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Foundation models have emerged as critical components in a variety of artificial intelligence applications, and
showcase significant success in natural language processing and several other domains. Meanwhile, the field of
graph machine learning is witnessing a paradigm transition from shallow methods to more sophisticated deep
learning approaches. The capabilities of foundation models to generalize and adapt motivate graph machine
learning researchers to discuss the potential of developing a new graph learning paradigm. This paradigm
envisions models that are pre-trained on extensive graph data and can be adapted for various graph tasks. Despite
this burgeoning interest, there is a noticeable lack of clear definitions and systematic analyses pertaining to
this new domain. To this end, this article introduces the concept of Graph Foundation Models (GFMs), and
offers an exhaustive explanation of their key characteristics and underlying technologies. We proceed to classify
the existing work related to GFMs into three distinct categories, based on their dependence on graph neural
networks and large language models. In addition to providing a thorough review of the current state of GFMs,
this article also outlooks potential avenues for future research in this rapidly evolving domain.
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1 INTRODUCTION
With the rise in computational power and breakthroughs in deep learning techniques, the artificial
intelligence (AI) community has introduced the notion of “foundation models”: A foundation model is
any model that is trained on broad data and can be adapted to a wide range of downstream tasks [2].
Foundation models enjoy unique attributes like emergence and homogenization, empowering them
to serve as the primary building blocks for a myriad of downstream AI applications [2]. Emergence
suggests that as a foundation model scales up, it may spontaneously manifest novel capabilities [133].
Meanwhile, homogenization alludes to the model’s versatility, enabling its deployment across
diverse applications [2]. Thanks to the development of large language models (LLMs), the concept of
foundation models first became a reality in natural language processing (NLP). Since then, foundation
models have demonstrated impressive versatility, processing not just text but also image data, video
data, audio data and multi-modal inputs. This versatility empowers them to excel in tasks ranging
from computer vision [128] and audio signal processing [164] to recommender systems [20].

Much like the evolution witnessed in NLP, graph machine learning is also undergoing a paradigm
transition. In its early stages, graph tasks predominantly employed shallow methods, such as random
walk [88] and matrix factorization [150]. These methods, however, were typically limited to trans-
ductive learning on unattributed graphs [122]. The more recent shift towards deep learning methods
has catalyzed the rise of graph neural networks (GNNs). GNNs have revolutionized the landscape by
introducing the message-passing mechanism, where nodes iteratively aggregate information from
their neighbors. By harnessing GNNs in fully supervised, semi-supervised, or unsupervised settings,
researchers have pioneered a variety of customized graph models. These advancements have yielded
substantial improvements in tasks like node classification [57], link prediction [168], graph classifica-
tion [149], and graph clustering [125]. However, certain challenges of GNN models still persist. For
example, GNNs are restricted with issues related to expressive power [1] and generalizability [154],
especially given the ever-expanding datasets and the widening spectrum of tasks.

The remarkable success of foundation models in varied domains is increasingly garnering the
interest of graph machine learning researchers. This naturally evokes the question: Could graph
foundation models represent the next frontier in graph machine learning? Such models, if realized,
would boast enhanced expressive power, improved transferability, and applicability to more intricate
graph data and tasks. As illustrated in Figure 1, a graph foundation model (GFM) is envisioned
as a model pre-trained on extensive graph data, primed for adaptation across diverse downstream
graph tasks. Drawing parallels with traditional foundation models, a GFM is also anticipated to
embody two principal characteristics: emergence and homogenization. Specifically, emergence refers
to novel capabilities shown exclusively in large-scale graph models, while homogenization denotes
the model’s adaptability across different types of graph tasks. Existing deep graph learning methods
struggle to encompass these features: their inherent architectures and learning paradigms focus on
specific tasks, which restrict the utilization of extensive unlabeled data, subsequently limiting their
expressive and generalization abilities.

Inspired by the success of LLMs as foundation models in NLP, researchers have explored the
possibilities of graph foundation models towards the emergence and homogenization capabilities.
These explorations primarily focus on the design of backbone architectures for GFMs, and different
learning paradigms including pre-training and adaptation, as they are the key strategies of LLMs
to acheive the aforementioned capabilities. First and foremost, the emergent abilities of foundation
models typically exist only in backbones with a large number of parameters, whereas the parameter
count of graph neural networks is significantly smaller than that of the language backbones. This
implies that the backbone of graph foundation models may need to be redesigned to achieve more
substantial knowledge storage towards emergence. As graph data is typically associated with rich
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Fig. 1. The distinction between deep graph learning and graph foundation models. Deep learning tackles specific
tasks on specific datasets through end-to-end training. In contrast, GFMs are pre-trained on broad graph data
and can be adapted to a wide range of downstream graph tasks, expected to demonstrate emergence and
homogenization capabilities.

text information, an alternative approach is to use LLMs as graph foundation models. Nonetheless, it
remains uncertain whether LLMs can effectively handle graph data and associated tasks, and it is
crucial to determine how to model graph structures in LLMs. Additionally, the homogenization of
foundation models necessitates the handling of diverse tasks in a uniform manner. Devising effective
pretext tasks and downstream task adaptation methods are challenging for graph data, due to the
complexity in interconnected nodes and various forms of attributes, as well as the diversity in tasks
across node-, edge- and graph-levels. Therefore, there is also a need to design suitable pre-training
tasks and adaptation mechanisms.

While there is no definitive solution for designing and implementing graph foundation models,
this paper surveys some related researches and categorizes them into three distinct approaches based
on their reliance on GNNs and LLMs: (1) GNN-based Models: They aim to enhance existing graph
learning paradigms through innovations in the backbone, pre-training, and adaptation aspects; (2)
LLM-based Models: They explore the feasibility of using an LLM as a graph foundation model by
converting graphs into text or tokens; (3) GNN+LLM-based Models: They explore various forms of
synergy between GNNs and LLMs to empower them with enhanced capabilities.

To the best of our knowledge, this is the first survey towards graph foundation models. Existing
surveys of foundation models typically explore modalities such as language and vision [2, 177],
rather than graphs. Additionally, there are two surveys [86, 87] dedicated to knowledge graphs
and large language models, but knowledge graphs, due to their distinct nature in construction and
application, fall outside the scope of this article. We have also noticed a very recent article that
mentions the concept of large graph models [172], but it emphasizes opinion statements and lacks a
systematic taxonomy. Therefore, the contributions of this article can be summarized as follows:
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• This article defines the concept of graph foundation models for the first time, and examines the
core issues and characteristics of their capabilities.

• This article introduces a novel taxonomy and discusses the strengths and limitations of each
approach towards graph foundation models.

• This article provides promising future directions towards graph foundation models.

The subsequent sections of this article are organized as follows. In Section 2, we introduce the
background related to graph foundation models. Section 3 defines graph foundation models and
highlights their similarities and differences with language foundation models. Sections 4 - 6 delve
into the relevant works that consider GNN-based models, LLM-based models and GNN+LLM-based
models as graph foundation models, separately. Section 7 engages in a discussion on the future
directions of graph foundation models. In Section 8, we summarize the key points of this paper.

2 BACKGROUND
Before introducing the concept of graph foundation models, in this section, we first review some
background knowledge, namely, deep graph learning and language foundation models. Specifically,
we introduce them from three aspects: data, backbone architectures, and learning paradigms.

2.1 Deep Graph Learning
Many real-world systems naturally find their representations in the form of graphs. Deep graph
learning holds significant importance across various fields for its powerfulness in modeling and
representing complex relationships and interactions among entities. In this section, we provide a
concise overview that covers the main steps of deep graph learning, which consists of three key
aspects: graph data, backbone architectures and learning paradigms.

2.1.1 Graph Data. Graph is a versatile and powerful data representation that captures intricate
relationships and dependencies among entities in a network. The graph data has the following several
characteristics. (1) Non-Euclidean Nature: Graph data is inherently non-Euclidean, as it lacks the
rigid geometric structure found in traditional data formats [62]. In contrast to Euclidean data with fixed
neighborhood region and a deterministic order, graph data explicitly encode complex connections
between entities. (2) Various Domains: Graph data is ubiquitous across various domains, including
social networks [24], biology [82] and transportation [47], etc. Graph data in various domains can
exhibit distinct characteristics, including different node types, edge semantics, and structural patterns.
For example, in biological networks, nodes can represent proteins, genes, or metabolites, while
edges may indicate interactions such as protein-protein interactions or metabolic reactions. This
domain-specific variability makes it challenging to create a one-size-fits-all model that can effectively
generalize and adapt to diverse graph structures [42]. (3) Various Types: Graph data comes in
various types, including homogeneous graphs [146], heterogeneous graphs [104], hypergraphs [23]
and dynamic graphs [105], etc. Homogeneous graphs contain nodes and edges of the same type,
such as a citation network composed of papers. Heterogeneous graphs include more than one type
of node or edge, such as a citation network containing both authors and papers. Hypergraphs are
composed of hyperedges connecting multiple nodes and can model high-order relationships among
nodes. Dynamic graphs refer to graph structures where nodes and edges change over time, as seen in
a traffic network formed by changing traffic flow.

2.1.2 Backbone Architectures. As the current mainstream backbone architecture, graph neural
networks (GNNs) have emerged as a powerful framework for deep graph learning. Most GNNs
follow the message-passing framework [26], which enables nodes in a graph to exchange information
with their neighbors. For example, GCN [57] introduces the concept of graph convolution layers and
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lays the foundation for many subsequent GNN architectures. GraphSAGE [32] proposes a method for
generating embeddings for nodes in large graphs using inductive learning. Additionally, GAT [120]
introduces the attention mechanism to GNNs, allowing nodes to weigh the importance of their
neighbors during message passing, enhancing their expressive power. These works have significantly
contributed to the advancement of GNNs, making them versatile tools for deep graph learning.

Despite the fact that deeper neural networks can achieve stronger expressive power [33], deepening
GNNs is not easy. The reason is that as the number of layers in GNN increases, too much noise
is introduced into the message aggregation process, causing the representations of all nodes to
become similar [65]. This is also known as the over-smoothing problem. Furthermore, an increase in
the number of layers leads to an exponential growth in the receptive field, giving rise to the over-
squashing problem [1], where a substantial amount of information is compressed into fixed-length
node vectors. In recent years, several efforts have been made to address the over-smoothing problem
and over-squashing problem in deep graph neural networks, resulting in improved downstream task
performance. For example, innovations like DropEdge [100] enhance GCN models by randomly
removing edges for improved performance and scalability (up to 64 layers). Another thread of
work to improve the expressive power of GNNs is graph transformer [7, 58, 158]. Thanks to its
fully connected attention mechanism and the long-range relationship modeling capability, the graph
transformer architecture can alleviate the over-smoothing problem and over-squashing problem [96].

2.1.3 Learning Paradigms. The learning paradigms for deep graph learning encompass three
primary categories: supervised learning, semi-supervised learning and unsupervised learning. In this
section, we will provide a brief introduction to these learning paradigms.

