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Abstract

Graph neural networks (GNNs) have become increasingly popular in modeling
graph-structured data due to their ability to learn node representations by aggregat-
ing local structure information. However, it is widely acknowledged that the test
graph structure may differ from the training graph structure, resulting in a structure
shift. In this paper, we experimentally find that the performance of GNNs drops sig-
nificantly when the structure shift happens, suggesting that the learned models may
be biased towards specific structure patterns. To address this challenge, we propose
the Cluster Information Transfer (CIT) mechanism2, which can learn invariant
representations for GNNs, thereby improving their generalization ability to various
and unknown test graphs with structure shift. The CIT mechanism achieves this
by combining different cluster information with the nodes while preserving their
cluster-independent information. By generating nodes across different clusters,
the mechanism significantly enhances the diversity of the nodes and helps GNNs
learn the invariant representations. We provide a theoretical analysis of the CIT
mechanism, showing that the impact of changing clusters during structure shift
can be mitigated after transfer. Additionally, the proposed mechanism is a plug-in
that can be easily used to improve existing GNNs. We comprehensively evaluate
our proposed method on three typical structure shift scenarios, demonstrating its
effectiveness in enhancing GNNs’ performance.

1 Introduction

Graphs are often easily used to model individual properties and inter-individual relationships, which
are ubiquitous in the real world, including social networks, e-commerce networks, citation networks.
Recently, graph neural networks (GNNs), which are able to effectively employ deep learning on graphs
to learn the node representations, have attracted considerable attention in dealing with graph data
[13, 24, 32, 36, 9, 5]. So far, GNNs have been applied to various applications and achieved remarkable
performance, e.g., node classification [13, 32], link prediction [33, 14] and graph classification [6, 34].

Message-passing mechanism forms the basis of most graph neural networks (GNNs) [13, 24, 5, 9].
That is, the node representations are learned by aggregating feature information from the neighbors
in each convolutional layer. So it can be seen that the trained GNNs are highly dependent on the local
structure. However, it is well known that the graph structure in the real world always changes. For
instance, the paper citations and areas would go through significant change as time goes by in citation
network [11]. In social networks, nodes represent users and edges represent activity between users,
because they will be changed dynamically, the test graph structure may also change [7]. This change
in the graph structure is a form of distribution shift, which we refer to as graph structure shift. So
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the question naturally arises: when the test graph structure shift happens, can GNNs still maintain
stability in performance?

We present experiments to explore this question. We generate graph structure and node features.
Subsequently we train GNNs on the initially generated graph structure and gradually change the
structures to test the generalization of GNNs (more details are in Section 2). Clearly, the performance
consistently declines with changes (shown in Figure 1), implying that the trained GNNs are severely
biased to one typical graph structure and cannot effectively address the structure shift problem.

This can also be considered as Out-Of-Distribution problem (OOD) on graph. To ensure good
performance, most GNNs require the training and test graphs to have identically distributed data.
However, this requirement cannot always hold in practice. Very recently, there are some works on
graph OOD problem for node classification. One idea assumes knowledge of the graph generation
process and derives regularization terms to extract hidden stable variables [28, 8]. However, these
methods heavily rely on the graph generation process, which is unknown and may be very complex
in reality. The other way involves sampling unbiased test data to make their distribution similar to
that of the training data [37]. However, it requires sampling test data beforehand, which cannot be
directly applied to the whole graph-level structure shift, e.g., training the GNNs on a graph while the
test graph is another new one, which is a very typical inductive learning scenario [24, 17].

Therefore, it is still technically challenging to learn the invariant representations which is robust to the
structure shift for GNNs. Usually, the invariant information can be discovered from multiple structure
environments [28], while we can only obtain one local structure environment given a graph. To avoid
GNNs being biased to one structure pattern, directly changing the graph structure, e.g., adding or
removing edges, may create different environments. However, because the graph structure is very
complex in the real world and the underlying data generation mechanism is usually unknown, it is
very difficult to get the knowledge on how to generate new graph structures.

In this paper, we propose to learn the invariant representations of GNNs by transferring the cluster
information of the nodes. First, we apply GNNs to learn the node representations, and then combine
it with spectral clustering to obtain the cluster information in this graph. Here, we propose a novel
Cluster Information Transfer (CIT) mechanism, because the cluster information usually captures
the local properties of nodes and can be used to generate multiple local environments. Specifically,
we characterize the cluster information using two statistics: the mean of cluster and the variance
of cluster, and transfer the nodes to new clusters based on these two statistics while keeping the
cluster-independent information. After training GNNs on these newly generated node representations,
we aim to enhance their generalization ability across various test graph structures by improving the
generalization ability on different clusters. Additionally, we provide insights into the transfer process
from the embedding space and theoretically analyze the impact of changing clusters during structure
shift can be mitigated after transfer. The contributions of our work are summarized as follows:

• We study the problem of structure shifts for GNNs, and propose a novel CIT mechanism to
improve the generalization ability of GNNs. Our proposed mechanism is a friendly plug-in,
which can be easily used to improve most of the current GNNs.

• Our proposed CIT mechanism enables that the cluster information can be transferred while
preserving the cluster-independent information of the nodes, and we theoretically analyze
that the impact of changing clusters during structure shift can be mitigated after transfer.

• We conduct extensive experiments on three typical structure shift tasks. The results well
demonstrate that our proposed model consistently improves generalization ability of GNNs
on structure shift.

2 Effect of structure distribution shift on GNN performance

In this section, we aim to explore the effect of structure shift on GNN performance. In the real world,
the tendency of structure shift is usually unknown and complex, so we assume a relatively simple
scenario to investigate this issue. For instance, we train the GNNs on a graph with two community
structures, and then test the GNNs by gradually changing the graph structures. If the performance of
GNNs drops sharply, it indicates that the trained GNNs are biased to the original graph, and cannot
be well generalized to the new test graphs with structure shift.
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Figure 1: The node classification accuracy of
GCN, GAT, APPNP and GCNII on generated
data with structure shift. The x-axis is probability
of edges (%).

We generate a network with 1000 nodes and di-
vide all nodes into two categories on average, that
is, 500 nodes are assigned label 0 and the other
500 nodes are assigned label 1. Meanwhile, node
features, each of 50 dimensions, are generated by
two Multivariate Gaussian distributions. The node
features with same labels are generated by same
Gaussian distribution. We employ the Stochas-
tic Blockmodel (SBM) [12] to generate the graph
structures. We set two community and set the gen-
eration edges probability on inter-community is
0.5% and intro-community is 0.05% . We ran-
domly sample 20 nodes per class for training, and
the rest are used for testing. Then we train GCN
[13] and GAT [24] on this graph. The test graph
structures are generated as follows: we decrease
the inter-community edge probability from 0.5%
to 0.25% and increase the intra-community probability from 0.05% to 0.3%.

