negatively correlated) between any two objective functions. Extensive experiments
on both artificial and real networks demonstrate that NSGA-Net optimizing over a pair of negatively correlated
objectives usually leads to better performances compared with the single-objective algorithm optimizing over either
of the original objectives, or even to other well-established community detection approaches.
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1. INTRODUCTION

In the past decade, the complex network has attracted a large amount of researchers
from different fields, because the ubiquitous complex systems in real world can be repre-
sented as networks. In complex networks, nodes denote objects in system, and edges denote
their interactions. The complex network has many important characteristics, such as “small
world” and long-tailed distribution. Community structure is another important characteristic
of complex networks. Generally, communities are groups of nodes that are densely inter-
connected but only sparely connected with the rest of the network (Girvan1 and Newman
2002). Many phenomena show that community structure plays important roles in complex
systems. Thus, detecting communities can acquaint us with important functions and internal
structure of complex systems (Flake et al. 2002).

Many community detection algorithms have been proposed (Newman and Girvan 2004;
Pizzuti 2008; Shi et al. 2010b). In a general community detection process, one single objec-
tive function is designed to capture the intuition of a community, and then it is optimized
to reach an optimal value. Because optimizing these objective functions is usually an
NP -hard problem, many approximation methods are employed to obtain local optimal solu-
tions, such as spectral method (Pothen, Sinmon, and Liou 1990) and genetic algorithm
(Pizzuti 2008; Shi et al. 2010a). Therefore, we can define the community detection problem
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.�;O/ as a Single-objective Optimization Problem (SOP) (Shi et al. 2012): determine the
partition C � for which

O.C �/ D min
C2�

O.C/ (1)

where � is the set of feasible partitions, C is a community structure of a given network G,
and O W � ! R is an objective function. Here, we suppose that the objective O is to be
minimized. The single-objective optimization paradigm is widely used in the community
detection field. For example, the modularity optimization methods (Guimera and Amaral
2005; Newman and Girvan 2004; Pizzuti 2008; Shi et al. 2010b) optimize the modularity
Q (Newman and Girvan 2004); the spectral clustering method optimizes the “cut” function
(Luxburg 2007). These algorithms have been successively applied to many artificial and real
networks. However, they also have some disadvantages (Shi 2012). For example, optimiz-
ing of just one objective function may lead to bias on community structure, and one fixed
community partition returned by the single-objective algorithms may not reveal the complex
community structure.

It might be a more natural and reasonable way to evaluate the community structure from
different perspectives at the same time. In other words, multiple objective functions are
employed to simultaneously capture the intuition of a community. This paradigm helps to
avoid the structure predilection existing in single-objective approaches. Moreover, it com-
prehensively considers community structure information from different aspects, which may
lead to a more accurate community structure. As a consequence, the community detection
can be formulated as a multiobjective optimization problem (MOP). That is, the community
detection problem corresponds to discover community structures that are optimal on mul-
tiple objective functions, instead of one single objective function in those single-objective
approaches. Recently, some multiobjective optimization algorithms for community detec-
tion have been proposed (Agrawal 2011; Folino and Pizzuti 2010; Pizzuti 2009; Shi 2012),
which have shown their advantages in generating a set of solutions and recommending more
meaningful solutions.

However, for this new community detection paradigm, some important issues are still
unsolved. Many optimization objectives have been proposed to capture the intuition of com-
munities from different perspectives (Section 4.1). The communities identified by these
optimization objectives have different characteristics, and these objectives have internal
correlations. How do the optimization objectives affect the performance of multiobjective
community detection? What type of objective functions should be optimized to improve
the accuracy of community partition? The answer of these questions not only provides
substantial insight to multiobjective community detection but also can explain the differ-
ence between the single-objective and multiobjective community detection. In addition, the
answer can guide the design of multiobjective optimization learning algorithms.

To solve these issues, we first propose a general multiobjective community detection
solution, called NSGA-Net, which can optimize over any objective functions. Then, we
study the structural characteristics of communities identified by 11 popular objective func-
tions and propose the concept of objective correlation to divide the relations between any
two objective functions into three categories: positively correlated, independent, and neg-
atively correlated. Finally, we compare NSGA-Net optimizing over six pairs of objective
functions from these three types of correlations (two pairs for each type) to an SOP-
based approach optimizing over the original single objective. With extensive experiments
on both artificial and real networks, we find the following interesting phenomena. (1) The
communities identified by different objectives have different structural characteristics.
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(2) These objectives have intrinsic correlations, which determine their different behaviors.
(3) A more startling finding is that NSGA-Net only with negatively correlated objectives
usually leads to a better performance than that can be achieved by any of the original objec-
tives. We also show that, with a pair of negatively correlated objectives, the NSGA-Net
performs better than most conventional community detection algorithms. These findings
not only provide a user with guidance in choosing the most suitable objective functions in
the context of networks and applications but also benefit for the design of multiobjective
community detection algorithms.

The rest of the paper is organized as follows. Section 2 formulates the multiobjective
community detection problem, and we propose a general solution method in Section 3.
Section 4 summarizes the characteristics of communities identified by 11 objective functions
and analyzes their intrinsic correlations. Then, we compare and discuss the performance
of the multiobjective community detection method with different type of objectives in
Section 5. We compare the related work in Section 6. Finally, Section 7 concludes this paper.

