
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Towards Adaptive Information Fusion in Graph
Convolutional Networks

Meiqi Zhu, Xiao Wang, Member, IEEE, Chuan Shi*, Member, IEEE , Yibo Li, Junping Du, Member, IEEE

Abstract—Graph Convolutional Networks (GCNs) have gained great popularity in tackling various analytic tasks on graph and network
data. However, some recent studies raise concerns about whether GCNs can optimally integrate node features and topological structures
in a complex graph. In this paper, we first present an experimental investigation. Surprisingly, our experimental results clearly show that
the capability of the state-of-the-art GCNs in fusing node features and topological structures is distant from optimal or even satisfactory.
The weakness may severely hinder the capability of GCNs in some classification tasks, since GCNs may not be able to adaptively
learn some deep correlation information between topological structures and node features. Can we remedy the weakness and design
a new type of GCNs that can retain the advantages of the state-of-the-art GCNs and, at the same time, enhance the capability of
fusing topological structures and node features substantially? We tackle the challenge and propose an Adaptive Multi-channel Graph
Convolutional Network for semi-supervised classification (AM-GCN). The central idea is that we extract the specific and common
embeddings from node features, topological structures, and their combinations simultaneously, and use the attention mechanism to
learn adaptive importance weights of the embeddings. However, considering that the input topology and feature structure in AM-GCN
are still predefined and fixed, once the properties of graph structures are not consistent with tasks, the fusion performance of AM-GCN
will be hindered from the beginning. Therefore, we need to adjust the structure and further propose the Label Propagation guided Multi-
channel Graph Convolutional Network (LPM-GCN). LPM-GCN introduces edge weights learning on both topology and feature spaces to
improve structural homophily, which can better promote the fusion process of graph convolutional networks. Our extensive experiments
on benchmark data sets clearly show that our proposed models extract the most correlated information from both node features and
topological structures substantially, and improves the classification accuracy with a clear margin.

Index Terms—Graph convolutional networks; Network representation learning; Deep learning

✦

1 INTRODUCTION

N ETWORK data is ubiquitous, such as social networks,
biology networks, complex networks and so on [1],

[2], [3] . Recently, Graph Convolutional Networks (GCNs), a
class of neural networks designed to learn graph data, have
shown great popularity in tackling graph analytic problems,
such as node classification [4], [5], graph classification [6],
[7], link prediction [8], [9], recommendation [10], [11], [12].

The typical GCN [13] and its variants [8], [14], [15],
[16], [17] usually follow a message-passing manner. A key
step is feature aggregation, i.e., a node aggregates feature
information from its topological neighbors in each convo-
lutional layer. In this way, feature information propagates
over network topology to node embedding, and then node
embedding learned as such is used in classification tasks.
The whole process is supervised partially by the node labels.
The enormous success of GCN is partially thanks to that
GCN provides a fusion strategy on topological structures
and node features to learn node embedding, and the fusion
process is supervised by an end-to-end learning framework.

Some recent studies, however, disclose certain weak-
nesses of the state-of-the-art GCNs in fusing node features
and topological structures. For example, Li et al. [18] show
that GCNs actually perform the Laplacian smoothing on
node features, and make the node embedding in the whole

• Meiqi Zhu, Xiao Wang, Chuan Shi (corresponding author), Yibo Li,
Junping Du are with Beijing University of Posts and Telecommuni-
cations, China. E-mail: {zhumeiqi, xiaowang, shichuan}@bupt.edu.cn,
liushiliushi0@gmail.com, junpingdu@126.com. Meiqi Zhu is also with
Ant Group. E-mail: zhumeiqi.zmq@antgroup.com

network gradually converge. Nt et al. [19] and Wu et al. [17]
prove that topological structures play the role of low-pass
filtering on node features when the feature information
propagates over network topological structure.

What information do GCNs really learn and fuse from topolog-
ical structures and node features? This is a fundamental ques-
tion since GCNs are often used as an end-to-end learning
framework. A well-informed answer to this question can
help us understand the capability and limitations of GCNs
in a principled way. This motivates our study immediately.

As the first contribution of this study, we present experi-
ments assessing the capability of GCNs in fusing topological
structures and node features. Surprisingly, our experiments
clearly show that the fusion capability of GCNs on net-
work topological structures and node features is clearly
distant from optimal or even satisfactory. Even under some
simple situations that the correlation between node fea-
tures/topology with node label is very clear, GCNs still
cannot adequately fuse node feature and topological struc-
ture to extract the most correlated information (shown in
Section 2). The weakness may severely hinder the capability
of GCNs in some classification tasks, since GCNs may not
be able to adaptively learn some correlation information
between topological structures and node features.

Once the weakness of the state-of-the-art GCNs in the
fusion mechanism is identified, a natural question is, “Can
we remedy the weakness and design a new type of GCNs that
can retain the advantages of the state-of-the-art GCNs and, at the
same time, enhance the capability of fusing topological structures
and node features substantially?” A good fusion capability



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

of GCNs should substantially extract and fuse the most
correlated information for the classification task, however,
one biggest obstacle in reality is that the correlation between
network data and classification task is usually very complex
and agnostic. The classification can be correlated with either
the topology, or node features, or their combinations.

This paper tackles the challenge and first proposes an
Adaptive Multi-channel Graph Convolutional Networks
(AM-GCN) for semi-supervised classification. The central
idea is that we learn the node embedding based on node
features, topological structures, and their combinations si-
multaneously. The rationale is that the similarity between
features and that inferred by topological structures are
complementary to each other and can be fused adaptively
to derive deeper correlation information for classification
tasks. Technically, in order to fully exploit the information in
feature space, we derive the k-nearest neighbor graph gen-
erated from node features as the feature structural graph.
With the feature graph and the topology graph, we prop-
agate node features over both topology space and feature
space, so as to extract two specific embeddings in these two
spaces with two specific convolution modules. Considering
the common characteristics between two spaces, we design
a common convolution module with a parameter sharing
strategy to extract the common embedding shared by them.
We further utilize the attention mechanism to automatically
learn the importance weights for different embeddings, so
as to adaptively fuse them. Moreover, we design the con-
sistency and disparity constraints to ensure the consistency
and disparity of the learned embeddings.

AM-GCN is able to flexibly propagate node features
over topology and kNN graph structures. However, both
of these two structures are also essentially defined inde-
pendently from the final task, e.g., node classification. Once
the properties of graph structures are not consistent with
node label, it will fundamentally hinder the performance.
It is well recognized that a graph with good homophily or
community structure, i.e., nodes within the same class/label
connect more strongly with each other, will be more optimal
for GCN models [20], [21]. The challenge is that the input
graph structure is usually predefined and then fixed, while
we need to adjust the structure to further improve the ho-
mophily, so as to better adapt the property of GCNs. Thus,
we further introduce label propagation guided edge weights
learning on both topology and feature graphs. The label
propagation algorithm can directly help adjust the edge
weights using task labels as supervision, and further help
improve the corresponding structural homophily and intra-
class consistency. Thus the extended new model can better
promote the fusion process with learned graph structures,
referring to Label Propagation Guided Multi-channel Graph
Convolutional Networks (LPM-GCN). LPM-GCN is also in
an end-to-end fashion that unifies the learning process of
AM-GCN and LP for node classification, and LP serves as
a regularization to assist AM-GCN in learning proper edge
weights.

Our contributions are highlighted as follows:

• We present experiments assessing the capability of GCNs
in fusing topological structures and node features and
identify the weakness of GCN. We further study the

important problem, i.e., how to substantially enhance the
fusion capability of GCN for classification.

• We propose a novel adaptive multi-channel GCN frame-
work, AM-GCN, which performs graph convolution op-
eration over both topology and feature spaces. Combined
with the attention mechanism, different information can
be adequately fused.

• We further introduce the label propagation guided edge
weights learning to improve the intra-class consistency
as the extended model LPM-GCN. Both homophily of
the topology and feature graphs will be improved, which
further promotes the fusion process.

• Our extensive experiments on a series of benchmark
data sets clearly show that both AM-GCN and LPM-
GCN outperform the state-of-the-art GCNs and extract
the most correlation information from both node features
and topological structures for classification tasks.

