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ABSTRACT
In recent years, Heterogeneous Graph Neural Networks (HGNNs)
have been the state-of-the-art approaches for various tasks on Het-
erogeneous Graphs (HGs), e.g., recommendation and social network
analysis. Despite the success of existing HGNNs, the utilization of
the intricate semantic information in HGs is still insufficient. In this
work, we study the problem of how to design powerful HGNNs un-
der the guidance of node-dependent semantics. Specifically, to per-
form semantic search over HGNNs, we propose to develop semantic
structures in terms of relation selection and connection selection,
which could guide a task-relevant message flow. Furthermore, to
better capture the diversified property of different node samples in
HGs, we design predictors to adaptively decide the semantic struc-
tures per node. Extensive experiments on seven benchmarking
datasets across different downstream tasks, i.e., node classification
and recommendation, show that our method can consistently out-
perform various state-of-the-art baselines with shorter inference
latency, which justifies its effectiveness and efficiency. The code
and data are available at https://github.com/BUPT-GAMMA/NDS.
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Figure 1: An overview of different genres of semantic struc-
tures for the given HG in Figure 2(a), which are, (a) the
human-defined meta-paths and meta-graphs; (b) the task-
level semantic structure searched by existing methods, e.g.,
GTN [53] andDiffMG[6]; and (c) the node-dependent seman-
tic structures searched by our proposed NDS (more details
can be checked in Section 4.4), respectively.

1 INTRODUCTION
Heterogeneous Graphs (HGs) [35, 42, 50] which involve various
node types and relations, can model the complex relationships
among entities across a variety of real-world scenarios, e.g., rec-
ommendation [1, 30], social network analysis [36, 40, 41, 43] (see
Figure 2(a) for an example). Comparedwith homogeneous networks,
HGs can encode rich semantic information by different combina-
tions of relations. For example, early works [36] manually define
relation sequences, i.e., meta-path, to compute the similarities un-
der specific semantics between nodes. Some works [21, 57] further
design more complex semantic structures, e.g., meta-graph.

Recently, Graph Neural Networks (GNNs) [24, 39, 46, 48, 59]
have become the de facto technique in many graph-based learning
tasks. GNNs typically adopt the message passing manner [11, 12],
which updates the representations of the nodes by iterative feature
aggregation from the topological neighbors. Despite the success
of GNNs on homogeneous networks, it has been observed that the
naive message passing on HGs which neglects the relations, i.e.,
semantic information, often leads to sub-optimal performance [6,
53]. Thus, manyworksmake efforts in extendingGNNs to utilize the
task-relevant semantics to guide the message passing, i.e., designing
different Heterogeneous GNNs (HGNNs) [6, 8, 17, 43, 53]. Due to
the fact that HGNNs have been applied to various tasks [1, 2, 6, 13,
22, 30, 52, 53, 58], thus, it becomes an important problem to utilize
task-relevant semantics in designing HGNNs.
Challenges. Despite the rapid development of HGNNs, the ex-
ploitation of the intricate semantic information in HGs is still in-
adequate. In this work, we study the problem of how to design
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powerful HGNNs under the guidance of node-dependent semantics,
which is non-trivial with the following two challenges:

(1) How to design HGNNs with effective semantic search? Early
works conduct semantic search in HGs by manually defining
semantic structures, i.e., meta-paths [36] or meta-graphs [7, 21],
which are used for proximity computation. But in the context
of HGNNs, effective semantic structures should (a) guide a task-
relevant message flow; (b) be automatically derived to save
human labor. Early HGNNs [8, 43] rely on human-defined meta-
paths, which require extensive human endeavors and expert
knowledge. The attention-based approaches [17, 32, 53], e.g.,
GTN [53], fuse relations with attention mechanisms, which
still inevitably involves task-irrelevant noises. The recently pro-
posed Neural Architecture Search (NAS) based approaches, e.g.,
DiffMG [6], tend to preserve only one relation in each HGNN
layer, which sets an inflexible constraint to the searched se-
mantic structures and thus hurts the expressiveness of HGNNs.
The aforementioned methods are problematic from different
perspectives; therefore, it remains to be investigated to design
HGNNs with more effective task-relevant semantic search.

(2) How to perform semantic search over HGNNs in a node-dependent
manner? Existing methods [6, 8, 10, 16, 17, 32, 43, 53] adopt
the task-level semantic structure which is globally shared in
an HG (see Figure 1(a)&(b)), neglecting the diversity of node
instances. Recent studies have shown that the awareness of
the disparity among data samples is useful in increasing model
capacity and then boosting the performance of downstream
tasks [5, 15, 19, 37, 38]. The similar intuition also exists in the
context of HGNNs, where nodes with heterogeneous types
and relations usually exhibit strong diversity, leading the task-
relevant semantics to be node-dependent. For example, in a
citation network shown in Figure 2(a), the research subjects
of some papers could be highly relevant to the attributes of
their authors, while those of others could be more related to
their published conferences. Hence, searching for the same
semantics for all nodes is not sufficient enough and uncovering
the node-dependent semantics is in great demand. However,
how to perform node-dependent semantic search over HGNNs
(see Figure 1(c)) is still unexplored.

Present work. The above challenges motivate us to develop a
novel Node-Dependent Semantic search framework (dubbed NDS)
over HGNNs. To address the first challenge, we propose to search
for semantic structures in terms of two components: relation se-
lection and connection selection, which contribute to the local and
high-order development of the semantic structures, respectively.
Then the HGNN architecture could be developed under the guid-
ance of the searched semantic structures. To address the second
challenge, we design predictors for predicting node-dependent se-
lection strategies (see Figure 2(c)&(d)) inside the two components
based on the node representations in the previous layer. The entire
framework is trained with the alternate optimization of the back-
bone GNN and the predictor module to facilitate their collaboration.
Furthermore, we conduct extensive experiments on two popular
downstream tasks, i.e., node classification and recommendation, to
verify the effectiveness of NDS.

