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Abstract. Duplicate multi-modal entities detection aims to find highly similar
entities from massive entities with multi-modal information, which is a basic
task in many applications and becoming more important and urgent with the de-
velopment of Internet and e-commerce platforms. Traditional methods employ
machine learning or deep learning on feature embedding extracted from multi-
modal information, which ignores the correlation among entities and modals.
Inspired by the popular Graph Neural Networks (GNNs), we can analyze the
multi-relation graph of entities constructed from their multi-modal information
with GNN. However, this solution still faces the extreme label sparsity challenge,
particularly in industrial applications. In this work, we propose a novel graph con-
trastive self-training network model, named CT-GNN, for duplicate multi-modal
entities detection with extreme label sparsity. With the multi-relation graph of en-
tities constructed from multi-modal features of entities with KNN, we first learn
the preliminary node embeddings with existing GNN, e.g., GCNs. To alleviate
the problem of extremely sparse labels, we design a layer contrastive module to
effectively exploit implicit label information, as well as a pseudo labels exten-
sion module to determine label boundary. In addition, graph structure learning
is introduced to refine the structure of the multi-relation graph. A uniform opti-
mization framework is designed to seamlessly integrate these three components.
Sufficient experiments on real datasets, in comparison with SOTA baselines, well
demonstrate the effectiveness of our proposed method.

Keywords: Duplicate enetites - Graph learning - Self-supervised learning - Self-
training learning.

1 Introduction

Duplicate entities detection, finding all two highly similar or even identical entities
from massive data, has become a common and important problem, e.g., face matching
[23] and user alignment [37]. In e-commerce scenarios, this problem is more chal-
lenging, because entities often have multi-modal features, e.g., texts, images and even
videos. Duplicate multi-modal entities detection has urgent and realistic needs, which
provides the basic function in many applications. For instance, as shown in Figure 1
(e.g., similar images and descriptions), some store managers defraud illegal subsidies
from e-commerce platforms through registering inveracious duplicate stores. Thus, de-
tecting these duplicate multi-modal entities is an important task for combating fake



2 Shuyun Gu et al.

Ladybird shop mainly deals text Ladybird shop, fruits and
in fruits and vegetables. vegetables.

Fig.1: An example of duplicate multi-modal stores. The images and texts are the outlines and
description information of the stores respectively. Because of their highly similar features, they
are determined to be duplicate entities.

information and saving cost. In order to solve the above problems, traditional industrial
solutions are more inclined to machine learning or deep learning methods [1], making
independent decisions for each pair of duplicate entities based on feature engineering,
which measures the similarity of entities by feature extraction and feature combination.
Nevertheless, these methods have two disadvantages. (1) They do not depict the cor-
relation between entities explicitly. The correlation between entities is important prior
knowledge, and thus ignoring them may result in performance degradation. (2) The as-
sociations between multiple modals are not considered. Different modals depict entities
from distinct perspectives, and thus considering associations between multiple modals
may benefit for characterizing entities more accurately.

For solving above disadvantages, a direct solution is to construct a multi-relation
graph through employing K-Nearest Neighbors (KX N N) [4] on multi-modal features,
and then the popular GNN [35,10] can be applied to exploit the structure relations
among entities and modals. However, because of the semi-supervised paradigm, this
solution faces the extreme labels (i.e., known duplicate entity pairs) sparsity challenge,
especially on industrial applications. For instance, an e-commerce platform has tens
of millions of offline stores, the proportion of duplicate stores is relatively small. The
labels we can obtain also rely on manual annotation. Due to very high labor costs, the
known label data may only account for 5% of the duplicate stores, and thus the label
data may be no more than 0.05% of all stores.

How to deal with the extreme labels sparsity challenge? A common way is self-
supervised learning [34,32] or self-training learning [12,13]. However, these strategies
are not easily applied to our problem settings and a single strategy is also not sufficient
to solve the above challenge. For self-supervised learning, the conventional process is
to generate two augmented views based on a graph, and emphasize the consistency be-
tween different views of the same node (i.e., entity) [26,36]. However, in our duplicate
multi-modal entities detection scenario, this method of emphasizing the consistency of
the same node does not have much benefit to mine whether two nodes is duplicate.
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As for self-training learning, its main idea is to generate some pseudo labels and train
jointly with real labels. In the scenario of duplicate entities detection, we can gener-
ate pseudo labels by similarity measurement. However, pseudo labels with different
similarities have different influences on the model, so it is difficult to determine a ra-
tional threshold for pseudo labels. More importantly, individual self-supervised or self-
training learning may be not sufficient to solve the extreme label sparsity, especially
in real industry scenorio, which motivates us to effectively integrate more strategies to
solve this challenge.