2. PROBLEM DEFINITION

The concept of community is a generalization of human’s perception: densely
interconnected but sparely connected with the rest of the network. Although many crite-
ria (i.e., objective functions) have been proposed to evaluate the quality of a community
partition from different angles (e.g., modularity Q (Newman and Girvan 2004) and “cut”
function (Shi and Malik 2000)), the intuition of human is difficult to be captured by one
single criterion. Thus, it is a natural way to treat the community detection as a MOP. That is,
in the multiobjective community detection problem .�;O1; O2; : : : ; Ot / (Shi et al. 2012),
we aim to discover the community structure C � for which

O.C �/ D min
C2�

.O1.C /;O2.C /; : : : ; Ot .C // (2)

where t is the number of objectives and Oi represents the i th objective. There is usually no
single best solution for an MOP. Here, the notion of dominance (Deb 2001) is introduced.
For two partitions C1; C2 2 �, the partition C1 is said to dominate the partition C2 (denoted
as C1 � C2) if and only if

8i 2 ¹1; : : : ; tº Oi .C1/ � Oi .C2/ ^ 9i 2 ¹1; : : : ; tº Oi .C1/ < Oi .C2/ (3)

Another important notation in multiobjective optimization is Pareto optimal (Deb 2001).
A partition C 2 � is said to be Pareto optimal if and only if there is no other partition
dominating C . The set of all Pareto optimal partitions is the Pareto optimal set and the
corresponding set in the objective space is the nondominated set, or Pareto front (Deb 2001).

Compared with single-objective approaches, the multiobjective community detection
has many advantages in theory, which has been detailedly analyzed in reference Shi et al.
(2012). First, the Pareto optimal set of the multiobjective problem (i.e., .�;O1; : : : ; Ot /)
always comprises the optimal solutions of the single-objective community detection prob-
lem (i.e., .�;O1/; : : : ; .�;Ot /). Moreover, the multiple objectives help to avoid the risk
that one single objective may only be suitable to a certain kind of network. In addition, a set
of community partitions returned by the multiobjective community detection contribute to
discover complex and comprehensive community structures.
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For this multiobjective community detection problem, several solutions have been
proposed (Agrawal 2011; Folino and Pizzuti 2010; Pizzuti 2009; Shi et al. 2012). These
algorithms usually simultaneously optimize two objective functions with a random search
method (e.g., evolutionary algorithm (EA)) and return a set of partitions. Experiments
also proved that these algorithms can recommend more meaningful partitions. However,
a common and important issue in these algorithms has seldom been explored: what type
of objective functions should be optimized in this multiobjective community detection
paradigm? It is not a trivial problem. As we known, the optimization objectives guide the
search process of algorithms, which greatly determines the algorithm performance. On the
other hand, researchers have proposed many objective functions to evaluate communities
from different perspectives (Section 4.1). When one designs a multiobjective community
detection algorithm, it is hard to choose the optimization objectives. Thus, we should study
the characteristics and correlations of objective functions and explore the effect of the
combination of different objectives on performances. Although this problem is very impor-
tant, it is seldom explored as far as we know. In the multiobjective optimization field, the
researchers consciously choose the conflicting objectives (Deb 2001; Handle and Knowles
2007; Pizzuti 2009), but no one validates this point in a universal form and even explains
any reason insight. In this paper, we try to solve this problem by studying the general per-
formance of the multiobjective community detection algorithm under the combination of
different objectives. This study not only benefits the design of multiobjective community
detection algorithm but also helps to make a thorough inquiry to the new paradigm.

3. THE NSGA-NET SOLUTION

Although a number of algorithms (Agrawal 2011; Folino and Pizzuti 2010; Pizzuti
2009; Shi et al. 2012) have been proposed to solve the multiobjective community detection
problem, they are restricted to concrete optimization objectives. In this paper, we propose a
general multiobjective community detection solution (called NSGA-Net), which can opti-
mize any objective functions. NSGA-Net is based on EA. EA has been proven to be an
effective method for MOP. Evolutionary multiobjective optimization (EMO) is not only an
effective solution for MOP but also shows its potential in data mining (Handle and Knowles
2007; Shi et al. 2011a). Conventional EMO algorithms are designed to solve numerical
optimization problems. We need to redesign many components of EA for a real problem.
It is not a trivial task because the algorithm performance is determined by the design of
these components to a large extent. The NSGA-Net includes two phases: (1) the community
detection phase that simultaneously optimizes multiple objectives and returns a set of com-
munity partitions and (2) the model selection phase that selects the most preferable solution
from the partition set.

3.1. Community Detection Phase

In this phase, NSGA-Net employs the NSGA-II (Deb et al. 2002) as the multiobjective
optimization framework. The locus-based adjacency coding schema is applied as the genetic
representation and corresponding operators are designed.

Multiobjective optimization mechanism. In this paper, we select NSGA-II (Deb et al.
2002) as the multiobjective optimization mechanism in NSGA-Net, because NSGA-II has
been proven to be an effective and efficient EMO in numerical optimization. The basic idea
in NSGA-II is to transform the optimized objectives to a fitness measure by the creation of
a number of fronts with a density estimation. In each generation, the strategy of survival
of the fittest is performed, and thus, an elite set can be kept from generation to generation.
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(a) Genetic presentation (b) Max-min distance method

FIGURE 1. (a) Genetic representation and its corresponding community structure. (b) Illustration of the
Max–Min Distance model selection method.

Four parameters govern the run of NSGA-Net: the population size popSize, the running
generation gen, the ratio of crossover croRat, and the ratio of mutation mutRat.

Genetic representation. In EA, a genetic representation should be employed to encode a
community partition with a character string (i.e., genotype). Inversely, the genotype can also
be decoded into a community partition. We apply the locus-based adjacency representation
(Park and Song 1989) in NSGA-Net. An example is illustrated in Figure 1(a). For a network
with size n, a genotype g consists of n genes < g1; g2; : : : ; gn >, and each gi is one of the
adjacent nodes of node i . Thus, the i th gene assigning with j (i.e., gi D j ) means that there
is a link between node i and j . In the partition, they will be in the same community. For
example, in Figure 1(a), gene g2 is 3; thus, node 2 links to node 3, and they are in the same
community. The decoding process needs to identify all connected components. All the nodes
in the same connected component belong to one community. The locus-based adjacency
representation has shown its superiority in community detection (Shi et al. 2010b, 2012).