Supervised learning. In the supervised setting, algorithms leverage a training dataset comprising
input data paired with corresponding output labels. This paradigm finds practical applications in
tasks such as graph classification [59] and graph regression [48]. For example, in the molecular
property prediction task [138], GNN models are trained to predict specific chemical properties or
attributes of molecules using labeled training data, enabling the discovery of valuable insights for
drug development and materials research.

Semi-supervised Learning. Semi-supervised learning, as highlighted in a recent study [106],
constitutes the primary focus of deep graph learning. This approach harnesses both labeled and
unlabeled data to enhance model performance, with node classification [57] emerging as a prominent
application. The message-passing mechanism [26] empowers GNNs to iteratively exchange informa-
tion among neighboring nodes. This capability enables the propagation of information throughout the
graph, effectively incorporating both labeled and unlabeled data to facilitate predictions. Furthermore,
GNNs can also be combined with traditional methods like label propagation to further enhance their
performance in semi-supervised settings [151].

Unsupervised Learning. Unsupervised learning [95] is a broader machine learning approach to
learn patterns and structures from data without manual labels. For example, graph clustering [102]
aims to discover inherent structures and patterns within the graph solely based on the relationships
and connectivity between nodes. Another example is link prediction, which aims to predict missing or
upcoming connection relationships. An important subclass of unsupervised learning is self-supervised
learning, which aims to generate labels using information inherent in the data itself [76]. Based on
self-supervised learning, GNNs can be trained end-to-end and applied to downstream tasks such as
graph clustering [125] and link prediction [168].

2.2 Language Foundation Models
AI is currently undergoing a transformative shift marked by the emergence of some specific natural
language models (such as GPT-3) that are trained on extensive and diverse datasets using large-scale
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self-supervised learning. These models, known as foundation models, are able to produce a wide
array of outputs, enabling them to tackle a broad spectrum of downstream tasks. In contrast to
the deep graph learning pipeline, the foundation model’s approach embraces a pre-training and
adaptation framework, enabling the model to achieve several significant advancements, including the
emergence [133] and homogenization [2]. Foundation models have primarily established themselves
in the field of NLP [2], so our discussion will focus on language foundation models in this section.

2.2.1 Language Data. Language data refers to text or spoken content in a human language,
encompassing the grammar rules of the natural language and the associated semantics of the words.
It can include written documents, transcribed audio recordings, and any other form of language-
based communication. Language data is essential for many NLP tasks, such as machine translation,
sentiment analysis and text summarization. Researchers and developers use language data to train
and evaluate language models and other NLP algorithms. The quality and quantity of language data
play a crucial role in the performance of NLP systems, impacting their accuracy, robustness, and
overall effectiveness in various language tasks. In contrast to computer vision and other domains,
the size of annotated language data is rather small, consisting of only a few thousand sentences
[85]. This limitation is primarily due to the high cost of manual annotation. Nevertheless, there is
a vast amount of unlabeled language data available from sources such as the internet, newspapers,
and books, creating opportunities for utilizing unlabeled data in model pre-training. Furthermore,
compared to graph data, language data as Euclidean data is easier to model, and its rich semantic
information significantly enhances the knowledge transferability of language models.

2.2.2 Backbone Architectures. An early breakthrough in foundation models is pre-trained
language models (PLMs), designed to capture context-aware word representations, which proved
remarkably effective as versatile semantic features. For instance, BERT [13], grounded in the
parallelizable Transformer architecture [119] with self-attention mechanisms, is conceived through
the pre-training of bidirectional language models with specifically designed pretext tasks on vast
unlabeled data. This landmark study significantly elevates the performance benchmarks for NLP tasks
and serves as a catalyst for a plethora of subsequent research, establishing the prevailing pre-training
and fine-tuning learning paradigm.

Furthermore, researchers have observed that increasing the scale of PLMs, whether by augmenting
model size or training data, frequently results in increased model capacity for downstream tasks.
These larger PLMs, collectively referred to as LLMs, exhibit distinctive behaviors compared to their
smaller counterparts (e.g., the 1.5B-parameter GPT-2 and 175B-parameter GPT-3). After training on
massive text datasets, they manifest remarkable capabilities, often referred to as emergent abilities
[133], such as in-context learning [2]. LLMs primarily utilize the Transformer architecture, because
highly parallelizable Transformer-based architectures accelerate the pre-training stage and enable
the utilization of massive datasets. In the context of Transformer models, tokens serve as the input
and represent units at the word level in natural language texts. Typically, LLMs containing hundreds
of billions (or more) of parameters [176], exemplified by models such as GPT-3 [5], PaLM [12],
Galactica [116], and LLaMA [118].

2.2.3 Learning Paradigms. As the number of model parameters has rapidly increased, the
demand for significantly larger datasets has grown to effectively train these parameters and avoid
overfitting. Given the extremely expensive costs associated with building large-scale labeled datasets,
the importance of utilizing extensive unlabeled text data has been underscored. Leveraging these
unlabeled datasets involves a two-step approach: first, achieving universal representations through
self-supervised learning, and subsequently employing these representations for various tasks [93].
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Based on different adaptation approaches, learning paradigms can be categorized into two types:
pre-train and fine-tune and pre-train, prompt, and predict [72].

Pre-train and Fine-tune. In this paradigm, a model with a consistent architecture is initially
pre-trained as a language model (LM), where it predicts the probability of observed textual data. In
comparison to end-to-end training, pre-training offers distinct advantages and forms cornerstone for
the capabilities of foundation models. Firstly, pre-training on huge text corpus enables the learning
of universal language representations, which is a possible reason to explain emergent abilities [93].
Additionally, pre-training provides improved model initialization, typically resulting in enhanced
generalization performance, enabling homogenization of multiple tasks [93]. Furthermore, pre-
training serves as a form of regularization, helping to prevent overfitting on smaller datasets [19]. For
instance, models like GPT-3 [5] are trained with a language modeling objective, rewarding them for
their abilities in emergence and homogenization.

Following the pre-training phase, foundation models acquire general-purpose capabilities suitable
for a broad spectrum of tasks. Nevertheless, pre-trained models still lack downstream task-specific
information, and using them directly may not yield optimal results. Therefore, we need to tune the
model for specific tasks, which is known as fine-tuning. Building upon the success of models like
ULMFit [40] and BERT [13], fine-tuning has emerged as the predominant method for adapting
pre-trained models. In this framework, the primary emphasis lies in objective engineering, encom-
passing the design of training objectives for both pre-training and fine-tuning phases. For instance,
Pegasus [167] shows that incorporating a loss function for predicting important sentences within a
document results in an improved pre-trained model for text summarization. The advantage of fine-
tuning is that it can transfer knowledge between source and target tasks (or domains) and benefit the
model’s performance. For the small size of fine-tuning dataset compared to pre-training dataset, this
process can enable adaptation effectively without losing the stored structural language knowledge.

Pre-train, Prompt and Predict. In this paradigm, rather than adjusting pre-trained language
models to suit specific downstream tasks, the approach involves reshaping the downstream tasks to
align more closely with those tackled during the original LM training, accomplished by providing
textual prompts. By selecting suitable prompts, we can steer the LM’s behavior so that it can predict
the desired output, sometimes without any additional task-specific training. This method offers
the advantage of enabling a single, entirely unsupervised LM, when equipped with a set of fitting
prompts, to handle a wide array of tasks [72].

From the aspect of prompt engineering, the approaches to create a proper prompts can be classified
to manual methods and automated methods. Manual methods involve creating intuitive templates
based on human insight, which is the most straightforward approach to crafting prompts. For instance,
the influential LAMA dataset [89] offers manually devised cloze templates to assess the knowledge of
language models. However, manual methods face challenges in terms of high cost and precision. To
address these issues, some approaches have started to experiment with automated prompt generation.
For example, Prompt Mining [52] is a template discovery approach that autonomously identifies
templates based on a given set of training inputs and outputs.

Looking at it from a different perspective, in terms of how models and prompts are combined to
generate results, prompting strategies can be categorized into three approaches: tuning-free prompting,
prompt tuning, and instruction tuning [20]. Tuning-free prompting directly generates answers based
solely on a prompt without altering the parameters of the pre-trained LLMs [118] [84]. Prompt tuning
introduces supplementary prompt-relevant parameters in addition to the parameters of the pre-trained
models and update these additional parameters using supervision signals acquired from downstream
training samples [68] [31]. Instruction tuning adapts the LM’s parameters in a manner similar to the
fine-tuning process, while additionally incorporating fixed instructions to guide the model’s behavior.
This approach offers potential enhancements, especially in zero-shot scenarios [143].
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3 GRAPH FOUNDATION MODELS
In this section, we will first formally define the concepts of graph foundation models, including the
definition, key characteristics and key technologies. Then, we will discuss the impact from graph data
and graph tasks on graph foundation models. Finally, we will discuss the similarities and differences
between graph foundation models and language foundation models.

3.1 Concepts of Graph Foundation Model
In this subsection, we will first provide a definition of graph foundation models. Following that, we
will delve into the key characteristics and essential techniques of graph foundation models, as well
as the impact of graph data and graph tasks on graph foundation models.

3.1.1 Definition and Key Characteristics. We define a graph foundation model as follows:

Definition 3.1. A graph foundation model (GFM) is a model that is expected to benefit from the
pre-training of broad graph data, and can be adapted to a wide range of downstream graph tasks.

Compared to deep graph learning that employs end-to-end training, GFMs use pre-training to
obtain the knowledge from a substantial amount of unlabeled graph data, and then use adaptation
techniques to tailor to various downstream tasks. Some studies [78, 113] have already demonstrated
that the paradigm of pre-training and adaptation outperform deep graph learning in certain scenarios,
e.g., few-shot learning [78], showcasing their superior expressive power and generalization ability.
Unlike deep graph learning that aims to achieve better performance on a single task, a GFM is
expected to have two key characteristics: emergence and homogenization.

Emergence. Emergence means that the graph foundation model will exhibit some new abilities
when having a large parameters or trained on more data, which are also referred to as emergent
abilities. Inspired by the various emergent abilities [14, 63, 134] possessed by foundation models, we
expect GFMs to have similar abilities, including in-context learning, graph reasoning, and zero-shot
graph generation, etc. In-context learning allows predictions for various downstream tasks with
few examples [46]. Graph reasoning decomposes a complex problem into multiple sub-problems
based on the graph structure and addresses them step by step, such as solving graph algorithm
problems [126]. Zero-shot graph generation requires the model to generate graphs based on the
desired conditions without the need for any examples [108]. Note that although language foundation
models have demonstrated various emergent abilities, only a few works [46, 108, 126] have explored
emergent abilities of GFMs so far.

Homogenization. Homogenization means that the graph foundation model can be applied to
different formats of tasks, such as node classification, link prediction and graph classification.
Note that due to the distinct characteristics of tasks on graphs compared to NLP tasks, achieving
homogenization is not straightforward. The fundamental question in achieving homogenization
is to decide which form to unify different types of graph tasks. Existing works have attempted
homogenization through link prediction [78] or graph-level tasks [113], but there is no consensus on
which approach is superior.