The accuracy is shown in Figure 1. The x-axis is the probability of edges, where the first number
is the edge probability of inter-community and the second number is the edge probability of intro-
community. As we can see, because of the structure shift, the performance of GNN declines
significantly. It shows that once the test graph pattern shifts, the reliability of GNNs becomes
compromised.

3 Methods

Notations: Let G = (A,X) represent a training attributed graph, where A ∈ Rn×n is the symmetric
adjacency matrix with n nodes and X ∈ Rn×d is the node feature matrix, and d is the dimension of
node features. Specifically, Aij = 1 represents there is an edge between nodes i and j, otherwise,
Aij = 0. We suppose each node belongs to one of C classes and focus on semi-supervised node
classification. Considering that the graphs always change in reality, here we aim to learn the invariant
representations for GNNs, where the overall framework is shown in Figure 2 and the whole algorithm
is shown in A.1.

3.1 Clustering process

We first obtain the node representations through GNN layers:

Z(l) = σ(D̃
−1/2

ÃD̃
−1/2

Z(l−1)W(l−1)
GNN ), (1)

where Z(l) is the node representations from the l-th layer, Z(0) = X, Ã = A + I, D̃ is the degree
matrix of Ã, σ is a non-linear activation and W(l−1)

GNN is the trainable parameters of GNNs. Eq. (1)
implies that the node representations will aggregate the information from its neighbors in each layer,
so the learned GNNs are essentially dependent on the local structure of each node. Apparently, if
the structure shift happens in the test graph, the current GNNs may provide unsatisfactory results.
Therefore, it is highly desired that the GNNs should learn the invariant representations while structure
changing, so as to handle the structure shift in test graphs.

One alternative way is to simulate the structure change and then learn the invariant representations
from different structures, which is similar as domain generalization [26, 35]. Motivated by this, we
consider that the local properties of a node represents its domain information. Meanwhile, different
clusters can capture different local properties in a graph, so we can consider cluster information as
domain information of nodes. Based on this idea, we first aim to obtain the cluster information using
spectral clustering [2]. Specifically, we compute the cluster assignment matrix S of node using a
multi-layer perceptron (MLP) with softmax on the output layer:

S = Softmax(WMLP Z(l) + b), (2)
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Figure 2: The overall framework of our proposed CIT mechanism on GNNs consists two parts: the
traditional GNNs and Cluster Information Transfer (CIT) mechanism. After getting node representa-
tions from GNNs, we conduct CIT mechanism on node representations before the last layer of GNNs,
which transfers the node to another cluster to generate new representations for training.

where WMLP and b are trainable parameters of MLP. For assignment matrix S ∈ Rn×m, and m
is the number of clusters. sij represents the weight that node i belongs to cluster j. The softmax
activation of the MLP guarantees that the weight sij ∈ [0, 1] and ST 1M = 1N .

For S, we want to cluster strongly connected nodes. So we adopt the cut loss which evaluates the
mincut given by S:

Lc = −
Tr(ST ÃS)
Tr(ST D̃S)

, (3)

where Tr is the trace of matrix. Minimizing Lc encourages the nodes which are strongly connected
to be together.

However, directly minimizing Lc will make the cluster assignments are equal for all nodes, which
means all nodes will be in the same cluster. So in order to avoid the clustering collapse, we can make
the the clusters to be of similar size, and we use orthogonality loss to realize it:

Lo =

∥∥∥∥ ST S
∥ST S∥F

− IM√
M

∥∥∥∥
F

, (4)

where ∥ · ∥F indicates the Frobenius norm, M is the number of clusters. Notably, when ST S = IM ,
the orthogonality loss Lo will reach 0. Therefore, minimizing it can encourage the cluster assignments
to be orthogonal and thus the clusters can be of similar size.

Overall, we optimize the clustering process by these two losses:

Lu = Lc + λ1Lo, (5)

where λ1 is a coefficient to balance the mincut process and orthogonality process.

After obtaining the assignment matrix S, we can calculate cluster representations Hc by average the
node representations Z(l):

Hc = ST Z(l). (6)

3.2 Transfer cluster information

Now we obtain the cluster representations Hc, and each cluster captures the information of local
properties. Originally, given a graph, a node can be only in one domain, i.e., one cluster. Next, we aim
to transfer the node to different domains. Specifically, the cluster information can be characterized by
two statistics, i.e., the center of the cluster (Hc) and the standard deviation of the cluster (σ(Hc

k)):
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σ(Hc
k) =

√
Σn

i=1sik(Z
(l)
i −Hc

k)
2, (7)

where Hc
k is the representation of the k-th cluster and Z(l)

i is the representation of node i.

Then we can transfer the node i in the k-th cluster to the j-th cluster as follows:

Z′(l)
i = σ(Hc

j)
Z(l)
i −Hc

k

σ(Hc
k)

+ Hc
j , (8)

where k is the cluster that node i belongs to, and j is the cluster which is randomly selected from the
remaining clusters.

Figure 3: We show two parts of one graph. The
orange and green points represent two clusters in
one graph. The circle is aggregating scope of clus-
ter. And the red point represents the target node
we transfer from orange cluster to green cluster.

Here, we explain the Eq. (8) in more details. As
shown in Figure 3, the center of cluster k is Hc

k,
and node i belongs to this cluster, where the rep-
resentation of node i is Z(l)

i . It can be seen that
Hc

k is obtained by aggregating and averaging the
local structure information, which captures the
cluster information. Therefore, Z(l)

i −Hc
k repre-

sents the cluster-independent information. Then,
the CIT mechanism can be seen as we trans-
fer the node to a new position from embedding
space. The standard deviation is the weighted
distance of nodes from the center, which is the
aggregating scope of the clusters. After the
transfer, the target node surrounds a new cluster
with new cluster information, while keeping the
cluster-independent information.

The above process only transfers the nodes on the original domain. Moreover, in order to improve the
robustness of the model for unknown domain, we increase the uncertainty and diversity of model
[16, 21]. Based on this, we add Gaussian perturbations to this process. The whole transfer becomes:

Z′(l)
i = (σ(Hc

j) + ϵσΣσ)
Z(l)
i −Hc

k

σ(Hc
k)

+ (Hc
j + ϵµΣµ). (9)

The statistics of Gaussian is determined by the whole features:

ϵσ ∼ N (0, 1), ϵµ ∼ N (0, 1), (10)

Σ2
σ = σ(σ(Hc)2)2,Σ2

µ = σ(Hc)2. (11)
Here, with the Gaussian perturbations, we can generate new clusters based on the original one and
the nodes can be further transferred to more diverse domains.