Genetic operators. NSGA-Net applies the uniform two-point crossover, because this
operator is able to generate any combination of two parent genotypes. Thus, the crossover
operator guarantees that no invalid solutions will be generated. The mutation operation
randomly selects some genes and assigns them with other randomly selected adjacent nodes.

Initialization. The initialization process randomly generates a set of individuals. For
each individual (i.e., genotype), each gene gi randomly takes one of the adjacent nodes of
node i .

3.2. Model Selection Phase

NSGA-Net returns a set of solutions, which provides decision makers with more
choices. However, sometimes decision makers may desire to narrow the candidate solutions
down to those of most interest. This paper applies the Max–Min Distance model section
method (Shi et al. 2012) to select one single recommendation solution from the Pareto front.
It also aims to conveniently compare NSGA-Net with conventional single-objective algo-
rithms, because those algorithms only return one single solution. The Max–Min Distance
method selects the solution model that mostly deviates from the null models generated by
NSGA-Net by running on random networks with the same scale. That is, the random net-
work has the same number of nodes and edges with the real network. Thus, the optimal
solution set on the real network (called CandSet) and the corresponding random network
(called RandSet) can be obtained, respectively. For each solution in CandSet, we calculate
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the minimum distance with solutions in RandSet, and then we select the solution in CandSet
with the maximum–minimum distance as the recommendation solution. Here, Euclidean
distance is employed. As an example shown in Figure 1(b), the solution marked with filled
dot is the recommendation solution. Intuitively, the recommendation solution is the most
distinct one from the solutions in RandSet. The RandSet aims to estimate the expected objec-
tive values for unstructured networks. The Max–Min Distance method find the solution that
most deviates from randomness, which means the recommendation solution has the most
obvious community structure.

3.3. Objective Functions

Still NSGA-Net has an important component unsolved: optimization objectives. As a
general multiobjective community detection solution, NSGA-Net can employ any objective
functions. With NSGA-Net, we will examine the general performance of the multiobjec-
tive community detection. Furthermore, we explore what type of objectives is suitable for
the multiobjective paradigm. To do so, we first make a deliberate investigation on the
characteristics of these objectives and their intrinsic correlations.

4. OBJECTIVE FUNCTIONS AND THEIR CORRELATIONS

This section analyzes the structure characteristics of communities identified by popular
objective functions and the intrinsic correlations among these objectives.

4.1. Objective Functions

Many objective functions have been proposed to capture the intuition of communities.
We summarize 11 objective functions that are already widely used in community detection
literatures or can be potentially used for community detection (Shi et al. 2010a, 2011b).
Let G.V;E/ be an undirected graph with n D jV j nodes and m D jEj edges. Let C
be a partition with l communities and S be the set of nodes in one community, where
C D ¹S1; S2; : : : ; Slº. nS is the number of nodes in S , nS D jS j,mS is the number of edges
in S , mS D j.u; v/ 2 E W u 2 S; v 2 S j, and cS is the number of edges on the boundary of
S , cS D j.u; v/ 2 E W u 2 S; v … S j; and d.u/ is the degree of node u. The objectiveO.C/
is the quality of a partition C .

� Conductance: O1.C / D
P
S2C

cS
2mSCcS

measures the fraction of total edge volume that

points outside the cluster (Kannan, Vempala, and Vetta 2004).
� Expansion: O2.C / D

P
S2C

cS
nS

measures the number of edges per node that point

outside the cluster (Radicchi et al. 2004).
� Cut ratio: O3.C / D

P
S2C

cS
nS .n�nS /

is the fraction of all possible edges leaving the

cluster (Fortunato 2009).

� Normalized cut: O4.C / D
P
S2C

�
cS

2mSCcS
C cS

2.m�mS /CcS

�
is the normalized fraction

of edges leaving the cluster (Shi and Malik 2000).
� Maximum out degree fraction (ODF): O5.C / D

P
S2C maxu2S

j¹.u;v/Wv…Sºj
d.u/

is the

maximum fraction of edges of a node pointing outside the cluster (Flake, Lawrence, and
Giles 2000).

� Average-ODF: O6.C / D
P
S2C

1
nS

P
u2S

j¹.u;v/Wv…Sºj
d.u/

is the average fraction nodes’

edges pointing outside the cluster (Flake et al. 2000).
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� Flake-ODF: O7.C / D
P
S2C

j¹uWu2S;j¹.u;v/Wv2Sºj<d.u/=2ºj
nS

is the fraction of nodes in S
that have fewer edges pointing inside than to the outside of the cluster (Flake et al. 2000).

� Q: O8.C / D
P
S2C

�
mS
m
�
�
mSCcS
2m

�2�
measures the number of within-community

edges, relative to a null model of a random graph with the same degree distribution
(Newman and Girvan 2004).

� Description length: O9.C / D n log l C 1
2
l.l C 1/ logmC log

�Ql
iD1

�
ni .ni�1/=2

mi

�Q
i>j�

ninj
cij

��
where ni and mi are the number of nodes and edges in community i ,

respectively; cij is the number of edges between the community i and j . The objective
regards the community as an optimal compression of the network’s topology (Martin and
Carl 2007).

� Community score: O10.C / D
P
S2C .2mS=nS /

2 measures the density of a sub-
matrices based on volume and row/column means (the power order r is 1 for simplicity)
(Pizzuti 2008).

� Internal density: O11.C / D
P
S2C

�
1 � mS

nS .nS�1/=2

�
is the internal edge density of the

cluster (Radicchi et al. 2004).