3.1.2 Key Technologies. Graph foundation models primarily comprise two key techniques:
pre-training and adaptation. This section will provide a brief overview of these two techniques.

Pre-training. Pre-training is a pivotal concept in the development of graph foundation models,
akin to its role in language models. It involves pre-training a neural network on a large graph
dataset in a self-supervised manner. During pre-training, the model learns to capture the structural
information, relationships, and patterns within the graph. There are several pre-training strategies
for graph foundation models. Contrastive self-supervised learning [110, 181] leverages the idea of
learning representations by contrasting positive samples (e.g., similar node pairs) against negative
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samples (e.g., dissimilar node pairs). Generative self-supervised learning [37, 38] encourages the
model to reconstruct the structure or predict the features of original graph data. If using LLM as
a part of the graph foundation model, we can also employ the pre-training methods introduced
in Section 2.2.3. These diverse pre-training approaches enable graph foundation models to learn
meaningful representations from raw graph data, enhancing their generalization and adaptability
across various graph tasks.

Adaptation. The adaptation of graph foundation models involves tailoring these models to
specific downstream tasks or domains to enhance their performance. This process includes several
techniques, i.e., vanilla fine-tuning, parameter-efficient fine-tuning and prompt-tuning. Vanilla fine-
tuning (Vanilla FT) entails training the entire pre-trained model on task-specific data, allowing for
the highest level of customization but often requiring substantial data and computational resources.
Parameter-efficient fine-tuning (Parameter-efficient FT) [28, 66], on the other hand, adjusts only a
subset of the model’s parameters, striking a balance between task-specific adaptation and resource
efficiency. Prompt-tuning [111, 113] is a versatile approach that relies on external prompts to guide
the model’s behavior, making it more adaptable and effective. These adaptation techniques enable
graph foundation models to excel in a wide range of applications by leveraging their pre-trained
knowledge while tailoring their capabilities to specific tasks or domains, making them valuable
for diverse downstream applications. Note that although LLMs have developed various types of
prompt-tuning methods [72] and some other efficient tuning methods, such as Prefix Tuning [68],
there are relatively few prompt tuning methods for graph foundation models.

3.1.3 Impact from Graph Data. The success of foundation models depends on high-quality
training data, and foundation models exhibit significantly different performance on various types of
test data. In this section, we discuss the impact of graph data on graph foundation models from three
aspects: graph type, graph scale and graph diversity.

Graph Type. Based on the number of categories of nodes and edges in a graph, we can categorize
graphs into homogeneous graphs and heterogeneous graphs. In homogeneous graphs, all nodes
and edges belong to the same category. For example, in a social graph where nodes represent
individuals (users) and edges represent friendship relationships, it is a homogeneous graph because
all nodes are individuals and all edges represent friendship relationships. Heterogeneous graphs, on
the other hand, have more than one type of nodes or edges, representing different types of entities
and relationships [104]. For instance, an e-commerce graph may include nodes for users, products,
and purchase relationships, forming a heterogeneous graph. For graph foundation models, handling
heterogeneous graphs poses greater challenges and typically requires the design of specific backbone
architectures and optimization objectives. Nonetheless, utilizing the meta-path based approach [129],
a heterogeneous graph can be mapped into multiple homogeneous graphs, one for each meta-path. For
example, one can apply the GFM trained on homogeneous graphs to each of these meta-path induced
homogeneous graphs, separately, to get node embedding. Then, these embeddings on homogeneous
graphs under different meta-paths can be fused together. However, beyond homogeneous graphs
and heterogeneous graphs, there are some more complex types of graphs in the real world, such as
dynamic graphs and hypergraphs [117], which poses additional challenges for GFM.

Graph Scale. Based on the number of nodes and edges in a graph, we can categorize graphs into
relatively small graphs and large graphs. Small graphs are of smaller scale, typically containing dozens
to hundreds of nodes and edges. For example, chemical molecular graphs represent the structure of
small molecules and typically consist of dozens to hundreds of atoms. Large graphs, on the other
hand, refer to graphs with a significant number of nodes and edges, often encompassing millions
or even billions of nodes and edges. For instance, e-commerce graph in Alibaba includes billons of
nodes and hundreds of billion edges [163]. For graph foundation models, large graphs impose higher
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demands on the capacities of graph foundation models. Firstly, large graphs, due to their numerous
nodes and typically sparser edges, introduce more noise and pose greater challenges in terms of
storage and computation [152]. Additionally, large graphs often exhibit long-range dependency
relationships [17], requiring more neural network layers and a higher number of parameters, which
exacerbates the over-smoothing [65] and over-squashing [1] problem of GNN-based models.

Graph Diversity. Based on whether a graph dataset originates from the same domain, we can
categorize graphs into same-domain graphs and cross-domain graphs. Same-domain graphs refer to
graph data from similar or related domains, typically containing nodes and edges of similar types.
For example, the social graphs of Facebook and WeChat come from similar domains. Cross-domain
graphs [179], on the other hand, involve graph data from different domains or data sources, often
comprising nodes and edges of different types, aimed at addressing multi-domain problems or
cross-domain tasks. For example, academic networks and molecular graphs come from different
domains. For graph foundation models, supporting cross-domain graphs presents greater challenges
because graphs from different domains lack a unified underlying semantics. This can result in weak
transfer performance or even negative transfer when applying the model to a new dataset [178].
Therefore, addressing the heterogeneity of different domains and enabling the same GFM to be
applied to graphs from different domains is a significant challenge for GFMs.

Table 1. The relationship between language foundation model and graph foundation model.

Language Foundation Model Graph Foundation Model

Similarities
Goal Enhancing the model’s expressive power and its generalization across various tasks

Paradigm Pre-training and Adaptation

Intrinsic
differences

Data Euclidean data (text)
Non-Euclidean data (graphs) or a mixture of Euclidean
(e.g., graph attributes) and non-Euclidean data

Task Many tasks, similar formats Limited number of tasks, diverse formats

Extrinsic
differences

Backbone Architectures Mostly based on Transformer No unified architecture

Homogenization Easy to homogenize Difficult to homogenize

Domain Generalization Strong generalization capability Weak generalization across datasets

Emergence Has demonstrated emergent abilities No/unclear emergent abilities as of the time of writing

3.1.4 Impact from Graph Tasks. Language foundation models can be widely applied to various
NLP tasks, while for graph foundation models, the formats of graph tasks are also quite diverse and
can be categorized into three classes: node-level tasks, edge-level tasks, and graph-level tasks.

Node-level Tasks. Node-level tasks refer to the classification, regression, or prediction performed
on each node. Common node-level tasks include node classification, node regression, and clustering
coefficient prediction. For example, in social networks, graph nodes can represent users, and node
classification can be used to identify users from different social circles or with varying interests.

Edge-level Tasks. Edge-level tasks involve the classification, regression, or prediction performed
on each individual edge. Common edge-level tasks include edge classification, link prediction,
shortest path prediction, connectivity prediction, and maximum flow prediction. For example, in
e-commerce, link prediction can be used to predict products that users may be interested in.

Graph-level Tasks. Graph-level tasks focus on the entire graph. Common graph-level tasks include
graph classification, graph regression, graph generation, graph clustering, graph condensation and
average clustering coefficient prediction. For example, in bioinformatics, graph property prediction
can be used to predict the biological activity or toxicity of molecular compounds, thereby accelerating
the drug discovery process.
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In summary, the format of tasks in graphs are highly diverse and can be categorized into three
types: node-level, edge-level, and graph-level, each of which has wide-ranging applications. This
undoubtedly increases the challenge of homogenization for graph foundation models. For example,
in graph classification and node classification tasks on synthetic datasets, modeling structural infor-
mation is often more crucial [159]. On the other hand, when dealing with node classification tasks
on graphs with rich node features, modeling feature information becomes more important [159].
Furthermore, tasks that are more similar to each other will also have a lower transfer difficulty,
implying that these tasks are more likely to be addressed using the same GFM. While increasing
expressive power holds promise for improving the performance of many node-level, edge-level, and
graph-level tasks [64], there is also some work suggesting that overly strong expressive power may
not be necessary for graph generation tasks [183].

3.2 Comparison with Language Foundation Model
Through conceptual comparison, we can observe similarities in the goals and learning paradigms
between graph foundation models (GFMs) and language foundation models (commonly referred to
as large language models, LLMs). However, the uniqueness of graph data and graph tasks creates
fundamental differences between them, which we refer to as their intrinsic differences. Furthermore,
due to the relatively limited research on GFMs at present, many issues that have been extensively
explored in LLMs remain unresolved, which we refer to as their extrinsic differences. We summarize
the similarities and differences between GFMs and LLMs in Table 1, and will delve into them in
detail in this section.

3.2.1 Similarities. As shown in Table 1, both language foundation models and graph foundation
models share the common goal of enhancing a model’s expressive power and improving its ability to
generalize across a wide range of tasks. They aim to create versatile, pre-trained models that can be
adapted for specific applications. In addition, both follow the pre-training and adaptation paradigm.
They begin by pre-training a model on a large, diverse dataset and then adapt it to task-specific data.

3.2.2 Intrinsic Differences. The intrinsic differences between GFM and LLM primarily manifest
in two aspects: data and tasks. As for input data, language foundation models are primarily designed
for processing Euclidean data, i.e., text. They are trained on vast text corpora, which are inherently
sequential and follow a linear order of words or tokens. Graph foundation models, on the other hand,
are designed to handle non-Euclidean data (represented as graph structures) or a mixture of Euclidean
data (like graph attributes) and non-Euclidean data. Compared to text data, graph data can capture
complex data relationships and is typically more sparse. Moreover, as mentioned in Section 3.1.3,
different graphs may exhibit significant differences in type or scale, all of which pose challenges in
the design of GFMs. Furthermore, language data, even when sourced from texts in different domains,
still share a common vocabulary. On the other hand, different graph data may lack this common
foundation. For instance, nodes represent atoms in a molecular graph, while nodes represent users in
a social network graph, which are entirely different.

In addition, LLMs are typically designed to handle dozens of tasks [61], but these tasks can all be
unified under the format of masked language modeling. The reason is that these tasks all involve
processing textual data and using the syntax and semantic information within the text. In contrast,
GFMs focus a narrower set of tasks but with diverse formats. They excel at graph tasks such as node
classification, link prediction and graph classification. The differences in tasks imply that GFMs
cannot be learned using methods similar to those in LLMs, significantly increasing the adaptability
challenges of GFMs in downstream tasks.
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3.2.3 Extrinsic Differences. In addition to the intrinsic differences in data and tasks, there are
also some extrinsic differences between GFMs and LLMs, which are due to the lag in technological
advancements in GFMs. This section summarizes these differences as follows:

Backbone Architectures. Language foundation models, such as GPT-3 [5] and LLaMA [118], are
mostly based on the Transformer architecture. The advantages of Transformer in terms of expressive
power, scalability, parallelizability, and its excellent performance in handling various NLP tasks have
made it the mainstream backbone architecture for LLMs. However, for GFMs, using mainstream
GNNs as the backbone architecture may not necessarily be suitable. This is mainly because the
expressive power and generalization of GNNs have limitations, and their parameter sizes are often too
small to exhibit emergent abilities. Despite recent research efforts to design Graph Transformers [110]
or models that incorporate LLMs [16], there is still no unified backbone architecture for GFMs.

