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ABSTRACT Conventional Model Design Ours

Graph Neural Networks (GNNs) have been widely used in Collabo-
rative Filtering (CF). However, when given a new recommendation
scenario, the current options are either selecting from existing GNN
architectures or employing Neural Architecture Search (NAS) to
obtain a well-performing GNN model, both of which are expensive
in terms of human expertise or computational resources. To address
the problem, in this work, we propose a novel neural retrieval ap-
proach, dubbed RGCEF, to search a well-performing architecture for
GNN-based CF rapidly when handling new scenarios. Specifically,
we design the neural retrieval approach based on meta-learning
by developing two-level meta-features, ranking loss, and task-level
data augmentation, and in a retrieval paradigm, RGCF can directly
return a well-performing architecture given a new dataset (query),
thus being efficient inherently. Experimental results on two main-
stream tasks, i.e., rating prediction and item ranking, show that
RGCF outperforms all models either by human-designed or NAS
on two new datasets in terms of effectiveness and efficiency. Par-
ticularly, the efficiency improvement is significant, taking as an
example that RGCF is 61.7-206.3x faster than a typical reinforce-
ment learning based NAS approach on the two new datasets. Code
and data are available at https://github.com/BUPT-GAMMA/RGCF.

CCS CONCEPTS

« Information systems — Collaborative filtering.

KEYWORDS

Collaborative Filtering, Graph Neural Networks, Neural Architec-
ture Search, Meta-learning

ACM Reference Format:

Fengqi Liang, Huan Zhao, Zhenyi Wang, Wei Fang, and Chuan Shi. 2023.
Retrieving GNN Architecture for Collaborative Filtering. In Proceedings
of the 32nd ACM International Conference on Information and Knowledge

“Equal contribution.
Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0124-5/23/10...$15.00
https://doi.org/10.1145/3583780.3615035

New Dataset

T
x Design & Train

Human expert \2)

|
|
|
|

| :

: query

(a) Manual Design % |
____________ |
|
GNN |
) NAS Model |
ic |
|
|
|
|
|
|
|

Dataset |1 sample & Train return Topl %

Well-Performing GNN
(b) Automatic Design 8

Search Cost O(N) Search Cost O(1)

Figure 1: Comparison between conventional model design
and our approach: Given a recommendation dataset, the con-
ventional manual/automatic manners (Left) require human
experts or a NAS model to design architectures or sample
architectures from a search space and then train those ar-
chitectures repeatedly. The search cost of two conventional
manners are O(N), due to multiple model selecting and train-
ing. Our neural retrieval approach (Right) can dynamically
retrieve a well-performing GNN for each query dataset with
scarcely any search consumption. Thus, our approach cuts
down the search cost from O(N) to O(1).
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1 INTRODUCTION

Collaborative Filtering (CF) [10, 34] has been the most foundational
technology in recommender systems to estimate the likelihood
of interaction between users and items based on the history of
interactions (clicking or rating). With the development of Graph
Neural Networks (GNN) [8, 16, 38] for graph representation learn-
ing, numerous successful GNN-based models have been proposed
and widely used in CF by modeling the user-item interactions as a
bipartite graph to capture graph structural information and learn
better user/item representations, such as PinSage [53], NGCF [41],
LightGCN [9], DGCF [42], etc.

Despite the success of the manual design process, with the ex-
plosive growth of data and scenarios, given a new recommendation
scenario, how to design a top-performing GNN architecture be-
comes a challenging problem [43]. As shown in Figure 1(a), the
direct approach to solving this problem is that human experts spend
massive time designing and picking a top-performing architecture
for every new scenario, which leads to a huge expense of human
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expertise. Recently, with the success of Neural Architecture Search
(NAS) [22, 30, 60] in computer vision, we can search a data-specific
GNN-based CF model automatically on a pre-defined search space
by adopting NAS methods, e.g., Reinforcement Learning (RL). How-
ever, as shown in Figure 1(b), given a new dataset, conventional
NAS methods have to search from scratch, which is time- and
resource-consuming. To address this problem, a straightforward
method is adopting some meta-learning based methods [14, 18, 36],
which learn a meta model from a series of tasks and leverage the
learned prior knowledge to do fast architecture search on all new
tasks in computer vision. However, these methods are not suitable
for our problem, due to the gap between recommendation scenar-
ios and visual tasks in various aspects. In this paper, we propose a
novel neural Retrieval approach to design and search GNN-based
Collaborative Filtering (RGCF) architectures rapidly when han-
dling a new recommendation scenario, based on meta-learning
and retrieval paradigm which aims to retrieve the best-fitted item
(architecture) for each given query (dataset). A sketchy paradigm
of RGCF is shown in Figure 1 (right). However, it is non-trivial to
design such a neural retrieval approach, presenting us with the
following three key challenges.

o How to represent different recommendation datasets? Our neural
retrieval approach measures the correlation between the GNN
architecture and the recommendation dataset representation
(query). One direct challenge is how to get the representation
reflecting properties of recommendation datasets in various as-
pects, which is beneficial to retrieve the best-fitted architecture.
The meta-learning based methods [14, 18, 36] in computer vision
utilize a set encoder [55], which encodes full or part of images
in a visual dataset, to represent it. However, since recommenda-
tion datasets may not have raw features on users/items bipartite
graph, this manner cannot be applied to recommendation datasets
directly. Meanwhile, this manner does not consider unique prop-
erties (graph structure, etc.) of recommendation datasets.
Thus, it is necessary to explore a new approach to represent
different recommendation datasets.
How to address the performance calibration issue in our architecture
retrieval problem? One direct approach to handle our architecture
retrieval problem is training a model to predict the absolute value
of the architecture performance. However, this direct approach
may retrieve weak-performing architecture on new datasets, due
to the performance calibration problem [19], i.e., GNN architec-
ture for one recommendation dataset may not be consistent with
the same architecture for another dataset. Thus, it is important
to address the performance calibration issue in our approach.
e How to improve the effectiveness of meta-learning based neural
retrieval model with limited meta datasets?
In practice, the real-world recommendation datasets are limited,
i.e., we can only obtain several recommendation datasets to train
a meta-learning based retrieval model. Then insufficient meta-
training tasks (meta datasets) in the meta-training phase may
lead to the trained meta model ineffective [51]. Thus, it remains
to explore how to improve the effectiveness of the neural retrieval
model with limited meta datasets.