We roughly classify these objective functions into three categories. The first cat-
egory contains the first four objectives (i.e., Conductance, Expansion, CutRatio, and
NormalizedCut) from graph theory community. Because they all consider the “cut” in
a graph, we call them the cut-based objectives. The three objectives ended with “ODF”
(i.e., Maximum-ODF, Average-ODF, and Flake-ODF) all consider the degree of nodes in
a community, and thus we call them degree-based objectives. Finally, the remaining objec-
tives are classified into one category. These objective functions come from different research
fields, such as graph theory and physics. All these objectives attempt to capture a group of
nodes with better internal connectivity than external connectivity, and thus they all can be
potentially used in community detection. Moreover, some objective functions are not con-
sidered, for example, the Hamiltonian-based method (Reichardt and Bornholdt 2006) and a
multiple resolution procedure (Arenas, Fernandez, and Gomez 2008). The objective func-
tions in both of the two methods require tuning parameters. Because the parameters are
hard to choose in applications, we did not include them in this paper. Note that some objec-
tives need to be maximized (e.g., Q and CommunityScore). To handle all the objectives in a
uniform form, we convert these objectives into a minimum problem for convenience. This
conversion does not affect the partition result.

4.2. Characteristics of Objective Functions

For the SOP, minC2�O.C/, we can optimize it with many techniques, such as spectral
method, simulated annealing, and genetic algorithm. For a fair comparison, we use the same
optimizer for testing all the objective functions. Particularly, we choose GACD (Shi et al.
2010b) as the single-objective community detection optimizer based on the following rea-
sons: (1) GACD is also an EA-based community detection algorithm. The same algorithm
paradigm between NSGA-Net and GACD (i.e., both EA-based algorithms) makes their dif-
ferences in performances mainly attributed to the multiobjective optimization in NSGA-Net.
(2) GACD is a general single-objective community detection optimizer, which can optimize
any objective function. (3) GACD has been proven as an effective community detection
algorithm (Shi et al. 2010b).
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4.2.1. Experiments on Artificial Networks. We use a popular artificial network with
a known community structure (Lancichinetti, Fortunato, and Radicchi 2008). The network
has the heterogeneity in the distributions of node degrees and community sizes, which is
widely used in many research (Gong et al. 2011; Shi et al. 2012). As suggested in reference
Lancichinetti et al. (2008), the benchmark graphs are as follows: the number of nodes is
N D 1500; the average degree is k D 25 and the maximum degree is 80; the degree
and the community size distributions are power laws, with exponents � D 2 and ˇ D 2,
respectively. The� is the mixing parameter, which controls the fraction of a node connecting
with nodes outside the community. As � increases, it becomes more difficult to identify the
community structure.

To compare the built-in modular structure with the result returned by different objec-
tives, we adopt the normalized mutual information (NMI), which is a popular measure of
similarity of partitions from information theory (Lancichinetti et al. 2008). The parame-
ters in GACD for all objectives are set as follows: popSize D gen D 200, croRat D 0:6,
and mutRat D 0:4 (the same parameters are set in the following experiments). The exper-
imental results, as shown in Figure 2, are an average over 20 graph realizations. As the
community structures become fuzzy (i.e., � increases), it becomes difficult for all objec-
tives to discover the real structures. For all networks, CommunityScore and Q have the
highest accuracy. The cut-based objectives have the similar performance. That is, as �
increases, these objectives tend to divide the graph into two communities. It is not partic-
ularly surprising as the cut-based objectives are more approximate to the optimal value in
this condition. The degree-based objectives also have the similar behavior that they combine
all nodes as one community as � increases. Its rationality is that these objectives always
reach the minimum value 0 in this condition. From Figure 2(b), we can find that all objec-
tives, except CommunityScore, have the resolution limit problem (Fortunato and Barthelemy
2007), because the number of communities identified by these objectives is smaller than the
real number. In other words, these objectives all tend to combine some small communities
into large ones.

4.2.2. Experiments on Real Networks. To study the characteristics of communities
identified by different objective functions, we further optimize these objective functions
with GACD on the 12 real networks shown in Table 1. These networks with medium and
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FIGURE 2. The normalized mutual information comparison of communities identified by 11 objectives on
the artificial networks. The baseline shows the real number of communities.
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TABLE 1. Real Networks and Their Size.

Net-scie. Hep-th CA-GrQc CA-Hep. PGPgian. CA-Con.
(P1) (P2) (P3) (P4) (P5) (P6)

No. of nodes 1589 8361 5242 9877 10,680 23,133
No. of edges 2,742 15,751 28,980 51,971 24,316 186,936

CA-Ast. Cit-Hep. P2p-04 P2p-06 P2p-24 P2p-25
(P7) (P8) (P9) (P10) (P11) (P12)

No. of nodes 18,772 27,770 10,876 8717 26,518 22,687
No. of edges 396,160 352,807 39,994 31,525 65,369 54,705
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FIGURE 3. The statistical analysis of the distribution of the community size on the 12 problems.

large size are from the popular common data sources (Leskovec 2010; Newman 2009). The
distribution of community size of their results in all 12 problems is shown in Figure 3. The
experimental results do not include those of the degree-based objectives, because we find
that they all are very prone to divide the whole network into one community.

In Figure 3(a), we can observe that CommunityScore and Q find the maximum number
of communities and the cut-based objectives reveal the minimum number of communities
on most networks. We further show the average size of the smallest 50% and the largest
10% communities identified by the eight objectives on the 12 networks in Figures 3(b)
and (c), respectively. It shows that most communities are very small. There are no obvious
differences on the size of small communities identified by different objectives (Figure 3(b)).
However, it is not the case for large communities (Figure 3(c)). For most networks, the
cut-based objectives always find larger communities, and CommunityScore and Q have the
opposite trend. Similar to the cut-based objectives, DescriptionLength also tends to find a
small number of communities with the large size. It is interesting for InternalDensity that
simultaneously finds many small communities and some large communities.