The proposed transfer process offers a solution to overcome the limitations of changing graph
structures when generating nodes in different domains. Traditional approaches require changing
the graph structure by adding or deleting edges, which can be challenging due to the lack of prior
knowledge on how the changes in graph structure may affect the domain. Here, our proposed CIT
mechanism addresses this challenge by directly transferring a node to another domain through the
manipulation of cluster properties of nodes in the embedding space. The CIT method is implemented
before the classifier in GNNs training, making it backbone agnostic and compatible with any GNN
last layer.

3.3 Objective function

With CIT mechanism, we have the generated representation Z′(l)
i in other clusters for node i. In

traditional GNNs training, we input the representation Z(l), where the i-th row vector represents the
representation of node i, to the cross-entropy loss [13]. Here, we randomly select a part of nodes, and
replace original representation Z(l)

i with the generated representation Z′(l)
i . Then we can obtain the

new representation matrix Z′(l), and optimize the cross-entropy loss based on it as follows:

Lf = Le(fθ(Z′(l)),Y), (12)
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where Le is cross-entropy loss function, fθ is the classifier, and Y is the labels.

Finally, the overall optimization function is as follows:

L = Lf + λ2Lu, (13)

where λ2 is a coefficient to balance the classification process and clustering process. In the optimiza-
tion process, we randomly select n× p nodes and then conduct Eq. (9) every k epochs.

3.4 Theoretical analysis

In this section, we theoretically analyze our CIT mechanism from the perspective of domain adoption
theory. Since the Eq. (8) is the cornerstone of our CIT mechanism and Eq. (9) is an extending from it,
we use Eq. (8) to represent our CIT mechanism in the following proof for convenience.

We analyze that the classifier using the new generated representation Z′(l) in Eq. (8) has better
generalization on the structure shift. As mentioned before, cluster information can capture local
properties of nodes, so we convert this problem to analyzing the classifier has better generalization
on cluster shift. To achieve this, following [31], we take the binary classification task as the example,
and analyze the relationship between the decision boundary with cluster information. For analysis,
we follow [31] using a fisher classifier and analyse the relationship between them. According to
Fisher’s linear discriminant analysis [1, 23, 3], the decision boundary of fisher classifier depends on
two statistics V ar(Z) and Cov(Z, Y ).
Theorem 1. The decision boundary of fisher classifier is affected by the cluster information.

The proof is given in Appendix A.3, where we calculate the mathematical expression of the classifi-
cation boundary. Theorem 1 indicates that the cluster information will “help” the classifier to make
decisions. But when the graph structure changes, the cluster information of the nodes also changes.
Therefore, the classifier using cluster information to make decisions is not reliable.
Theorem 2. Let ZR represent the node representations in cluster R. Assume that there are p percent
of nodes are transferred from cluster R to cluster D by ΣD

ZR−µR

ΣR
+ µD. After the transfer, the

impact of changing clusters during structure shift can be mitigated.

The proof is given in Appendix A.4. Comparing the expression of classifier before and after our
CIT mechanism, we can find that we mitigate the impact of changing clusters during structure shift,
enhancing the robustness of the model against such changes.

4 Experiment

Datasets and baselines. To comprehensively evaluate the proposed CIT mechanism, we use six
diverse graph datasets. Cora, Citeseer, Pubmed [20], ACM, IMDB [27] and Twitch-Explicit [17].
Details of datasets are in Appendix B.1. Our CIT mechanism can be used for any other GNN
backbones. We plug it in four well-known graph neural network methods, GCN [13], GAT [24],
APPNP [9] and GCNII [5]. Meanwhile, we compare it with two graph OOD methods which are also
used for node-classification, SR-GNN [37] and EERM [28]. We combine them with four methods
mentioned before. Meanwhile, we use CIT-GNN(w/o) to indicate that no Gaussian perturbations are
added.

Experimental setup. For Cora, Citeseer and Pubmed, we construct structure shift by making
perturbations on the original graph structure. For ACM and IMDB, we test them using two relation
structures. For Twitch-Explicit, we use six different networks. We take one network to train, one
network to validate and the rest of networks to test. So we divide these datasets into three categories:
perturbation on graph structures, Multiplex networks and Multigraph. The implementation details are
given in Appendix B.1.

4.1 Perturbation on graph structures data

In this task, we use Cora, Citeseer and Pubmed datasets. We train the model on original graph. We
create new graph structures by randomly adding 50%, 75% and deleting 20%, 50% edges of original
graph. To comprehensively evaluate our model on random structure shift, we test our model on the
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Table 1: Quantitative results (%±σ) on node classification for perturbation on graph structures data
while the superscript refers to the results of paired t-test between original model and CIT-GNN (* for
0.05 level and ** for 0.01 level).

Method
ADD-0.5

Cora Citeseer Pubmed
Acc Macro-f1 Acc Macro-f1 Acc Macro-f1

GCN 76.12±0.91 74.95±0.88 65.43±0.68 63.02±0.59 72.58±1.10 71.84±1.00
SR-GCN 75.70±0.90 74.35±0.85 66.03±1.30 62.67±0.80 72.15±1.80 70.63±1.90
EERM-GCN 75.33±0.87 74.39±0.89 64.05±0.49 60.97±0.61 - -
CIT-GCN(w/o) 76.88±0.34 75.63±0.47 66.67±0.55 64.21±0.47 72.83±0.32 72.01±0.21
CIT-GCN 76.98±0.49∗ 75.88±0.44∗ 67.65±0.44∗∗ 64.42±0.10∗∗ 73.76±0.40∗ 72.94±0.30∗
GAT 77.04±0.30 76.15±0.40 64.42±0.41 61.74±0.30 71.30±0.52 70.80±0.43
SR-GAT 77.35±0.75 76.49±0.77 64.80±0.29 61.98±0.11 71.55±0.52 70.79±0.64
EERM-GAT 76.15±0.38 75.32±0.29 62.05±0.79 59.01±0.65 - -
CIT-GAT(w/o) 77.37±0.57 76.73±0.47 65.23±0.58 63.30±0.67∗∗ 71.92±0.68 71.12±0.56
CIT-GAT 77.23±0.42 76.26±0.28 66.33±0.24∗∗ 63.07±0.37 72.50±0.74 71.57±0.82
APPNP 79.54±0.50 77.69±0.70 66.96±0.76 64.08±0.66 75.88±0.81 75.37±0.66
SR-APPNP 80.00±0.70 78.56±0.87 65.20±0.23 62.77±0.36 75.85±0.55 75.43±0.58
EERM-APPNP 78.10±0.73 76.72±0.69 66.30±0.91 63.08±0.77 - -
CIT-APPNP(w/o) 79.79±0.40 77.95±0.32 68.06±0.52 65.30±0.32 76.21±0.55 75.23±0.37
CIT-APPNP 80.50±0.39∗ 78.86±0.24∗ 68.54±0.71∗ 65.51±0.45∗ 76.64±0.40∗ 75.89±0.48∗
GCNII 76.98±0.92 74.92±0.97 63.16±1.20 61.14±0.78 74.03±1.10 73.37±0.75
SR-GCNII 77.55±0.21 75.09±0.41 64.74±1.86 62.44±1.53 75.10±0.78 74.36±0.95
EERM-GCNII 79.05±1.10 76.62±1.23 65.10±0.64 62.02±0.76 - -
CIT-GCNII(w/o) 77.64±0.63 75.22±0.61 65.87±0.80 63.36±0.75∗∗ 75.00±0.47 74.70±0.54
CIT-GCNII 78.28±0.88 75.82±0.73 66.12±0.97∗∗ 63.17±0.85 75.95±0.63∗ 75.47±0.76∗