To handle the first challenge, we first adopt the graph-level
meta-features which capture the graph structural characteristics,
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Figure 2: RGCF reduces the total search time by 93.6x com-
pared with RL-based NAS on Epinions dataset for item rank-
ing task. The search time of RGCF includes the time of meta
feature extraction, the time for once forward propagation of
our retrieval model, and the training time for the retrieved
model. The time is represented on a log-scale of hours.

and distribution-level meta-features which capture the statistical
characteristics, to represent the recommendation datasets.

For the second challenge, we convert our optimization objec-
tive from predicting the architecture performance into ranking
the architectures in the search space. Then we propose to jointly
optimize the pairwise loss and the listwise loss to retrieve a well-
performing architecture from the search space. As for the third
challenge, motivated by the success of task-level data augmenta-
tion on classification and regression task [51], we apply it to the
our neural retrieval approach in meta-training phase, i.e., generat-
ing more meta-training tasks, and improve the effectiveness of our
approach on new query datasets. To demonstrate the search perfor-
mance and efficiency of our approach, we conduct experiments on
two new datasets for both rating item ranking and rating prediction
tasks. Experimental results show that the architecture retrieved
by our approach outperforms all the manual and automatic design
baselines. Particularly, our approach is 61.7-206.3x faster than the
conventional RL-based NAS approach on the same search space for
both item ranking and rating prediction tasks. A simple example in
Figure 2 further demonstrates the superiority of our approach on
search efficiency.

To summarize, this work makes the following contributions:

e To the best of our knowledge, we first consider a novel but the
practical problem of how to get a well-performing GNN archi-
tecture for a new recommendation scenario rapidly.

e We propose a novel neural retrieval approach RGCF to address
this problem by two-level meta-features, ranking loss and task-
level data augmentation.

e Experiments show that RGCF outperforms all manual design and
NAS baselines for both rating prediction and item ranking tasks.
Particularly, RGCF also outperforms all NAS baselines on search
efficiency over two orders of magnitude.
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2 RELATED WORKS
2.1 Architecture Design for GNN-based CF

GNN-based collaborative filtering models the user-item interac-
tions as a bipartite graph and utilizes graph neural networks to
capture graph structural information and learn better user/item rep-
resentations. Numerous manual design GNN-based CF models have
been proposed in recent years, such as NGCF [41], LightGCN [9],
DGCEF [42], etc. More GNN-based CF works can be checked in the
latest survey [47]. However, all the above works only design a single
architecture for a specific scenario.

Neural Architecture Search (NAS) [22, 60, 61], which aims to au-
tomatically design neural architectures, have been widely adopted
to design GNN [6, 13, 44-46, 57] or recommendation architec-
tures [5, 20, 52, 59]. For example, GraphNAS [6] first adopts a
RL-based algorithm to search GNN architectures; SIF [52] automati-
cally select interaction function based on one-shot search algorithm;
AutoCF [5] searches CF model by performance predictor guided
random search. However, all of the NAS approaches in GNN and CF
fields only handle a specific task and have to search from scratch
for each new scenario repeatedly. A recent study [43] attempts to
address the problem by shrinking the search space. However, our
approach provides a novel paradigm, i.e., neural retrieval, based on
meta-learning methods, which can obtain a well-performing GNN
architecture for new recommendation scenarios rapidly.

2.2 Meta-Learning for NAS

The goal of meta-learning [40] is to train a model to extract general
knowledge over the distribution of tasks, which can rapidly adapt to
anew task. Most of the meta-learning based NAS papers [14, 18, 36]
based on the reasonable setting that the costs for training a meta
model can be amortized across all new tasks and be neglected in real
world use. A few studies [3, 21, 37] combine gradient-based meta-
learning MAML [4] with differentiable NAS to search for a well-
fitted architecture for the given task. However, those approaches,
which simultaneously optimize operator weights and shared model
parameters with different tasks, are not suitable for the GNN-based
CF problem, because of non-shared initialized embedding tables
between different tasks. A recent study MetaD2A [18] proposes
to use a meta generator to generate task-adaptive architecture for
the given task. Following MetaD2A, TNAS [36] proposes to adopt
meta bayesian optimization to search sota model for new tasks.
Moreover, TANS [14] utilizes a meta model to retrieve both optimal
architectures and parameter values. However, those methods are
limited to computer vision tasks and don’t consider how to capture
graph structure and statistical information for recommendation
datasets, and how to train a meta model with limited meta-train rec-
ommendation datasets, when handling the problem of GNN-based
CF. Very recently, Autotransfer [1] proposes to transfer prior GNN
design knowledge to the novel task on node and graph classification
problems. However, this approach does not explore how to design
GNN models in recommendation scenarios rapidly. MetaGL [28]
adopts statistical informations of structural meta features to select
graph learning models for the new graph for the link prediction
task. However, it does not exactly work on recommendation prob-
lem (e.g., rating prediction) and tends to select the optimal model
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from existing graph learning models rather than designing GNN
architectures for new recommendation tasks.