In all, the experiments on artificial and real networks show that CommunityScore and
Q divide networks with a finer granularity (i.e., more communities with smaller size). The
cut-based objectives, degree-based objectives, and DescriptionLength reveal the community
structure with a coarser granularity (i.e., fewer communities with large size). The behavior
of InternalDensity has the characteristics of both of them. The huge communities discov-
ered by the cut-based objectives, degree-based objectives, and DescriptionLength may not
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be very meaningful, which indicates that these objectives may not be very suitable for net-
works with small communities. In all these experiments, the modularity Q has the stable
and good performances. It might explain why Q is the most popular objective function.
In addition, some objectives have very similar behavior in all these experiments, such as
cut-based objectives and degree-based objectives. It shows that intrinsic correlations exist
among these objective functions.

4.3. Objective Correlations

Observing the comparison results, one may ask the following questions: what causes
the different performances of these objective functions? Furthermore, why do some objec-
tives (i.e., cut-based objectives) have similar performances? We can directly observe that
the definitions of some objectives are similar, such as the cut-based objectives. In other
words, these objectives are correlated. Here, we apply the Pearson correlation coefficients to
describe their correlations. Because it is difficult to analyze their correlations from the def-
initions directly, we perform experiments to estimate the Pearson correlation coefficients.
The experiments are carried out with the following steps. (1) For a given network, we gener-
ate a set of random partitions. (2) For each partition, we calculate the values of the different
objective functions. Thus, each objective function has a vector of random samples. (3) We
estimate the Pearson correlation coefficients among these objective vectors. (4) To reduce
the estimation variance, we repeat steps 1 to 3 many times and obtain the average values.

The results are illustrated in Figure 4. We can observe that the cut-based objectives are
highly correlated (especially O1 �O3). It is the same case for the degree-based objectives.
It explains why these objectives have so similar performances. Q (O8) and Communi-
tyScore (O10) are also highly correlated, and this is the reason why they have the similar
performances. In addition, we notice InternalDensity (O11) is negatively correlated with
Q and CommunityScore, which might lead to the opposite properties of the communities
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identified by them. The relations of these objectives can be roughly classified into three cat-
egories in terms of their correlation coefficients: positively correlated (e.g., ¹O1; O2; O3º,
¹O5; O6; O7º, ¹O8; O9; O10º), independent (e.g., ¹O1; O8º, ¹O1; O10º, ¹O4; O9º), and
negatively correlated (e.g., ¹O8; O11º, ¹O10; O11º).

5. PERFORMANCES AND OBJECTIVE SELECTION OF MULTIOBJECTIVE
COMMUNITY DETECTION

In this section, we will test the performances of the multiobjective community detection
method (i.e., NSGA-Net) and find what kinds of objectives are suitable for the method. Here,
we only consider two objectives, rather than more objectives, to focus on the effectiveness
of the multiobjective method and reduce the complexity. From each of the three categories
of objective correlations, we select two pairs as the optimized objectives in NSGA-Net.
Particularly, for the positively correlated objectives we choose ¹O1; O2º and ¹O8; O9º;
the independent objectives, ¹O1; O8º and ¹O4; O9º; and the negatively correlated objec-
tives, ¹O8; O11º and ¹O10; O11º. The same networks are used as last section. NSGA-Net is
equipped with the same parameters with GACD for a fair comparison.

5.1. Experimental Results on Artificial Networks

We first run NSGA-Net on artificial networks. The comparison results of NSGA-Net
optimizing over six pairs of objectives and GACD optimizing over original single objectives
are shown in Figure 5. When the optimized objectives are positively correlated (Figures 5(a)
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FIGURE 5. The normalized mutual information comparison of NSGA-Net optimizing over three types of
objective functions (i.e., positively correlated, independent, negatively correlated) and GACD optimizing over
original single objectives on artificial networks. To strengthen the difference in (c) and (f), we omit the result
of GACD C O11 that has a bad performance (Figure 2(a)). The larger the normalized mutual information, the
better the performance.
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and (d)) or independent (Figures 5(b) and (e)), NSGA-Net’s performances have no obvious
differences from the performances of the optimization on each single objective with GACD.
Most results of NSGA-Net are between those of the single objectives. However, it is obvious
that NSGA-Net with a pair of negatively correlated objectives (Figures 5(c) and (f)) has bet-
ter performance than the optimization on the original single objective. NSGA-Net not only
steadily performs better than GACD on all conditions but also improves the performance up
to 6:7% and 4:7% on Figures 5(c) and (f), respectively.

5.2. Experimental Results on Real Networks

It is difficult to evaluate the quality of communities for real networks, because real com-
munity structures are unknown. Conventional criteria use an indicator to evaluate the quality
of the whole partition, such as Q (Newman and Girvan 2004). However, they are not suitable
for our work, becuase these criteria have bias on the optimized objectives. Moreover, these
criteria can just reflect the quality of whole partition, not the quality of internal communi-
ties. Here, we propose a new criterion to evaluate the quality of communities as a function
of their size, which provides a much finer resolution to examine the partition results. In
detail, for a community partition C D ¹S1; S2; : : : ; Slº, we propose the Average Measure
Function AMF.k/ to evaluate the average measures of the communities with size k.

AMF.k/ D

P
Si2Ck

Crit.Si /

jCkj

Ck D ¹Si j Si 2 C; jSi j D k; k 2 ¹1; : : : ; nºº

(4)

where Crit.Si / is a criterion that evaluate the quality of the community Si . From the defi-
nition of AMF.k/, we can find that it reveals the structural characteristics of communities
with size k, instead of the characteristics of all communities in conventional criteria. Note
that the community size k may be not sequential. For Crit.S/, we select two popular criteria,
Conductance and ShortestPath, to evaluate the quality of a community S .