To summarize, this work makes the following contributions.

• To the best of our knowledge, NDS is the first attempt to perform
node-dependent semantic search over HGNNs, which not only
is labor-saving but also better captures the diversified property
of different node samples in HGs.

• Wepropose to develop semantic structures with relation selection
and connection selection, and transform the semantic search over
HGNNs to search the selection strategies inside these two key
components. To promote the adaptiveness of NDS, we further
design predictors to achieve node-dependent semantic search.

• Extensive experimental results demonstrate that NDS consis-
tently outperforms the state-of-the-art methods on node classi-
fication and recommendation tasks with higher inference effi-
ciency and could effectively discover the node-dependent seman-
tics.

2 RELATEDWORK
2.1 Heterogeneous Graph Neural Networks
GNNs have received significant research interest due to the preva-
lence of graph-structure data [46]. They typically adopt the mes-
sage passing manner, which updates the representations of the
nodes by iterative feature aggregation from the topological neigh-
bors [24, 39, 48]. Considering the heterogeneity of real-world net-
works, many works have attempted to design different HGNNs to
capture the intricate semantics in HGs for a better application in
pratical scenarios, e.g., recomendation [1, 22, 30].

Early proposed HGNNs basically require human-defined meta-
paths [8, 14, 22, 43]. HAN [13, 43] extracts homogeneous neighbors
with meta-paths. MAGNN [8] additionally encodes the intermediate
node information along each meta-path instance. However, design-
ing useful meta-paths for different tasks requires extensive human
endeavors and expert knowledge. Therefore, recently proposed
HGNNs design different mechanisms to fuse the heterogeneous
information [17, 32, 34, 53]. RGCN [34] differentiates relations
with distinct weight matrices during message passing. GTN [53],
HGT [17] and Simple-HGN [32] implicitly learn useful meta-paths
with different attention mechanisms. Without explicit selection, the
manner of fusing information from all types would inevitably incor-
porate task-irrelevant noise and is computationally inefficient [6].
In contrast, our work performs semantic search over HGNNs with
explicit relation selection and connection selection, which effec-
tively removes the task-irrelevant noises as well as lightens the
computational load.

2.2 Graph Neural Architecture Search
Recently, researchers have attempted to leverage NAS to search for
the optimal GNN architectures [3, 4, 9, 18, 26, 45, 51]. GraphNAS [9]
and SANE [18] adopt Reinforcement Learning (RL)-based and dif-
ferentiable search algorithm, respectively. F2GNN [45] searches the
optimal stacking structure of GNNs for graph classification. In the
context of HGNNs, GEMS [16] utilizes the evolutionary algorithm
to search for meta-graphs in recommendation. HGNAS [10] uses
RL-based search algorithm to search for the optimal HGNN archi-
tectures. DiffMG [6] searches for task-specific meta-graphs based
on differentiable search. However, these works do not consider the
dynamic nature of node samples in HGs. Besides, the NAS-based
methods require a two-phase training procedure which involves
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Figure 2: The overall framework of the proposed NDS. Best viewed in color. (a) An example HG, i.e., a citation network, and its
network schema [50]; (b) A two-layer HGNN architecture example as a DAG with colored boxes on edges representing opera-
tions; (c)/(d) The pipeline of relation/connection selection (of paper nodes), where the block numbers could be corresponding
to those in (b). Blue box: node-dependent relation/connection prediction. Green box: the predicted results of node-dependent
relation/connection selection.

searching and retraining, while our proposed method can be trained
in a single phase and thus enjoys ease of use.

2.3 Data-dependent Neural Networks
Data-dependent neural networks, which can adapt their struc-
tures or parameters to the input data during inference [15], have
been extensively developed in the research field of computer vi-
sion [5, 15, 19, 37, 38]. The representative power of data-dependent
neural networks can get increased due to the input-conditioned
computation adaptation. Some researchers develop node-wise GNN
models [25, 27, 31, 44, 56] for homogeneous graphs. Different from
previous works, NDS is the first attempt to design more powerful
HGNNs under the guidance of node-dependent semantic structures.

Compared with existing works, the delicately designed semantic
structures and the node-dependent predictors lead to the superiority
of NDS in expressiveness, adaptiveness and efficiency.

3 THE PROPOSED METHOD
3.1 Preliminary: Heterogeneous Message

Passing
HGNNs [6, 8, 17, 43, 53] generally adopt the heterogeneous message
passing manner [11, 12], which updates the representations of the
nodes by iterative feature aggregation from the topological neigh-
bors under different relations. Given an HG G = {V, E} where V
and E are the sets of nodes and edges, respectively, the heteroge-
neous message passing at the 𝑙𝑡ℎ HGNN layer can be formulated
as follows:

H𝑙 = 𝐹
𝚯
𝑙

(
A,H𝑙−1

)
, (1)

where H𝑙 ∈ R𝑁×𝑑 denotes the output node representations of the
𝑙𝑡ℎ layer (𝑙 ∈ {1, · · · , 𝐿}), 𝑁 denotes the number of nodes and 𝑑

denotes the hidden dimension. 𝐹
𝚯
𝑙 is the relation-aware message

passing function parameterized by 𝚯
𝑙 . A = {A𝑟 }𝑟 ∈R is the collec-

tion of all the relation-specific adjacency matrices A𝑟 ∈ R𝑁×𝑁 and
R denotes the relation set of the HG. Specifically, H0 denotes the
projected features output by type-specific transformation [8, 43]
which projects the features of different node types into a common
latent space. In this work, we focus on the message passing rule of
GCN [24], while it is straightforward to extend the proposed frame-
work to other GNNs [39, 48]. Despite various HGNNs proposed, the
relationship between semantic search and message passing remains
to be explored.