2.3 Neural Retrieval

Neural retrieval aims to learn a neural networks based model to
rank search results (images [7] or texts [50]) in response to a
query [25]. This problem can be addressed by the manner of learn-
ing to rank [23]. However, none of these works consider how to
retrieve GNN-based CF architecture when given a new recommen-
dation dataset. More relevant TANS [14] adopts a performance
predictor-guided neural model to retrieve both optimal architec-
tures and parameter values in the visual task, which doesn’t con-
sider how to get the query representation for the recommenda-
tion dataset. Moreover, it does not consider how to address the
performance calibration problem in the scenario of GNN-based
recommendation.

3 METHODOLOGY

In this section, we start by formalizing the task-adaptive architec-
ture retrieval problem and explaining the key notations. Afterward,
we elaborate on the proposed neural architecture retrieval approach.
Finally, we present the optimization details of our retrieval approach
in the mete-training phase. An overview of the proposed RGCF is
shown in Fig. 3.

3.1 Problem Definition

Our goal is to search for an optimal GNN architecture for a recom-
mendation dataset by learning a neural retrieval modal over a series
of tasks. We first define that problem as task-adaptive architecture
retrieval. Let 4 = {gi}{zl denotes a collection of I recommenda-
tion datasets and Q denotes the GNN architecture search space,
where for each G; = (U, 71,E,R) can be regarded as a bipartite
graph, where U and 7 are the sets of users and items, & is the set of
user-item interactions, and R denotes the rating score for explicit
feedback which is invisible for implicit feedback.
Meta Database. Let task 7 = {Q, G"} denotes the best performing
architecture from the search space Q with a task distribution p(7).
The meta database D is the task-level training set and contains some
dataset-architecture-performance triples (G%,a,r) € 4 X Q X R,
where performance r = M (a, gtfest)’ Gi.s; is the test set of G7,
and M denotes a metric (Recall for item ranking and RMSE for
rating prediction). A" C Q contains all the architectures in D for
the same meta-train dataset G°.
Task-adaptive architecture retrieval. Given the meta database,
task-adaptive architecture retrieval aims to learn a function f,,
which measures the correlation between architectures and datasets,
on a series of meta-training tasks. It can be formally defined as
follow:

" = arg mai)nEhp(r) [.C (fo, AT, QT)] , (1)

where w is the parameter of the meta model and £ is the loss
function of ranking loss on the meta-training tasks. After training,
fo+ is applied to the meta-test phase for an new query dataset
G ¢ 9 to retrieve a well-performing architecture ¢* from Q rapidly.
This process can be formally defined as follow:

@ = argmax f(4.6). @)
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Figure 3: The overall framework of our proposed RGCF approach. (a) Pre-preparation stage. A meta database containing
some dataset-architecture-performance triples is constructed at this stage. The dataset and architecture instance are sampled
from a series of meta-train datasets and the GNN search space for CF. (b) Meta-training stage. We employ a PNN ¢ to encode
architectures, a MLP £ to encode datasets, and a MLP ¢ to encode the combination of the outputs of two previous encoders. The
red and green parts correspond to two sampled tasks (triples for the same dataset). Task-level data augmentation is applied to
the cross encoder and the framework is optimized by ranking loss. (c) Architecture retrieval stage. The top1 scored architecture

will be retrieved by our optimized framework for the new dataset in the meta-test phase.

3.2 Neural Retrieval Approach

Meta Database Construction: The meta database D contains
some triples (G7, a, r), which correspond to Figure 3(a) and defini-
tion in subsection 3.1. Note that the test set is visible for getting
the performance r on meta-train datasets.

For a specific dataset G, the architectures in the database for
the same dataset constitute A?. The most straightforward way to
construct A7, is training all architectures in the search space, i.e.,
AT = Q. However, it seems impossible to do that for all the datasets
in a large search space. So A? in our framework is formed by the
architectures randomly sampled K times from the search space Q
where K < |Q|. After that, we train all the architectures in A” and
record all the performance r.

We repeat the construction process of A’ on all meta-train
datasets ¢. Then, all the records r with the corresponding dataset
and architecture constitute the meta database. The meta database
construction process corresponds to lines 1-9 in Algorithm 1.
Cross Encoder: The cross encoder encodes the dataset-architecture
pair representation by concatenating the output of dataset and ar-
chitecture encoder. The output of the cross encoder is the predicted
correlation score of each dataset-architecture pair which is task-
related. It can be formulated as follow:

fo(a.G") = Ec (ht.9), ht = [hq || hal,

hd :Ed (@T;f) and ha ZEar (a; f), (3)

where @ is the meta feature extracted from dataset G7. E; : R% —
R9 is the dataset encoder; E, : Q — R¥ is the architecture encoder,
with the parameter £ and Z, respectively. E. : R24 — R is the cross
encoder corresponds to MLP with the parameter ¢. Thus, three sets
of parameters above constitute the parameter w of f in Eq. (1).

Dataset Encoder: We adopt meta-features to encode the recom-
mendation dataset. The function of meta-features is as a query
for our neural retrieval framework. A recent study [2] shows that

different architectures are suitable for different recommendation
datasets with different meta-features. Thus, the key to retrieving a
well-fitted architecture from the search space is the more detailed
meta-features to represent the meta-datasets. However, there is
a trade-off between retrieved model performance and the meta-
feature extraction time. On the one hand, we need more expressive
meta-feature for architecture retrieval. On the other hand, the ex-
traction time for the new query dataset should be acceptable. Guided
by this consideration, we propose to use the two-level meta-features
which are both efficient and effective.