Conductance.S/ D cS=min.Vol.S/;Vol.V nS//

ShortestPath.S/ D
2
P
i;j2S dis.i; j /

ns.ns C 1/

(5)

where Vol.S/ D
P
u2S d.u/ and dis.i; j / is the shortest path of node i and j . Note that

Conductance here measures the degree of connection with outsides for one community,
rather than that for the whole partition as in the objective O1. Although Conductance may
have bias onO1, it reflects the quality of community to some extent. A smaller Conductance
indicates that nodes in the community are sparsely connected with outside. The Shortest-
Path is the average length of the shortest path of pairwise nodes in the community. A
smaller ShortestPath shows that nodes in a community are closely (densely) connected
with each other. Together, the two criteria reflect two aspects of a good community, that
is, densely interconnected and sparsely connected with outside. As a consequence, the
AMF.k/ function can comprehensively evaluate the quality of a community partition with
a finer granularity.

Our measures (especially the Conductance-based measure) are similar to the Network
Community Profile (NCP) proposed by Leskovec, Lang, and Mahoney (2010). They both
are size-resolved measure, which can evaluate community structure with a finer granularity.
However, they are different. First, they have different aim. NCP asks for approximation
to the best cluster (i.e., a cluster with the smallest conductance) for every possible size.
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The AMF evaluates the structure characteristics of communities with the same size. Second,
different from the lower-envelope curves (i.e., smallest performance) of communities with
size k illustrated by NCP, the AMF shows the average performance of communities with
the same size. And thus, we think our measure can more comprehensively reflect the quality

FIGURE 6. The AMF comparison of NSGA-Net optimizing over three types of objective functions (i.e.,
positively correlated, independent, and negatively correlated) and GACD optimizing over original single objec-
tives on the P2 network. The first and last two row subgraphs are the comparing results on AMF-Conductance
and AMF-ShortestPath criteria, respectively. The smaller the AMF, the better the performance.
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of communities. Moreover, our measures are more suitable for the evaluation of algorithms
used in this paper, because they both are based on clusters of any size, rather than the cluster
for every possible size.

We run NSGA-Net with six pairs of objective functions and GACD with 12 corre-
sponding objective on the 12 real networks. Then, we use the AMF criterion to compare the
performances of NSGA-Net with that of GACD. Because of the space limitation, we only
show the results on P2 network in Figure 6. Intuitively, we can observe that the AMF curves
of NSGA-Net with negatively correlated objectives are lower than that of GACD with the
original single objective in most conditions (see the last column subgraphs in Figure 6),
which means NSGA-Net have better performance than GACD. However, it is not the case
for NSGA-Net with the other two types of objectives, because their AMF curves are usually
between the two AMF curves of GACD with original objectives (see the first two column
subgraphs in Figure 6). To capture it more clearly, we define the LowRat.C / to quantita-
tively count the ratio of communities in a partition C with the smallest measure values
comparing with two other partitions. LowRat ranges from 0 to 1, and the larger LowRat
means better performance.

LowRat.C / D

ˇ̌®
CkjAMF.Ck/ < AMF

�
C 0
k

�¯ˇ̌

j¹CkjCk � C; k 2 1; : : : ; nºj
(6)

where Ck and C 0
k

are the communities with the size k in two different partitions C and
C 0, respectively. Taking Figure 6(f) for example, the partition result of NSGA-Net with
¹O10; O11º (see the AMF curve marked with black dot) have 37 communities with different
sizes, in which 21 communities have the smallest Conductance compared with other two
partitions of GACD with O10 and O11. And thus, its LowRat is 0.5676. This value is not
large, although Figure 6(f) shows that the AMF curve of NSGA-Net with ¹O10; O11º is
overwhelmingly smaller than the other two AMF curves. Thus, we think the superiority is
remarkable when LowRat is larger than 0.5. Note that there are three AMF curves (one for
NSGA-Net with multiobjectives and two for GACD with original single objectives) in a
figure, and thus the expected LowRat for each algorithm is 1=3 (i.e., the baseline).

The LowRat values of partition results identified by NSGA-Net on 12 networks are
shown in Figure 7. We find the same phenomena as that of artificial networks. The
NSGA-Net with negatively correlated objectives remarkably performs better than the
single-objective optimization on original single objectives, because their LowRat values
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FIGURE 7. The LowRat values of partitions identified by NSGA-Net optimizing over three types of
objective functions on 12 real networks. The larger the LowRat, the better the performance.
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(i.e., ¹O8; O11º, ¹O10; O11º) are significantly larger than the baseline 1=3 on most net-
works. However, it is not obvious for the NSGA-Net with other two types of objectives,
because most of their LowRat values are around 1=3. These experiments further confirm that
the multiobjective community detection with negatively correlated objectives remarkably
improves the accuracy of community partition.

5.3. Comparison with Other Algorithms

To further validate the aforementioned conclusion, we compare NSGA-Net with
negatively correlated objectives to other representative community detection algorithms.
NSGA-Net is equipped with a pair of negatively correlated objectives O8 and O11, because
many popular algorithms optimize the O8 (i.e., Q the facto criterion in physics field). Four
well-established single-objective community detection algorithms are included in the exper-
iments. It includes the betweenness-based heuristic algorithm (Newman and Girvan 2004)
(named GN) and its improved version (Clauset, Newman, and Moore 2004) (named GN
Fast). The EA-based optimization algorithm (Shi et al. 2010b) (named GACD) optimizes
the O8. The information-theoretic framework-based algorithm (named INFO) (Martin and
Carl 2007) optimizes theO9 (i.e., DescriptionLength). In addition, two multiobjective com-
munity detection method MOCD (Shi et al. 2012) and MOGA-Net (Pizzuti 2009) are
also included. MOCD simultaneously optimizes two components of the modularity Q.
MOGA-Net simultaneously optimizes the O10 (i.e., CommunityScore) and Community-
Fitness (a criterion measuring the ratio of internal degree). To obtain one single recommen-
dation solution, MOGA-Net and MOCD also employ the Max–Min distance model selection
method to select a partition from the Pareto front. NSGA-Net, MOCD, and MOGA-Net