Please note that the preliminary work has been accepted
as a full paper at the research track of the 26th ACM
SIGKDD International Conference on Knowledge Discov-
ery Data Mining [22]. Based on the conference paper, we
substantially extend the original work from the following
aspects: 1) We propose a new LP guided graph structure
learning framework named LPM-GCN in this maniscript,
which adaptively learns the input edge weights for AM-
GCN according to labels for tasks. By changing edge
weights with LPM-GCN, the intra-class consistency will
increase correspondingly, and is further beneficial to the
fusion process of graph convolutional networks. 2) We fur-
ther provide detailed justifications of the AM-GCN and the
extended model LPM-GCN. We first conduct case studies
on two cases in Section 2 using GAT and GraphSAGE,
which confirms that the fusion problem also exists in other
GNN models. We then design the LPM-GCN with a detailed
algorithm. Furthermore, we analyze the computational com-
plexity and number of parameters for AM-GCN and LPM-
GCN in Section 4. 3) To further verify the effectiveness of the
proposed models, we also significantly enrich experiments.
Concretely, we first conduct experiments using LPM-GCN
to analyze the learned edge weights. Then we compare the
effectiveness of using cosine similarity or heat kernel to
construct the feature graph. Besides, we conduct an abla-
tion study to analyze the effectiveness of combining both
the ZCT and ZCF on both AM-GCN and LPM-GCN with
three datasets. As for main node classification experiments,
we add two new baselines (i.e., LP and MLP), one new
dataset (i.e., ACM-PSP). It is worth noting that we rerun
all the analysis tasks using LPM-GCN, which confirms the
superiority of both LPM-GCN and AM-GCN. 4) We enrich
our related work including graph neural networks, graph
structural learning, attention mechanism. We also carefully
polish our paper to improve the language quality.

2 FUSION CAPABILITY OF GCNS: AN EXPERI-
MENTAL INVESTIGATION

In this section, we use two simple yet intuitive cases to
examine whether the state-of-the-art GCNs can adaptively
learn from node features and topological structures in
graphs and fuse them sufficiently for classification tasks.
The main idea is that we will clearly establish the high



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

correlation between node label with network topology and
node features, respectively, then we will check the perfor-
mance of GCN on these two simple cases. A good fusion
capability of GCN should adaptively extract the correlated
information with the supervision of node label, providing a
good result. However, if the performance drops sharply in
comparison with baselines, this will demonstrate that GCN
cannot adaptively extract information from node features
and topological structures, even there is a high correlation
between node features or topological structures with the
node label.

2.1 Case 1: Random Topology and Correlated Node
Features
We generate a random network consists of 900 nodes, where
the probability of building an edge between any two nodes
is 0.03. Each node has a feature vector of 50 dimensions.
To generate node features, we randomly assign 3 labels to
the 900 nodes, and for the nodes with the same label, we
use one Gaussian distribution to generate the node features.
The Gaussian distributions for the three classes of nodes
have the same covariance matrix, but three different centers
far away from each other. In this dataset, the node labels
are highly correlated with the node features, but not the
topological structures.

We apply GCN [13] to train this network. For each class,
we randomly select 20 nodes for training and another 200
nodes for testing. We carefully tune the hyper-parameters
to report the best performance and avoid over smoothing.
Also, we apply MLP [23] to the node features only. The clas-
sification accuracies of GCN and MLP are 75.2% and 100%,
respectively. Furthermore, we also conduct experiments on
GAT [14] and GraphSAGE [15] with same settings, and the
calssification accuracies of GAT and GraphSAGE are 72.3%
and 86.7%.

These results meet the expectation. Since the node fea-
tures are highly correlated with the node labels, MLP shows
excellent performance. GCN extracts information from both
the node features and the topological structures, but cannot
adaptively fuse them to avoid interference from topological
structures. It cannot match the high performance of MLP.
As for GAT and GraphSAGE, the designed attention mech-
anism and sample strategies will increase the convolutional
flexibility, but they also need to solve the fusion problem.

2.2 Case 2: Correlated Topology and Random Node
Features
We generate another network with 900 nodes. This time, the
node features, each of 50 dimensions, are randomly gener-
ated. For the topological structure, we employ the Stochastic
Blockmodel (SBM) [24] to split nodes into 3 communities
(nodes 0-299, 300-599, 600-899, respectively). Within each
community, the probability of building an edge is set to 0.03,
and the probability of building an edge between nodes in
different communities is set to 0.0015. In this data set, the
node labels are determined by the communities, i.e., nodes
in the same community have the same label.

Again we apply GCN to this network. We also apply
DeepWalk [25] to the topology of the network, that is,
the features are ignored by DeepWalk. The classification

accuracies of GCN and DeepWalk are 87% and 100%, re-
spectively. And GAT and GraphSAGE in Case 2 are 78.5%
and 83.5%,respectively DeepWalk performs well because
it models network topological structures thoroughly. GCN
extracts information from both the node features and the
topological structures, but cannot adaptively fuse them to
avoid interference from node features. Similarly with GAT
and GraphSAGE, they all cannot match the high perfor-
mance of DeepWalk.

Summary. These cases show that the current fusion
mechanism of GCN [13] is distant from optimal or even
satisfactory. Even the correlation between node label with
network topology or node features is very high, the current
GCN cannot make full use of the supervision by node
label to adaptively extract the most correlated information.
However, the situation is more complex in reality, because it
is hard to know whether the topology or the node features
are more correlated with the final task, which prompts us to
rethink the current mechanism of GCN.

3 AM-GCN: THE PROPOSED MODEL

Problem Settings: We focus on semi-supervised node clas-
sification in an attributed graph G = (A,X), where A ∈
Rn×n is the symmetric adjacency matrix with n nodes and
X ∈ Rn×d is the node feature matrix, and d is the dimension
of node features. Specifically, Aij = 1 represents there is
an edge between nodes i and j, otherwise, Aij = 0. We
suppose each node belongs to one out of C classes.

The overall framework of AM-GCN is shown in Figure
1. The key idea is that AM-GCN permits node features
to propagate not only in topology space, but also in fea-
ture space, and the most correlated information with node
label should be extracted from both of these two spaces.
To this end, we construct a feature graph based on node
features X. Then with two specific convolution modules,
X is able to propagate over both of feature graph and
topology graph to learn two specific embeddings ZF and
ZT , respectively. Further, considering that the information
in these two spaces has common characteristics, we design
a common convolution module with parameter sharing
strategy to learn the common embedding ZCF and ZCT ,
also, a consistency constraint Lc is employed to enhance the
”common” property of ZCF and ZCT . Besides, a disparity
constraint Ld is to ensure the independence between ZF and
ZCF , as well as ZT and ZCT . Considering that node label
may be correlated with topology or feature or both, AM-
GCN utilizes an attention mechanism to adaptively fuse
these embeddings with the learned weights, so as to extract
the most correlated information Z for the final task.

3.1 Specific Convolution Module

Firstly, in order to capture the underlying structure of nodes
in feature space, we construct a k-nearest neighbor (kNN)
graph Gf = (Af ,X) based on node feature matrix X, where
Af is the adjacency matrix of kNN graph. Specifically, we
first calculate the similarity matrix S ∈ Rn×n among n
nodes. Actually, there are many ways to obtain S, and we
list two popular ones here, in which xi and xj are feature
vectors of nodes i and j:



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Fig. 1: The framework for AM-GCN, including two Specific
Convolution Modules, one Common Convolution Module
and the Attention Mechanism for adaptively fuse most
correlated information for classification.

1) Cosine Similarity: It uses the cosine value of the angle
between two vectors to measure the similarity:

Sij =
xi · xj
|xi||xj |

. (1)

2) Heat Kernel: The similarity is calculated by the Eq. (2)
where t is the time parameter in heat conduction equation
and we set t = 2.

Sij = e−
∥xi−xj∥

2

t . (2)

Here we uniformly choose the Cosine Similarity to obtain
the similarity matrix S, and then we choose top k similar
node pairs for each node to set edges and finally get the
adjacency matrix Af .

Then with the input graph (Af ,X) in feature space, the
l-th layer output Z(l)

f can be represented as:

Z(l)
f = ReLU(D̃

− 1
2

f Ãf D̃
− 1

2

f Z(l-1)
f W(l)

f ), (3)

where W(l)
f is the weight matrix of the l-th layer in GCN,

ReLU is the Relu activation function and the initial Z(0)
f =

X. Specifically, we have Ãf = Af + If and D̃f is the
diagonal degree matrix of Ãf . We denote the last layer
output embedding as ZF . In this way, we can learn the node
embedding which captures the specific information ZF in
feature space.

As for the topology space, we have the original input
graph Gt = (At,Xt) where At = A and Xt = X. Then the
learned output embedding ZT based on topology graph can
be calculated in the same way as in feature space. Therefore,
the specific information encoded in topology space can be
extracted.

3.2 Common Convolution Module
In reality, the feature and topology spaces are not completely
irrelevant. Basically, the node classification task may be
correlated with the information either in feature space or
in topology space or in both of them, which is difficult to
know beforehand. Therefore, we not only need to extract the
specific embedding in these two spaces, but also to extract
the common information shared by the two spaces. In this
way, it will become more flexible for the task to determine
which part of information is the most correlated. To address
this, we design a Common-GCN with parameter sharing
strategy to get the embedding shared in two spaces.