Graph Level: Graph level meta-features treat the recommenda-
tion dataset as a graph and describe the global graph structure
which is critical for the retrieval of GNN architecture. We adopt
the graph level meta-features which contain:

U|x|T
® Spacejog = logy, (%)

u
* Shapeog = logy, (H)

® Densitylog = logy (%)

o Degree assortativity coef ficient [26]: Pearson correlation
coefficient of degrees between linked nodes.

o Number of Connected Components [12].

e User Average Degree.

e [tem Average Degree.

Let $y,4ph be the function to extract graph level meta-features

T _ T
graph — Pgraph (g )

Distribution Level: Distribution level meta-features containing

Dyraphs i€, P

Giniyser, Ginijtem from recent research on recommendation dataset [2],

which represent the distribution of interactions over the set of
users/items, can be a supplement of graph level meta-feature. The
distribution level meta feature can be formulated as follow:

. Ul (|U+1- Eu
¢ Gl - 1-2 212 (1455¢) 1
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e Ginijtemy =1- Zlezll (lfj‘ﬁ?) X (%)

Let Py, be the function to extract distribution level meta-features
Dy, 1€, @Zis = Pyis (G7). To summarize, we concatenate the two-
level meta-features to describe the recommendation dataset. We
formally define the total meta-features as ® = [‘bdis | |<Dgraph] .

One notice is that the extraction of meta-feature on the query
dataset doesn’t contain the test set to avoid information leakage.
After meta-features are extracted, we do standardization on the
extracted meta-features and adopt a function E; which is a two
layers MLP with the relu activation function to make the meta-
features level crossover.

Architecture Encoder: To encode the architecture a € Q, we first
create a randomly initialized embedding table of all the candidate
operations in the search space. Let L, = {01, 02, ..., 0N} denote the
index list of all the operations of a architecture a on each space
dimension, where N is the dimensions of the search space. Then,
the inputs of architecture encoder are as follows: Hg = Lookup(Lg),
where Hg € RN Xd To encode the connection between the dimen-
sions of search space, we adopt PNN [31], which adds a product
layer to capture the interactive pattern between dimensions. In the
product layer, our employed PNN conducts dot product between
any two operations embeddings of the input architecture. Then the
outputs of the product layer are concatenated to the original em-
beddings and fed into a fully connected layer. The backbone of the
architecture encoder can be formulated as follow: h, = PNN(Hy).

3.3 Optimization

Ranking Loss. Our goal of architecture retrieval is to learn a pat-
tern of ranking all the architectures in the search space for every
new dataset. Thus, it is not necessary to predict the absolute value
of a specific metric and it is more meaningful to distinguish the bet-
ter model with several candidates. Moreover, similar to calibration
problem [19] in collaborative ranking, the architecture performance
for one dataset may not be consistent with the same architecture
for another dataset. Thus, directly approximating absolute perfor-
mance for meta database instances may retrieve lower-performance
architecture on new datasets. To avoid these drawbacks, we adopt
pairwise loss based on the fact that for all datasets an ordered pair
of architectures means the same thing: one architecture is preferred
to another. The approach’s .L4;r can be formulated as follow:

Lpair (fﬂ)a ﬂr, gT)

=—|§1| > wijlogofu(an67) ~ ful(a;, 6)  (g)
(i.j)e&

+(1-yij)log(1 - 0(fo(ai, G%) = fw(aj, GM))),

1, ri > rj
where & = {(i,j)|a,- €A% aj € A" and a; # aj},yi,j =405 ri=rj
0, ri <rj

and o(+) is the sigmoid function.

It is difficult to rank all the architecture in a large search space
in the right order. In our architecture retrieval problem, we focus
on retrieving the top-performing architecture. Based on that fact,
following the topk learning to rank [27], we adopt the listwise loss
listMLE [48] which gives the top-performance architecture a larger
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optimization gradient to jointly optimize the neural retrieval model.
This approach’s Lj;s; can be formulated as follow:

|T|
exp (fo (ai,G7))
Llist (fw’ﬂr’ gf) = _logl_[ |T| = - >
i=1 Xp_; exp (fo (a. G7))
where T = {ay,az,...,an|r1 = r2 > ... > ry} is the sorted set cor-
responding to A” by the real performance of the architectures in
G
Then the joint loss £ in Eq. (2) can be formulated as follow:
L=px Lpair + (1= p) X Lyiss, (6)

where p is a trade-off coefficient to balance the two types of loss.
Two-Stage Optimization: In the meta-training stage, we adopt
two stages of gradient-based meta-learning model-agnostic meta-
learning (MAML) [4] to optimize the above formula in Eq. (2). For
every episodic, we random sample several tasks .7 = {r | 7 ~ p(7)}
from the p(7) and split each task 7 into a support set 7, = {AZ, G}
and a query set g = {A7, G"}.

| 7]
w* — arg mai)n % ; [.C (f§,¢,,9,&1{;i,gn)] , (7)

where ¢ = § — Ve L (fg,g,(p,ﬂ;i, Qn) ,

d=¢9-nVpL (fé’,{,(p» A, Q”) ,
where 1 denotes the inner-loop learning rate and we freeze the
parameter £ of dataset encoder in the inner loop because the inputs
of meta-feature are the same in the inner loop. With the meta-
feature to identify meta datasets, we no longer need to fine-tune
the single task in the meta-test stage. In the experiment, we find that
the retrieved model is also well-performing without fine-tuning on
the meta-test stage, which is also called zero-shot [49].
Task-level Data Augmentation (DA): Inspired by the recently
meta-learning approach MLTI [51] to do a task-level DA on a task-
insufficient scenario for classification and regression tasks, we apply
it to our neural retrieval approach to ease the problem of the lim-
ited meta-train datasets. The key idea behind task-level DA is to
generate new tasks by adopting manifold mixup [39] between meta-
train tasks. MLTI theory prove that task-level DA leads to a better
generalization bound and will improve the effectiveness of meta
model [51]. We adopt it on our cross encoder which is task-related
in our neural retrieval approach. The details of the cross encoder
are a L layers MLP with activation function relu on each hidden
layer, the hidden representation of task embedding h; at the I-th
layer is denoted as h! = E. (hy, ¢;) (0 < I < L), where h® = hy. We
randomly select one layer [ and apply task interpolation on hidden
representations like the MITL for label-sharing tasks [51] which is
formulated as follows:

A 1 i i
Ko = M (1= DR R

mix,i ni’ “mix,j

®)

=25+ (1= DR, o
Ymixij = MWmij + (1= Dy 5

where m, n is the index of randomly sampled two tasks from task

set 7, A € [0,1] is sampled from a Beta distribution Beta(«, p),

x € {s, q} denotes the query set or the support set, and the subscript

"mix" represents the mixup. We only apply it on pairwise loss

based on the intuition one mixed architecture embedding is better
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for anthor mixed architecture embedding with mixed probability.
However, the listwise loss does not have this intuition.

Algorithm 1: The Process of RGCF

Input: GNN search space Q, datasets collection ¢ and
ranking model f,, with randomly initialized
parameter @ = {&, ¢, ¢}.

Output: The learned ranking model f,+.

1 Initialize Meta database D = ().
2 foreach G* € ¥ do

3 Subset A = 0.

4 forie [1,K] do

5 Random sample a; from Q and add a; to A%;
6 Train a; on G7 to get the performance r;

7 Add record (G7, aj,r) to D;

8 end

9 end

10 while not converge do
11 Sample several tasks 7 = {{A",G"}| T ~ p(1)};
12 foreach 7; € .7 do

13 ‘ Split 7; into support set and query set.

14 end

15 foreach r; € .7 do

16 Randomly select layer [ of the cross encoder;
17 Randomly select another 7; from 7;

18 Apply task interpolation via Eq. (9);

19 Calculate loss on support set L via Eq. (6);

20 Inner loop gradient update for ¢, ¢ via Eq. (8);
21 Calculate loss on query set L via Eq. (6);

22 end

23 Update parameters by optimizing Eq. (7).
24 end

4 EXPERIMENT

In this section, we perform extensive experiments to evaluate the
proposed method and answer four research questions:

o RQ1: How does RGCF perform in searching performance and
searching efficiency on both rating prediction and item ranking
tasks for new datasets?

o RQ2: How do different types of meta-features affect the perfor-
mance of RGCF?

e RQ3: How does ranking loss and the task-level data augmenta-
tion affect the performance of RGCF?

e RQ4: What insights can we obtain from the retrieved models?

4.1 Experimental setup

Meta Datasets. For meta-train datasets, we adopt 9 real-world
datasets including Yelp, Amazon-CDs, Amazon-Movies, Amazon-
Beauty, YahooMusic, Flixster, Douban, MovieLens-1M and MovieLens-
100K which are collected from different domains (e.g., business
recommendation, e-commerce, movie rating and music rating).
For meta-test datasets, we consider 2 new datasets: Epinions and
Amazon-Sports. We follow the preprocessing and dataset splitting
in [43] for rating prediction task. As for item ranking task, we treat
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all the observed interactions as positive instances. The details of
dataset statistics are presented in Table 2.

Meta Database Construction. For the search space, we follow [43]
which contains 9 dimensions and total 103,680 candidate GNN
architectures. The names of dimensions and the corresponding
operations are listed in Table 1. The more details can be found
in [43]. To construct the meta database, following [43], we randomly
search 3400 architectures for the search space on nine meta-train
datasets and construct nine subsets A" of Q. For each meta-train
dataset, we split each A” into 0.8/0.2 train/valid sets. We sample
8 pairs as the support set and 200 pairs as the query set for each
episode in the meta-training phase. As for the meta-valid phase,
we calculate the average spearman’s rank correlation coefficient of
all valid pairs on each meta-train dataset, to save the best retrieval
model.

Tasks and Metrics. We conduct experiments on two mainstream
recommendation tasks: rating prediction and item ranking. 1) Rating
Prediction. Rating prediction task aims to train models to estimate
the ratings users would give to items. As for the evaluation metric,
we follow the [43] and adopt Rooted Mean Square Error (RMSE)
to evaluate the model performance. 2) Item Ranking. Item ranking
task aims to recommend ordered lists of items for users. For the
evaluation metric, we adopt common metric Recall [9, 41] on the
whole item candidates [33], particularly, we adopt Recall@20. We
repeat training all the searched models and human design models
on 10 random seeds for the rating prediction task and 3 random
seeds for the item ranking task, and report the mean and standard
deviation to evaluate model performance and stability.

Baselines Settings. We report the result of two variants of our
approach: RGCF-T1 and RGCF-T5 (T denotes Top). RGCF-T1 di-
rectly adopts the predicted topl GNN architecture and RGCF-T5
select the top1 performing architecture in the valid set from the
predicted top5 architectures. Our proposed methods are compared
with the following two types of baselines. 1) Manually design
GNN-based CF models, including MF [17], NCF [10], NGCF [41],
LightGCN [9], DGCF [42]. 2) NAS methods for CF. We search 200
child models for item ranking task and 300 child models for rating
prediction task; Random Search: randomly select 10 architectures
on the whole search space; RS-10 [43]: the random search of 10
architectures in the shrunk search space pruned from the whole
search space by controlled random search [54]; AutoCF [5]: A per-
formance predictor guiding random search without considering
GNN in design space dimension. We adopt the default search set-
ting in their raw paper [5] and only change the number of search
models to 300.