Homogenization. Language foundation models are relatively easy to homogenize. This means that
various NLP tasks can be formulated as the same task [94], making it possible to use a single model
with unified training paradigm for a wide range of tasks. However, due to the poor transferability of
graph structural knowledge, homogenization is more challenging for GFMs. Existing work attempts
to achieve homogenization by unifying various tasks as link prediction [78] or graph-level tasks [113].
Additionally, constructing a data-task heterogeneous graph [46] may establish connections between
different tasks, but it is a more complex process.

Domain Generalization. Language foundation models have demonstrated strong domain gener-
alization capabilities. They can often perform well on tasks and datasets that were not seen during
training, showcasing their ability to generalize across various language-related domains. However,
due to the diversity and lack of unified vocabulary of graph data, GFMs generally exhibit weaker
generalization across datasets, especially when moving to cross-domain graph data [178]. Their
performance may degrade significantly when faced with graph structures or characteristics that differ
substantially from their training data. Achieving strong domain generalization remains a challenging
research problem for GFMs.

Emergence. Language foundation models have shown emergent abilities, where they can generate
coherent and contextually relevant text based on few examples or instructions. Representative
emergent abilities include in-context learning [14], chain of thought reasoning [134] and zero-shot
generation [63]. However, GFMs have not demonstrated obvious emergent abilities to the same
extent as language foundation models. Only a few recent studies discuss the in-context learning [46],
graph reasoning [126] and zero-shot graph generation [108] abilities of GFMs.

3.3 Summary
In this section, we define the concept of graph foundation models and related technologies, and
compares graph foundation models with language foundation models. In the following sections,
we will introduce three categories of methods for implementing graph foundation models, along
with representative works for each method, as illustrated in Figure 2. GNN-based models use GNN
as the backbone architecture, while LLM-based models transform the graph into the input format
of LLM and use LLM as the backbone architecture. GNN+LLM-based models, on the other hand,
utilize both GNN and LLM as the backbone architecture simultaneously. The distinction in backbone
architecture also impacts the methods for pre-training and adaptation. Therefore, in the following
sections, we will introduce the backbone architectures, pre-training, and adaptation strategies for
each category of methods, seperately.

4 GNN-BASED MODELS
Thanks to effective model architectures and training paradigms, language models have achieved
remarkable performance in natural language processing tasks. The backbone, pre-training and
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Fig. 3. A comparison between message passing-based models and graph transformer. A fundamental distinction
is that the message passing mechanism is constrained by the graph structure, and the graph transformer treats
the graph as a fully-connected network.

adaptation techniques employed in language models have inspired a series of corresponding efforts
in the field of graph-based tasks. In this section, we will delve into GNN-based models, which draw
inspiration from the model architectures or training paradigms used in NLP to apply them to graph
tasks. Importantly, unlike the LLM-based models and GNN+LLM-based models to be introduced in
the following sections, GNN-based models do not explicitly model text data in their pipeline. We
have summarized and categorized the works mentioned in this section in Table 2.

4.1 Backbone Architectures
Numerous GNNs have been proposed and they have been widely used in various graph-related down-
stream tasks. These networks are leveraged for feature extraction, often serving as the foundational
components of graph models, commonly referred to as “backbones”. In this subsection, we introduce
two advanced GNN backbones: message-passing-based and transformer-based methods.

4.1.1 Message Passing-Based Methods. Message Passing Neural Networks (MPNNs) [26]
represent a broad category of GNN architectures that operate based on the concept of message passing
between nodes in a graph. In the message passing mechanism, each node aggregates information
from its neighboring nodes, processes the information, and then sends messages to its neighbors in a
series of iterative steps. A typical message passing process can be formulated as :

ℎ𝑘+1𝑣 = 𝑈𝑘 (ℎ𝑘𝑣 ,
∑︁

𝑢∈𝑁 (𝑣)
𝑀𝑘 (ℎ𝑘𝑣 , ℎ𝑘𝑢,X𝑒

(𝑢,𝑣) )), (1)
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Table 2. Details of approaches involved as GNN-based models.

Model Backbone Architecture Pre-training Adaptation

All In One [113] GCN, GAT, Graph Transformer Same-Scale CL Prompt Tuning
PRODIGY [46] GCN, GAT Graph Reconstruction, Supervised Prompt Tuning
DGI [121] GCN Cross-Scale CL Parameter-Efficient FT
GRACE [181] GCN Same-Scale CL Vanilla FT
VGAE [56] GCN Graph Reconstruction, Property Prediction Vanilla FT
MA-GCL [27] GCN Same-Scale CL Vanilla FT
GraphMAE [38] GAT Graph Reconstruction Parameter-Efficient FT
GraphMAE2 [37] GAT Graph Reconstruction Parameter-Efficient FT
GPPT [111] GraphSAGE Graph Reconstruction, Cross-Scale CL Prompt Tuning
VPGNN [137] GraphSAGE Cross-Scale CL Prompt Tuning
GPT-GNN [44] HGT Graph Reconstruction Vanilla FT
PT-HGNN [49] HGT Same-Scale CL Vanilla FT
CPT-HG [50] HGT Same-Scale CL Vanilla FT
GraphPrompt [78] GIN Graph Reconstruction Prompt Tuning
GCC [92] GIN Same-Scale CL Vanilla FT
GraphCL [160] GIN Same-Scale CL Parameter-Efficient FT
AdapterGNN [66] GIN Cross-Scale CL, Graph Reconstruction, Same-Scale CL Parameter-Efficient FT
AAGOD [30] GIN Same-Scale CL, Supervised Prompt Tuning
GPF [21] GIN Cross-Scale CL, Graph Reconstruction Prompt Tuning
SGL-PT [180] GIN Same-Scale CL, Graph Reconstruction Prompt Tuning
Graph-BERT [166] Graph Transformer Graph Reconstruction, Supervised Vanilla FT
GROVER [99] Graph Transformer Property Prediction Vanilla FT
G-Adapter [28] Graph Transformer Supervised, Graph Reconstruction, Property Prediction Parameter-Efficient FT

where ℎ𝑘𝑣 and ℎ𝑘+1𝑣 denote the embedding of node 𝑣 at layer 𝑘 and layer 𝑘 + 1, X𝑒
(𝑢,𝑣) denotes the edge

attribute of edge (𝑢, 𝑣), 𝑁 (𝑣) denotes the neighbors of node 𝑣 , 𝑀𝑘 (·) and 𝑈𝑘 (·) denote the message
and update function at layer 𝑘 .

Many existing GNN-based models utilize message passing-based models as their backbone. Due
to the simplicity and effectiveness, several studies [27, 46, 56, 113, 121, 181] adopt GCN [57]
as their backbone architecture, where GCN [57] employs a localized first-order approximation of
spectral graph convolutions for the dual purpose of capturing graph structure and encoding node
features. Several studies [37, 38, 46, 113] adopt GAT [120] as their backbone architecture, where
GAT [120] replaces the average aggregation operation in GCN with a weighted aggregation approach,
facilitated by an attention mechanism. Additionally, a multi-head attention technique can be further
used in GAT to enhance its performance. GPPT [111] and VPGNN[137] uses GraphSAGE [32]
as their backbone, which operates by sampling a fixed-size subset of neighboring nodes for each
target node and then learns embeddings by aggregating and processing these sampled neighbors’
embeddings. For heterogeneous graphs, some works [44, 49, 50] use HGT [45] as their backbone,
which introduces a specialized attention mechanism for neighborhood aggregation. Unlike global
attention, HGT employs type-specific parameters to define heterogeneous attention over each edge
within the graph. To improve the expressive power, a proportion of studies rely on GIN [149] as
their primary architecture [21, 30, 66, 78, 92, 160, 180]. GIN is a message passing-based model
with expressive power theoretically equivalent to a 1-WL test [135]. Due to the expressive power of
GIN, it is frequently chosen as the backbone for many GNN-based graph models. For an in-depth
exploration of message passing-based GNNs, we recommend referring to [144].

4.1.2 Graph Transformer-Based Methods. While GNNs have demonstrated significant success
in learning from graph data, they still confront fundamental limitations, including issues related
to limited expressive power [149], over-smoothing [65] and over-squashing [1]. In parallel, the
transformer architecture [119], which has revolutionized tasks in natural language processing
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[5, 13] and computer vision [15, 77], achieving the state-of-the-art performance. It has inspired
the development of transformer-based models tailored for graph data [7, 55, 58, 158]. Graph
transformers have exhibited promising results, particularly in molecular prediction tasks [158],
owing to their fully-connected self-attention mechanism. This mechanism enables them to address
the shortcomings of traditional message-passing GNNs thanks to its long-range modeling capability
and strong expressive power.

The principal distinction between the backbone architectures with message passing mechanism
and the graph transformer lies in their treatment of the underlying graph structure. In the case of
the graph transformer, it treats the graph as if it were fully connected, meaning it considers and
measures the similarity between every pair of nodes in the graph. Conversely, the message passing
mechanism operates under the constraint of the adjacency matrix of the graph. It only propagates
information between nodes that are explicitly connected in the graph structure. We illustrate the
difference between message passing-based models and graph transformers in Figure 3.

Currently, there are many research efforts focusing on graph transformers. Here we will present
part of these studies that employ a pre-training and fine-tuning learning paradigm: Graph-BERT [166]
uses intimacy-based and hop-based relative positional embeddings to encode node positions in a
subgraph. The intimacy-based relative positional embeddings capture the relative positions of nodes
in a subgraph based on their connectivity patterns. The hop-based relative distance embeddings
capture the relative positions of nodes in a subgraph based on their hop distances. GROVER [166]
uses a variant of MPNN called Directed Message Passing Networks (DyMPNs), which can capture
the directed nature of molecular graphs and distinguish different types of edges. The DyMPNs in
GROVER are used to compute the node and edge embeddings in the Transformer-style architecture.
Graphormer [158] introduces a spatial encoding method to represent structural node relationships. It
assigns learnable embeddings to node pairs based on their spatial proximity, derived from the shortest
path distance. This distance is incorporated as a bias term in softmax attention to improve spatial
dependency capture in graphs. For a more comprehensive exploration, please refer to other literature
on graph transformers [80, 81].