First, we utilize Common-GCN to extract the node em-
bedding Z(l)

ct from topology graph (At, X) as follows:

Z(l)
ct = ReLU(D̃

− 1
2

t ÃtD̃
− 1

2

t Z(l-1)
ct W(l)

c ), (4)

where W(l)
c is the l-th layer weight matrix of Common-GCN

and Z(l-1)
ct is the node embedding in the (l − 1)th layer and

Z(0)
ct = X. When utilizing Common-GCN to learn the node

embedding from feature graph (Af , X), in order to extract
the shared information, we share the same weight matrix
W(l)

c for every layer of Common-GCN as follows:

Z(l)
cf = ReLU(D̃

− 1
2

f Ãf D̃
− 1

2

f Z(l-1)
cf W(l)

c ), (5)

where Z(l)
cf is the l-layer output embedding and Z(0)

cf = X.
The shared weight matrix can filter out the shared character-
istics from two spaces. According to different input graphs,
we can get two output embedding ZCT and ZCF and the
common embedding ZC of the two spaces is:

ZC = (ZCT + ZCF )/2. (6)

3.3 Attention Mechanism
Now we have two specific embeddings ZT and ZF , and one
common embedding ZC . Considering the node label can be
correlated with one of them or even their combinations, we
use the attention mechanism att(ZT ,ZC ,ZF ) to learn their
corresponding importance (αt,αc,αf ) as follows:

(αt,αc,αf ) = att(ZT ,ZC ,ZF ), (7)

here αt,αc,αf ∈ Rn×1 indicate the attention values of n
nodes with embeddings ZT ,ZC ,ZF , respectively.

Here we focus on node i, where its embedding in ZT is
ziT ∈ R1×h (i.e., the i-th row of ZT ). We firstly transform
the embedding through a nonlinear transformation, and
then use one shared attention vector q ∈ Rh′×1 to get the
attention value ωi

T as follows:

ωi
T = qT · tanh(WT · (ziT )T + bT ). (8)

Here WT ∈ Rh′×h is the weight matrix and bT ∈ Rh′×1

is the bias vector for embedding matrix ZT , respectively.
Similarly, we can get the attention values ωi

C and ωi
F for

node i in embedding matrices ZC and ZF , respectively.
We then normalize the attention values ωi

T , ω
i
C , ω

i
F with

softmax function to get the final weight:

αi
T = softmax(ωi

T ) =
exp(ωi

T )

exp(ωi
T ) + exp(ωi

C) + exp(ωi
F )

.

(9)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Larger αi
T implies the corresponding embedding is more

important. Similarly, αi
C = softmax(ωi

C) and αi
F =

softmax(ωi
F ). For all the n nodes, we have the learned

weights αt = [αi
T ],αc = [αi

C ],αf = [αi
F ] ∈ Rn×1, and de-

note αT = diag(αt), αC = diag(αc) and αF = diag(αf ).
Then we combine these three embeddings to obtain the final
embedding Z :

Z = αT · ZT +αC · ZC +αF · ZF . (10)

Actually, the designed attention mechanism aims to
learn adaptive importance weights for embeddings. Some
prior works also perform adaptive selection for positive
samples [26]. However, our designed adaptive fusion is
more beneficial for extracting effective and useful informa-
tion from both specific and common convolution process
with feature graph and topology graph as input.

3.4 Consistency and Disparity Constraints

3.4.1 Consistency Constraint
For the two output embeddings ZCT and ZCF of Common-
GCN, despite the Common-GCN has the shared weight
matrix, here we design a consistency constraint to further
enhance their commonality.

Firstly, we use L2-normalization to normalize the em-
bedding matrix as ZCTnor, ZCFnor. Then, the two normal-
ized matrices can be used to capture the similarity of n
nodes as ST and SF as follows:

ST = ZCTnor · ZT
CTnor, SF = ZCFnor · ZT

CFnor. (11)

The consistency implies that the two similarity matrices
should be similar, which gives rise to the following con-
straint:

Lc = ∥ST − SF ∥2F . (12)

3.4.2 Disparity Constraint
Here because embeddings ZT and ZCT are learned from
the same graph Gt = (At,Xt), to ensure they can cap-
ture different information, we employ the Hilbert-Schmidt
Independence Criterion (HSIC) [27], a simple but effective
measure of independence, to enhance the disparity of these
two embeddings. Due to its simplicity and neat theoretical
properties, HSIC has been applied to several machine learn-
ing tasks [28], [29]. Formally, the HSIC constraint of ZT and
ZCT is defined as:

HSIC(ZT ,ZCT ) = (n− 1)−2tr(RKT RKCT ), (13)

where KT and KCT are the Gram matrices with kT,ij =
kT (ziT , zjT ) and kCT,ij = kCT (ziCT , zjCT ). And R = I− 1

nee
T ,

where I is an identity matrix and e is an all-one column
vector. In our implementation, we use the inner product
kernel function for KT and KCT .

Similarly, considering the embeddings ZF and ZCF are
also learned from the same graph (Af ,X), their disparity
should also be enhanced by HSIC:

HSIC(ZF ,ZCF ) = (n− 1)−2tr(RKF RKCF ). (14)

Then we set the disparity constraint as Ld where:

Ld = HSIC(ZT ,ZCT ) +HSIC(ZF ,ZCF ). (15)

3.5 Optimization Objective for AM-GCN
We use the output embedding Z in Eq. (10) for semi-
supervised multi-class classification with a linear transfor-
mation and a softmax function. Denote the class predictions
for n nodes as Ŷ = [ŷic] ∈ Rn×C where ŷic is the probability
of node i belonging to class c. Then the Ŷ can be calculated
in the following way:

Ŷ = softmax(W · Z + b), (16)

where softmax(x) = exp(x)
ΣC

c=1exp(xc)
is actually a normalizer

across all classes.
Suppose the labeled training set is L, for each l ∈ L the

real label is Yl and the predicted label is Ŷl. Then the cross-
entropy loss for node classification over all training nodes is
represented as Lt where:

Lt = −
∑
l∈L

C∑
i=1

Yli ln Ŷli. (17)

Combining the node classification task and constraints,
we have the following overall objective function:

LAM−GCN = Lt + γLc + βLd, (18)

where γ and β are parameters of the consistency and dis-
parity constraint terms. With the guide of labeled data, we
can optimize the proposed model via back propagation and
learn the embedding of nodes for classification.

4 LPM-GCN: THE EXTENDED MODEL

The proposed AM-GCN is actually a task-oriented frame-
work, where the corresponding fusing mechanism is driven
by the consistency between feature/topology space with
labels. However, AM-GCN still works on the predefined
graph. While, such fixed graph structure inevitably contains
incorrect or noisy edges, which are not beneficial to the
downstream task. Therefore, a more practical GCN model
should be able to not only learn good node representations,
but also adjust the graph structure, so as to make the graph
more optimal for the node classification task. Therefore, we
further use an edge weights learning module to introduce
learnable and soft graphs on both topology and feature
spaces. Using the label propagation process as supervision,
we tend to learn graphs whose edge weights are consistent
with the distribution of labels and beneficial for tasks.
Then we propose the extended Label Propagation guided
Multi-channel Graph Convolutional Networks (LPM-GCN)
model in this section, where the framework of LPM-GCN is
in Figure 2.

4.1 Label Guided Edge Weights Learning
Here, we aim to learn edge weights based on label su-
pervision, without adding additional edges into original
structure. Specifically, we use learnable mask matrices Mt

and Mf to adjust the edge weights of topology graph Ãt and
feature graph Ãf . With the adjacency matrices Ã∗, ∗ ∈ {t, f}
as input, we have the non-negative masked adjacency ma-
trices Ã’∗ in the following ways:

Ã’∗ = M∗ ◦M∗ ◦ Ã∗, ∗ ∈ {t, f} (19)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Fig. 2: The label propagation guided edge weights learning
module for LPM-GCN. MF and MT are two learnable mask
matrices under the supervision of label propagation.

where ◦ is the Hadamard product. Note that Mt and Mf are
initialized as Ãt and Ãf , respectively.