ADD-0.75
GCN 72.37±0.55 71.09±0.36 63.34±0.60 61.09±0.54 72.48±0.31 71.06±0.58
SR-GCN 72.70±1.10 72.19±1.20 62.72±1.80 59.58±2.10 70.35±2.10 69.14±2.30
EERM-GCN 72.30±0.21 71.68±0.47 61.65±0.54 58.55±0.68 - -
CIT-GCN(w/o) 72.90±0.53 71.70±0.67 64.83±0.79 62.33±0.56 73.00±0.46 72.30±0.56
CIT-GCN 74.44±0.75∗ 73.37±0.86∗ 64.80±0.65∗ 62.52±0.46∗ 73.20±0.36∗ 72.33±0.41∗
GAT 73.86±0.45 72.79±0.47 63.42±1.00 61.35±0.79 70.88±0.67 69.97±0.64
SR-GAT 74.28±0.28 73.46±0.43 64.27±1.10 62.04±0.90 70.36±0.69 69.24±0.88
EERM-GAT 72.62±0.43 72.28±0.30 62.00±0.43 60.30±0.50 - -
CIT-GAT(w/o) 74.64±0.77 73.76±0.87 63.83±0.79 62.33±0.56 71.00±0.77 69.30±0.56
CIT-GAT 74.75±0.40∗ 73.67±0.58∗ 64.74±0.67∗ 62.23±0.77∗ 71.90±0.89 70.88±0.67
APPNP 75.86±0.84 73.97±0.87 65.71±1.01 63.65±0.86 74.53±0.77 73.99±0.80
SR-APPNP 76.00±0.30 73.98±0.40 64.80±0.37 62.78±0.21 75.40±0.58 74.30±0.68
EERM-APPNP 75.30±0.65 74.87±0.62 64.90±0.69 62.32±0.60 - -
CIT-APPNP(w/o) 77.53±0.67 75.66±0.54 67.01±0.81 64.78±0.73 76.05±0.87∗ 75.91±0.92∗∗
CIT-APPNP 78.02±0.56∗∗ 76.53±0.78∗∗ 66.06±0.95∗ 63.81±0.58∗ 75.70±0.41 75.88±0.83
GCNII 73.16±1.05 71.01±1.39 62.48±1.20 60.80±0.40 75.78±0.58 75.15±0.61
SR-GCNII 75.03±0.50 72.28±0.93 60.90±2.10 59.00±1.80 75.98±1.10 75.79±0.90
EERM-GCNII 75.50±1.20 73.60±1.30 62.40±0.97 59.11±0.81 - -
CIT-GCNII(w/o) 74.64±0.63 72.84±0.87 64.58±0.87 62.47±0.69 75.78±0.99 74.20±1.10
CIT-GCNII 77.08±1.22∗∗ 75.15±1.45∗∗ 65.82±1.04∗∗ 63.27±0.73∗∗ 76.13±1.12 75.99±1.17

new graphs. We follow the original node-classification settings [13] and use the common evaluation
metrics, including Macro-F1 and classification accuracy. For brief presentation, we show results of
deleting edges in Appendix B.2.

The results are reported in Table 1. From the table we can see that the proposed CIT-GNN generally
achieves the best performance in most cases. Especially, for Acc and Macro-f1, our CIT-GNN
achieves maximum relative improvements of 5.35% and 4.1% respectively on Citesser-Add-0.75.
The results demonstrate the effectiveness of our CIT-GNN. We can also see that CIT-GNN improves
the four basic methods, so the results show that our method can improve the generalization ability of
the basic models. Meanwhile, our mechanism is to operate the node representation at the embedding
level, which can be used for any GNN backbones.

4.2 Multiplex networks data

In this task, we use Multiplex networks datasets ACM and IMDB to evaluate the capabilities of our
method on different relational scenarios. Both of them have two relation structures. We construct
structure shift by taking the structure of one relation for training and the other for testing respectively.
The partition of data follows [27]. The results are reported in Table 2 and the relation structure shown
in the table is the training structure. Different from the first experiment, the structure shift is not
random, which is more intense because the new graph is not based on the original graph. As can
be seen, our proposed CIT-GNN improves the four basic methods in most cases, and outperforms
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Table 2: Quantitative results (%±σ) on node classification for multiplex networks data and the relation
in table is for training, while the superscript refers to the results of paired t-test between original
model and CIT-GNN (* for 0.05 level and ** for 0.01 level).