0 0.1 0.2 0.3 0.4 0.5 0.6
0.2

0.4

0.6

0.8

1

µ

N
M

I

NSGA−Net

GACD

GN

GN−Fast

INFO

(a) Compare with single-objective algorithms

0 0.1 0.2 0.3 0.4 0.5 0.6
0.1

0.3

0.5

0.7

0.9

µ

N
M

I

NSGA−Net
MOCD
MOGA−Net

(b) Compare with multiobjective algorithms

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

µ

st
rR

at
io

GACD
MOCD
MOGA−Net
NSGA−Net

(c) Performance on str Ratio

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

µ

w
ea

kR
at

io

GACD
MOCD
MOGA−Net
NSGA−Net

(d) Performance on weak Ratio

FIGURE 8. The comparison of NSGA-Net employing a pair of negatively correlated objectives (i.e., O8
and O11) with other popular algorithms on artificial networks.
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are set as the same parameters with GACD in Section 4.2.1. The benchmark is the same
artificial networks as before.

The experimental results are shown in Figure 8. It is clear that NSGA-Net performs
better than other single-objective algorithms in most conditions, as shown in Figure 8(a).
Moreover, Figure 8(b) shows that NSGA-Net has a better performance than the multiobjec-
tive method MOGA-Net. Note that MOGA-Net performs well when � is small; however, it
becomes the worst one when � grows large. An important difference between NSGA-Net
and MOGA-Net lies in the objective functions. We think that the absence of the sufficient
negative correlation between objectives in MOGA-Net causes its bad performances. MOCD
has a close performance to NSGA-Net. Shi et al. (2012) emphasized that two optimized
objectives in MOCD are conflicting, which may explain the reason of the good performance
of MOCD. We also find that the different optimization framework in NSGA-Net and MOCD
(i.e., NSGA-II (Deb et al. 2002) and PESA-II (Corne et al. 2001), respectively) do not much
affect the performance of multiobjective community detection.

For the NMI measure, the NSGA-Net does not achieve much improvement when it is
compared with other multiobjective algorithms. We further compare the structure character-
istics of communities they discover through other criteria. Radicchi et al. (2004) proposed
the concept of strong community and weak community to depict the closeness of a com-
munity, which is widely used in community evaluation (Costaa et al. 2007; Fortunato and
Barthelemy 2007; Shi et al. 2012). Here, we validate whether each community is a strong
(or weak) community and calculate the ratio of strong (or weak) communities to quantifica-
tionally evaluate the quality of partition. The ratio of strong communities (strRatio) and the
ratio of weak communities (weakRatio) are formally defined as follows.

strRatio.C / D

ˇ̌®
S jkin

i .S/ > k
out
i .S/ 8i 2 S ^ 8S 2 C

¯ˇ̌

jC j

weakRatio.C / D

ˇ̌®
S j
P
i2S k

in
i .S/ >

P
i2S k

out
i .S/ 8S 2 C

¯ˇ̌

jC j

(7)

where S is a community in the partition C , kin
i .S/ is the number of edges connecting node i

to other nodes in S , and kout
i .c/ is the number of edges connecting node i to the nodes out-

side S . The larger the value means the better partition. Moreover, a strong community is also
a weak community, whereas the reverse is not correct. Thus, weakRatio.C / is always equal
or greater than strRatio.C /. Because the four EA-based algorithms (i.e., GACD, MOCD,
MOGA-Net, and NSGA-Net) have close NMI results, we further compare the commu-
nity structure they discover with the ratio of strong (or weak) communities. The results are
demonstrated in Figures 8(c) and (d). It shows that NSGA-Net has the highest ratio of strong
(and weak) communities in most conditions. Although NSGA-Net is not always the best one
for small �, it consistently achieves the best performance when � is large. We know that,
with the increment of �, the community structure becomes fuzzier, and it is more difficult
to identify the community structure. The results imply that NSGA-Net has better potential
to discover fuzzy community structures compared with other algorithms.

5.4. Efficiency Experiments

To observe the time efficiency of NSGA-Net, we record the running time of all
algorithms on the aforementioned artificial network experiments. Figure 9(a) shows the
results. We can find that the aggregation-based algorithms (e.g., GN and GN Fast) are
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FIGURE 9. Time efficiency of NSGA-Net.

more efficient. Because of population evolutionary, the EA-based algorithms (e.g., GACD,
MOCD, NSGA-Net, MOGA-Net) cost more running time. Moreover, the running time
of GACD is smaller than other EA based algorithms, because only one single objec-
tive is optimized in GACD. The results illustrate that multiobjective community discovery
algorithms usually need longer running time, although they can discover more accurate
community structures.

NSGA-Net is based on NSGA-II that has the time complexity O.gs2/ (Deb et al. 2002).
Thus, the time complexity of NSGA-Net is O.gs2f .O// (g is the running generation and
s is the population size. f .O/ is the complexity of calculating the objective function O).
It shows that the running generation and population size greatly affect the time efficiency
of NSGA-Net. We further do experiments to validate the time efficiency of NSGA-Net on
different parameter settings. Figure 9(b) demonstrates the running time of NSGA-Net on the
aforementioned artificial networks when it is set with different population sizes and running
generations. The results clearly show that the running time of NSGA-Net almost linearly
increases with the running generation. With the increment of population size, the running
time of NSGA-Net also increases. The experiments confirm the time complexity analysis
of NSGA-Net.