Using the masked adjacency matrices Ã’∗, we then in-
troduce the label as supervision to guide the edge weights
learning using label propagation (LP) [30], [31], [32]. Label
propagation algorithms propagate node labels along edges
while assume that two connected nodes are likely to have
same labels. For both topology graph and feature graph
with partial labeled nodes, we have the same label matrix
Y = [y1, ..., yn]

T where yn ∈ R1×C is the one-hot label
vector (i.e., nodes in labeled set L) or zero vector otherwise
(i.e., nodes in unlabeled set U). Then label propagation
process at the kth (k > 0) iteration with the masked graph
Ã’∗ is formulated as the following two steps:

Y(k)
∗ = D̃∗

−1
Ã’∗Y(k−1)

∗ , ∗ ∈ {t, f} (20)

Y(k)
∗ m = Y(0)

∗ m,∀m ∈ L, (21)

where Y(0)
∗ = Y. Firstly, the label information is propagated

along the normalized adjacency in Eq. (20). Then the labeled
nodes should be reset to persist the initial label information
in Eq. (21) and avoid the overpowering influence of unla-
beled nodes. After K iterations, the final predicted label
matrices Y(K)

∗ are generated based on the corresponding
graph.

Then the masked adjacency matrices Ã’t and Ã’f can
be optimized through minimizing the difference between
ground-truth labels and labels reconstructed from multi-hop
neighbors:

LLP (Ã’∗) = −
∑
l∈L

C∑
i=1

Y(0)
∗ li lnY(K)

∗ li, ∗ ∈ {t, f} (22)

where Y(0)
∗ = Y, L is the labeled set, and M∗ are the

learnable variables. With the above optimization objective,
the model will increase the weight of edges between nodes
of the same label. In this way, the potential intra-class edges
will be identified and the intra-class consistency of topology
and feature graph can be improved correspondingly.

After using Eq. (22) to optimal both the Ãt and Ãf , we
can get the new adjacency matrices as Ã”∗, ∗ ∈ {t, f}:

Ã”∗ = argmin
Ã’∗

LLP (Ã’∗), ∗ ∈ {t, f}. (23)

Algorithm 1 LPM-GCN
Input: Node features X; Topological adjacency with self-

loop Ãt; Label matrix Y;
Parameter: k, γ, β, λ, iteration number K for LP;
Output: Predicted label matrix Ŷ;

1: //Initialization for feature graph
2: Ãf ← kNN(X, k) + I using Eq. (1);
3: //Initialization for mask matrices
4: Mf ← Ãf ; Mt ← Ãt

5: while Stopping condition is not meet do
6: Ã’∗ ←M∗ ◦M∗ ◦ Ã∗, ∗ ∈ {t, f};
7: // Using label propagation algorithm in Eq. (20)-(21)
8: Y(K)

∗ ← LabelPropagation(Ã’∗,Y,K), ∗ ∈ {t, f};
9: // Using proposed AM-GCN in Section 3

10: Ŷ,Zemb ← AM-GCN(Ã’∗,X), ∗ ∈ {t, f};
11: //Zemb ∈ {ZT ,ZF ,ZCF ,ZCT };
12: Lt ← {Ŷ,Y} using Eq. (17);
13: Lc ← {ZCF ,ZCT } using Eq. (12);
14: Ld ← {ZT ,ZF } using Eq. (15);
15: LLP ← {Y(K)

∗ ,Y} using Eq. (22);
16: LLPM−GCN ← Lt + γLc + βLd + λLLP ;
17: Back-propagate LLPM−GCN to update M∗ and

W’set, ∗ ∈ {t, f} ;
18: end while
19: return Ŷ.

Then we can apply the learned Ã”∗ to the original AM-
GCN framework in Section 3 and further adaptively learn
label consistency and fuse the most useful information from
topology and feature spaces. The updated graphs with
larger intra-class label consistency will be beneficial to AM-
GCN. Specifically, the l-th layer GCN output of specific
convolution module in Eq. (3) change to:

Z(l)
∗ = ReLU(D̃”

− 1
2

∗ Ã”∗D̃”
− 1

2

∗ Z(l-1)
∗ W(l)

∗ ), ∗ ∈ {t, f}. (24)

And the l-th layer GCN output of common convolution
module in Eq.(4) and Eq.(5) change to:

Z(l)
c∗ = ReLU(D̃”

− 1
2

∗ Ã”∗D̃”
− 1

2

∗ Z(l-1)
c∗ W(l)

c ), ∗ ∈ {t, f}. (25)

Using the same optimization objective with AM-GCN in
Eq. (18), we can get the optimal parameter sets for AM-GCN
including all corresponding parameters, and here we mark
them as W′

set:

W′
set = argmin

Wset

LAM−GCN (Wset, Ã”t, Ã”f ). (26)

Actually, the above two main steps including edge
weights learning and parameters optimization are separate.
However, instead of training and adjusting parameters sep-
arately [33], it is empirically better and more elegant to
combine these two steps together and train the model in
an end-to-end mode in practice:

W’set, Ã”t, Ã”f = argmin
Wset,Ã’t,Ã’f

{
LAM−GCN (Wset, Ã’t, Ã’f )

+ λ
(
LLP (Ã’t) + LLP (Ã’f )

)}
,

(27)
where λ is the hyper-parameter for balance. In this way,
label propagation on Ãt and Ãf serve as a regularization



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

term that assist the learning of edge weights. Then in Eq.(27)
we get the complete optimization object for LPM-GCN.

4.2 Complexity Analysis
Firstly, we list the used notations for complexity analysis
here: C is the number of class for node classification, N is
the number of nodes, E is the number of edges, and M is
the number of parameters for GCN. We then analyze the
complexity for both AM-GCN and LPM-GCN.

As for AM-GCN, we use the learned embedding Z
as outputs, where Z is calculated with Eq.(10). Since all
the ZT , ZF , ZC are calculated with four GCNs, and the
computational complexity for GCN is O(ECD), then the
corresponding computational complexity for AM-GCN is
O(4 ∗ ECD). With the parameter sharing strategies, the
number of parameters for AM-GCN is three times of GCN
as O(3 ∗M).

As for LPM-GCN, the additional computations com-
pared with AM-GCN include the calculation for the ad-
justable adjacency matrix in Eq.(19) and the label propaga-
tion process in Eq.(20). Actually, M∗ is the parameter matrix
initialized with the adjacency matrices with E edges, and ◦
is the Hadamard product. Then computational cost is O(E)
for process in Eq. (19) and O(EC) for process in Eq. (20).
Considering that both feature graph and topology graph
are updated, the total time complexity for LPM-GCN is
O(4∗ECD+2∗E+2∗EC). And the number of parameters
for LPM-GCN are O(3 ∗M + 2 ∗ E).

4.3 Discussion
In this part, we make some further discussions on the
proposed LPM-GCN and AM-GCN.

First, we compare the multi-channel convolution process
with the Multiple Knowledge Representation [34]. Multiple
Knowledge Representation (MKR) aims to acquire represent
and manipulate knowledge at multiple abstraction levels,
from different sources or derived by different approaches.
MKR reinforces the strengths of different presentations,
and helps to improve the generalization, explainability of
models, and reduce the data bias. Although the proposed
AM-GCN/LPM-GCN somehow introduce the multi-source
features, it focuses on introducing different graph structures
(i.e., topology or feature graph) than different representation
approaches. AM-GCN and LPM-GCN pay more attention
on the multiple structures to propagate feature and are more
flexible for improving the fusion process of GCN.

Then, we discuss why using the label propagation al-
gorithm as supervision is helpful for increasing the fusion
capability based on intra-class consistency. Firstly, GCN
and LP are closely related to each other. Both of them
are under the assumption of homophily, i.e., the connected
data samples tend to be similar or have same labels. And
the inherent difference between them can be considered
as the object (features/labels) to be propagated before the
predictions [35]. In this way, the label smoothing process on
topology using LP can also bring inspiration for studying
the feature and topology fusing process of GCN. Secondly,
the fusion process using GCN is always interpreted as the
feature smoothing process on the network topology, where
the intra-class feature influence (i.e., influence on features

TABLE 1: The statistics of the datasets.
Dataset Nodes Edges Classes Features Training Test
Citeseer 3327 4732 6 3703 120/240/360 1000
UAI2010 3067 28311 19 4973 380/760/1140 1000
ACM-PAP 3025 13128 3 1870 60/120/180 1000
ACM-PSP 3025 1103868 3 1870 60/120/180 1000
BlogCatalog 5196 171743 6 8189 120/240/360 1000
Flickr 7575 239738 9 12047 180/360/540 1000
CoraFull 19793 65311 70 8710 1400/2800/4200 1000

between nodes with the same class) plays a key role in
final fusion results. Furthermore, improving the intra-class
feature influence of GCN can be turned into improving
the intra-class label influence with LP by enabling nodes
within the same class/label to connect more strongly [33].
Therefore, we here use LP to improve the intra-class label in-
fluence and further implicitly improve the intra-class feature
influence of GCNs. Specifically, we here make edge weights
trainable under the supervision of LP, and then adaptively
fuse node features and network topology on the learned
graphs to further improve the fusion capability.