In this paper, we propose a novel graph contrastive self-training network model
CT-GNN, which solves the challenge of extreme label sparsity by means of seamlessly
integrating self-supervised learning and self-training learning. Specifically, after multi-
modal feature extraction through pre-training model [24,5], we build a multi-relation
graph with K NN method, and learn the node embeddings with GCNs [10] model. In
order to exploit implicit label information among graph structure, we propose a novel
layer-contrastive module by using the strategy of multiple random walks [16,18,11] to
find the others with the most frequency as positive nodes in the topology. At the same
time, in order to more fully utilize the feature information of entities, we design a self-
training module with a delicate boundary distance, which distinguishes the optimization
intensity of labels with different similarities. In addition, the graph structure learning
process is introduced to automatically adjust graph structure for iterative representation
learning. Finally, a joint optimization function is designed to seamlessly optimize above
three components.

We summarize the contributions of this work as below:

— To our best knowledge, we are the first to study the problem of duplicate multi-
modal entities detection with extreme label sparsity, which is a basic task in many
applications and becoming more important and urgent with the development of
Internet and e-commerce platforms.

— We propose a novel graph model named CT-GNN, which seamlessly integrates
self-supervised learning, self-training learning and graph structure learning in a
uniform optimization framework. In particular, some delicate designs in CT-GNN
make it suitable for extreme label sparsity challenge, i.e., layer contrastive module
with multiple random walk and self-training module with boundary distance.

— We evaluate CT-GNN by designing both various offline and online experiments.
Compared to state-of-the-art alternatives, the improvements of CT-GNN are obvi-
ous up to 9.88% in Recall and 7.13% in Precision.

2 Related Work

2.1 Graph Neural Networks

In recent years, Graph Neural Networks (GNNs) has become an extremely important
field, e.g., recommendation systems [30,8], fraud detection [15], which learn the node
embedding by aggregating the features of neighborhoods [28]. GCNs [10] implements
layer-wise propagation to learn the node embedding, and GAT [28] learns different at-
tention scores for neighbors when aggregating neighborhood information. Meanwhile,
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Some recent models [21] are proposed to deal with heterogeneous graphs which are
more practical in reality. RGCN [21] propose to learn node embedding based on multi-
relation neighborhoods. Additionally, HAN [31] leverages the attention mechanism un-
der node-level and semantic-level in heterogeneous graphs.

2.2 Self-supervised Learning for GNNs

Recently, motivated by profound success in natural language processing [5] and com-
puter vision [7], self-supervised contrastive learning based graph representation learn-
ing attracts considerable attention. Deep Graph Infomax (DGI) [29] learns unsupervised
representations for nodes in attributed graphs by the mutual informaton-based learning
from Deep InfoMax [9]. GMI [19] is proposed to contrast between center node and its
local patch from node features and topological structure. Another line of graph con-
trastive learning approaches called global-global contrast [20] directly study the rela-
tionships between the global context representations of different samples as what metric
learning does. In heterogeneous domain,DMGI [17] and HeCo [32] employs network
schema and meta-path as two views to capture both of local and high-order structures,
and performs the contrastive learning across them.

2.3 Self-training Learning for GNNs

Due to the pressure of sparse supervised signals, some researchers propose that GNNs
are not completely suitable for graph semi-supervised learning tasks [13]. Self-training
[12] strategy is to first train GNNs with the existing training sets, then selects the sam-
ples with high predicting probability as pseudo labels and add them to the training sets,
and then continue to train GNNs. The samples selected by self-training should have
similar features with the label samples, so that the robustness will be improved after
expanding the training sets [38]. These methods have uniform constraint strength for
all generated labels, but samples with different prediction probabilities should have dif-
ferent influence on the model.