4.2 Pre-training
Pre-training in the field of NLP involves exposing a model to a vast amount of unlabeled text
data, allowing it to learn general language semantic knowledge in a self-supervised manner. This
pre-training step equips the model with a foundational understanding of language, enabling it to
transfer this knowledge to downstream tasks. Similarly, the graph domain typically includes many
unlabeled nodes and graphs, providing opportunities for pre-training on graphs. Graph pre-training
enables the graph models to understand graph structure and semantic information, thus encoding
meaningful node or graph embeddings [142, 148]. Recently, some graph pre-training methods have
been proposed to learn representations in a self-supervised manner. Based on self-supervised tasks,
these graph pre-training methods can be categorized into two types: contrastive pre-training and
generative pre-training.

4.2.1 Contrastive Methods. Specifically, the contrastive graph pre-training methods aim to
maximize mutual information between different views, which forces the model to capture invariant
semantic information across various views. The graph view can vary in scale, encompassing local,
contextual, or global perspectives [142]. These perspectives correspond to node-level, subgraph-
level, or graph-level information within the graph, leading to two distinct categories: (1) Same-
scale contrastive learning and (2) Cross-scale contrastive learning. Same-scale contrastive learning
compares two graph views at the same level. For example, GCC [92] treats the embedding of the
node’s subgraph as the node embedding, considering different subgraphs of the same node as positive
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examples and different nodes as negative examples. Afterward, the model employs NCE loss to pull
the positive samples close and push the negative samples away, which forces the encoder to capture
general patterns. GraphCL [160] and GRACE [181] generate two views by graph augmentation
and then employ the InfoNCE loss to contrast node-level embeddings, pushing the graph model to
acquire the invariant representations. MA-GCL [27] focuses on manipulating the neural architectures
of view encoders instead of perturbing graph inputs or model parameters. CPT-HG [50] proposes
two pre-training tasks. The relation-level pre-training task encodes the relational semantics which
constitute the basis of heterogeneity on a heterogeneous graph, while the subgraph-level pre-training
task encodes high-order semantic contexts. PT-HGNN [49] considers both node- and schema-level
pre-training tasks. The node-level pre-training task utilizes node relations to encourage the GNN
to capture heterogeneous semantic properties, while the schema-level pre-training task utilizes the
network schema to encourage the GNN to capture heterogeneous structural properties. Cross-scale
contrastive learning compares two graph views at different levels. For example, DGI [121] utilizes
a discriminator to maximize the mutual information between the node embeddings and the graph
embedding and minimize the information between node and corrupted graph embedding. Such a
contrastive process encourages the encoder to capture information of the whole graph. Although
DGI enables the model to capture semantic information about nodes and graphs, it ignores the
discrepancies between different nodes.

4.2.2 Generative Methods. In addition to contrastive methods, some generative graph pre-
training approaches have been proposed. The aim of generative pre-training methods is to enable
GNNs to understand the general structural and attribute semantics of graphs. Thus, the GNNs can be
adapted to downstream tasks with universal information. Generative learning frameworks for graphs
can be classified into two categories based on how they acquire generative targets [148]: Graph
Reconstruction and Property Prediction.

Graph reconstruction aims to reconstruct specific parts of given graphs, emphasizing fidelity in
reproducing the original graph structure or node attributes. For example, VGAE [56] extends the VAE
to the graph domain, where it first employs GCN as an encoder to generate node embeddings and then
reconstructs the adjacency matrix by the inner product of node embeddings. Although these methods
enable models to capture the relationships between nodes and neighbors, they overlook the high-order
structural information and attribute semantic information in the graph. Furthermore, GPT-GNN [44]
proposes the self-supervised edge and attribute generation tasks to push the model to understand
the inherent dependencies of attribute and structure. As a result, the model can learn high-order
structure and semantic information. GraphMAE [38] and GraphMAE2 [37] consider that previous
generative methods overemphasize structure information, instead, they employ the reconstruction
of features and a re-mask decoding strategy in a self-supervised manner. In the property prediction
category, models focus on learning and predicting non-trivial properties of provided graphs. For
instance, GROVER [99] introduces tasks for nodes and edges, predicting context-aware properties
within local subgraphs. The graph-level self-supervision task aims to predict motifs, framing it as a
multi-label classification problem with each motif as a label.

Although generative methods are capable of generating novel content, the quality and interpretabil-
ity of the content are hard to guarantee. In the future, it remains to be explored how to enhance the
accuracy and rationality of the generative methods.

4.3 Adaptation
Typically, the objectives of pre-training tasks are different from the downstream ones, which hinders
the transferability of pre-training models. To this end, fine-tuning is a common adaptation approach
based on subtle adjustments of model parameters. In addition, the “pre-train, prompt and predict”
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paradigm has attracted considerable attention in recent years. By using prompts, the format of
downstream tasks is aligned with that of pre-training tasks, enabling pre-training models to handle
downstream tasks in a more effective manner.

4.3.1 Fine-Tuning. For the situation where the model conducts the pre-training and downstream
tasks in the same domain, we can utilize a pre-training model to generate node embeddings or graph
embeddings, and subsequently fine-tune an external task-specific layer to generalize the pre-training
model to downstream tasks. DGI [121] and GRACE [181] utilize the pre-trained encoder to obtain
node embeddings, and then fine-tune a logistic regression classifier with labeled data to handle
the node classification task. Additionally, there is a more practical scenario where pre-training is
performed on the known graphs while tested on unseen graphs. Pre-training models cannot encode
unknown graphs appropriately, thus we need to fine-tune the model in this situation. GPT-GNN
[44] employs the labeled data to fine-tune a downstream task-specific decoder, which guides the
pre-training model to adapt to downstream tasks. Moreover, some parameter-efficient fine-tuning
methods have been proposed recently. AdapterGNN [66] employs two parallel adapters before and
after the message passing stage to modify the input graph. Such addition-based methods only need
to fine-tune the introduced parameters. G-Adapter [28] proposes a parameter-efficient fine-tuning
method for graph transformer, which introduces graph structure into the fine-tuning by message
passing. Although the fine-tuning methods have achieved significant success, they typically require
sufficient labeled data to tune the model parameters. Moreover, conventional fine-tuning methods
necessitate repetitive fine-tuning for each task, incurring significant computational costs. Therefore,
more advanced fine-tuning techniques for graph foundation models are still to be explored.

4.3.2 Prompt Tuning. Prompt tuning has recently emerged as a strategy to circumvent the need
for full-parameter tuning, facilitating both multi-task adaptation and zero-shot learning. Some
studies [21, 30, 46, 78, 111, 180] focus on the prompt tuning with graph data. For example, GPPT
[111] employs a prompting function to generate a token pair for each class, transforming all node
classification tasks into link prediction tasks. GraphPrompt [78] unifies pre-training and downstream
tasks into a consistent task format based on subgraph similarity, and utilizes labeled data to learn a
task-specific prompt vector for each task, which modifies the model’s Readout operation and narrows
the gap between link prediction and downstream tasks. AAGOD [30] proposes to implement the
data-centric manipulation by superimposing an amplifier on the adjacency matrix of the original
input graph as learnable instance-specific prompts. All In One [113] converts the node-level and
graph-level tasks to graph-level tasks. It treats an extra subgraph as a prompt and merges it with
the node subgraph. The model subsequently utilizes the combined graph to generate predictions.
GPF [21] introduces a uniform feature modification vector to each node in the graph, which can
be optimized to adapt pre-training GNN models under any pre-training strategy. SGL-PT [180]
incorporates a strong and general pre-training task that harnesses the advantages of both generative
and contrastive approaches. Additionally, it features verbalizer-free prompting function, thus aligning
the downstream task with the pre-training method’s format. PRODIGY [46] is a framework for
pre-training an in-context learner over prompt graphs. The goal is to enable a pretrained model to
adapt to diverse downstream tasks without optimizing any parameters. Although these methods have
improved the performance in few-shot scenarios, further exploration is needed to understand the
semantics and interpretability of the graph prompts.

4.4 Discussion
GNN-based models offer advantages, primarily in their small parameter size, resulting in low-cost
training. Additionally, GNN-based models possess essential properties like permutation invariance
and often exhibit strong performance, especially in scenarios without textual attributes.
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Fig. 4. An illustration of two approaches to align graph data with natural language. One approach tokenizes graph
data and use node representations (depicted as red tokens in the figure) as well as text tokens (depicted as green
tokens in the figure) to be the input of LLMs. Another approach represents graph data with prompts in natural
language and uses text tokens only (depicted as green tokens in the figure) as the input of LLMs.

However, due to the small parameter size, these models typically have limited capacity to harness
extensive knowledge and can struggle to manifest emergent abilities. Moreover, due to their inherent
absence of explicit text modeling, GNN-based models underutilize the information stored in pre-
training language models, leading to a suboptimal exploitation of textual data. Subsequently, in the
following sections, we will explore graph learning models that incorporate LLMs.

5 LLM-BASED MODELS
Researchers are actively exploring ways to leverage LLMs as core and sole backbone for graph
learning [29, 126, 157], for the following advantages that can not be underestimated. Firstly,
transformer-based models show a remarkable ability to seamlessly integrate textual information in
graph data [157]. Additionally, employing a LLM-liked backbone empowers models to unify diverse
graph learning tasks, as these tasks can be described using natural language. Furthermore, recent ad-
vancements, such as NLGraph [126], GPT4Graph [29], showcase the LLMs’ prowess in preliminary
graph reasoning. These advantages mark a highly promising direction for the development of such
models. To discover the potential of engaging LLMs into graph learning, these works involve both
graph-based properties and textual information as input for the backbone networks. Following some
surveys [9, 87], our characterization of the backbone is not confined solely to the narrow definition
of LLMs (like GPT-3); it also encompasses certain transformer-based models that leverage textual
information. We have summarized and categorized the works mentioned in this section in Table 3.

Table 3. Details of approaches involved as LLM-based models.

Model Backbone Architecture Pre-training Adaptation

InstructGLM[157] Graph-to-token + Flan-T5/LLaMA MLM,LM Manual Prompt Tuning
LLMtoGraph[71] Graph-to-text + GPTs, Vicuna LM Manual Prompt Tuning
NLGraph[126] Graph-to-text + GPTs LM Manual Prompt Tuning
GraphText[175] Graph-to-text + GPTs LM Manual Prompt Tuning
LLM4Mol[91] Graph-to-text + GPTs LM Manual Prompt Tuning
GPT4Graph[29] Graph-to-text + GPT-3 LM Manual Prompt Tuning + Automatic Prompt Tuning

Graph-LLM[9] Graph-to-text +
BERT, DeBERTa, Sentence-BERT,
GPTs, LLaMA

MLM,LM Manual Prompt Tuning + Automatic Prompt Tuning

5.1 Backbone Architectures
A central question in employing LLMs for graph data is how to align graph data with natural language
so that LLMs can understand them. Given that LLMs initially accept tokens as their inputs and rely
on self-attention layers to process input sequences for producing hidden representations, it can be a
difficult task to attain a well comprehension of graph structure information [157].
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As illustrated in Figure 4, there are primarily two approaches that have been developed to address
this crucial question, namely graph-to-token and graph-to-text.