5 EXPERIMENTS

5.1 Experimental setup
Datasets. To evaluate the effectiveness of our pro-
posed AM-GCN and LPM-GCN, we conduct exper-
iments on seven benchmark datasets Citeseer [13],
UAI2010 [36], ACM-PAP [37], ACM-PSP [37], BlogCata-
log [38], Flickr [38], CoraFull [39] in Table 1. Comparied
with the previous work [22], ACM-PSP is a new dataset ex-
tracted from the ACM dataset and there is an edge between
two paper if they have same subjects.

Baselines. We compare AM-GCN against the follow-
ing baselines in our experiments: (1) Network Embedding
methods: DeepWalk [25], LINE [40]. (2) Traditional graph
learning methods: Label Propagation (LP) [32], Multi-layer
Perceptron (MLP) [23]. (3) Graph Neural Networks based
methods: ChebNet [41], GCN [13], GAT [14], DEMO-Net [5],
MixHop [4]. And for comparison, instead of traditional
topology graph, we use the sparse k-nearest neighbor graph
calculated from feature matrix as the input graph of GCN
and represent it as kNN-GCN. Actually, DeepWalk, LINE
and LP only utilize network topology information, while
MLP only utilizes node features information, and for the
rest of baselines are GNN-based method using both node
features and network topology as inputs.

Parameters Setting. To more comprehensively evalu-
ate our model, we select three label rates for training set
(i.e., 20, 40, 60 labeled nodes per class) and choose 1000
nodes as the test set. All baselines are initialized with same
parameters suggested by their papers and we also further
carefully turn parameters to get optimal performance. For
our model, we train three 2-layer GCNs with the same
hidden layer dimension (nhid1) and the same output di-
mension (nhid2) simultaneously, where nhid1 ∈ {512, 768}
and nhid2 ∈ {32, 128, 256}. We use 0.0001− 0.0005 learning
rate with Adam optimizer. In addition, the dropout rate is
0.5, weight decay ∈ {5e − 3, 5e − 4} and k ∈ {2 . . . 10}
for k-nearest neighbor graph. The coefficient of consis-
tency constraint and disparity constraints are searched in



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

TABLE 2: Node classification results(%). (We use D.W., Cheb, DEMO, M.H., AMGCNw/o to represent DeepWalk, ChebNet,
DEMO-Net, MixHop and the variants of AMGCN without any constraints. We use Bold and Underline to show the best
and the runner-up results. OOM means out-of-memory.)

Datasets Metrics L/C D.W. LINE LP MLP Cheb GCN k-GCN GAT DEMO M.H. AMGCNw/o AM-GCN LPM-GCN

Citeseer

ACC
20 43.47 32.71 57.70 54.90 69.80 70.30 61.35 72.50 69.50 71.40 72.36 73.10 73.36
40 45.15 33.32 56.50 62.26 71.64 73.10 61.54 73.04 70.44 71.48 73.04 74.70 74.90
60 48.86 35.39 56.00 66.48 73.26 74.48 62.38 74.76 71.86 72.16 74.22 75.56 75.94

F1
20 38.09 31.75 57.34 52.82 65.92 67.50 58.86 68.14 67.84 66.96 67.76 68.42 69.28
40 43.18 32.42 56.94 58.66 68.31 69.70 59.33 69.58 66.97 67.40 68.55 69.81 69.98
60 48.01 34.37 56.59 63.61 70.31 71.24 60.07 71.60 68.22 69.31 69.24 70.92 71.38

UAI2010

ACC
20 42.02 43.47 42.00 69.48 50.02 49.88 66.06 56.92 23.45 61.56 68.80 70.10 70.48
40 51.26 45.37 50.60 71.32 58.18 51.80 68.74 63.74 30.29 65.05 72.48 73.14 73.62
60 54.37 51.05 54.20 73.14 59.82 54.40 71.64 68.44 34.11 67.66 73.62 74.40 74.82

F1
20 32.93 37.01 36.01 54.85 33.65 32.86 52.43 39.61 16.82 49.19 56.90 55.61 56.40
40 46.01 39.62 40.49 56.40 38.80 33.80 54.45 45.08 26.36 53.86 64.04 64.88 64.02
60 44.43 43.76 43.53 57.84 40.60 34.12 54.78 48.97 29.05 56.31 68.23 65.99 66.27

ACM-PAP

ACC
20 62.69 41.28 67.90 77.40 75.24 87.80 78.52 87.36 84.48 81.08 89.68 90.40 90.62
40 63.00 45.83 67.90 80.92 81.64 89.06 81.66 88.60 85.70 82.34 89.70 90.76 90.82
60 67.03 50.41 68.90 84.52 85.43 90.54 82.00 90.40 86.55 83.09 90.28 91.42 91.58

F1
20 62.11 40.12 68.31 77.17 74.86 87.82 78.14 87.44 84.16 81.40 89.57 90.43 90.53
40 61.88 45.79 69.25 80.73 81.26 89.00 81.53 88.55 84.83 81.13 89.61 90.66 90.77
60 66.99 49.92 69.24 84.38 85.26 90.49 81.95 90.39 84.05 82.24 90.24 91.36 91.54

BlogCatalog

ACC
20 38.67 58.75 40.90 75.16 38.08 69.84 75.49 64.08 54.19 65.46 79.56 81.98 82.58
40 50.80 61.12 47.70 81.24 56.28 71.28 80.84 67.40 63.47 71.66 83.30 84.94 85.26
60 55.02 64.53 48.30 85.30 70.06 72.66 82.46 69.95 76.81 77.44 85.94 87.30 87.48

F1
20 34.96 57.75 38.85 73.94 33.39 68.73 72.53 63.38 52.79 64.89 79.11 81.36 82.08
40 48.61 60.72 45.30 80.40 53.86 70.71 80.16 66.39 63.09 70.84 82.83 84.32 84.91
60 53.56 63.81 45.75 84.38 68.37 71.80 81.90 69.08 76.73 76.38 85.53 86.94 87.07

Flickr

ACC
20 24.33 33.25 19.10 56.06 23.26 41.42 69.28 38.52 34.89 39.56 74.58 75.26 75.62
40 28.79 37.67 20.30 68.58 35.10 45.48 75.08 38.44 46.57 55.19 76.00 80.06 80.36
60 30.10 38.54 25.20 75.58 41.70 47.96 77.94 38.96 57.30 64.96 80.56 82.10 82.30

F1
20 21.33 31.19 12.46 55.76 21.27 39.95 70.33 37.00 33.53 40.13 75.21 74.63 75.34
40 26.90 37.12 14.39 67.65 33.53 43.27 75.40 36.94 45.23 56.25 76.81 79.36 80.34
60 27.28 37.77 19.29 75.02 40.17 46.58 77.97 37.35 56.49 65.73 80.37 81.81 81.82

CoraFull

ACC
20 29.33 17.78 51.80 48.12 53.38 56.68 41.68 58.44 54.50 47.74 56.24 58.90 58.90
40 36.23 25.01 55.90 53.68 58.22 60.60 44.80 62.98 60.28 57.20 62.22 63.62 62.70
60 40.60 29.65 56.80 56.30 59.84 62.00 46.68 64.38 61.58 60.18 64.88 65.36 64.60

F1
20 28.05 18.24 46.73 43.05 47.59 52.48 37.15 54.44 50.44 45.07 51.22 54.74 54.78
40 33.29 25.43 52.57 49.23 53.47 55.57 40.42 58.30 56.26 53.55 57.04 59.19 58.63
60 37.95 30.87 54.25 51.83 54.15 56.24 43.22 59.61 57.26 56.40 60.15 61.32 60.85

ACM-PSP

ACC
20 62.50 62.11 63.50 75.24 79.86 64.50 82.46 67.04 OOM 79.40 87.54 89.26 90.04
40 63.49 62.77 66.30 81.64 82.98 65.62 85.26 68.88 OOM 82.36 87.80 89.50 90.38
60 66.31 64.33 66.20 85.43 86.28 70.22 86.26 69.46 OOM 82.80 88.86 90.30 90.72

F1
20 61.25 60.56 61.09 77.17 79.48 57.60 82.34 59.88 OOM 79.46 87.34 89.07 89.88
40 62.87 60.86 64.96 80.73 82.85 58.31 85.25 64.50 OOM 82.53 87.73 89.50 90.26
60 65.78 64.28 64.82 84.38 86.06 67.87 86.24 66.50 OOM 82.78 88.82 90.21 90.61

{0.01, 0.001, 0.0001} and {1e−10, 5e−9, 1e−9, 5e−8, 1e−
8}. For all methods, we run 5 times with the same partition
and report the average results. And we use Accuracy (ACC)
and macro F1-score (F1) to evaluate performance of models.
As for the LPM-GCN, we further fine tune the hyper-
parameters sets based on the settings for AM-GCN.