3 THE PROPOSED MODEL

3.1 Notations & Definitions

Given entity set U = {uy,ua, ..., u, } and feature set E = {ey, e, ..., €, }, each entity
u; € U has a feature ¢; € F, in which n is the number of entities and e; includes multi-
modal feature e; = {ez(.l)7 652), s egv)}, and v is the number of modals. Without lost
of generality, we consider image feature Fj;,,, and text feature Fy.,; in this paper. For
these multi-modal features, we can obtain their initial feature (i.e., Ejpg and Ejp,g).
Through multi-relation graph construction and GNN method, we fully learn node em-
bedding (i.e., X©). Our goal is to mine all suspicious duplicate entities through the

similarity calculation of node embedding.
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Fig.2: The architecture of CT-GNN. (a) is the constructing process of multi-relation graph. (b)
is the layer contrastive module through multiple random walks. (c) is the self-training learning
considering boundary distance. (d) is the graph refinement process.

3.2 Overall Framework

Figure 2 shows the overall framework of our CT-GNN model. After constructing multi-
relation graph by multi-modal features, we design a graph contrastive self-training net-
work to solve the extreme label sparsity challenge, including layer contrastive learn-
ing, self-training with boundary distance and graph structure learning, in a uniform
optimization framework. Concretely, after learning graph embedding with GCNs, we
firstly design a layer contrastive module to sufficiently utilize self-supervised informa-
tion, which uses multiple random walks to find the important neighbors of the central
node as positive samples of contrastive learning. Then we introduce a self-training mod-
ule to flexibly extend label information. Based on the similarity between entities, we
smartly generate pseudo labels through a delicate boundary distance loss distinguishing
the optimization intensity of labels with different similarities. Meanwhile, in order to
refine the graph structure, we further design a graph structure refinement process during
iteration.

3.3 Multi-relation Graph Construction

Firstly, we construct a multi-relation graph of entities under the multi-modal features
with the KNN method. Without lost of generality, we consider image and text feature.
Image Feature: we employ the pre-training image model VGG [24,22] to acquire the
image feature vectors Xj,g € R™? and d represents feature dimension. 7ext Fea-
ture: we use the pre-training language model BERT [5,25] and convert all of the text
information for each entity feature vector Xieqt € R™.

Based on X ;g and X¢eq¢, we can construct the K-Nearest Neighbor graph G,y =
(Aimg, Ximg) and Giexr = (Ateat, Xtext), Where Ajpg and Ayeqt are the adja-
cency matrix of K NN graphs under images and texts respectively. Specifically, under
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Ximg or Xiegt, for each sample, we first find its top-K similar neighbors and set edges
to connect it with its neighbors. There are many methods to calculate the similarity ma-
trix S € R™" of samples. Here we list two common methods for building K NN
graph,

— Cosine Similarity: It uses the cosine value of the angle between two vectors to
measure the similarity:

:Zti~:12j

Sij = ey

EAEN
— Heat Kernel: The similarity is calculated by Eq. (2) where ¢ is the time parameter
in heat conduction equation.

2
_ gyl

Sij =e @t . (2)

Here we uniformly choose the Cosine Similarity. By this way, we can obtain two
graphs: Ging and Giepe, and then combine them to get a multi-relation graph § =
(V,E,R), in which V and £ represent the node set (all entities) and edge set respec-
tively, and R = {image, text} represent all relations between two nodes, i.e., the
association between nodes in the image and text dimension.

3.4 Graph Embedding Learning

Now we have built the graph G. The initial node feature are image and text feature, i.e.,
Ximg and Xiegze. We first learn from the idea of GNNs (e.g., GCNs [10]) to get the
embedding of each type of feature, and then integrate them together. The generation
method of embedding under image feature is as follows,

1
I+1 _ l
Tigy = Y, ——a | 3)
g jEszg |N-iz7ng‘|./\/‘;,mg| img

41 represents the embedding of node i at the (I + 1)** layer under image

where x;,,,
feature. J\/jmg represents the neighbor set of ¢ (including the central node 7) under the
image feature. The embedding learning method under the text feature is the same as the
image feature.

In order to obtain a comprehensive node embedding for subsequent graph learning,

we fuse two types of embeddings by a function f, as follows,

.’BilJrl = f(.’]}iimglJrl €T

) Hltext

B, 4)

where x;/*! is the embedding of node i after fusion. The common designs of f are

concatenation, weighted sum and softmax [14], and we choose concatenation operation
in this paper.
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Fig.3: Positive example selection in layer contrastive module. Three random walks are per-
formed from the central node ng, and L = 3 is limited, and the n4 and ng appear the most times,
i.e., n4 and ng are taken as positive samples of ng.