5.1.1 Graph-to-token. One approach entails the tokenization of graph information and imitates
the standardized input format of transformer-based models. This methodology necessitates not only
the serialization of graph data into tokens but also the solutions for encoding the graph’s structural
information. Since this method uses node representations as unique tokens for the input of backbone
models, the backbone need to be either trainable transformers or open source LLMs. For instance,
InstructGLM [157] uses LLaMA [118] and T5 [94] to be their backbones for further tuning.

The concept of graph-to-token initially surfaces in GIMLET [173] that treats node representations
as tokens and aims to integrate graph data with textual data. Specifically, GIMLET expands the
capabilities of LLMs to accommodate both graph and text data by using the transformer architecture,
incorporating generalized position embedding and instruction-based pre-training. Furthermore, efforts
have been made to integrate graph data with other modalities beyond just text data. For instance,
Meta-Transformer [170] introduces a transformer-based architecture designed to incorporate various
forms of multimodal data, including graphs, text, and images. However, despite the promising
trend indicated by developing unified multimodal intelligence using a transformer backbone, their
approaches cannot be considered as graph foundation models because they do not involve any
pre-training and adaptation learning paradigm.

InstructGLM [157], on the other hand, adopts a pre-training and adaptation framework and
introduces LLMs to further enhance the model’s text processing capabilities, making it a strong
contender for the position of a graph foundation model. In this framework, the vocabulary of the
LLMs is expanded by incorporating the inherent node feature vectors from the graph as distinct
and unique tokens for each node. Leveraging LLMs and the transferability of natural language,
InstructGLM makes a valuable contribution to the ongoing movement towards graph foundation
model architectures and pipelines that span multiple modalities.

These efforts tokenize graph data to align it with natural language, enabling joint understanding
with data from other modalities. Their conclusions showcase promising results for integrating graph
data with natural language. However, despite these promising results, how to inform LLMs of
underlying graph structures remains an important challenge in this approach.

5.1.2 Graph-to-text. To align graph data with natural language, another approach involves describ-
ing graph information using natural language. Several approaches have been developed along this
line of thoughts, utilizing prompts to integrate the capabilities of large language models into classical
tasks on graphs. For this method, which exclusively relies on natural language prompts, the associated
backbone model can be any LLM, even if it is not open-sourced. For instance, LLMtoGraph [71]
uses several LLMs including GPT-4 [83] and Vicuna [10], GPT4Graph [29] uses InstructGPT-3 [84],
LLM4Mol [91] uses GPT-4 [83], Graph-LLM [9] utilizes multiple language models of different
sizes, including BERT [13], DeBERTa [34], Sentence-BERT [97], GPT-4 [83] and LLaMA [118].

Initial attempts mainly use edge list to describe graph structures in natural language and make
assessment on various graph tasks. LLMtoGraph [71] employs node and edge lists as the input
format for graph data, conducting a series of experiments to evaluate the capacity of several LLMs
to process graph data. Though their work reveals that LLMs are capable of delivering high-quality
responses to problems pertaining to graph data, the prompt engineering in this stage such as zero-shot
chain-of-thought or few-shot prompting may not yield the anticipated benefits. NLGraph [126] also
conducts a comprehensive assessment of LLMs across eight graph reasoning tasks as well as popular
GNN tasks in natural language. Similarly, utilizing edge lists to describe graph structure, the results
once again underscores the limitations of this approach when dealing with complex graph problems.
GraphText [175] introduces a novel approach called “Graph-syntax Tree” to describe graph data
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using natural language. This approach enables graph reasoning within a text-based context. One of
the notable advantages of this method is that it allows models to readily incorporate the inductive
bias of GNNs by the graph-syntax tree.

Moreover, GPT4Graph [29] introduces a novel approach to prompt engineering that combines
manually crafted prompts with prompts generated by the language model itself, referred to as
handcrafted prompts and automatic prompts. Specifically, for manual prompting, it utilizes description
languages such as edge lists, adjacency lists, Graph Modeling Language (GML), and Graph Markup
Language (GraphML) to represent graph structures and compare their effectiveness. For automatic
prompting, it employs techniques like graph summarization, neighborhood summarization, graph
exploration, and graph completion to actively engage LLMs in understanding and manipulating
graphs, facilitating graph-based reasoning and learning. The findings indicate that self-prompting is a
more effective method for informing LLMs about graph structures. Graph-LLM [9] further supports
this conclusion, emphasizing that neighbor summarization is the most effective technique in existing
prompt engineering methods.

Furthermore, efforts have been undertaken to explore the potential of LLMs in addressing tasks
from other domains using textual prompts. For instance, LLM4Mol [91] uses SMILES (Simplified
Molecular Input Line Entry System) to directly describe the property of molecule, and explores how
LLMs can contribute to molecular property prediction.

These studies highlight significant potential for using natural language to describe graph data and
using textual tokens as the input of LLMs for graph learning. Nevertheless, a key takeaway from their
conclusions is that, at the present moment, the way we use these prompts may not be an effective
approach for mining underlying graph structures.

5.2 Pre-Training
The methods discussed in this section solely employ LLMs as the backbone. Hence, the pre-training
phase for these methods corresponds to the pre-training phase of LLMs. There are mainly two tasks
used in LLM-based models for graph learning, we will provide a concise overview of these two
pre-training tasks.
5.2.1 Language Modeling (LM). Language Modeling (LM) is one of the most common self-
supervised task in NLP, and is widely adopted by many state-of-the-art LLMs, such as LLaMA [118]
and GPT-3 [84]. LM task can be essentially addressed to the challenge of estimating probability
distributions of the next word. While LM represents a broad concept, it frequently pertains specifically
to auto-regressive LM or unidirectional LM in practical applications [93]. Many methods involve
LM as their pre-training method, namely InstructGLM [157], LLMtoGraph [71], NLGraph [126],
GPT4Graph [29], Graph-LLM [9], GraphText [175] and LLM4Mol [91].

In the context of a text sequence represented as 𝑠1:L = [s1, s2, · · · , sL], its overall joint probability,
denoted as p (𝑠1:L), can be expressed as a product of conditional probabilities, as shown in equation:

p (𝑠1:L) =
L∏
l=1

p (sl |𝑠0:l−1) . (2)

Here, 𝑠0 represents a distinct token signifying the commencement of the sequence. The conditional
probability p (sl |𝑠0:l−1) is essentially a probability distribution over the vocabulary based on the
linguistic context 𝑠0:l−1. To model the context 𝑠0:l−1, a neural encoder f𝑛𝑒𝑛𝑐 (·) is employed, and the
conditional probability is calculated as follows:

p (sl |𝑠0:l−1) = f𝑙𝑚 (f𝑛𝑒𝑛𝑐 (𝑠0:l−1)) . (3)

In this equation, f𝑙𝑚 represents the prediction layer. By training the network using maximum likeli-
hood estimation (MLE) with a large corpus, we can effectively learn these probabilities. Nevertheless,
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a drawback of unidirectional language models is their encoding of contextual information for each
token, which is solely based on the preceding leftward context tokens and the token itself. However,
for more robust contextual representations of text, it is preferable to capture contextual information
from both the forward and backward directions.

5.2.2 Masked Language Modeling (MLM). Masked language modeling (MLM) is introduced
to address the limitation of the traditional unidirectional language model, frequently denoted as a
Cloze task [93]. In MLM, specific tokens within the input sentences are randomly masked, and the
model is then tasked with predicting these masked tokens by analyzing the contextual information in
the surrounding text. As an effective pre-training task, MLM is adopted in BERT [13] and T5 [94].
Additionally, MLM can be categorized into two subtypes: Sequence-to-Sequence MLM (Seq2Seq
MLM) and Enhanced MLM (E-MLM). Seq2Seq MLM involves utilizing the masked sequences as
input for a neural encoder, and the resulting output embeddings are used to predict the masked token
through a softmax classifier. On the other hand, E-MLM extends the mask prediction task to various
types of language modeling tasks or enhances MLM by integrating external knowledge. MLM
also faces some drawbacks as this pre-training method may result in a disconnection between the
pre-training and fine-tuning stages since the mask token is absent during fine-tuning. InstructGLM
[157] and Graph-LLM [9] use T5/BERT as backbones, and adopt MLM pre-training strategy.

There are also many pre-training tasks like Permuted Language Modeling (PLM) [155], Denoising
Autoencoder (DAE) [60], Text-Text Contrastive Learning (TTCL), [101] and others. These pre-
training tasks are currently not adopted by existing LLM-based models in graph learning, and thus
not within the scope of our discussion in this section. However, we believe that in the future, more
research will be developed on graph tasks involving these pre-training tasks, offering additional
possibilities for the establishment and refinement of graph foundation models.

5.3 Adaptation
The adaptation phase plays a pivotal role in enhancing the performance of LLM-based models in
graph learning. LLMs are primarily trained on textual corpora, which results in a significant gap
between the pre-training phase and their deployment on graph tasks. Both the graph-to-token and
graph-to-text methods are accompanied by specific adaptation techniques designed to enhance the
LLM’s ability to understand graph data effectively. As these methods share a fundamentally similar
training procedure that utilizes prompts, we classify these adaptation strategies in the aspect of
prompt engineering: manual and automatic.

5.3.1 Manual Prompting. Methods mentioned here use manually created prefix style prompts.
For instance, LLMtoGrpah [71] and NLGraph [126] employ node and edge lists incorporating other
graph properties described in natural language to form a comprehensive prompt. GPT4Graph [29]
goes a step further by utilizing additional description languages to represent graph data, such as edge
list, adjacency list, Graph Modeling Language (GML), and Graph Markup Language (GraphML),
providing a more extensible framework for manual graph prompts. GraphText [175] translates graph
features and relationships into natural language and assembles them to form a Graph-syntax Tree.
This Graph-syntax Tree serves as a natural language graph prompt, enabling LLMs to comprehend
graph data and engage in interpretable and interactive graph reasoning. In the field of molecules,
LLM4Mol [91] uses SMILES (Simplified Molecular Input Line Entry System) to directly describe
the property of molecular, which is a widely adopted molecular describing language. Furthermore,
InstructGLM [157] employs a technique called instruction prompting. This approach involves the
design of a set of graph descriptions centered around a central node, coupled with task-specific
descriptions. Graph-LLM [9] also uses natural language instructions and subsequently conducts a
series of comprehensive experiments.
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5.3.2 Automatic Prompting. Creating prompts manually is a time-consuming task, and these
prompts can sometimes be sub-optimal [52]. To address these drawbacks, automatically generated
prompts have been introduced for further adaptation. GPT4Graph [29] firstly tries to employ three
different types of prompts generated by LLM itself, namely graph summarization, graph exploration
and graph completion, in graph tasks. Specifically, graph summarization generates a summary of the
given graph by extracting key features or a summary of the neighborhood information of target nodes.
Graph exploration means generating a sequence of queries or actions to retrieve information from the
given graph. Graph completion generates partial graphs and prompt itself to complete the missing
parts. By leveraging these self-prompting strategies, LLMs can actively engage in the understanding
and manipulation of graphs, facilitating graph-based reasoning and learning. Graph-LLM [9] uses
automatic prompts as well in the form of neighbor summary, and their experimental results once
again emphasize the efficiency of automatic prompting.