Hyperparameter Settings. For our neural retrieval model, we
adopt Adam [15] optimizer with 0.0001 learning rate for the outer
loop of meta-training, early stopping strategy with patience 300,
and saved the best epoch on the meta-valid sets. The maximum
number of epochs is set to 3,000 in the item ranking task and 1,500
in the rating prediction task. For the architecture encoder, we adopt
standarded PNN with 16 hidden dimensions and select the inner
product as the operation of the interactive layer. For the dataset
encoder, we use a two-layer mlp with 16 hidden dimensions, and
for the across encoder, we use a three-layers mlp with 32 hidden
dimensions. For the inner loop, we set the learning rates n = 0.001
and the step of gradient update 2. For ranking loss, we set p = 0.6
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Table 1: Following [43], we employ the SOTA GNN based CF search space in the experiments.

Initial Embedding Dimension d

Message Function m(-)

Aggregation f(-)

64, 128, 256 Identity, Hadamard None, GCN, GAT, GIN, GraphSAGE
Activation o () Layer Number L Layer Combination g(-)
Identity, Sigmoid, Tanh, ReLU, PReLU, LeakyReLU 1,2,3,4 Stack, Concat, Sum, Mean

Component Number K

Component Combination c(-)

Interaction Function p(-)

1,2,3,4

Concat, Mean, Att

Dot Product, Concat+MLP, Sum+MLP

Table 2: Statistics of datasets from different domains.

‘ Dataset #Users #Items #Interactions

Yelp 58,069 31,721 1,160,605

Amazon-CDs 31,296 24,379 622,163
Amazon-Movies 44,439 25,047 1,070,860

YahooMusic 1,357 1,363 5,335

Meta-Train | Amazon-Beauty 7,068 3,570 79,506

Flixster 2,341 2,956 26,173

Douban 2,999 3,000 136,891
MovieLens-1M 6,040 3,706 1,000,209
MovieLens-100K 943 1,682 100,000

Meta-Test Epinions 40,163 139,738 664,824
Amazon-Sports 11,435 5,405 108,004

for the item ranking task and p = 0.8 for the rating prediction task.
We set Beta(0.5, 0.5) for Beta distribution in section 3.3.

For the searched GNN based CF models in RGCF, RL-based,
Random Search, AutoCF, and RS-10, we have the following uni-
fied hyperparameter settings: For the rating prediction task, we
follow the settings in previous work [43]. For the item ranking task,
we adopt the BPR loss [32] and random negative sampler [10, 32]
that randomly chooses one unobserved item as a negative sample
for each observed user-item interaction every epoch and the maxi-
mum train epoch is set to 50. Meanwhile, for each training epoch,
we adopt mini-batch [11] with batch size 4096. We adopt Adam [15]
optimizer with 0.001 learning rate and 0.00005 weight decay.

For all manual design models, we follow the implementation

on [43] for rating prediction task and we keep the same hyperpa-
rameters as GNN based CF model on on item ranking task for a fair
comparison.
Implementation Settings. We implement all NAS models with
PyTorch [29] and manual design models using the RecBole frame-
work [58]. We run all experiments utilizing Intel(R) Xeon(R) Gold
6230R CPU @ 2.10GHz and GeForce RTX 3090 as the experimental
environment.

4.2 Rating Prediction (RQ1)

The RMSE scores and search time of different methods on the item
ranking task are reported in Table 3. From the results, we have the
following observations:

o Our approach outperforms all the manual design models and
other NAS baselines for both RGCF-T1 and RGCF-T5 architec-
tures on rating prediction task. Let RGCF-T1 be called RGCF for
brevity in the later part.

e Compared with RL-based baseline, RGCF get 0.46% reduction
(from 0.8717 to 0.8677) of RMSE on Epinions and 0.54% reduction

(from 0.9354 to 0.9303) on Amazon-Sports. For the search time,
RGCF achieves 183x and 206x speed up for Epinions and Amazon-
Sports dataset respectively, which proves the superiority of RGCF
on searching performance and efficiency. In fact, RGCF only
needs 88.9 (9.1+79.8) seconds and 18.7 (1.3+17.4) seconds, which
contain the inference time of the neural retrieval model and
the training time of the retrieved architecture, to get a well-
performing architecture outperforming all baselines on Epinions
and Amazon-Sports datasets, respectively.

e Random Search baseline consistently gets poor performance on
both datasets demonstrating that RGCF excludes a lot of bad
architectures from the large search space, which contains 103,680
achitectures, by transferring meta knowledge learned in the meta-
training phase. Note that Random Search spend less time to
search 10 architectures compared with RS-10, because the candi-
date architectures in the shrunk seach space are more complex
and need more time to optimize.

e The AutoCF baseline outperforms other baselines by searching
300 architectures on a search space without considering GNNs.
However, our approach can further improve the performance
on both datasets with 1,025.5x and 2,998.8x speed up on search
efficiency.

e Compared with RS-10, RGCF also achieves performance and
efficiency improvements with equivalent dataset-architecture-
performance triples on meta-train datasets. In fact, RGCF and
RS-10 are two orthogonal directions: RS-10 focuses on shrinking
the search space while RGCF focuses on retrieving architecture
from the search space.

4.3 TItem Ranking (RQ1)

The Recall@20 results and search time on the item ranking task are
reported in Table 3. From the table, the following observations can
be obtained:

e Similar to the results of rating prediction, our approach outper-
forms all baselines for both RGCF-T1 and RGCF-T5 on the item
ranking task, which further demonstrates the generality of our
method.

e Compared with RL-based baseline, RGCF improves 10.6% and
7.4% of Recall@20 on Epinions and Amazon-sports. As for the
search time, RGCF achieves 93.6x and 61.7x speed up for Epinions
and Amazon-Sports dataset. As shown in Figure 2 and Table 3,
we can also observe that the RL-based method needs 196.6 hours
to search a model for a larger dataset Epinions on item ranking
task, which is unacceptable. Meanwhile, RGCF only needs 2.1
hours to get the final trained model which is acceptable in real
applications.



CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

Fenggi Liang, Huan Zhao, Zhenyi Wang, Wei Fang, & Chuan Shi

Table 3: Performance and the search time of our model and all baselines on 2 new datasets. The search time denotes the time to
search a trained model on the new dataset. Note the search time of our approach contains two parts: The inference time of
neural retrieval model (including extraction time on the new dataset) and the training time of the retrieved architectures.

Model ‘ Epinions ‘ Amazon-Sports
‘ Search Time ‘ RMSE Search Time ‘ Recall@20 ‘ Search Time ‘ RMSE ‘ Search Time ‘ Recall@20
MF [17] - 0.9945 + 0.0000 - 0.0344 + 0.0009 - 0.9882 + 0.0007 - 0.0911 + 0.0081
NCF [10] - 1.0070 + 0.0055 - 0.0344 + 0.0007 - 0.9342 + 0.0008 - 0.0636 + 0.0011
NGCF [41] - 1.1437 + 0.0240 - 0.0290 + 0.0002 - 1.0668 + 0.0038 - 0.0636 = 0.0011
LightGCN [9] - 0.9926 + 0.0001 - 0.0321 + 0.0003 - 0.9705 £ 0.0003 - 0.0776 + 0.0006
DGCF [42] - 1.6800 + 0.2272 - 0.0321 + 0.0003 - 0.9894 + 0.0000 - 0.0922 + 0.0010
RL-based [6] 16,263s 0.8717 £ 0.0014 196.6h 0.0498 + 0.0010 3,858s 0.9354 + 0.0027 31,165s 0.0897 £ 0.0005
RS-10 [43] 1,353s 0.8729 £ 0.0014 28.2h 0.0221 £ 0.0005 364s 0.9327 £ 0.0006 21,148s 0.0226 £ 0.0030
Random Search 559s 0.8942 + 0.0032 9.73h 0.0298 + 0.0008 182s 0.9442+ 0.0017 3,298s 0.0578 £ 0.0016
AutoCF [5] 91,171s 0.8699 + 0.0022 49.8h 0.0347+ 0.0005 56,078s 0.9321+ 0.0014 58,505s 0.0697 £ 0.0012
RGCF-T1 (ours) 9.15+79.8s 0.8677 £ 0.0011 9.1s+2.1h 0.0551 + 0.0011 1.3s+17.4s 0.9303 + 0.0011 1.35+503s 0.0963 + 0.0022
RGCEF-T5 (ours) 9.1s+426s 0.8611 + 0.0005 9.1s+8.1h 0.0640 + 0.0014 1.35+123s 0.9303 + 0.0011 1.35+2326s | 0.1004 + 0.0004
e Compared with AutoCF, RGCF also gets 23.7x and 116x reduction 0.10 oCF one 0.94 RocF None
_Dis. -Dis
in search time while achieving 58.8% and 38.2% performance im- RGCF-Graph 0.92 RGCF-Graph
. . 0.08 RGCF : RGCF
provements for both datasets respectively, which further demon- ® 4 090
strates the superiority of RGCF on search efficiency. ‘5 0.06 z
. . . Q
. R'S-l.O performs poorly on item ranl.<1ng task. A p0§slble exI')la'na- < 004 0.88
tion is that the shrunk search space is pruned on rating prediction 0.86
0.02

task. Thus, the candidate architectures in the shrunk space are

not suitable for item ranking task, which further demonstrate

the generalization of RGCF.
As mentioned in introduction and similar to [14, 18, 36], the time of
meta database construction and the meta-training phase is offline
and only once, so it can be neglected considering that we can
amortize the cost to all query datasets when the method is deployed
for real-world use. On the other hand, the extraction time of meta-
features for new datasets is online, and as shown in Table 4, it could
be extracted quickly for our neural retrieval approach.

Table 4: Time of extracting different type meta-feature.

Model ‘ Epinions ‘ Amazon-Sports
Distribution 0.302s 0.002s
Graph 8.651s 1.125s

4.4 Ablation Study (RQ2 & RQ3)

4.4.1  Analysis of Meta-features. To demonstrate the importance
of meta-features, we design three ablated models. 1) RGCF-None
removes the dataset encoder and only considers learning a shared
architecture encoder between different datasets. 2) RGCF-Dis only
consider distribution-level meta features. 3) RGCF-Graph only
consider graph-level meta-features. Figure 4 presents the results
of our model and three ablated models. Through the experimental
results, we can conclude that the performance gain of RGCF can be
mainly attributed to the graph-level meta-features and the distri-
bution level meta-features as a supplement can further benefit our
model.

To further demonstrate the effectiveness of meta-features, we
sample 10 anchored architectures from the whole search space

Epinions Amazon-Sports Epinions Amazon-Sports

(a) Item Ranking (b) Rating Prediction

Figure 4: The comparisons of RGCF and its variants on meta-
features.

and adopt the metric spearman’s ranking correlation coefficient
(SRCC) [35, 56], which measures the consistency with the real
performance ranking and the predicted ranking of these anchored
architectures. As shown in Figure 5, RGCF gets the highest SRCC
compared to the other three variants, i.e., our proposed meta-feature
tends to rank the whole search space in the right order. We can
also observe that RGCF gets the most SRCC improvement by graph-
level meta-features, which demonstrates that our proposed meta-
features (especially the graph-level) capture the correlation between
recommendation datasets and GNN architectures, thus better ability
of performance prediction, which guarantees the performance of
the proposed architecture retrieval method.

In summary, it is necessary to take advantage of different level of
meta-features to retrieve best-fitted architecture for query datasets.