3.5 Self-supervised Learning with Layer Contrastive

In this section, we introduce a layer contrastive module to alleviate the problem of ex-
treme sparse supervised signals. Traditional graph contrastive learning is to generate
two augmented views based on a graph, and emphasize the consistency between differ-
ent views of the same node, which does not match our goal of predicting whether two
entities are duplicate. Because the duplicate entities usually meet the graph structure
proximity principle, i.e., the two nodes that meet the duplication condition should be
topologically highly related in the graph structure. Therefore, we design a layer con-
trastive learning module, which implements N random walks within L layer and finds
the first top m nodes that appear more times. In this way, we can capture the neighbor
(which can be multi-hop) nodes that are more important in the topology of the central
node, and take them as positive samples in contrastive learning. As is shown in Figure 3,
starting from node ng, we generate three random walk paths (L = 3). Among all paths,
ny4 and ng appear the most frequently. We think n4 and ng have the strongest correlation
with the central node ng in the topology, that is, they are most likely to be duplicate with
no. Therefore, ny and ng are used as positive samples of ng in contrastive learning. As
for the negative samples, we randomly select from outside the L layer.

Obviously, the strength of entity repeatability is inversely proportional to the layer
and directly proportional to the similarity. Therefore, we hope to use features and layers
to constrain embedded learning. After finding the positive and negative examples, we
adopt the contrastive loss, InfoNCE [6], to maximize the agreement of positive pairs
and minimize that of negative pairs. On this basis, we consider the different effects of
layers and similarities on the optimization strength, and update the loss function, as
below,

L .
[,lc == Z Z Z Szm(xl‘l’y mu+)

veV =1 utenebor! (5)
exp{sim(xy, Ty+)/7}

l
O S e en €xplsim(@y, =) [T}
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where (€., €, +) is the the positive pair and («.,,,x,—) is the negative pair. T is a
hyper-parameter, known as the temperature coefficient in softmax. We can see that
the optimization proportion of positive samples is proportional to the similarity and
inversely proportional to the layer [ (i.e., the distance between nodes), and the influence
intensity of the [ is controlled by an intensity coefficient ~.

3.6 Self-training Learning with Boundary Distance

In this section, we introduce a self-training module to further relieve the extreme lack-
ing labels. Conventional methods calculate the similarity between entities, and judge
whether are pseudo labels by a boundary (i.e. threshold). However, a popular fixed
boundary is not retional, since the pseudo labels with different distances from the
threshold have different effects in the optimization process. And thus we design a smart
threshold with boundary distance.

We use R to represent the set of real labels and generate pseudo labels with the
similarity of nodes. Specifically, we set a super parameter ¢, and then calculate the
cosine similarity between nodes. For two nodes whose similarity is greater than or equal
to t, we think they are likely to be duplicated, so we regard them as a pair of pseudo
labels. We use P to represent the set of pseudo labels. The generation process of P is
formalized as follows,

(u,v) € P, sim (@, Tpy) > t. 6)

Obviously, this threshold ¢ can be considered as the boundary between duplicate
and non-duplicate entities, and the node similarities in the real labels are far away from
t. In order to distinguish the optimization strength of pseudo labels with different dis-
tances from ¢, we design a semi-supervised normal form based on boundary distance,
as follows,

1 Z (sinL(mu,wu+) - t)a

N 1—t¢
(u,ut)EPUR (7)
(v,v")ENeg

Ligber =

log{o(sim(@ e, Tyt ) — $iM(Te, Toy— )}y
in which Neg is the negative sample set. Negative samples are randomly selected from
the set whose similarity is less than t. & and o are the strength-control coefficient and
a non-linear activation function, respectively. As shown in Eq. (7), the optimization
strength of all pseudo labels (i.e. positive samples) is different, and it decreases with the
increase of the distance from the boundary t.

3.7 Graph Structure Learning

In order to ensure the credibility of the graph structure in the model iteration process,
we choose to refine the graph structure in each epoch. The method of reconstructing the
graph is shown in Section 3.3.

Let the graph adjacency matrix of the last epoch be A,,., and that of the current
epoch be A,c.. In order to constrain the stability of nodes embeddings during the
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training process, we need to constrain the graph structure changes between the two
epochs, which is as shown below,

Cg - ||Anew - Apre”?- (8)

3.8 Joint Optimization

In order to combine the above modules, we jointly optimize the model, which is as
below,

L= L+ MLigper + Ao Lg, (&)

in which A\; and A\, are hyperparameters to control the proportion of label extension
module and graph refinement module, respectively.