Additionally, there are various adaptation approaches based on fine-tuning, including Vanilla
Fine-Tuning [13], Intermediate Fine-Tuning (IFT) [90], Multi-task Fine-Tuning (MTFT) [75], and
Parameter Efficient Fine-Tuning [39]. These methods offer efficient ways to adapt pre-trained models
to downstream tasks, although they have not been applied to graph tasks at this time. However, we
anticipate that future research will explore the integration of these adaptation approaches into graph
tasks, further advancing the development of the graph foundation model.

5.4 Discussion
Efforts of aligning graph data with natural language and using sole LLMs as graph learners has paved
the way for exciting developments. The integration of graph data, text, and other modalities into
transformer-based models presents a promising way, with the potential to connect techniques from
the GNN field with advancements in the LLM domain. Moreover, leveraging LLMs allows for the
unification of various graph tasks, as these tasks can all be described in natural language. This makes
LLM-based backbones a more competitive selection for building graph foundation models.

Nonetheless, it is essential to acknowledge that the current ways of utilizing LLMs as backbones
for graph learning also presents inherent limitations. These limitations encompass the inability of
LLMs to perform precise mathematical calculations pertaining to graph properties, their incapacity
to engage in multi-hop logical reasoning through graph links, the challenge they face in capturing
the topological structures prevalent in highly connected graphs, and their struggle in handling the
dynamic nature of graphs that evolve over time [165]. These shortcomings underscore the need for
further research and innovation in using LLM-based models for graph learning.

6 GNN+LLM-BASED MODELS
GNN-based models lack the ability to process text and thus cannot directly make predictions based
on textual data. Additionally, they cannot make predictions based on natural language instructions
provided by users. Consequently, exploring the performance of models with a substantial parameter
count in graph-related tasks is imperative. On the other hand, LLM-based models for graph learning
have their inherent limitations. These limitations include the incapability of LLMs to process
precise mathematical calculations and the inability to handle multi-hop logical reasoning, etc. These
shortcomings underline the necessity for further research and innovation in this domain. To overcome
these limitations and harness the strengths of both language understanding from LLMs and structural
analysis from GNNs, integrating LLMs and GNNs can potentially lead to a more comprehensive and
powerful model. We summarize and categorize the works mentioned in this section in Table 4.
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6.1 Backbone Architectures
To simultaneously utilize information from both the graph and text and accomplish a variety of
tasks, we need to design a framework that effectively integrates LLM and GNN. Depending on the
prediction model, GNN+LLM-based methods can be classified as: 1) GNN-centric Methods, 2)
Symmetric Methods, and 3) LLM-centric Methods, as illustrated in Figure 5.

6.1.1 GNN-centric Methods. Several works aim to utilize LLM to extract node features from
raw data and make predictions using GNN. These approaches are denoted as GNN-centric models.
For example, SimTeG [16] performs a parameter-efficient fine-tuning of an LLM on the textual
dataset of a TAG (text-attributed graph). The textual dataset 𝑇 is annotated with task-specific labels
Y, where 𝐺 = (𝑉 , 𝐸,𝑇 ) and 𝑇 is the set of texts with each element aligned with a node in 𝑉 . Then the
downstream task loss for fine-tuning is:

LossCLS = L𝜃 (𝜙 (LLM(𝑇 )),Y),
LossLINK = L𝜃 (𝜙 (LLM (𝑇src) , LLM (𝑇dst )) ,Y) ,

(4)

where 𝜙 (·) is the classifier for the classification task or similarity function for the link prediction
task, 𝑇src and 𝑇dst are the texts of the source node and the target node, respectively, LossCLS and
LossLINK are the loss of classification and link prediction task, respectively. Thus we can get the
node representations X with fine-tuned LLM, achieved by removing the head layer. Then we can
train GNN with the loss:

LossCLS = L𝜃 (𝜙 (GNN(LLM(𝑇 ))),Y),
LossLINK = L𝜃

(
𝜙
(
GNN (LLM(𝑇src )) ,GNN

(
LLM(𝑇dst )

) )
,Y

)
.

(5)

For LLMs that do not provide direct access to their embeddings such as ChatGPT, TAPE [35]
engages these LLMs through text interactions. Specifically, TAPE first utilizes an LLM to generate a
ranked prediction list and explanation based on the original text, and then an LM is utilized and fine-
tuned to transform the original text and additional features of predictions and explanation generated
by LLM into node features. Subsequently, downstream GNNs can utilize the features for prediction
tasks. TAPE extracts graph-agnostic features and cannot capture correlations between graph topology
and raw features. To this end, GIANT [11] utilizes a graph-structure aware self-supervised learning
method to finetune the LM. Consequently, the text representations encompass graph-related infor-
mation. Concerning the scalability problem of combining LLM and GNN, GraD [79] concurrently
optimizes a GNN teacher and a graph-free student over the nodes of the graph using a shared LLM.
This encourages the graph-free student to make use of graph information provided by the GNN
teacher while allowing the GNN teacher to effectively utilize textual information from unlabeled
nodes. In GALM [147], the focus is on exploring pre-training approaches for models that combine
text and graph data, particularly on extensive heterogeneous graphs enriched with rich textual data.

6.1.2 Symmetric Methods. Also, there are some works that align the embeddings of GNN and
LLM to make better predictions or utilize the embeddings for other downstream tasks, denoted as
symmetric methods. Most GNN-centric based methods involve two sequential steps: text encoding
and graph aggregation. It is important to note that during the generation of text embeddings, there is
no exchange of information between nodes. To consider the interrelated nature of connected nodes,
several works try to utilize GNN and LLM together to get structure-aware text features. GraphFormer
[153] fuses text embedding and graph aggregation as an iterative workflow. During each iteration,
the interconnected nodes will engage in information exchange within the layerwise GNN component,
formulated as 𝑧𝑙 = GNN(𝑧𝑙 ), where z𝑙 is the output of 𝑙-th layer of GNN.
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Fig. 5. An illustration of GNN+LLM-based models. In (b), the aligned embeddings can be further utilized for
downstream tasks. In (c), the methods take an instruction as input and output an answer.

As a result, each node will incorporate information from its neighboring nodes. The Transformer
component then operates on these enhanced node features, enabling the generation of progressively
more informative node representations as 𝑧𝑙+1 = TRM(CONCAT(𝑧𝑙 , ℎ𝑙 )), where TRM is the trans-
former, and ℎ𝑙 is the output of 𝑙-th layer of transformer. However, this method suffers from scalability
issues because the memory complexity is proportional to the graph size as neighborhood texts are
also encoded. GLEM [174] employs a variational EM framework to alternatively update the LLMs
and GNNs, thus can essentially capture node label distribution conditioned on the local text attributes.
In contrast, GNN uses the text and label information of neighboring nodes to predict labels, thus
characterizing global conditional label distribution. By doing so, GLEM efficiently incorporates local
textual data and global structural information into its components and can ease the scalability issue.

Other studies employ distinct encoders for graph nodes and texts, training them to align their
representations within a shared latent space. ConGrat [4] utilizes a contrastive pre-training framework
for jointly learning embeddings of graph nodes and texts. G2P2 [136] jointly pre-trains a graph-text
model utilizing three graph interaction-based contrastive strategies, and then explores prompting for
the downstream tasks. SAFER [6] trains a text encoder and GNN separately to get the embeddings,
and concatenates the embeddings to get the final social context-aware embedding for a logistic
regression (LR) classifier. Some other works [18, 73, 103, 109] also utilize GNN and LLM to learn
representations for molecules. These models employ a contrastive learning strategy to effectively
pre-train on a dataset containing pairs of molecular graphs and corresponding textual descriptions.
By simultaneously learning the chemical structures of molecules and their associated text through
this approach, these models can then be applied to various downstream tasks.

6.1.3 LLM-centric Methods. While LLMs have shown impressive performance in various natural
language tasks, they struggle with precise mathematical calculations, multi-step logic reasoning,
spatial and topological perception, and handling temporal progression [165]. Hence some works
utilize GNNs to enhance the performance of LLM, denoted as LLM-centric methods. For exam-
ple, Graph-ToolFormer [165] enhances LLMs by incorporating prompts augmented by ChatGPT,
seamlessly integrating API calls from external graph learning tools into graph reasoning statements.
This enhancement empowers LLMs to handle graph reasoning tasks more effectively, including
fundamental graph property reasoning as well as advanced tasks like reasoning about bibliographic
paper topics, molecular graph functions and sequential recommender systems.

6.2 Pre-training
To train the model and enable it to handle both graph and text information, we need to train the
model on a large amount of data. LLM and GNN can be pre-trained on textual data and graph
data respectively. Furthermore, the GNN+LLM-based methods can further be pre-trained on data
composed of graph and text. In this subsection, we category the pre-training strategies as GNN or
LLM-based, and alignment-based.
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Table 4. Details of approaches involved as GNN+LLM-based models.

Model Backbone Architecture Pre-training Adaptation

SimTeG [16] GNN-centric MLM, TTCL Parameter-Efficient FT
TAPE [35] GNN-centric LM Tuning-free Prompting + Parameter-Efficient FT
GIANT [11] GNN-centric MLM Vanilla FT
GraD [79] GNN-centric MLM Parameter-Efficient FT
GALM [147] GNN-centric Graph Reconstruction Vanilla FT
GraphFormer [153] Symmetric MLM Vanilla FT
GLEM [174] Symmetric MLM Vanilla FT
ConGrat [4] Symmetric MLM + GTCL Parameter-Efficient FT
G2P2 [136] Symmetric GTCL Prompt Tuning
SAFER [6] Symmetric MLM Parameter-Efficient FT
Text2Mol [18] Symmetric MLM + GTCL Parameter-Efficient FT
MoMu [109] Symmetric MLM + GTCL Parameter-Efficient FT
MoleculeSTM [73] Symmetric MLM + GTCL Parameter-Efficient FT
CLAMP [103] Symmetric MLM + GTCL Parameter-Efficient FT
Graph-Toolformer [165] LLM-centric LM Tuning-free Prompting + Vanilla FT

6.2.1 GNN or LLM-based. Other synergized LLM and GNN frameworks leverage pre-trained
LLMs to obtain text embeddings. The majority of existing models, such as SimTeG [16], GIANT
[11], GraD [79], GraphFormer [153], GLEM [174], ConGrat [4], SAFER [6], Text2Mol [18], MoMu
[109], MoleculeSTM [73], and CLAMP [103] employ Masked Language Modeling (MLM) during
pre-training. Some models, like TAPE and Graph-ToolFormer, opt for Language Modeling (LM) in
the pre-training phase. Additionally, SimTeG integrates Text-Text Contrastive Learning (TTCL), a
technique that leverages certain observed text pairs exhibiting more semantic similarity than randomly
selected pairs during the pre-training phase as:

LossTTCL = E𝑥,𝑦+,𝑦−

[
− log

exp (𝑘 (𝑥,𝑦+))
exp (𝑘 (𝑥,𝑦+)) + exp (𝑘 (𝑥,𝑦−))

]
, (6)

where E is the expectation, 𝑘 is the score function, 𝑦+ is the positive sample and 𝑦− is the negative
sample. Additionally, GALM [147] utilizes graph reconstruction for pre-training on extensive graph
datasets, and thus can incorporate the graph information into the pre-trained LLMs.