5.2 Node classification
The node classification results are reported in Table 4, where
L/C means the number of labeled nodes per class. We have
the following observations: Compared with all baselines, the
proposed LPM-GCN and AM-GCN generally achieve the
best and the runner-up performance on all datasets with all
label rates. The results demonstrate the effectiveness of both
LPM-GCN and AM-GCN.

• The extended model LPM-GCN always makes some
improvements against AM-GCN on all datasets, which
means the LP guided edge weights learning strategy is
effective. What’s more, the AMGCNw/o variants, with-
out any constraints, still achieve very competitive per-
formance against all baselines, demonstrating that our
framework is stable and competitive.

• AM-GCN consistently outperforms GCN and kNN-GCN
on all the datasets, indicating the effectiveness of the
adaptive fusion mechanism in AM-GCN, because it can
extract more useful information than only performing
GCN and kNN-GCN respectively. And the adaptive abil-
ity of AM-GCN is significant for application because of
the complexity of the real datasets.

• Comparing with GCN and kNN-GCN, we can learn that



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

72.0

73.0

74.0

75.0

76.0

20 40 60

A
cc
u
ra
cy

Citeseer

AM-GCN-w/o AM-GCN-d

AM-GCN-c AM-GCN

LPM-GCN

68.0

70.0

72.0

74.0

20 40 60

A
cc
u
ra
cy

UAI2010

AM-GCN-w/o AM-GCN-d

AM-GCN-c AM-GCN

LPM-GCN

88.0

89.0

90.0

91.0

92.0

20 40 60

A
cc
u
ra
cy

ACM-PAP

AM-GCN-w/o AM-GCN-d

AM-GCN-c AM-GCN

LPM-GCN

79.0

82.0

85.0

88.0

20 40 60

A
cc
u
ra
cy

BlogCatalog

AM-GCN-w/o AM-GCN-d

AM-GCN-c AM-GCN

LPM-GCN

73.0

75.0

77.0

79.0

81.0

83.0

20 40 60

A
cc
u
ra
cy

Flickr

AM-GCN-w/o AM-GCN-d

AM-GCN-c AM-GCN

LPM-GCN

87.0

88.0

89.0

90.0

91.0

20 40 60

A
cc
u
ra
cy

ACM-PLP

AM-GCN-w/o AM-GCN-d

AM-GCN-c AM-GCN

LPM-GCN

56.0

58.0

60.0

62.0

64.0

20 40 60

A
cc
u
ra
cy

CoraFull

AM-GCN-w/o AM-GCN-d

AM-GCN-c AM-GCN

LPM-GCN

Fig. 3: Ablation experimental results of the LPM-GCN and AM-GCN and their variants on seven datasets.

(a) DeepWalk (b) GCN (c) GAT (d) AM-GCN (e) LPM-GCN

Fig. 4: Visualization of the learned node embeddings on BlogCatalog dataset. The Silhouette Coefficient for AM-GCN is
0.2529 and for LPM-GCN is 0.2608.

there does exist structural difference between topology
graph and feature graph and performing GCN on tradi-
tional topology graph does not always show better result
than on feature graph. For example, in BlogCatalog, Flickr
and UAI2010, the feature graph performs better than
topology. This further confirms the necessity of introduc-
ing feature graph in GCN.

• Moreover, compared with GCN, the improvement of AM-
GCN is more substantial on the datasets with better fea-
ture graph (kNN), such as UAI2010, BlogCatalog, Flickr.
This implies that AM-GCN introduces a better and more
suitable kNN graph for label to supervise feature propa-
gation and node representation learning.

5.3 Analysis of variants
In this section, we compare AM-GCN with its three variants
and the extended model LPM-GCN on all datasets to val-
idate the effectiveness of consistency constraints, disparity
constraints and the LP guided edge weights learning.
• AM-GCNw/o: A variant of AM-GCN without constraints
Lc and Ld.

• AM-GCNc: A variant of AM-GCN only with the consis-
tency constraint Lc.

• AM-GCNd: A variant of AM-GCN only with the disparity
constraint Ld.

From the results in Figure 3, we can draw the following
conclusions: (1) The results of LPM-GCN are consistently
better than AM-GCN, indicating that the edge weights
learning with label propagation is useful for the label-
consistency learning and information fusion of our frame-

work. (2) The results of AM-GCN are consistently better
than all the other three variants, indicating the effectiveness
of using the two constraints together. (3) The results of AM-
GCNc and AM-GCNd are usually better than AM-GCNw/o

on all datasets with all label rates, verifying the usefulness of
the two constraints. (4) AM-GCNc is generally better than
AM-GCNd on all datasets, which implies the consistency
constraint plays a more vital role in this framework.

5.4 Visualization
For a more intuitive comparison and to further show the
effectiveness of our proposed model, we conduct the task
of visualization on the BlogCatalog dataset. We use the
output embedding on the last layer of LPM-GCN (or AM-
GCN, GCN, GAT) before softmax and plot the learned
embedding of the test set using t-SNE [42]. The results of
BlogCatalog in Figure 4 are colored by real labels.

From Figure 4, we can find that the results of Deep-
Walk, GCN and GAT are not satisfactory, because the nodes
with different labels are mixed together. Apparently, the
visualization of AM-GCN and LPM-GCN perform better,
where the learned embedding has a more compact structure,
the highest intra-class similarity, and the clearest distinct
boundaries among different classes.

To further analyze the visualization results between AM-
GCN and LPM-GCN, we calculate the Silhouette Coefficient
[43], where a higher Silhouette Coefficient score relates to
a better defined clusters. Then we record the average Sil-
houette Coefficient for all nodes on the BlogCatalog dataset
with 0.2529 for AM-GCN and 0.2608 for LPM-GCN. We can



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

(a) ACM-PAP

(b) UAI2010

Fig. 5: Analysis on the common embeddings ZCT and ZCF .

see that LPM-GCN have better clusters compared with AM-
GCN, which means that the learned embeddings of LPM-
GCN between different classes are more separable than
those of AM-GCN, implying that LP guided edge weights
learning will make the embedding more discriminative.

5.5 Analysis of Common Convolutional Embedding
To demonstrate the effectiveness of combing ZCT and ZCF ,
we include another ablation studies on both AM-GCN and
LPM-GCN with ACM-PAP and UAI2010. The correspond-
ing variants are shown as follow:
• AM-GCNCw/o

: A variant of AM-GCN without both ZCT

and ZCF .
• AM-GCNCTw/o

: A variant of AM-GCN without ZCT .
• AM-GCNCFw/o

: A variant of AM-GCN without ZCF .
• LPM-GCNCw/o

: A variant of LPM-GCN without both
ZCT and ZCF .

• LPM-GCNCTw/o
: A variant of LPM-GCN without ZCT .

• LPM-GCNCFw/o
: A variant of LPM-GCN without ZCF .

From the results in Figure 5, we can see that represen-
tations without any common embedding ZCT or ZCF have
the worst performance. And the representations combining
both ZCT and ZCF have the best results on all three datasets
with AM-GCN and LPM-GCN. From these results we can
see that it is necessary to utilize both common embeddings
ZCT and ZCF to achieve better prediction results for AM-
GCN and LPM-GCN.

5.6 Analysis of attention mechanism
In order to investigate whether the attention values learned
by our proposed model are meaningful, we analyze the at-
tention distribution and attention learning trend using LPM-
GCN, respectively. And Topology, Common and Feature in
Figure 6 and Figure 7 correspond to the attention weights
of embedding ZT , ZC and ZF in Eq. (10). The results of
AM-GCN is similar with that of LPM-GCN.

Analysis of attention distributions. Our proposed mod-
els learns two specific embeedings and one common em-
bedding, each of which is associated with the attention

values. We conduct the attention distribution analysis on
all datasets with 20 label rate, where the results are shown
in Figure 6. As we can see, for Citeseer, ACM, CoraFull, the
attention values of specific embeddings in topology space
are larger than the values in feature space, and the values
of common embeddings are between them. This implies that
the information in topology space should be more important
than the information in feature space. To verify this, we can
see that the results of GCN are better than kNN-GCN in
Table 4. Conversely, for UAI2010, BlogCatalog and Flickr, in
comparison with Figure 6 and Table 4, we can find kNN-
GCN performs better than GCN, meanwhile, the attention
values of specific embeddings in feature space are also larger
than those in topology space. In summary, the experiment
demonstrates that our proposed models is able to adaptively
assign larger attention value for more important informa-
tion. Due to the space limitation, we mainly show the results
of LPM-GCN in this paper, while similar results of AM-
GCN are provided in our KDD paper [22].