4 EXPERIMENTS

4.1 Datasets

Three datasets are utilized in our evaluation, and can be described as follows:

— M Stores: It is an offline stores datasets of Mplatform. It includes multi-modal
information (e.g., store outline images and store names). We extracted partial data,
including 111,635 entities (stores).

— M commodities: M platform maintains a large number of commodities online.
When they are released, sellers need to upload multi-modal information of the
commodities, such as the appearance images and the commodity names. We ex-
tract 125,320 entities (commodities) for experiment.

— T commodities: T has a large number of commodities for users to choose. We can
obtain multi-modal information of commodities including the image, name and
attribute, etc. We obtain 69,911 entities (commodities).

4.2 Experimental Settings

Baseline. We compare CT-GNN with several state-of-the-art methods. The baseline
can be divided into three categories: traditional industrial models, graph models and
multi-modal models. The traditional industrial models include: XGBoost [2] and MLP
[27]. The graph models include GCN [10], GAT [28], RGCN [21] and HAN [31]. The
multi-modal models include ITA [33] and HVPNet [3].
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Table 1: The R (Recall) and P (Precision) results under different threshold (t) on three datasets.

Dataset t (M| XGB | MLP | GCN |[RGCN| ITA |HVPNet| CT-GNN | Improv.

T 0.294510.2678|0.3002 | 0.3086 | 0.2858 | 0.3224 | 0.3290 | 2.05%

commodities | 0.90 0.5468|0.5100|0.5591 | 0.5933 | 0.5265| 0.5371 | 0.6356 | 7.13%

0.2449|0.2208 | 0.2675| 0.2773 | 0.2508 | 0.2729 | 0.3047 | 9.88%

R |0.3633|0.3152 |0.3578 | 0.3756 |0.3312| 0.3621 | 0.4122 | 9.74%
0.85| P [0.7429|0.7093 | 0.8033 | 0.8154 |0.7645 | 0.8392 | 0.8567 | 2.09%
M R |0.34220.2978 | 0.3420 | 0.3693 | 0.3247| 0.3529 | 0.3923 | 6.23%
Stores 0.90 | P |0.7803|0.7432{0.8358 | 0.8492 |0.7850 | 0.8415 | 0.8625 | 1.57%
R |0.3137|0.2765|0.3197 | 0.3128 |0.2933| 0.3367 | 0.3670 | 5.52%
0.95| P |0.8232]0.7938 | 0.8552 | 0.8737 | 0.8022 | 0.8639 | 0.9245 | 5.81%
R [0.32780.3024 | 0.3538 | 0.3793 | 0.3488 | 0.3725 | 0.3928 | 3.56%
0.85| P [0.5281|0.4933 |0.5324 | 0.5633 |0.5384 | 0.5528 | 0.5933 | 5.33%
M R [0.3055|0.2933|0.3228 | 0.3387 |0.3176| 0.3495 | 0.3582 | 2.50%
commodities | 0.90 | P | 0.5468|0.5162 | 0.5533 | 0.5966 |0.5539| 0.5932 | 0.6124 | 2.65%
R |0.2873{0.2734 | 0.2956 | 0.3034 | 0.2753 | 0.3008 | 0.3143 | 3.59%
0.95| P |0.5884 | 0.5478 | 0.6055 | 0.6374 |0.5976 | 0.6123 | 0.6534 | 2.51%
R |0.3256 | 0.2833 | 0.3277 | 0.3328 | 0.3165| 0.3245 | 0.3547 | 6.58%
0.85| P |0.5218]0.4908 | 0.5329 | 0.5587 |0.5180| 0.5267 | 0.5853 | 4.76%
R
P
R
P

0.95 0.593410.5736|0.6093 | 0.6533 | 0.5732| 0.6262 | 0.6603 | 1.07%

4.3 Performance Evaluation

In this section, we empirically compare CT-GNN with several state-of-art alternatives
and analyze the experimental results. In order to fully evaluate the results, we take ¢ =
0.85, 0.90 and 0.95 respectively. As shown in Table 1, the following major observations
can be made.