3.2 Semantic Structure over HGNNs
3.2.1 Overview. Conventional human-defined semantic structures,
i.e., meta-path [36] or meta-graph [7, 21], mainly aim to characterize
the proximity between nodes in an HG. As a comparison, semantic
structures in the context of HGNNs tend to guide a task-relevant
flow for message passing by effective selection and fusion over
relations. The different combinations of such selection and fusion
can be interpreted as different semantic information captured by
the HGNNs, which is crucial to the network performance.

To facilitate our discussion, we represent an HGNN architecture
as a directed acyclic graph (DAG) [18, 29, 47] as illustrated in Fig-
ure 2(b). The DAG is an ordered sequence of (𝐿 + 1) blocks (𝐿 = 2
in the illustrative example). The 𝑙𝑡ℎ block represents the output
node representations H𝑙 of the 𝑙𝑡ℎ HGNN layer and the directed
edge (𝑘, 𝑙) is associated with operations on H𝑘 for deriving H𝑙 (see
the colored boxes in Figure 2(b)). Without loss of generality, the
neighborhood aggregation and layer combination operations are
fixed since they are not our focus in this work. Semantic search
aims to discover appropriate relation selection and connection se-
lection operations (see Figure 2(c)&(d) for the graphical pipeline)
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in designing HGNN architectures. The two operations contribute
to the local and high-order development of the semantic structures,
respectively, arming the HGNNs with semantic expressiveness. We
will introduce the technical details of these two operations in the
following sections.

3.2.2 Relation Selection. The diverse relations in HGs provide in-
formation abundance, which helps to boost the downstream task
performance [35, 42, 50]. Nevertheless, noises are also incorporated
by the task-irrelevant type information. For example, in a citation
network, the institution that an author belongs to can be deemed as
noise when predicting his/her research field. Thus, when HGNNs
perform neighborhood aggregation, the heterogeneous type infor-
mation should be selectively utilized to attenuate the noises and
generate task-relevant message flows.

Motivated by the above discussion, on the edges between two
consecutive blocks in the DAG (edge (0, 1) and (1, 2) in Figure 2(b)),
we assign the relation selection operation to prepare the local pat-
tern of semantic structures for the subsequent neighborhood ag-
gregation.

To be specific, at the 𝑙𝑡ℎ layer, the node representations get
updated after the relation-aware neighborhood aggregation:

H𝑙
𝑅 = 𝜎

(
Ã𝑙H𝑙−1Θ𝑙

)
, (2)

where H𝑙
𝑅
denotes the representations derived from the relation

selection component, Ã𝑙 is the normalized adjacency matrix and 𝜎
is the activation function.

The relation selection is achieved by searching to filer out the
task-irrelevant relations while preserving those task-relevant ones.
A𝑙 is generated as follows:

A𝑙 =
∑
𝑟 ∈R

A𝑟 ⊙ M𝑙
𝑟 , (3)

where ⊙ denotes the element-wise matrix multiplication, and M𝑙
𝑟 ∈

R𝑁×𝑁 denotes the mask matrix for relation 𝑟 at the 𝑙𝑡ℎ layer and
will be automatically learned. The detailed calculation procedure
of M𝑙

𝑟 will be introduced in Section 3.3.
The information propagation paths of HGNNs established un-

der the guidance of effective relation selection would convey task-
relevant semantics.

3.2.3 Connection Selection. After exploring the local development
of semantic structures guided by relation selection, we next intro-
duce to develop their high-order wiring with connection selection,
which further increases the capacity of HGNNs. The information
propagation paths with different lengths could convey semantic
information from different aspects. Since longer propagation paths
may bring unwanted noises while shorter ones are not capable
of carrying adequate semantic information, we enable HGNNs to
flexibly fuse the semantics captured by information propagation
paths with different lengths. Motivated by the effectiveness of resid-
ual connection [20, 28, 49] which fuses the features obtained by
different neural network layers, we adopt the connection selection
as the operation on the edges between two non-consecutive blocks
of the DAG (edge (0, 2) in Figure 2(b)).

Specifically, at the 𝑙𝑡ℎ layer, the connection selection procedure is
performed between itself and all its non-consecutive predecessors.

Then representations from the selected layers are combined with
summation:

H𝑙
𝐶 =

𝑙−2∑
𝑘=0

H𝑘 ⊙ O𝑙
𝑘
, (4)

where H𝑙
𝐶
denotes the representation derived from the connec-

tion selection component at the 𝑙𝑡ℎ layer, O𝑙
𝑘
∈ R𝑁×𝑑 denotes the

connection mask matrix, which will be automatically learned. The
calculation procedure of O𝑙

𝑘
will also be introduced in Section 3.3.

The final output of the 𝑙𝑡ℎ HGNN layer is the combination of H𝑙
𝑅

and H𝑙
𝐶
. Here, we choose summation as the combination function:

H𝑙 = H𝑙
𝑅 + H𝑙

𝐶 . (5)

The collection of the relation and connection mask matrices, i.e.,{
M𝑙

𝑟

��𝑟 ∈ R, 𝑙 ∈ {1, · · · , 𝐿}
}
∪
{
O𝑙
𝑘

��𝑙 ∈ {1, · · · , 𝐿} , 𝑘 ∈ {0, · · · , 𝑙 − 2}
}
,

can be interpreted as the searched semantic structure. With the
construction of both local patterns and high-order wiring, such an
expressive semantic structure is capable of capturing complicated
semantic information in HGs, which can guide a task-relevant mes-
sage passing flow of HGNNs. To promote the adaptiveness of our
proposed framework, we further refine the semantic search to be
node-dependent.