Analysis of attention trends. Here we also analyze
the changing trend of attention values during the training
process with LPM-GCN. Here we take Citeseer, BlogCatalog
as examples in Figure 7, where x-axis is the epoch and y-
axis is the average attention value of each embedding. We
can see that at the beginning, the average attention values of
Topology, Feature, and Common are almost the same, with
the training epoch increasing, the attention values become
different. For example, in BlogCatalog, the attention value
for topology gradually decreases, while the attention value
for feature keeps increasing. This phenomenon is consistent
with the conclusions in Table 4 and Figure 6, i.e., the feature
graph (kNN-GCN) performs better than GCN and the infor-
mation in feature space is more important than in topology
space. We can see that LPM-GCN can learn the importance
of different embeddings step by step.

5.7 Analysis on the learned edge weights
In order to verify that the LP guided edge weights learning
is able to increase the intra-class consistency and is suitable
for the AM-GCN framework, we evaluate the updated
graph and original input graph with Modularity.

Modularity is a measure of the quality of a particular
division of a network [44], [45]. Formally, the Modularity
score is defined as :

Q =
1

2m

∑
(Aij −

kikj
2m

)δ(Ci, Cj). (28)

Here A is the adjacency matrix of an undirected weighted
graph with self-loop, Aij is the edge weight of node i and
node j, m = 1

2

∑
ij Aij , ki =

∑
j Aij , Ci is the class that

node i belongs to and δ(Ci, Cj) = 1 if Ci = Cj . Given
the network structure, Modularity can evaluate whether the
results of community division is good or not. And the higher
Modularity score means a better partition. On the other
hand, considering that a higher Modularity usually implies
a clearer community structure, we can compare the original
input graph structure and updated graph structure based
on modularity, so as to check which one will emerge more
clearer community structure.

The results are shown in Table 3, and we have the fol-
lowing conclusions: (1) The Modularity scores of all datasets



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Topology Common Feature
0

0.2

0.4

0.6

0.8

A
tt

en
ti

o
n

 V
a
lu

e

(a) Citeseer

Topology Common Feature
0

0.2

0.4

0.6

0.8

A
tt

en
ti

o
n

 V
a
lu

e

(b) UAI2010

Topology Common Feature
0

0.2

0.4

0.6

0.8

A
tt

en
ti

o
n

 V
a
lu

e

(c) ACM-PAP

Topology Common Feature
0

0.2

0.4

0.6

0.8

A
tt

en
ti

o
n

 V
a
lu

e

(d) BlogCatalog

Topology Common Feature
0

0.2

0.4

0.6

0.8

A
tt

en
ti

o
n

 V
a
lu

e

(e) Flickr

Topology Common Feature
0

0.2

0.4

0.6

0.8

A
tt

en
ti

o
n

 V
a

lu
e

(f) CoraFull

Topology Common Feature
0

0.2

0.4

0.6

0.8

A
tt

en
ti

o
n

 V
a
lu

e

(g) ACM-PSP

Fig. 6: Analysis of attention distribution with LPM-GCN.

TABLE 3: Modularity comparisons on updated graphs with LPM-GCN. Old and New respectively represent the
modularity scores for original input graph and updated graph. We use Bold to mark the higher improvement.

Dataset Topology Graph Feature Graph
Old New Improvement Old New Improvement

Citeser 0.6167 0.6687 +5.20% 0.4526 0.4707 +1.81%
UAI 0.2926 0.3008 +0.82% 0.5133 0.5363 +2.30%

ACM-PAP 0.4986 0.5107 +1.21% 0.4450 0.4504 +0.54%
BlogCatalog 0.2333 0.2345 +0.12% 0.6280 0.6398 +1.18%

Flickr 0.1333 0.1335 +0.02% 0.7106 0.7160 +0.54%
ACM-PSP 0.3014 0.3016 +0.02% 0.4450 0.4506 +0.56%

0 4 8 12 16 20 24
0.28

0.33

0.38

A
tt

en
ti

o
n

 V
a
lu

e

Topology

Common

Feature

(a) Citeseer

0 4 8 12 16
0.05

0.25

0.45

0.65

A
tt

en
ti

o
n

 V
a
lu

e

Topology

Common

Feature

(b) BlogCatalog

Fig. 7: The attention changing trends w.r.t epochs.

on both the topology graph and the feature graph are
improved, indicating the LP guided edge weight updating
can effectively help learn a better network structure and im-
prove the intra-class smoothing, i.e. edge weights of nodes
in the same class are increased. (2) From the Modularity
scores on the initial topology graph and feature graph,
we can also know about the structure difference between
the two spaces. And larger modularity means larger label
consistency for the graph. For Citeseer and ACM-PAP, the
topological modularity is larger than that of feature space,
indicating that the label consistency of topology space is
larger. And for UAI, BlogCatalog, Flickr and ACM-PSP, the
feature structure is better than the topology structure. These
are also consistent with the analysis of attention mechanism
in section 5.6. (3) Furthermore, the attention mechanism
can also influence the learning process of the edge weights
updating. By comparing Figure 6 and Table 3, we can find

TABLE 4: Comparisons on Kernels for constructing feature
graph.

Datasets Metrics L/C AMGCNC LPMGCNC AMGCNH LPMGCNH

Citeseer

ACC
20 73.10 73.36 72.20 72.80
40 74.70 74.90 72.50 73.20
60 75.56 75.94 73.70 74.60

F1
20 68.42 69.28 68.04 68.27
40 69.81 69.98 68.45 69.95
60 70.92 71.38 69.81 70.67

UAI2010

ACC
20 70.10 70.48 69.20 68.90
40 73.14 73.62 71.30 72.50
60 74.40 74.82 72.20 72.80

F1
20 55.61 56.40 54.57 54.68
40 64.88 64.02 62.34 62.86
60 65.99 66.27 63.79 64.46

ACM-PAP

ACC
20 90.40 90.62 89.58 89.92
40 90.76 90.82 89.65 90.20
60 91.42 91.58 90.04 91.06

F1
20 90.43 90.53 89.42 88.56
40 90.66 90.77 88.57 89.67
60 91.36 91.54 89.95 90.88

that for datasets whose topological attention is larger than
that of feature, the improvement on the topology graph
is also larger than the feature graph. Conversely, for UAI,
BlogCatalog, Flickr, ACM-PSP, the improvements on the
feature graph are larger.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

5.8 Analysis on the Similarity Matrix Construction

We further compare the effectiveness of using cosine simi-
larity or heat kernel to construct the feature graph in Section
3.1. We conduct experiments on three datasets Citeseer,
UAI2010 and ACM-PAP with three label rates and two met-
rics. The experimental results are shown in the Table 5. From
the results, we can find the cosine similarity currently used
in AM-GCN and LPM-GCN for feature graph constructing
works better than the heat kernel on these three datasets.

5.9 Parameter Study

In this section, we investigate the sensitivity of parameters
on Citeseer, BlogCatalog datasets with LPM-GCN models.
Actually, the analysis of the parameters of AM-GCN has
been provided in our KDD paper. Therefore, limited by
space, we only report the results of our extended model
LPM-GCN.

Analysis of consistency coefficient γ. We test the effect
of the weight γ of the consistency constraint in Eq. (18),
and vary it from {1e-6, 1e+3}. The results are shown in
Figure 8. As we can see, with the increase of the consistency
coefficient, the performance raises first and then starts to
drop slowly. Basically, LPM-GCN is stable when the γ is
within the range from 1e-4 to 1e+4 on all datasets. We can
also see that the curves of 20, 40, 60 label rates show a similar
changing trend.

Analysis of disparity constraint coefficient β. We then
test the effect of the weight β of the disparity constraint in
Eq. (18) and vary it from 0 to 1e-5. The results are shown in
Figure 9. Similarly, with the increase of β, the performance
also raises first, but the performance will drop quickly if β
is larger than 1e-6 for Citeseer, while for BlogCatalog, it is
relatively stable.

Analysis of k-nearest neighbor graph k. In order to
check the impact of the top k neighborhoods in kNN graph,
we study the performance of LPM-GCN with a various
number of k ranging from 2 to 10 in Figure 10. Generally,
accuracy increases first and then starts to decrease. This is
probably because if the graph becomes dense, the feature is
very easy to be smoothed, and also, too many edges may
also introduce some noisy edges here.

Analysis of LP balance coefficient λ. λ is a new param-
eter for LPM-GCN which is used as the balance coefficient
in Eq. (27). It can control the LP influence against initial
AM-GCN. Actually, different datasets may have different
suitable balance coefficient. And in some cases, such as
dataset BlogCatalog, larger λ i.e. more than 100, may also
bring enhancement on results. But it is clear that training
without the LP loss (i.e., λ = 0) always get worse results,
justifying it is hard for AM-GCN part to learn both Wset

and edge weights simultaneously without the assistance of
LP-guided regularization.