Method
ACM IMDB

PAP PLP MDM MAM
Acc Macro-f1 Acc Macro-f1 Acc Macro-f1 Acc Macro-f1

GCN 64.65±1.91 60.66±1.88 80.26±1.98 79.71±1.94 52.36±1.40 48.55±1.60 58.98±1.11 57.01±1.72
SR-GCN 67.75±1.20 68.51±1.10 82.14±2.10 81.88±2.32 51.94±0.97 50.76±0.85 59.84±1.08 58.21±1.11
EERM-GCN 66.85±1.87 67.84±1.54 82.16±1.87 82.16±1.67 54.07±1.83 51.80±1.62 57.21±1.93 56.52±1.66
CIT-GCN(w/o) 67.53±1.52 65.32±1.93 81.30±1.58 80.98±1.82 53.67±1.79 50.71±1.56 57.93±1.32 56.23±1.24
CIT-GCN 68.06±1.13∗∗ 68.79±1.27∗∗ 82.67±1.55∗ 82.56±1.66∗ 55.42±1.88∗∗ 52.75±1.65∗∗ 56.68±1.45 54.66±1.97
GAT 66.35±1.81 64.23±2.25 82.48±1.73 82.50±1.65 51.59±1.13 48.26±1.27 58.64±1.87 57.72±1.94
SR-GAT 67.20±1.87 67.89±2.13 84.61±1.34 84.49±1.65 50.81±1.92 46.62±1.73 59.05±1.57 57.42±1.84
EERM-GAT 67.67±1.17 68.22±1.25 79.25±1.27 78.84±0.99 52.24±1.28 50.86±1.35 58.20±1.65 57.25±1.59
CIT-GAT(w/o) 67.15±1.23 67.34±1.43 83.45±1.54 83.01±1.46 53.91±0.96∗ 51.90±1.21∗ 57.18±1.55 56.82±1.23
CIT-GAT 68.49±1.32∗ 68.15±1.39∗∗ 85.75±1.76∗∗ 85.64±1.32∗∗ 52.86±0.98 51.06±1.01 59.51±1.73 58.40±1.46
APPNP 78.49±1.33 79.00±1.56 86.76±1.22 86.74±1.85 51.78±1.01 46.57±1.32 62.01±1.21 61.34±1.56
SR-APPNP 77.60±1.28 76.25±1.77 86.16±1.37 86.16±1.52 55.02±1.98 51.74±2.03 60.70±1.08 60.14±1.32
EERM-APPNP 80.89±1.82 80.43±1.65 83.58±1.58 83.46±1.84 54.32±0.96 51.03±1.07 61.27±1.75 60.30±1.87
CIT-APPNP(w/o) 81.66±1.12 81.35±1.01 86.60±0.98 86.52±0.87 56.37±1.41∗∗ 54.13±1.78∗∗ 61.81±0.92 60.98±1.10
CIT-APPNP 81.70±1.58∗∗ 81.60±1.47∗ 87.19±1.21∗ 87.16±1.02∗ 55.86±1.54 52.32±1.73 62.50±1.45 62.00±1.54
GCNII 77.92±1.64 76.73±1.77 81.88±1.05 81.21±1.32 52.71±1.86 47.08±1.77 52.45±2.01 47.61±2.35
SR-GCNII 78.91±1.73 78.77±1.76 84.32±0.89 83.22±1.01 53.52±1.56 49.87±1.36 54.20±2.33 49.00±1.98
EERM-GCNII 78.82±1.23 79.24±1.76 83.81±1.21 83.61±1.02 53.56±1.23 50.27±1.42 54.32±1.98 49.70±1.87
CIT-GCNII(w/o) 78.10±1.54 78.80±1.64 84.85±1.41 84.62±1.54 53.42±2.01 49.10±1.58 52.30±1.87 48.01±2.10
CIT-GCNII 79.73±1.61∗ 79.26±1.32∗∗ 85.23±1.93∗∗ 85.06±1.89∗∗ 54.20±1.88∗ 50.91±1.95∗ 53.69±1.89 48.84±2.01

(a) DE (b) ENGB (c) ES (d) RU

Figure 4: ROC-AUC on Twitch where we compare different GNN backbones.

SR-GNN and EERM, implying that our CIT-GNN can improve the generalization ability of the basic
models.

4.3 Multigraph data

In this task, we use Multigraph dataset Twitch-Explicit, and its each graph is collected from a
particular region. In this dataset, the node features also change but they still share the same input
feature space and output space. The graphs are collected from different regions. So different structures
are determined by different regions. To comprehensively evaluate our method, we take the FR for
training, TW for validation, and test our model on the remaining four graphs (DE, ENGB, RS, EU).
We choose ROC-AUC score for evaluation because it is a binary classification task. Since SR-GNN is
not suitable for this dataset, only the base model and EERM are compared. The results are reported in
Figure 4. Comparing the results on four graph, our model makes improvement in most cases, which
verifies the effectiveness about generalizing on multigraph scenario.

4.4 Analysis of hyper-parameters

Analysis of p. The probability of transfer p determines how many nodes to transfer every time. It
indicates the magnitude of the CIT mechanism. We vary its value and the corresponding results are
shown in Figure 5. With the increase of p, the performance goes up first and then declines, which
indicates the performance benefits from an applicable selection of p.

Analysis of k. We make transfer process every k epochs. We vary k from 1 to 50 and and plot the
results in Figure 6. Zero represents the original model accuracy without out CIT mechanism. Notably,
the performance remains consistently stable across the varying values of k, indicating the robustness
of the model to this parameter.
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(a) cora-add-0.5 (b) citeseer-add-0.5

Figure 5: Analysis of the probability of transfer.

(a) cora (b) citeseer

Figure 6: Analysis of the epochtimes.

(a) cora (b) citeseer
Figure 7: The number of clusters is varying on
cora and citeseer. The accuracy corresponds to the
right vertical axis, while the Silhouette Coefficient
values correspond to the left vertical axis.

Analysis of m. The number of clusters is the
most important parameter in the clustering pro-
cess. We choose silhouette coefficient to mea-
sure the clustering performance and vary m
from 20 to 100 unevenly. Then we calculate
the accuracy and Silhouette Coefficient. The
corresponding results are shown in Figure 7. As
we can see, accuracy changes synchronously
with silhouette coefficient. We infer that the
performance of our model is related to the clus-
tering situation, and when the clustering process
performs well, our model also performs well.

5 Related work

Graph neural networks. Recently, Graph Neural Networks have been widely studied. GCN
[13] proposes to aggregate the node features from the one-hop neighbors. GAT [24] designs an
attention mechanism to aggregate node features from neighbors. PPNP [9] utilizes PageRank’s node
propagation way to aggregate node features and proposes an approximate version. GCNII [5] extends
GCN by introducing two effective techniques: initial residual and identity mapping, which make
the network deeper. This is a fast growing research field, and more detailed works can be found in
[4, 22].

OOD generalization of GNNs. Out-Of-Distribution (OOD) on graph has attracted considerable
attention from different perspectives. For node-classification, [8] shows node selection bias drastically
affects the performance of GNNs and investigates it from point view of causal theory. [37] explores
the invariant relationship between nodes and proposes a framework to account for distributional
differences between biased training data. [28] handles it by minimizing the mean and variance of
risks from multiple environments which are generated by adversarial context generators. For graph
classification, [15] proposes to capture the invariant relationships between predictive graph structural
information and labels in a mixture of latent environments. [29, 18] find invariant subgraph structures
from a causal perspective to improve the generalization ability of graph neural networks. [10] builds
a graph OOD bench mark including node-level and graph-level methods and two kinds of distribution
shift which are covariate shift and concept shift.