3.3 Node-dependent Semantic Search
Recent studies have shown that the awareness of the disparity of
data instances is useful in increasing the capacity of the neural
networks and then boosting the downstream task performance [19,
25, 33]. The similar intuition also exists in the context of HGNNs.
A static semantic structure shared by the whole HG is insufficient
to adaptively capture the intricate semantic information for differ-
ent nodes. To overcome the limitation, we propose to search for
the node-dependent semantic structures. Specifically, the predictor
modules are designed for predicting the node-dependent strategies
of the relation selection and connection selection.

We first elaborate on the predictor for node-dependent relation
selection. Concretely, as illustrated in Figure 2(c), given a target
node 𝑖 , our goal is to predict its selection probability for each of
its associated relation, i.e.,

{
𝑝 (𝛿𝑙𝑟 (𝑖) = 𝑢)

��𝑢 ∈ {0, 1}
}
, where 𝛿𝑙𝑟 (𝑖)

denotes the selection strategy of relation 𝑟 for node 𝑖 at the 𝑙𝑡ℎ layer.
𝛿𝑙𝑟 (𝑖) = 1 represents the strategy of preserving, and vice versa. To
achieve node-dependent prediction, a predictor Φ𝑙𝑟 takes h𝑙−1

𝑖
as

input, and apply temperature-aware softmax to derive the relation
selection strategy, as below:

𝝓𝑙𝑟,𝑖 = Φ𝑙𝑟

(
h𝑙−1𝑖

)
, (6)

𝑝 (𝛿𝑙𝑟 (𝑖) = 𝑢) =
exp(𝝓𝑙

𝑟,𝑖
[𝑢]/𝜏)∑

𝑢′∈{0,1} exp(𝝓𝑙𝑟,𝑖 [𝑢 ′]/𝜏)
, (7)

where 𝝓𝑙
𝑟,𝑖

∈ R1×2 denotes the output vector of predictor Φ𝑙𝑟 . In
this work, we use a two-layer Multi-Layer Perceptron (MLP) as
the predictor Φ𝑙𝑟 . 𝜏 is the temperature parameter to control the
“sharpness” of the output distribution: as 𝜏 → 0, the output dis-
tribution of softmax becomes one-hot. In this work, 𝜏 is steadily
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annealed from an initial value 𝜏0 to a small value 𝜏𝑚𝑖𝑛 , which are
both hyper-parameters.

After obtaining the approximation of the hard selection prob-
abilities, the relation mask matrix M𝑙

𝑟 in Eq. (3) can be developed
as, M𝑙

𝑟 [:, 𝑖] = 𝑝 (𝛿𝑙𝑟 (𝑖) = 1) · 1, where M𝑙
𝑟 [:, 𝑖] ∈ R𝑁×1 denotes the

𝑖𝑡ℎ column vector of M𝑙
𝑟 , and 1 ∈ R𝑁×1 denotes a 𝑁 -dimensional

column vector filled with value 1.
The connection mask matrix O𝑙

𝑘
in Eq. (4) can be obtained in a

similar way. As illustrated in Figure 2(d), a two-layerMLP is adopted
as the predictor Ψ𝑙

𝑘
to derive the connection selection strategy, as

below:

𝝍𝑙
𝑘,𝑖

= Ψ𝑙
𝑘

(
h𝑙−1𝑖

)
, (8)

𝑝 (𝜂𝑙
𝑘
(𝑖) = 𝑢) =

exp(𝝍𝑙
𝑘,𝑖

[𝑢]/𝜏)∑
𝑢′∈{0,1} exp(𝝍𝑙𝑘,𝑖 [𝑢

′]/𝜏)
, (9)

where 𝝍𝑙
𝑘,𝑖

∈ R1×2 denotes the output vector after dimension pro-
jection, 𝜂𝑙

𝑘
(𝑖) denotes the connection selection strategy between

the 𝑘𝑡ℎ and the 𝑙𝑡ℎ layer for node 𝑖 , and
{
𝑝 (𝜂𝑙

𝑘
(𝑖) = 𝑢) |𝑢 ∈ {0, 1}

}
denotes the probability of connection. For simplicity, the value of
the temperature 𝜏 keeps consistent with that in Eq. (7).

After obtaining the approximation of hard selection probabili-
ties, the connection mask matrices can be obtained as, O𝑙

𝑘
[𝑖, :] =[

𝑝 (𝜂𝑙
𝑘
(𝑖) = 1) · 1′

]T
, where O𝑙

𝑘
[𝑖, :] ∈ R1×𝑑 denotes the 𝑖𝑡ℎ row

vector of O𝑙
𝑘
, and 1′ ∈ R𝑑×1 indicates the 𝑑-dimensional column

vector filled with value 1.
With the help of the predictors, the semantic search can be per-

formed in a node-dependent manner to enable HGNNs to adaptively
capture the diverse semantic information for different nodes.

3.4 Optimization
Guided by the searched semantic structures, the HGNNs perform
𝐿 steps of message passing as shown from Eq. (2) to Eq. (5). Then
the final representation matrix H could be obtained and used for
downstream tasks.

Given that the backbone GNN and the predictor modules are
mutually dependent since the former relies on the latter to guide
its message passing with the predicted semantic structures, while
the latter makes predictions based on the information captured by
the former, jointly training them from scratch could lead to inferior
task performance. Let 𝝎 and 𝝀 be the set of parameters of GNN
and predictors, respectively; we use an alternating optimization
schema to iteratively update them to promote their cooperation.

Update 𝝎.When updating 𝝎, we fix 𝝀 and arrive at:min
𝝎

L𝑡𝑎𝑠𝑘 ,
where L𝑡𝑎𝑠𝑘 denotes the loss function determined by the corre-
sponding task.