6.2.2 Alignment-based. Symmetric methods of LLM and GNN like ConGrat [4], Text2Mol
[18], MoMu [109], MoleculeSTM [73], and CLAMP [103] are pre-trained on large datasets with
Graph-Text Contrastive Learning (GTCL), which aligns the embeddings of the graph encoder and
the text encoder. The embeddings involve rich information about graph structure and text, thus
demonstrating appealing performance on downstream datasets. For a molecule example, CLAMP
minimizes the contrastive loss as below:

LossNCE = − 1
𝑁

𝑁∑︁
𝑖=1

𝑦𝑖 log(𝑘 (LLM(𝜇𝑖 ),GNN(𝜉𝑖 ))) + (1 − 𝑦𝑖 ) log(1 − 𝑘 (LLM(𝜇𝑖 ),GNN(𝜉𝑖 ))), (7)

where 𝜇𝑖 is the text representation, 𝜉𝑖 is the graph representation, and 𝑘 is a score function to predict
the activity of a molecule. The contrastive loss promotes the active molecules on a bioassay to have
similar embeddings to the embedding of a specific bioassay, while ensuring that inactive molecules
have dissimilar embeddings to it.
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6.3 Adaptation
The adaptation phase plays a pivotal role in optimizing GNN+LLM-based models for efficient graph
learning. Apart from some works [18, 73, 103, 109] which test the model’s performance on zero-shot
tasks such as zero-shot structure-text retrieval and zero-shot text-based molecule editing, models in
most cases need adaptation. In this subsection, we categorize these adaptation strategies into two
main types: fine-tuning and prompt-tuning.

6.3.1 Fine-tuning. To adapt to the downstream tasks, some works [11, 153, 174] utilize vanilla fine-
tuning methods for node classification tasks. However, vanilla fine-tuning methods involve adjusting
a broad range of model parameters, which can be computationally intensive and resource-demanding.
So other works [4, 6, 16, 18, 35, 73, 79, 103, 109, 147] utilize parameter-efficient fine-tuning methods
for downstream tasks, resulting in a more efficient and resource-friendly approach.

6.3.2 Prompt-Tuning. The prompt-tuning approach is employed in certain studies [35, 136, 165].
In TAPE [35], the initial text features are incorporated into a specialized prompt to interrogate a
language model, generating a ranked list of predictions along with explanations. Subsequently, the
expanded text features are utilized for finetuning on an LLM. For Graph-ToolFormer [165], a substan-
tial dataset of prompts linked to graph reasoning API call statements is annotated and expanded using
an LLM, integrating the most suitable calls to external APIs. This dataset is subsequently employed to
fine-tune open-source language models like LLaMA, imparting them with the capability to optimally
utilize external graph reasoning tools. G2P2 [136] leverages prompt-tuning to automatically optimize
prompts with limited labeled data for efficient adaptation to downstream tasks.

6.4 Discussion
To summarize, LLMs excel in capturing complex linguistic patterns and semantics from textual
data, allowing the GNN+LLM-based models to generate embeddings that involve rich text, structure
information, and even external knowledge of LLMs, thus leading to better model performance. Also,
when integrated with GNN, LLM’s reasoning capabilities over graphs may be enhanced. At the same
time, these models can also be regarded as multimodal models to accomplish cross-modal tasks, such
as text-graph retrieval tasks. The embeddings can be then utilized for a bunch of downstream tasks.

However, training a GNN+LLM-based model often requires large amounts of data (especially
paired data) and significant computational resources due to the complexity and scale of both LLMs
and GNNs. Effectively integrating LLMs and GNNs in a coherent and effective manner is challenging
and requires careful design and experimentation to achieve optimal performance.

7 CHALLENGES AND FUTURE DIRECTIONS
Although the previous sections have discussed the concepts and a lot of related works towards graph
foundation models, there are still many avenues for future exploration in this research area. This
section will delve into these issues.

7.1 Challenges about Data and Evaluation
7.1.1 Data Quantity and Quality. The improvements in data quantity and data quality are the key
factors contributing to the effectiveness of foundation models [2]. At present, there is still a limited
amount of open-source large-scale graph data [41, 54], and each dataset is primarily concentrated in
a single domain. This poses a challenge to learn graph foundation models for diverse data domains.
Hence, it is necessary to collect and organize a unified, massive dataset that covers graph data and
related corpora across different domains. Additionally, if the graph data are noisy, incomplete, or not
properly curated, it will negatively affect the performance of graph foundation models. To enhance the
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data quality of graph foundation models, efforts have been made to propose augmentation strategies
from various perspectives, including graph structure learning, feature competion and label mixing,
etc. However, since existing data augmentation techniques are typically tailored for individual GNN-
based models, there is a need for further exploration on how to effectively augment graph data for
LLM-based or GNN+LLM-based models.

7.1.2 Evaluation. With the help of natural language instructions and powerful generation capa-
bilities, LLMs can support a variety of open-ended tasks [118]. This presents new opportunities for
graph foundation models based on LLM. However, due to the lack of labels in open-ended tasks,
evaluating the performance of GFMs in such tasks is a challenge. When using LLM as a language
foundation model, the evaluation of its performance on open-ended tasks has evolved from human
evaluation [84] to meta-evaluation [162]. The question of whether existing LLM evaluation meth-
ods [84, 162] can be applied to GFMs remains to be explored. Beyond evaluating the performance
of graph foundation models, it is also worth evaluating their robustness, trustworthiness, or holistic
performance, similar to the current practices for language foundation models [3, 123, 124].

7.2 Challenges about Model
7.2.1 Model Architectures. As mentioned above, the designs of backbone architectures and
learning paradigms are crucial for the implementation of graph foundation models. Although this
article has outlined some potential solutions, it does not rule out the possibility of better ones. For
example, regarding the backbone architecture, recent works have proposed model architectures that
go beyond the Transformer [114, 161], offering improved performance [114] or interpretability [161].
However, it is still unknown whether these backbone architectures can be used for dealing with graph
data. Additionally, when utilizing GNN+LLM-based models, it is worth exploring how to more
effectively align the outputs of both models. Furthermore, there is limited research regarding the
emergent abilities of GNN-based [46] or LLM-based [126] graph foundation models. It is yet unclear
whether GNN+LLM-based models may have greater potential for emergence. Given that current
multimodal foundation models [22] primarily handle text, images, audio, and other modalities, it is
an interesting research direction to explore whether GNNs can be employed to further expand the
diversity of modalities covered by multimodal foundation models.

7.2.2 Model Training. In order to achieve homogeneity and make effective use of pre-training
data, it is crucial to design appropriate pretext tasks in pre-training. Unlike many language foundation
models, which often use LM [84] or MLM [13] as pretext tasks, there are now various forms of pretext
tasks tailored to different GFM model architectures. Whether each type of pretext task has its own
applicable scope and whether there will be a unified pretext task is worth further exploration. After
obtaining pre-trained graph foundation models, adapting them to downstream tasks is a vital concern.
Apart from fine-tuning and prompting that are introduced in this article, there are other potential
techniques that can be applied, such as knowledge distillation [51], reinforcement learning from
human feedback (RLHF) [84] and model editing [156]. Whether the above-mentioned techniques
can be applied to graph foundation models will be a focal point of future research.

7.3 Challenges about Applications
7.3.1 Killer Applications. In comparison to the outstanding performance of language foundation
models in tasks like text translation [36] and text generation [53], whether graph foundation models
can similarly catalyze groundbreaking applications in graph tasks is not yet clear. For scenarios that
are well-suited for the application of GNNs, such as e-commerce [163] and finance [127], there is
hope that training graph foundation models combined with LLMs can better support open-ended
tasks [118]. Furthermore, graph foundation models have the potential to make breakthroughs in
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some emerging fields. For example, drug development is a time-consuming and costly process [139],
and language foundation models have already been successfully used for related tasks like target
identification and side effect prediction [2]. Given the 3D geometric structure of proteins [69,
70, 74], graph foundation models hold the promise of enhancing the drug discovery pipeline by
leveraging their ability to model graph structure information [145], potentially speeding up the process
further. Additionally, urban computing may also represent a crucial application scenario for graph
foundation models. It is worth noting that traditional traffic prediction techniques have been primarily
focused on addressing individual tasks such as travel demand prediction [182] and traffic flow
prediction [131], lacking a comprehensive understanding of the entire transportation system. Given
that the transportation system can be viewed as a spatio-temporal graph, graph foundation models
hold the potential to capture the participation behavior of actors in the transportation system [132],
thereby offering a unified approach to addressing various issues in urban computing.

7.3.2 Safety. Despite the strong performance of LLM-based foundation models, their black-box
nature [112] introduces a host of safety concerns, such as hallucination and privacy leaks. The
hallucination refers to the output appearing plausible but deviating from user input, context, or
facts [43, 171]. Existing research suggests that this phenomenon is associated with multiple factors,
such as the model’s overconfidence in its own behavior [98] and the misunderstanding of false correla-
tions [67]. However, it is currently uncertain whether graph foundation models might also suffer from
hallucination. Given the unique nature of graph data, we may require certain techniques to prevent
or mitigate hallucination, such as confidence calibration [130] or counterfactual reasoning [115].
Additionally, given that existing research has indicated privacy risks in both GNN [141, 169] and
LLM [107], enhancing the privacy of graph foundation models is also a critical concern. Some
potential solutions include federated learning [8, 140], RLHF [84] and red teaming [25], but whether
these methods can be applied to graph foundation models is still unknown.

8 CONCLUSIONS
The development of foundation models and graph machine learning has spurred the emergence of
a new research direction, with the aim to train on broad graph data and apply it to a wide range of
downstream graph tasks. In this article, we propose the concept of graph foundation models (GFMs)
for the first time, and provide an introduction to relevant concepts and representative methods. We
summarize existing works towards GFMs into three main categories based on their reliance on
graph neural networks (GNNs) and large language models (LLMs): GNN-based models, LLM-based
models, and GNN+LLM-based models. For each category of methods, we introduce their backbone
architectures, pre-training, and adaptation strategies separately. After providing a comprehensive
overview of the current landscape of graph foundation models, this article also points out the future
directions for this evolving field.
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