Graph clustering with graph neural networks. As graph neural networks continue to perform
better in modeling graph data, some GNN-based graph clustering methods have been widely applied.
Deep attentional embedded graph clustering [25] uses an attention network to capture the importance
of the neighboring nodes and employs the KL-divergence loss in the process of graph clustering.
[2] achieves the graph clustering process by obtaining the assignment matrix through minimizing
optimizing its spectral objective.[19] uses a new objective function for clustering combining graph
spectral modularity maximization and a new regularization method.

6 Conclusion

In this paper, we explore the impact of structure shift on GNN performance and propose a CIT
mechanism to help GNNs learn invariant representations under structure shifts. We theoretically
analyze that the impact of changing clusters during structure shift can be mitigated after transfer.

9



Moreover, the CIT mechanism is a friendly plug-in, and the comprehensive experiments well
demonstrate the effectiveness on different structure shift scenarios.

Limitations and broader impact. One potential limitation lies in its primary focus on node-level
tasks, while further investigation is needed to explore graph-level tasks. Although our CIT mechanism
demonstrates significant advancements, certain theoretical foundations remain to be fully developed.
Our work explores the graph from the perspective of the embedding space, thereby surpassing the
limitations imposed by graph topology, and offers a fresh outlook on graph analysis.
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Algorithm 1: GNNs with the CIT mechanism
Input :Graph G = (A,X), label Y
Params : the probability of transfer p, the epochtimes k,

the number of clusters m, total iterations T
Initialize :GNN model fGNN ,

classifier fθ (usually the last layer of GNN)
Output :GNN model fGNN , classifier fθ

1 for epoch = 1 to T do
2 Node representation Z(l) from Eq. (1)
3 Cluster representation Hc from Eq. (2) and Eq. (6)
4 Clustering loss Lu from Eq. (5)
5 if epoch % k == 0 then
6 Randomly sample n× p nodes to calculate Eq. (9)
7 Get the new representation Z′(l)

8 else
9 Keep the node representation Z′(l) ← Z(l)

10 end
11 Classification loss Lf from Eq. (12)
12 Update fGNN , fθ with Eq. (13)
13 end

A More details of Section 3

A.1 Three-Fold optimization

In this section, we detail the process of our CIT mechanism in three-fold optimization, shown in
Algorithm1.

A.2 Computational complexity

Our CIT mechanism has two parts of computation: Clustering process and Cluster Information
Transfer process. Let N represent the number of nodes, and K represent the number of clusters. The
computational complexity of clustering process is O(N2K +NK2) = O(NK(N +K)). Since the
adjacency matrix is usually sparse, the computational complexity can be reduced to O(EK), where
E is the number of non-zero edges in the adjacency matrix. The computational complexity of Cluster
Information Transfer process is O(pN), where p is the probability of transfer. So the computational
complexity is O(K(E +NK) + pN). The space complexity which depends on the dimension of
the assignment matrix is O(NK).

A.3 Proof of Theorem1

Specifically, we simplify Z(l) in Eq. (1) as Z, and assume that label Y ∈ {0, 1}. There are two
clusters e ∈ {D,R}. We give the statistics of data. The mean of node representations in cluster D is
E(Z|e = D) = µD, and the variance of node representations in cluster D is V ar(Z|e = D) = Σ2

D.
Similarly, E(Z|e = R) = µD, V ar(Z|e = R) = Σ2

R. We define the probability of label 0 as
π0 = P (Y = 0), label 1 as π1 = P (Y = 1), and then the cluster probability πD = P (e = D) and
πR = P (e = R). The conditional probability of label given cluster D as π0|D = P (Y = 0|e = D),
π1|D = P (Y = 1|e = D) and the conditional probability of label given cluster R as π0|R = P (Y =
0|e = R), π1|R = P (Y = 1|e = R). For analysis, we use E(Z|Y = 1) = µ1 to represent the
mean of node representations with label 1, and E(Z|Y = 0) = µ0 to represent the mean of node
representations with label 0. We assume that there is statistic spurious correlation between clusters
and labels, i.e., all label information can be obtained through the label information in each cluster as
µD

π1|D
+ µR

π1|R
= µ1. At first, we calculate the form of the decision boundary through the data statistics

given above and find that the label distribution in clusters affects the decision boundary. And then, we
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make our transfer on the original data and find that the label distribution in clusters has less influence
on it.

Proof. Firstly, we use the statistics of node representations in different clusters and clusters probability
to calculate the variance:

V ar(Z) = E(Z2|e = D)πD + E(Z2|e = R)πR − E(Z)2

= (V ar(Z|e = D) + E(Z|e = D)2)πD

+ (V ar(Z|e = R) + E(Z|e = R)2)πR − E(Z)2

= (Σ2
D + µ2

D)πD + (Σ2
R + µ2

R)πR − (µDπD + µRπR)
2.

(14)

Then we calculate the covariance of Z and Y based on the correlation assumption:

Cov(Z, Y ) = E(ZY )− E(Y )E(Z)− E(Y )E(Z) + E(Z)E(Y )

= E[E(ZY |Y )− Y E(Z)− E(Y )E(Z|Y ) + E(X)E(Y )]

= E[(E(Z|Y )− E(E(Z|Y )))(Y − E(Y ))]

= Cov((
µD

π1|D
+

µR

π1|R
− µD

π0|D
− µR

π0|R
)Y, Y )

= (
µD

π1|D
+

µR

π1|R
− µD

π0|D
− µR

π0|R
)π0π1.

(15)

Combining Eq. (14) and Eq. (15) we can see that, the label distribution in cluster πY |e affects the
covariance Cov(Z, Y ). So in this case, the decision boundary is directly influenced by cluster
information.

A.4 Proof of Theorem2

Proof. For analysis, we assume that there are nD nodes belonging to cluster D and nR nodes
belonging to cluster R. So after the transfer, the probability of cluster D is π′

D = nD+nRp
nD+nR

and
probability of cluster R is π′

R = nR−nRp
nD+nR

. The new variance can be calculated as follows:

V ar(Z) = (Σ′2
D + µ2

D)π′
D + (Σ′2

R + µ2
R)π

′
R − (µDπ′

D + µRπ
′
R)

2

= (
Σ2

DnD

nD + nRp
+

nD

nD + nRp
µ2
D +

nRp

nD + nRp
µ2
R

− (
nD

nD + nRp
µD +

nRp

nD + nRp
µR)

2 + µ2
D)(

nD + nRp

nD + nR
)

+ (Σ2
R + µ2

R)
nR − nRp

nD + nR
− (µD

nD + nRp

nD + nR
+ µR

nR − nRp

nD + nR
)2.