Update 𝝀. The 𝝎 is fixed when updating 𝝀. It’s worth noting
that apart from L𝑡𝑎𝑠𝑘 , we further incorporate regularization terms
to encourage the sparsity of the searched semantic structures by
the predictors, which could increase the computational efficiency
during the inference phase. Take relation selection as an example,
we sum up the elements of the mask matrix M𝑙

𝑟 and penalize the
deviation from a target ratio 𝛼1. The relation sparsity regularization

Algorithm 1: The framework of NDS.
Input: An HG G = {V, E} with relation set R and the

collection of all the relation-specific adjacency
matrices A = {A𝑟 }, input node features {x𝑖 |𝑖 ∈ V},
number of layers 𝐿 ;

Output: The learned model parameters 𝜔∗ and 𝜆∗;

1 Initialization with type-specific transformation ;
2 while not converged do
3 for 𝑙 ∈ {1, · · · , 𝐿} do

/* node-dependent relation

selection */

4 for 𝑟 ∈ R do
5 for 𝑖 ∈

{
𝑖

��� ∑𝑗 A𝑟 [ 𝑗, 𝑖] ≠ 0
}
do

6 Derive
{
𝑝 (𝛿𝑙𝑟 (𝑖) = 𝑢) |𝑢 ∈ {0, 1}

}
based on

Eq. (6)-(7) ;
7 M𝑙

𝑟 [:, 𝑖] = 𝑝 (𝛿𝑙𝑟 (𝑖) = 1) · 1 ;
8 end
9 end

10 Calculate H𝑙
𝑅
base on Eq. (2)-(3) ;

/* node-dependent connection

selection */

11 for 𝑖 ∈ V do
12 for 𝑘 ∈ {0, · · · , 𝑙 − 2} do
13 Derive

{
𝑝 (𝜂𝑙

𝑘
(𝑖) = 𝑢) |𝑢 ∈ {0, 1}

}
based on

Eq. (8)-(9) ;

14 O𝑙
𝑘
[𝑖, :] =

[
𝑝 (𝜂𝑙

𝑘
(𝑖) = 1) · 1′

]T
;

15 end
16 end
17 Calculate H𝑙

𝐶
based on Eq. (4) ;

18 H𝑙 = H𝑙
𝑅
+ H𝑙

𝐶
;

19 end
20 Calculate L𝑡𝑎𝑠𝑘 and back-propagate it to update 𝜔 ;
21 Calculate L based on Eq. (10) and back-propagate it to

update 𝜆 ;
22 end

term is defined as: L𝑅
𝑟𝑒𝑔 =

(
1
𝛾1

∑
𝑟 ∈R

∑𝐿
𝑙=1 ∥M𝑙

𝑟 ∥1 − 𝛼1
)2
, where

∥ · ∥1 denotes the 𝐿1 norm, 𝛾1 denotes the factor to normalize the
first term to be in the range [0, 1], and 𝛼1 is a hyper-parameter.

Similarly, the connection sparsity regularization term can be

defined as: L𝐶
𝑟𝑒𝑔 =

(
1
𝛾2

∑𝐿
𝑙=1

∑𝑙−2
𝑘=0 ∥O𝑙

𝑘
∥1 − 𝛼2

)2
, where 𝛾2 and 𝛼2

denote the normalization factor and the target connection spar-
sity ratio, respectively. Then, the overall objective function when
updating 𝝀 can be formulated as:

min
𝝀

L = L𝑡𝑎𝑠𝑘 + 𝛽1L𝑅
𝑟𝑒𝑔 + 𝛽2L𝐶

𝑟𝑒𝑔, (10)

where 𝛽1 and 𝛽2 are the regularization hyper-parameters.
NDS is optimized by stochastic gradient descent in the above

alternating manner. Its full algorithm is summarized in Algorithm 1.
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Table 1: Statistics of the datasets for node classification task.

Dataset # of
Nodes

# of
Node Types

# of
Edges

# of
Relations Target # of

Classes

IMDB 12,624 3 37,288 4 movie 3
ACM 8,994 3 25,922 4 paper 3
DBLP 18,405 3 67,946 4 author 4

HGBn-DBLP 26,128 4 239,566 6 author 4

Table 2: Statistics of the datasets for recommendation task.

Dataset # of
Nodes

# of
Node Types

# of
Edges

# of
Relations Target

Amazon 9,279 5 419,492 8 user-item
Yelp 31,092 5 904,276 10 user-business

Douban 37,595 6 3,429,882 12 user-movie

In the inference phase, it directly applies the learned relation selec-
tion and connection selection strategy, alleviating the overhead of
message passing.

In this work, two popular downstream tasks over HGs, i.e., node
classification and recommendation, will be examined in the experi-
ments.

Node classification aims to predict the node labels based on the
out node representations. For the node classification task, a linear
layer is appended after the last layer of NDS, which projects the
hidden dimension to the number of classes: Ŷ = softmax (H𝚯𝑜 ) ,
where 𝚯𝑜 ∈ R𝑑×𝐶 denotes the output weight matrix and𝐶 denotes
the number of classes. Then, we use the widely-adopted cross-
entropy loss over all labeled nodes as the task loss:

L𝑡𝑎𝑠𝑘 = −
∑
𝑣∈V𝐿

𝐶∑
𝑐=1

𝒚𝑣 [𝑐] log �̂�𝑣 [𝑐],

where V𝐿 denotes the set of labeled nodes, 𝒚𝑣 ∈ R𝐶×1 is a one-hot
vector indicating the ground-truth label of node 𝑣 , and �̂�𝑣 denotes
the predicted label for the corresponding node.

Recommendation aims to predict the existence of the link be-
tween source nodes (e.g., users) and target nodes (e.g., items) based
on their output representations. Following previous works [6], for
the recommendation task, we adopt the following function to cal-
culate the task loss:

L𝑡𝑎𝑠𝑘 = −
∑

(𝑢,𝑣) ∈Ω+
log𝜎 ′ (h⊤𝑢 h𝑣

)
−

∑
(𝑢′,𝑣′) ∈Ω−

log𝜎 ′ (−h⊤𝑢′h𝑣′
)
,

where Ω+ and Ω− denote the set of observed positive pairs and
the set of negative pairs respectively, and 𝜎 ′ denotes the sigmoid
function. h𝑢 , h𝑣 , h𝑢′ and h𝑣′ are output node representations.