4.4.2  Analysis of Ranking Loss. To validate the effectiveness of
Ranking loss, we design an ablated model: RGCF w/o Rank opti-
mize the retrieval model by mse loss. As shown in Figure 6, RGCF
outperforms RGCF w/o Rank for both tasks, which demonstrate
ranking loss can improve the performance of retreived architecture
by avoid performance calibration problem.

4.4.3  Analysis of Task-Level Data Augmentation. To validate the
effectiveness of task-level data augmentation, we design an ablated
model: RGCF w/o TDA remove the task-level mixup. As shown in
Figure 6, RGCF outperforms RGCF w/o TDA on all the new datasets
for both tasks showing that the task level data augmentation im-
prove generalization of retrieval model on the phase of meta-test.
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Table 5: Best retrieved architectures on the two new datasets.

Task Dataset ‘ Model ‘ d m() f() o() L g() K c(v) p() ‘ Performance
Epinions RGCF-T5 | 256 Identity None Sigmoid 3 Mean 4 Mean Concat+MLP |0.08611 + 0.0005
. L P RGCF-T1| 64 Identity None Sigmoid 3 Concat 4 Mean Sum+MLP |0.08677 +0.0011
Rating Prediction
Amazon-Sports RGCF-T5| 256 Identity GCN Sigmoid 2 Concat 4 Mean Concat+MLP |0.09303 +0.0011
P RGCF-T1| 256 Identity GCN Sigmoid 2 Concat 4 Mean Concat+MLP |0.09303 + 0.0011
Epinions RGCF-T5| 64 Identity GAT Sigmoid 3 Stack 4 Mean Dot Product |0.0640 + 0.00014
. P RGCF-T1| 256 Identity GAT Sigmoid 3 Concat 4 Mean Dot Product | 0.0551 +0.0011
Item Ranking
Amazon-Sports RGCF-T5 | 256 Identity GAT Sigmoid 3 Stack 3 Att Dot Product | 0.1004 + 0.0004
P RGCF-T1| 128 Identity GAT Sigmoid 3 Stack 3 Att Dot Product | 0.0963 + 0.0022
08 08 0101 2 R woank 0950 et woRank
RGCF w/o TDA RGCF w/o TDA
0.6 0.6 o0.08 RGCF 0.925 RoCF
O O ® w
%04 g T £ 0.900
» 0. RGCF-None n 0.4 N g 0.06 x
RGCF-Dis RGCF-Dis 4
0.2 RGCF-Graph 0.2 RGCF-Graph 0.04 0.875
RGCF RGCF
0.0 — == 0.0
Epinions  Amazon-Sports Epinions  Amazon-Sports Epinions Amazon-Sports Epinions Amazon-Sports
(a) Item Ranking (b) Rating Prediction (a) Item Ranking (b) Rating Prediction

Figure 5: The comparisons of correlation between GNN ar-
chitectures and datasets on different meta-features.

Thus, it is important to utilize task-level data augmentation with
limited meta-train datasets. To further validate the effectiveness
of both ranking loss and task-level data augmentation, we further
consider an ablated model: RGCF w/o Rank&TDA remove both
modules. As shown in Figure 6, RGCF w/o Rank&TDA gets the
worst performance for both tasks, which indicates that both ranking
loss and task-level data augmentation can improve the performance
of retreived architecture and the combination of both modules will
achieve the best performance.

4.5 Case Study: Task-adaptive retrieved
architectures (RQ4)

We present the retrieved architecture by RGCF-T1 and RGCF-T5
for each task on all query datasets in Table 5. From the presented
architectures, we have the following observations:

e When we increase the retrieval number of architectures from 1
to 5, the performance of retrieved architectures will further be
improved. It indicates that there are a series of well-performing
models in the search space, which is aligned with the observation
in [43]. However, we get this conclusion with the neural retrieval
approach on the other line.

o The best models are not the same for different datasets and differ-
ent tasks which further validates the necessity of task-adaptive
architecture retrieval. We also find that GAT-based architectures
achieve good performance on item ranking tasks for all datasets
which is ignored by researchers all along. A possible explanation
is that the item ranking task fits a more complex model.

4.6 Parameter Sensitivity Analysis

Finally, we perform a sensitivity analysis of the trade-off coefficient
parameter p between pairwise loss and listwise loss on all tasks for
both two new datasets. As shown in Fig. 7, a suitable range of p is

Figure 6: The comparisons of RGCF and its two variants: no
ranking loss and no task-level data augmentation.

0.100 11
o 0.075
~N
® w 1.0
= 0.050
g z
2 0.025
: Epinions 0.9 Epinions
Amazon-sports Amazon-sports
0.000

0.0 02 04 06 08 1.0
Trade-off Coefficient p

0.0 02 04 06 08 1.0
Trade-off Coefficient p

(a) Item Ranking (b) Rating Prediction

Figure 7: Results of the parameter sensitivity analysis.

0.4 to 0.8. When we fully use listwise loss, i.e., p = 0, the retrieved
model shows poor performance. Meanwhile, fully using listwise
loss, i.e., p = 1 will also lead to a performance drop. Thus, it is
important to balance the weights of pairwise loss and listwise loss.

5 CONCLUSION

In this work, we try to address the problem of how to get a well-
preforming GNN architecture rapidly for new recommendation
scenarios. We propose a novel neural retrieval approach to return
a well-performing architecture directly based on meta-learning.
We propose to optimize the neural retrieval framework by ranking
loss to address performance calibration problem and adopt a novel
task-level data augmentation to further improve the effectiveness
of our approach in case of limited recommendation datasets. The
experimental results on two new datasets for both rating prediction
and item ranking demonstrate the evidence of the proposed RGCF
in terms of effectiveness and efficiency.
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