(16)

We use π′
Y |e to represent new label distribution in each clusters. Then the new covariance can be

represented as follows:

Cov(Z, Y ) = (
µD

π′
1|D

+
µR

π′
1|R
− µD

π′
0|D
− µR

π′
0|R

)π0π1. (17)

From Eq. (16) and Eq. (17) we can see, the label distribution in cluster still have no effect on V ar(Z).
So we analyze the π′

Y |e which affects the Cov(Z, Y ). We take cluster D as an example. We use
nD0 and nR0 to represent the number of nodes with label 0 in each cluster. Similarly, nD1 and
nR1 to represent the number of nodes with label 1 in each cluster. After the transfer, we calculate
the probability of new label-0 in cluster π′

0|D =
nD0+pnRπ0|R

nD+nRp = nD0+pnR0

nD+nRp . We can see that the
conditional probability π′

0|D approaches to π0, which is as same as label 1, meaning that the effect

14



Table 3: Data statistics.

Datasets Nodes Edges Features Classes Structures
Cora 2708 5429 1433 7 1
Citeseer 3327 4732 3703 6 1
Pubmed 19717 44324 500 3 1

ACM 3025 29281
2210761 1830 3 PAP

PSP

IMDB 3550 66428
13788 1007 3 MAM

MDM

Twitch-Explicit

9498
7126
4648
6549
4385
2772

153138
35324
59382

1123666
37304
63462

3170 2

DE
ENGB

ES
FR
RU
TW

between the decision boundary of classifier and cluster information is weakened. When p = 1,
π′
0|D = π0 and π′

1|D = π1. In this case, the Cov(Z, Y ) = µD(π1 − π0), which has no relations
about cluster information.

B More details of Section 4

B.1 Data statistics

• Cora [20]: The Cora is a citation network. The nodes represent papers and are classified
into three classes. The edges represent their citation relationships. Node attributes are
bag-of-words representations of the papers and the nodes are labeled based on the paper
topics.

• Citeseer [20]: The Citeseer is a link dataset bulit from citeseer web dataset. The nodes are
publications and are divided into six areas. Node attributes are representations of the papers.
The edges are citation links.

• Pubmed [30]: The Pubmed is a searchable database in the medical field. It consists of
nearly twenty thousand nodes. All nodes are divided into three classes. Edges represent
papers citation relationship. Node attributes are bag-of-words of the papers.

• ACM [27]: This network is extracted from ACM dataset where nodes represent papers and
there is an edge between two papers if they have the same author or same subject. So the
nodes have two relations which are Papers-Authors-Papers (PAP) and Papers-Subject-Papers
(PSP). All the papers are divided into three classes. The features are the bag-of-words
representations of paper keywords.

• IMDB [27]: IMDB is a movie network dataset where nodes represent movies and there is
an edge between two movies if they have the same director or same actor. So the nodes have
two relations which are Movie-Actor-Movie (MAM) and Movie-Director-Movie (MDM).
All the movies are divided into three classes and features are the bag-of-words of reviews
and movie information.

• Twitch-Explicit [17]: Twitch datasets contain several networks where nodes represent
Twitch users and edges represent their mutual friendships. Each network is collected from
a particular region. Different networks have different size, densities and maximum node
degrees. All nodes are divided into two classes.

B.2 Additional results

For more comparison, we show result of deleting edges in Table 4.
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Table 4: Quantitative results (%±σ) on node classification for perturbation on graph structures data
while the superscript refers to the results of paired t-test (* for 0.05 level and ** for 0.01 level).

Method
Dele-0.2

Cora Citeseer Pubmed
Acc Macro-f1 Acc Macro-f1 Acc Macro-f1

GCN 80.04±0.48 78.86±0.62 69.68±0.38 67.29±0.49 77.48±0.71 77.32±0.65
SR-GCN 79.80±0.61 78.31±0.55 70.03±0.87 67.62±0.80 78.10±1.10 77.63±1.21
EERM-GCN 78.57±0.78 76.32±0.81 69.95±0.42 67.97±0.60 - -
CIT-GCN(w/o) 80.36±0.34 79.03±0.40 71.38±0.38∗∗ 68.61±0.38∗∗ 79.38±0.37∗∗ 78.85±0.34∗∗
CIT-GCN 80.70±0.42 79.67±0.51 71.20±0.51 68.52±0.46 78.40±0.62 77.96±0.50
GAT 80.22±0.41 79.27±0.35 69.10±0.46 66.20±0.39 76.35±0.62 75.95±0.58
SR-GAT 80.25±0.65 79.29±0.57 68.80±0.49 66.28±0.32 76.55±0.47 75.39±0.56
EERM-GAT 79.15±0.38 77.92±0.29 68.15±0.37 65.31±0.45 - -
CIT-GAT(w/o) 80.98±0.60 80.07±0.46 69.98±0.62 67.32±0.67 76.21±0.48 75.12±0.56
CIT-GAT 81.35±0.35∗ 80.27±0.44∗ 70.11±0.47∗ 67.77±0.57∗ 76.05±0.54 75.65±0.46
APPNP 80.84±0.54 80.13±0.61 70.62±0.96 67.86±0.64 79.41±0.37 78.87±0.36
SR-APPNP 80.11±0.65 80.06±0.77 69.27±0.43 67.77±0.39 75.85±0.55 75.43±0.58
EERM-APPNP 79.17±0.77 79.72±0.59 71.30±0.61 67.92±0.57 - -
CIT-APPNP(w/o) 81.46±0.40 80.57±0.47 72.06±0.28∗∗ 69.01±0.32∗∗ 79.35±0.52 78.68±0.51
CIT-APPNP 81.43±0.39 80.78±0.44 71.84±0.51 68.57±0.55 79.88±0.37 79.29±0.46
GCNII 82.82±0.48 81.03±0.47 71.58±0.50 68.24±0.61 78.65±0.64 77.92±0.53
SR-GCNII 81.75±0.41 81.09±0.38 70.24±0.76 66.87±0.83 78.10±0.52 76.76±0.61
EERM-GCNII 80.05±0.67 79.12±0.53 71.11±0.63 68.02±0.79 - -
CIT-GCNII(w/o) 82.41±0.43 81.07±0.35 71.70±0.92 68.56±0.88 78.85±0.33 79.19±0.23∗
CIT-GCNII 83.20±0.58 81.70±0.63 72.38±0.62∗ 69.13±0.31∗ 79.80±0.73∗ 79.17±0.66