Generally, the larger running generation and population size in NSGA-Net will lead to
the better algorithm performance. However, it also needs more running time. Therefore, we
can trade off the effectiveness and efficiency of NSGA-Net by setting the proper parameters
according to applications. For small-scale networks, we can set the larger running generation
and population size for more accurate results. For large-scale networks, we can set the not
large running generation and population size for acceptable results in not long time.

5.5. Discussions

Note that the same optimizer is used for all the objectives, and the same number of indi-
viduals is evaluated in the two EA-based algorithms: NSGA-Net and GACD. We believe
that the multiobjective optimization in NSGA-Net contributes to its performance improve-
ment. In the MOP framework, the characteristics of community structure are measured from
different angles, which reduces the risk that one single objective may have bias on a certain
kind of network. Moreover, the population evolution in multiobjective optimization process
trade-offs the balance of the multiple objectives; thus, it helps to avoid local optima.
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Why are only the negatively correlated objectives suitable for the multiobjective com-
munity detection method? We think that the negatively correlated objectives have the
opposite effects on the number of communities, which can make the number of commu-
nities dynamic. It can avoid the algorithm converges to trivial solutions. In addition, the
negatively correlated objectives also reflect different aspects of communities, and they can
potentially enhance the diversity of solutions. It helps to avoid prematurity. The positively
correlated objectives are equivalent to a single objective, and thus the multiobjective com-
munity detection becomes a single-objective community detection in fact. As for the case
with independent objectives, where the conflict among objectives is not strong, the opti-
mizer is hard to effectively explore the objective space to avoid the local optimal. Therefore,
the multiobjective community detection only optimizing over negatively correlated objec-
tives, rather than positively correlated or independent objectives, can effectively improve
the accuracy of community partition.

6. RELATED WORK

In the past decade, many community detection algorithms have been proposed, most of
which are based on the optimization over a single objective function. These single-objective
community detection algorithms are usually implemented in two ways. Some algorithms
consider community detection as an optimization problem that is solved through optimizing
an evaluation criterion, such as the Q criterion (Newman and Girvan 2004) in modular-
ity optimization methods (Guimera and Amaral 2005; Pizzuti 2008; Shi et al. 2010b), the
“cut” function (Kannan et al. 2004) in the spectral method (Pothen et al. 1990). Some algo-
rithms design heuristic rules to detect community structures. Such examples include the
edge betweenness (Newman and Girvan 2004) and link clustering coefficient (Radicchi et al.
2004). Different from these single-objective algorithms, our NSGA-Net simultaneously
optimizes multiple objectives.

Recently, the multiobjective optimization technique has widely been applied in data
mining problems. For example, Handle and Knowles (2007) apply EMO to boost clus-
tering performance. The multiobjective-based neural network ensemble is also applied to
improve multilabel classification performances (Shi et al. 2011a). Particularly, more and
more researchers have been aware that the community detection is a MOP in nature
(Brandes, Delling, and Gaetler 2008; Fortunato and Barthelemy 2007; Martin and Carl
2007) and several multiobjective community detection algorithms have been proposed.
Pizzuti proposed the MOGA-Net (Pizzuti 2009), which simultaneously optimizes the
CommunityScore and CommunityFitness with NSGA-II. Shi et al. proposed the MOCD
(Shi et al. 2012), in which the optimization objectives are two components of modularity
Q and the optimization framework is PESA-II (Corne et al. 2001). Agrawal (2011)
designed BOCD to maximize modularity Q and Community Score simultaneously. More-
over, Folino and Pizzuti (2010) proposed a multiobjective evolutionary community detection
for dynamic networks, in which the algorithm optimizes the accuracy and smoothness of
community structures. Distinct from these approaches, NSGA-Net is a general multiobjec-
tive community detection algorithm, which can optimize any objectives. More importantly,
this paper deeply exploits the characteristics and relations of objective functions and ana-
lyzes the effect of relations of optimization objectives on the performance of multiobjective
community detection.

In our previous work, we analyzed the structural characteristics of communities
identified by objective functions in the single-objective setting (Shi et al. 2010a) and prelim-
inarily studied the selection of objective functions in multiobjective community detection
(Shi et al. 2011b). On the basis of these work, this paper has the following two significant
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contributions. (1) It greatly extends these existing work. We formally proposed the objec-
tive selection problem in the multiobjective community detection paradigm and analyzed its
importance. After analyzing the characteristics and correlations of objective functions, we
do a large number of experiments to test the performance of our proposed multiobjective
algorithm NSGA-Net under different objective combination and draw the conclusion that
NSGA-Net with negatively correlated objectives usually leads to a better performance. (2)
It does extensive experiments to validate our conclusion. Except the experiments on artifi-
cial networks, we validate our conclusion on 12 real networks. We design new criteria to
evaluate the comparison results and compare NSGA-Net with more algorithms.

7. CONCLUSION

In this paper, we study an important issue in the multiobjective community detection:
what type of objectives should be optimized? After proposing a general multiobjective com-
munity detection solution NSGA-Net, we first systematically analyze the characteristics
of communities identified by 11 objectives and reveal their intrinsic correlations (i.e.,
positively correlated, independent, and negatively correlated). Then, we compare the per-
formances of NSGA-Net optimizing over different types of objectives to those of a
single-objective-based approach optimizing over the original single objective. The extensive
experiments show that the multiobjective community detection does not necessarily improve
the accuracy of community partition, and its performance largely depends on the selec-
tion of objective functions. NSGA-Net only with a pair of negatively correlated objectives
remarkably improves the performance. Moreover, NSGA-Net with a pair of positively
correlated or independent objectives has no obvious lifts on performance. With a pair
of negatively correlated objectives, NSGA-Net also performs better than other popular
community detection algorithms.
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