Obviously, CT-GNN achieves the best performance in the duplicate entities detec-
tion task on all datasets. Compared with the second best result, the improvement is
up to 9.88% in Recall and 7.13% in Precision. This phenomenon is reasonable. Com-
pared with non-GNN-based methods (i.e., XGBoost and MLP), GNN-based methods
can mine high-order information through graph structure. Compared with other GNN-
based models (i.e., GCN and RGCN), our model alleviates extreme label sparsity chal-
lenge with self-supervised module and self-training module. Note that, compared with
the multi-modal based methods (i.e., ITA and HVPNet), our model achieve signifi-
cant performance improvement because of capturing the correlation among entities and
modals.
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Fig.4: The result comparison of removing different information, i.e., removing images or texts.
(wesett = 0.95).
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Fig.5: The comparison result of removing different modules. SSL is Self-supervised learning.
STL is Self-training learning. GSL is Graph structure learning (we set £ = 0.95).

4.4 Ablation Analysis

In order to extensively validate our model, we conduct the following ablation experi-
ments.

Firstly, we explore the impact of multi-modal information, i.e., images and texts. In
order to explore the importance of each kind of information in the model, we remove
images and texts respectively, and then test the experimental results. As shown in Figure
4, without either images or texts, the experimental results are significantly lower than
complete CT-GNN model. Through the analysis of experimental results, we found that
the two kinds of information, image and text, have different influences in the duplicate
entities detection. For example, as shown in Figure 4(a), the prediction accuracy without
image information is far lower than that without text information. It indicates that image
information has a greater impact on the detection results.

Secondly, we explore the importance of three modules (i.e., self-supervised learn-
ing, self-training learning and graph structure learning) in our model. We remove them
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Fig. 6: Impact of 7, o, A1 and A2 to the result under three datasets. The red line, blue line and
green line respectively represent M stores, M commodities and T commodities. X is Recall and
e is Precision (we set ¢ = 0.95).

respectively, and then compare the experimental results. As shown in Figure 5, we find
that after removing the self-training module, the decline of experimental results is the
most significant, followed by removing the self-supervised and graph structure learning
module. It indicates that all three modules play important roles in the result of detection,
and the self-training module has the greatest influence.

4.5 Hyperparameter Analysis

In this section, we analyze several important parameters in the model. First, we ana-
lyze the two strength control factors v and « set in layer contrastive module and label
extension module respectively. As our model jointly optimizes the three modules with
hyperparameter A; and )5 in Eq. (9), we then explore the effect of them on the final
performance, and their change trends are shown in Figure 6.

Firstly, we observe two strength coefficients, i.e., v in Eq. (5) and « in Eq. (7). we
tune +y in {0.2,0.5,1.0,1.2,1.5,2.0} and view the corresponding results. As shown in
Figure 6(a), the index of the experiment increases gradually with v from 0.2 to 1.5,
and reaches the peak at v = 1.5. Then it shows a downward trend. Then we tune «
in {0.5,1.0,1.2,1.5,2.0,3.0} and observe the results. As shown in Figure 6(b), the
experimental results can get the maximum value at « = 1.2, and decrease at both sides
of 1.2. The change trend of this result also verifies the rationality of setting strength
parameters v in Eq. (5) and « in Eq. (7).

Next, we evaluate the impact of \; and 5. We perform experiments on three
datasets and tune \; in {0.5,0.8,1.0,1.5,2.0,3.0} and A2 in {0.4,0.6,0.8,1.0,1.2, 1.5}.
As we can see in Figure 6(c) that when A; = 1.5, the best experimental results can be
obtained on three datasets, and the two sides of \; = 1.5 show a downward trend, in
which we can infer that the label extension module is more important than the layer
contrastive module. As for Ay shown in Figure 6(d), the best performance is achieved
when Ay = 0.8 on M Stores dataset. While on the other two datasets, the best perfor-
mance is achieved at Ay = 1.2. It can be seen that the influence of the scale parameter
A2 of graph refinement on different datasets is different. We speculate that in M Stores
dataset, the features of entities are relatively dispersed and the initial graph is relatively
accurate. However, in other datasets, the features of entities are relatively dense and the
reliability of the graph is low, so the influence of A, is greater.



Duplicate Entities Detection 13
S CONCLUSION

In this paper, we study the multi-modal entities detection under extreme label sparsity.
We propose a novel model named CT-GNN, which can alleviate the extreme labels spar-
sity challenge by two module, i.e., self-supervised learning with layer contrastive and
self-training learning with boundary distance. Meanwhile, graph structure learning is
introduced to stabilize learning performance. We carry out comprehensive experiments,
and the results demonstrate that CT-GNN has significant performance improvement on
three datasets compared with SOTA models.
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