Dele-0.5
GCN 77.28±0.47 75.30±0.56 68.52±0.33 65.59±0.36 77.04±0.32 76.64±0.38
SR-GCN 76.70±0.81 74.59±0.67 67.72±1.10 64.58±1.22 76.35±0.56 76.54±0.63
EERM-GCN 77.30±0.31 75.18±0.45 68.65±0.45 65.55±0.36 - -
CIT-GCN(w/o) 77.05±0.47 75.17±0.38 70.02±0.49 67.10±0.44 77.83±0.21 77.63±0.36∗
CIT-GCN 77.50±0.51 75.58±0.66 70.12±0.55∗∗ 66.81±0.56∗∗ 77.90±0.46 77.23±0.53
GAT 77.22±0.37 75.81±0.32 68.94±0.47 65.98±0.55 75.92±0.63 75.61±0.66
SR-GAT 77.38±0.42 75.86±0.43 68.27±0.73 64.24±0.92 75.31±0.67 74.24±0.78
EERM-GAT 76.62±0.73 74.38±0.68 67.12±0.54 64.01±0.62 - -
CIT-GAT(w/o) 77.52±0.46 76.07±0.42 69.38±0.57 66.24±0.59 76.01±0.47 75.97±0.46
CIT-GAT 77.72±0.55 76.43±0.57 69.44±0.56∗ 66.58±0.47∗ 76.79±0.77∗ 76.43±0.67∗
APPNP 78.52±0.66 77.12±0.67 69.41±0.63 66.43±0.60 77.80±0.63 77.43±0.61
SR-APPNP 77.55±0.49 76.97±0.42 70.81±0.47 66.78±0.61 76.45±0.51 76.37±0.58
EERM-APPNP 77.31±0.55 76.87±0.61 69.91±0.59 66.32±0.62 - -
CIT-APPNP(w/o) 78.80±0.53 77.31±0.43 70.41±0.42 67.30±0.39 78.08±0.34 77.73±0.32
CIT-APPNP 79.02±0.52 78.27±0.48 71.06±0.55∗ 67.57±0.58∗ 77.60±0.61 77.38±0.53
GCNII 80.48±0.45 78.65±0.39 70.04±0.89 66.61±0.83 78.40±0.68 78.18±0.78
SR-GCNII 80.03±0.60 78.38±0.53 70.19±0.71 67.01±0.82 77.98±1.01 76.89±0.92
EERM-GCNII 78.52±0.82 77.02±0.93 69.40±0.67 66.81±0.91 - -
CIT-GCNII(w/o) 79.84±0.43 78.04±0.47 70.72±0.69 67.41±0.57 78.58±0.38 78.24±0.44
CIT-GCNII 80.58±0.62 78.94±0.45 71.32±0.44∗ 68.04±0.33∗ 78.13±0.61 77.89±0.70

B.3 Implementation details

For every GNNs method, we follow the parameter settings from their original paper. SR-GNN and
EERM-GNN are initialized with same parameters suggested by their papers and we also further
carefully turn parameters to get optimal performance.

For our CIT-GNN, we do not change the parameters of the previous part of GNN backbones and only
make an adjustment on our module. Although our transfer process is conducted every k epochs, the
clustering process proceeds all the training procedure. For GCN, GAT and GCNII, we put our CIT
mechanism before the last layer of GNN. For APPNP, we put it in features extract process, that is,
before the last layer of linear transform. We search on the probability of transfer p from 0.05 to 0.3
with step 0.05 and tune epochtimes k of CIT from 2 to 50. For dropout rate, we test ranging is from
0.1 to 0.6. Moreover, we tune the numbers of clusters which is the parameter from spectral clustering
from [10, 20, 30, 40, 50, 100, 200]. We set classification loss coefficient, cutloss coefficient and
orthogonality loss coefficient as 0.5, 0.3, 0.2 respectively. For all models, we randomly run 5 times
and report the average results. For every dataset, we only use original attributes of target nodes, and
assign one-hot id vectors to nodes of other types. We report our experiment setting and parameters in
supplement.

B.3.1 Experiment settings

All experiments are conducted with the following setting:
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• Operating system: CentOS Linux release 7.6.1810
• CPU: Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
• GPU: GeForce RTX 2080 Ti with 11GB and GeForce RTX 3090 with 24GB
• Software versions: Python 3.8; Pytorch 1.10.1; Cuda 11.1;

B.3.2 Baselines

The publicly available implementations of Baselines can be found at the following URLs:

• GCN: https://github.com/tkipf/pygcn
• GAT: https://github.com/Diego999/pyGAT
• APPNP: https://github.com/gasteigerjo/ppnp
• GCNII: https://github.com/chennnM/GCNII
• SR-GNN: https://github.com/GentleZhu/Shift-Robust-GNNs
• EERM: https://github.com/qitianwu/GraphOOD-EERM

For a fairly comparison, we plug the three methods in same code of GNNs model referred from their
papers.

B.3.3 Hyper parameter settings

Our CIT-GNN contains four hyper-parameter, the probability of transfer p, epochtimes k, the number
of clusters m and dropout.

B.3.4 Settings for Section Perturbation on graph structures data

For Cora, Citeseer and Pubmed, our hyper-parameter settings are as follows respectively:

• CIT-GCN: p=0.2/0.1/0.02, k=5/5/20,
m=100/20/100, dropout=0.5/0.1/0.5 .

• CIT-GAT: p=0.1/0.1/0.02, k=5/5/5,
m=100/20/100, dropout=0.6/0.5/0.3 .

• CIT-APPNP: p=0.2/0.2/0.02, k=20/20/20,
m=200/10/200, dropout=0.6/0.1/0.5 .

• CIT-GCNII: p=0.1/0.02/0.1, k=5/10/20,
m=100/40/200, dropout=0.5/0.3/0.3 .

B.3.5 Settings for Section Multiplex networks data

For ACM and IMDB (two relations), our hyper-parameter settings are as follows respectively:

• CIT-GCN: p=0.2/0.02/0.1/0.05, k=10/5/20/5,
m=10/100/40/200, dropout=0.5/0.3/0.6/0.3 .

• CIT-GAT: p=0.2/0.1/0.2/0.1, k=10/5/5/5,
m=10/50/40/50, dropout=0.1/0.1/0.1/0.5 .

• CIT-APPNP: p=0.2/0.1/0.1/0.1, k=5/5/5/5,
m=10/20/40/40, dropout=0.5/0.5/0.5/0.3 .

• CIT-GCNII: p=0.02/0.1/0.1/0.1, k=5/5/5/20,
m=40/100/100/200, dropout=0.1/0.3/0.3/0.1 .

B.3.6 Settings for Section Multigraph data

• CIT-GCN: p=0.02, k=20, m=200, dropout=0.3 .
• CIT-GAT: p=0.05, k=20, m=200, dropout=0.3 .
• CIT-APPNP: p=0.02, k=5, m=200, dropout=0.3 .
• CIT-GCNII: p=0.05, k=20, m=200, dropout=0.5 .
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