4 EXPERIMENTS
4.1 Experimental Setup
4.1.1 Datasets. We evaluate the effectiveness of NDS on seven
datasets across two benchmarking tasks: node classification and

recommendation, for HGNNs. For the node classification task, we
use four real-world datasets: ACM, DBLP, IMDB and HGBn-DBLP.
For the former three datasets, we follow the data split provided by
previous works [6, 43, 53] and for the last one, we use the prepro-
cessed data provided by the authors of [32].

The statistics of the datasets are summarized in Table 1 and their
descriptions are as follows.
• ACM [43] is a citation network which consists of three types of
node: papers, authors and subjects. The papers are labeled by the
conference they are published in.

• DBLP [43] is also a citation network which consists of three
types of node: papers, authors and conferences. The authors are
labeled by their research areas.

• IMDB [43] is a movie rating website and we use the extracted
data subset which consists of three types of nodes: movies, actors
and directors. Movies are labeled by their genres.

• HGBn-DBLP [32] is another preprocessed version of DBLP cita-
tion network with a larger scale and more node and edge types.
Specifically, it contains four types of nodes: papers, authors,
venues and terms.
For the recommendation task, we use three commonly used het-

erogeneous recommendation datasets 1. Edges of a target relation
are to be predicted. The statistics of the datasets are summarized in
Table 2 and their descriptions are as follows.
• Amazon is a large e-commerce platformwhere users give ratings
to different items. It consists of five types of nodes: users, items,
reviews, categories and brands.

• Yelp is a platform where users give rating reviews to business. It
is composed of five types of nodes: users, business, compliments,
categories and cities.

• Douban is a social media community where users share rating
reviews about movies. There are six types of nodes: users, movies,
groups, actors, directors and types.

1https://github.com/librahu/HIN-Datasets-for-Recommendation-and-Network-
Embedding

https://github.com/librahu/HIN-Datasets-for-Recommendation-and-Network-Embedding
https://github.com/librahu/HIN-Datasets-for-Recommendation-and-Network-Embedding
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Table 3: The Macro-F1 results of node classification and AUC results of recommendation (%± 𝜎). Note that we directly use the
reported results of common baselines on the common datasets in [6] and [32].We further list the average rank of eachmethod
on all datasets, denoted by Avg. Rank. The best results are bold and the second-best are underlined. Vacant positions (“-”) are
due to the fact that GEMS is designed for recommendation.

Category Method Node Classification Recommendation Avg. Rank↓
ACM IMDB DBLP HGBn-DBLP Amazon Yelp Douban

Homogeneous
GNNs

GCN 92.56±0.20 55.19±0.73 90.46±0.41 90.84±0.32 66.64±1.00 58.98±0.52 77.95±0.05 9.43
GAT 92.50±0.23 53.37±1.27 93.92±0.28 93.83±0.27 55.70±1.13 56.55±0.05 77.58±0.33 8.57

HGNNs w/
meta-paths

HAN 91.20±0.25 55.09±0.67 92.13±0.26 91.67±0.49 67.35±0.11 64.28±0.20 82.65±0.08 8.57
MAGNN 91.15±0.19 56.44±0.63 92.81±0.30 93.28±0.51 68.26±0.09 64.73±0.24 82.44±0.17 7.86

HGNNs w/o
meta-paths

RGCN 92.71±0.20 58.16±0.80 91.68±0.47 91.52±0.50 71.27±0.15 67.10±0.15 82.76±0.03 6.00
GTN 92.62±0.17 59.68±0.72 93.98±0.32 93.52±0.55 71.82±0.18 66.27±0.31 83.26±0.10 4.43
HGT 91.83±0.23 59.35±0.79 93.67±0.22 93.01±0.23 74.75±0.08 68.07±0.35 83.38±0.06 5.00

Simple-HGN 92.71±0.22 60.49±0.70 93.81±0.11 94.01±0.24 71.75±0.29 66.54±0.21 78.45±0.31 4.57

Semantic search

GEMS - - - - 70.66±0.14 65.12±0.27 83.00±0.05 6.67
DiffMG 92.65±0.15 61.04±0.56 94.45±0.15 94.14±0.21 75.28±0.08 68.77±0.13 83.78±0.09 2.29
Random 85.77±4.13 50.48±5.00 80.43±1.24 70.02±10.24 70.90±0.97 61.59±3.77 76.52±1.66 10.43
NDS 93.11±0.04 61.23±0.41 94.65±0.22 94.62±0.12 75.54±0.06 69.20±0.04 83.90±0.11 1.00

We adopt the same data split and negative sampling strategies
as [6]. Specifically, 50% of the ratings are randomly chosen to pro-
vide supervision signals and be removed from the message passing
network to avoid test label leakage [54, 55]. Ratings higher than 3
are labeled as positive links and those lower than 4 are negative
ones. Random negative sampling is performed among unconnected
pairs to make the number of positive and negative links match.
The links of the two labels are then randomly split into a training
set, a validation set and a test set according to the ratio of 3:1:1,
respectively.

4.1.2 Baselines. We use four categories of methods as baselines:
(1) homogeneous GNNs: GCN [24] and GAT [39]; (2) HGNNs requir-
ing human-defined meta-paths : HAN [43] and MAGNN [8], whose
meta-paths are set as suggested by the original papers; (3) HGNNs
with no need for customized meta-paths: RGCN [34], GTN [53],
HGT [17] and Simple-HGN [32] and (4) semantic search methods:
DiffMG [6], which is the state-of-the-art semantic search base-
line based on NAS. For the recommendation methods, we also use
GEMS [16] which utilizes the evolutionary algorithm to search for
meta-graphs between the source and the target node type, and
we additionally incorporate a baseline that randomly adopts the
relation selection and connection selection strategies (denoted as
“Random” in Table 3). We adopt the results of common baselines on
the common datasets reported in previous works [6, 32]. The code
and data are provided at https://github.com/BUPT-GAMMA/NDS.

4.1.3 Implementation Details. We implement the proposed method
NDS using the machine learning framework PyTorch2 and the deep
graph library DGL3. We use Intel(R) Xeon(R) Gold 6230R CPU @
2.10GHz and GeForce RTX 3090 as the experimental environment.
For each method, we report the average score and standard devi-
ation of 10 runs, except for HGBn-DBLP, on which we reported
the aggregated results of 5 runs returned by the official evaluation
2https://pytorch.org/
3https://www.dgl.ai/

platform4. The max number of epochs is set as 250, and we use
early-stopping strategy with patience 40, to alleviate over-fitting.
Testing performance in the best epoch of validation set is reported.
The layer number of all the methods is set as 4, and the hidden
dimension is 64. All the methods are optimized with Adam [23]
optimizer. For our method, the learning rate of the GNN module is
searched in {1, 3} × {10−3, 10−2}, the learning rate of the predictor
is searched in {1, 5} × {10−4, 10−3, 10−2}, and the weight decay rate
is searched in {0, 1, 2, 5} ×

{
10−6, 10−5, 10−4, 10−3

}
. Since we keep

our experimental setting and evaluation metric consistent with that
in [6] and [32], we use the experimental results reported in their
papers of the common baselines on the common dataset in Table 3.
And for the rest of results, the baselines are re-implemented based
on DGL and are initialized with same hyper-parameters suggested
by the original papers with further tuning for optimal performance.

4.2 Node Classification
The Macro-F1 scores of different methods on the node classification
task are reported in Table 3. We have the following observations:
• The HGNNs, such as GTN and Simple-HGN, achieve competi-
tive experimental performance, which reveals the necessity of
considering the semantics in HGs when designing HGNNs.

• DiffMG is the most competitive baseline, which demonstrates the
importance of searching for task-relevant semantics in designing
HGNNs.

• The Random baseline consistently achieves poor performance,
which demonstrates the effectiveness of the predictor modules
in searching for node-dependent semantics.

• NDS achieves the best performance across all four datasets, which
verifies its effectiveness. Specifically, comparingNDSwithHGNNs
like GTN, the consistent performance gain indicates the effective-
ness of explicit relation selection to filter out the task-irrelevant
noises.Meanwhile, NDS consistently achieves better performance

4https://www.biendata.xyz/hgb/

https://github.com/BUPT-GAMMA/NDS
https://pytorch.org/
https://www.dgl.ai/
https://www.biendata.xyz/hgb/
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(a) 𝑎10 . (b) 𝑎833 .

Figure 3: The visualization of the searched semantic struc-
tures of two randomly selected target nodes. Best viewed in
color. The grey/blue lines represent relations/connections.
Note that self-loop is also regarded as a particular relation.
The solid/dotted lines represent the preserved/removed re-
lations or connections.

over DiffMG, which could be attributed to the improved expres-
siveness of the node-dependent semantic structures.

4.3 Recommendation
The AUC results of different methods on the recommendation task
are reported in Table 3. From the table, the following observations
can be obtained:
• On the recommendation datasets with larger scales and more di-
verse type information than those of the node classification task
(see Table 1 and Table 2 for dataset details), HGNNs significantly
perform better than homogeneous GNNs. It confirms the useful-
ness of designing heterogeneous message passing, especially for
more complex networks in real-world recommendation scenarios,
which aligns with the findings in previous works [22, 30].

• The Random baseline generally performs better than homoge-
neous GNNs, which again indicates the importance of leveraging
the heterogeneous information in recommendation.

• Similar to the results of node classification, NDS achieves the best
performance across all recommendation datasets, which again
validates the effectiveness of node-dependent semantic search.

4.4 Case Study
To further showcase the effectiveness of the node-dependent se-
mantic search, in this section, we provide a visualization study on
DBLP dataset with regard to the searched semantic structures for
different nodes. Specifically, we randomly select two nodes of the
target type author, i.e., 𝑎10 and 𝑎833, and visualize their semantic
structures in Figure 3. For the sake of simplicity, we only depict the
semantic structures starting from the target nodes and expanding
for two layers. The selected relations and connections are in bright
color while those unselected ones are faded. The nodes without
connecting links are also faded.

From Figure 3, we can observe that the preserved relations and
residual connections of 𝑎10 and 𝑎833 apparently differ from each
other, resulting in a clear disparity between the two searched seman-
tic structures and the captured semantic information. For example,

Figure 4: The comparison of NDS and its variants.

𝑎10 is observed to relate more to the message transformed from its
own features while neighbor messages are more favorable to 𝑎833.

Taking into consideration all the above results, we can observe
the effectiveness of the proposed NDS on capturing the node-
dependent semantics according to the heterogeneous node property.
Next, we further conduct experiments to analyze the designed com-
ponents of NDS.

4.5 Ablation Study
In this section, we compare NDS with its four variants on dataset
ACM and Amazon to validate the effectiveness of the proposed
modules. The results are given in Figure 4 and the description of
the used variants are given as below:
• NDS\𝑟𝑠 : NDS without relation selection, i.e., all the available
relations are remaining for message passing between consecutive
HGNN layers.

• NDS\𝑐𝑠−1: NDS without connection selection where HGNN lay-
ers are stacked without residual connection and the output of the
last layer is regarded as the final representation.

• NDS\𝑐𝑠−2: NDS without connection selection where each HGNN
layer is densely connected with all its predecessors. Such connec-
tion selection manner has been proven to be effective in previous
works [20, 28].

• NDS𝑠𝑡𝑎𝑡𝑖𝑐 : NDS without node-dependent semantic search, i.e.,
the predicted semantic structure globally shared by all node
samples.
From Figure 4, we can see that NDS consistently outperforms all

its variants across the two datasets, demonstrating the effectiveness
of the designed modules, i.e., the relation selection, connection
selection, and node-dependent predictors. One more interesting
observation is that the variants without connection selection obtain
the worst two performances on both datasets, which implies the
larger importance of the connection selection in designing HGNNs.

4.6 Inference Efficiency Analysis
In this part, we show the superiority of NDS in inference efficiency
over existing methods. As shown in Figure 5, we compare the task
performance and GPU/CPU inference latency of different methods
on dataset ACM and Amazon. For better presentation, two base-
lines, i.e., MAGNN [8] and HGT [17], are excluded here due to their
significantly longer inference latency than all other methods. It
can be observed that NDS enjoys a clear advantage in inference
efficiency over all the baselines while maintaining the best task
performance across node classification and recommendation. It
is mainly attributed to the fact that the node-dependent seman-
tic search could derive sparsified semantic structures and remove
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Figure 5: The comparison on task performance and infer-
ence efficiency of different methods.

unnecessary computations. Despite the competitive task perfor-
mance of some attention-based methods, e.g., Simple-HGN [32] and
GTN [53], they exhibit unsatisfactory inference efficiency due to the
heavy attention computations. It is worth noting that DiffMG [6]
obtains competitive inference efficiency since it only remains a sin-
gle relation between HGNN layers for neighborhood aggregation,
which is naturally more computationally efficient than adopting bi-
nary masks as in NDS. However, the consistent inference efficiency
gain of NDS over DiffMG further demonstrates the effectiveness of
the node-dependent semantic search in adaptively removing the
noisy relations and connections for each node. In summary, the
delicately designed semantic structure and node-dependent predic-
tors lead to the improvement of NDS in both task performance and
efficiency.

4.7 Impact of Hyper-parameters
We investigate the impact of hyper-parameters and report the
results for node classification task and recommendation task on
dataset ACM and Amazon, respectively. In the experiments, we
vary the studied hyper-parameter while fixing the others. Since
only one hyper-parameter is varied at a time, the performance fluc-
tuation would not be extremely sharp thanks to the existence of
other working hyper-parameters.

4.7.1 Impact of the Temperature 𝜏0 and 𝜏𝑚𝑖𝑛 . The temperature
defined in Eq. (7) and (9) controls the sharpness of the output dis-
tribution of softmax. To analyze the impact of temperature on NDS,
we vary 𝜏0 and 𝜏𝑚𝑖𝑛 in the range of 0.001 to 1 with a log-scale step
size of base 10, respectively, and show the corresponding results on
datasets ACM and Amazon in Figure 6(a) and 7(a). We can observe
that setting 𝜏0 as a large value 1 on both datasets can similarly
achieve better performance than smaller values. It is probably be-
cause a small initial value of temperature may result in the gradient

(a) 𝜏0 and 𝜏𝑚𝑖𝑛 . (b) 𝛼1 and 𝛼2 . (c) 𝛽1 and 𝛽2 .

Figure 6: Impact of hyper-parameters on ACM.

(a) 𝜏0 and 𝜏𝑚𝑖𝑛 . (b) 𝛼1 and 𝛼2 . (c) 𝛽1 and 𝛽2 .

Figure 7: Impact of hyper-parameters on Amazon.

oscillation and training unstableness. As for the 𝜏𝑚𝑖𝑛 , NDS prefers
to obtain a small temperature value by annealing on ACM, while it
prefers to keep the temperature constant as 1 on Amazon.

4.7.2 Impact of the Target Sparsity Ratio 𝛼1 and 𝛼2. In the sparsity
regularization terms of L, i.e., L𝑅

𝑟𝑒𝑔 and L𝐶
𝑟𝑒𝑔 (see Section 3.4), 𝛼1

and 𝛼2 denote the target sparsity ratio of relations and connec-
tions, respectively. We vary each in the range from 0 to 0.6 with
a step size of 0.1, and report the results on ACM and Amazon in
Figure 6(b) and 7(b), respectively. We can observe that the optimal
target sparsity ratio of relations 𝛼1 on ACM is 0.6 while it is 0.4
on Amazon. A possible reason is that the relations of Amazon are
more diverse than ACM, where a higher level of noises may be
potentially incorporated, and a smaller 𝛼1 can help to filter out
more noises. As for the target sparsity ratio of connections 𝛼2, the
changing magnitude of the scores on both datasets is smaller than
that of 𝛼1, indicating lower sensitivity of NDS towards 𝛼2.

4.7.3 Impact of the Coefficient 𝛽1 and 𝛽2. In the optimization loss
L (see Section 3.4), the coefficient 𝛽1 and 𝛽2 control the influence
of the relation and the connection sparsity regularization terms. To
explore the impact of 𝛽1 and 𝛽2, we vary each in the range from 0
to 1 at the step size of 0.1, and summarize the results on ACM and
Amazon in Figure 6(c) and 7(c), respectively. Similar to the former
hyper-parameters, the performance on ACM is more sensitive to 𝛽1
and 𝛽2 than that of Amazon. Generally, NDS achieves the optimal
performance at a moderate value of 𝛽1/𝛽2 = 0.5.

5 CONCLUSION
In this work, we study the problem of how to design powerful
HGNNs under the guidance of node-dependent semantics. To ad-
dress the problem, we propose to search for the semantic structures
in terms of relation selection and connection selection, which can
guide the local and high-order development of HGNN architectures.
Furthermore, we design the predictors to perform node-dependent
semantic search. Experimental results verify that the proposed NDS
consistently outperforms the state-of-the-art methods on node clas-
sification and recommendation tasks.
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