Analysis of LP iteration times in LPM-GCN. We also
evaluate the influence of the number of LP iterations in
LPM-GCN in Citeseer, BlogCatalog datasets, and vary it
from 1 to 9. From Figure 6 we observe that the performance
raise at first when the number of iteration increase and then
the accuracy stops increasing and decreases since a large
number of LP will include more noisy nodes. We can also

(a) Citeseer (b) BlogCatalog

Fig. 8: Analysis of parameter γ with LPM-GCN.

(a) Citeseer (b) BlogCatalog

Fig. 9: Analysis of parameter β with LPM-GCN.

(a) Citeseer (b) BlogCatalog

Fig. 10: Analysis of parameter k with LPM-GCN.

see that the curves of 20, 40, 60 label rates show a similar
changing trend.

6 RELATED WORK

Graph Neural Networks. Recently, Graph Neural Net-
works model and its variants [46], [47], [48], [49], [50],
[51], [52] have been widely studied. Generally, GNNs fall
into two categories, spectral-based [41], [53] and spatial-
based. Actually, the spatial models usually follow a message
passing manner where the key step is feature propagating
and aggregating along the network topology. GCN [13]
aggregates node features from one-hop neighbors. GAT [14]
introduces an attention mechanism to aggregate node fea-
tures with the learned weights. GraphSAGE [15] proposes to
sample and aggregate features from a node’s local neighbor-
hood with mean/max/LSTM pooling. Some recent works
give analysis on the roles of topology, feature or labels.
For example, [18] shows that GCNs actually perform the
Laplacian smoothing on node features, [19] and [17] prove
that topological structures play the role of low-pass filtering
on node features; DSP-GCN [54] argue that attributes may
be interfered by the utilization of topology information and
cause misclassifications; ConfGCN [55] focus on the label
confidence scores to define the influence of one node on
another during the propagation process. However, none of
them take advantage of feature structural information and



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

(a) Citeseer (b) BlogCatalog

Fig. 11: Analysis of parameter λ with LPM-GCN.

(a) Citeseer (b) BlogCatalog

Fig. 12: Analysis of LP iteration times in LPM-GCN.

whether GCNs can adaptively extract the most correlated
information for specific tasks remains unclear.

Graph Structure Learning and Attention Mechanism.
Real-world graphs are often noisy and incomplete, which
means topology graph is not always right for feature propa-
gation in GCNs. Thus many works focus on learning graph
structure while training GNNs. For example, LDS [56] uses
a bilevel optimization process to learn the graph structure
and the parameters of GCNs jointly. DIAL-GNN [57] casts
the graph structure learning problems as a data-driven
similarity metric learning problem in an inductive setting.
Furthermore, some attention-based GNNs [14], [58], [59]
are also trying to find a more suitable graph. As for LPM-
GCN, it directly utilizes label similarities rather than feature
similarities to supervise the edge weights learning and is
more beneficial for final tasks.

7 CONCLUSION

In this paper, we rethink the fusion mechanism of net-
work topology and node features in GCN and surprisingly
discover it is distant from optimal or even satisfactory
with empirical experiments. Motivated by this fundamen-
tal problem, we study how to adaptively learn the most
correlated information from topology and node features
and sufficiently fuse them for classification. We propose
a multi-channel model AM-GCN to learn both topology
structural information and feature structural information
at the same time and AM-GCN is able to learn suitable
importance weights for the combination of these informa-
tion. Moreover, we introduce the label propagation based
edge weights learning and propose the LPM-GCN model
to further improve the performance. Extensive experiments
well demonstrate the superior performance over the state-
of-the-art models on seven real-world datasets.

REFERENCES

[1] W. Li, Y. Jia, and J. Du, “Recursive state estimation for complex
networks with random coupling strength,” Neurocomputing, vol.
219, pp. 1–8, 2017.

[2] F. Kou, J. Du, Y. He, and L. Ye, “Social network search based on
semantic analysis and learning,” CAAI Trans. Intell. Technol., vol. 1,
no. 4, pp. 293–302, 2016.

[3] F. Kou, J. Du, Z. Lin, M. Liang, H. Li, L. Shi, and C. Yang, “A
semantic modeling method for social network short text based on
spatial and temporal characteristics,” J. Comput. Sci., vol. 28, pp.
281–293, 2018.

[4] S. Abu-El-Haija, B. Perozzi, A. Kapoor, N. Alipourfard, K. Lerman,
H. Harutyunyan, G. V. Steeg, and A. Galstyan, “Mixhop: Higher-
order graph convolutional architectures via sparsified neighbor-
hood mixing,” in ICML, 2019, pp. 21–29.

[5] J. Wu, J. He, and J. Xu, “Demo-net: Degree-specific graph neural
networks for node and graph classification,” in SIGKDD, 2019, pp.
406–415.

[6] H. Gao and S. Ji, “Graph u-nets,” in ICML, 2019, pp. 2083–2092.
[7] M. Zhang, Z. Cui, M. Neumann, and C. Yixin, “An end-to-end

deep learning architecture for graph classification,” in AAAI, 2018,
pp. 4438–4445.

[8] J. You, Rex, and J. Leskovec, “Position-aware graph neural net-
works,” in ICML, 2019, pp. 7134–7143.

[9] T. N. Kipf and M. Welling, “Variational graph auto-encoders.”
2016.

[10] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale
recommender systems,” in SIGKDD, 2018, pp. 974–983.

[11] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin, “Graph
neural networks for social recommendation,” in WWW, 2019, pp.
417–426.

[12] C. Shi, X. Han, L. Song, X. Wang, S. Wang, J. Du, and P. S.
Yu, “Deep collaborative filtering with multi-aspect information in
heterogeneous networks,” IEEE Trans. Knowl. Data Eng., vol. 33,
no. 4, pp. 1413–1425, 2021.

[13] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in ICLR, 2017.

[14] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in ICLR, 2018.

[15] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in NeurIPS, 2017, pp. 1024–1034.

[16] J. Ma, P. Cui, K. Kuang, X. Wang, and wenwu zhu, “Disentangled
graph convolutional networks,” in ICML, 2019, pp. 4212–4221.

[17] F. Wu, T. Zhang, A. H. de Souza, C. Fifty, T. Yu, and K. Q. Wein-
berger, “Simplifying graph convolutional networks,” in ICML,
2019, pp. 6861–6871.

[18] Q. Li, Z. Han, and X. Wu, “Deeper insights into graph convolu-
tional networks for semi-supervised learning,” in AAAI, 2018, pp.
3538–3545.

[19] H. Nt and T. Maehara, “Revisiting graph neural networks: All we
have is low-pass filters.” arXiv preprint arXiv:1905.09550, 2019.

[20] H. Pei, B. Wei, K. C.-C. Chang, Y. Lei, and B. Yang, “Geom-gcn:
Geometric graph convolutional networks,” in ICLR, 2020.

[21] J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, and D. Koutra,
“Beyond homophily in graph neural networks: Current limitations
and effective designs,” in NeurIPS, 2020.

[22] X. Wang, M. Zhu, D. Bo, P. Cui, C. Shi, and J. Pei, “Am-gcn:
Adaptive multi-channel graph convolutional networks,” in KDD,
2020, pp. 1243–1253.

[23] S. Pal and S. Mitra, “Multilayer perceptron, fuzzy sets, and clas-
sification,” IEEE Transactions on Neural Networks, vol. 3, no. 5, pp.
683–697, 1992.

[24] B. Karrer and M. E. J. Newman, “Stochastic blockmodels and
community structure in networks,” Physical Review E, vol. 83, no. 1,
p. 16107, 2011.

[25] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in SIGKDD, 2014, pp. 701–710.

[26] Y. Ding, H. Fan, M. Xu, and Y. Yang, “Adaptive exploration
for unsupervised person re-identification,” ACM Trans. Multim.
Comput. Commun. Appl., vol. 16, no. 1, pp. 3:1–3:19, 2020.

[27] L. Song, A. Smola, A. Gretton, K. M. Borgwardt, and J. Bedo, “Su-
pervised feature selection via dependence estimation,” in ICML,
2007, pp. 823–830.

[28] D. Niu, J. G. Dy, and M. I. Jordan, “Multiple non-redundant
spectral clustering views,” in ICML, 2010, pp. 831–838.

[29] A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf, “Measuring
statistical dependence with hilbert-schmidt norms,” in ALT, 2005,
pp. 63–77.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

[30] X. Zhu and Z. Ghahramani, “Learning from labeled and unlabeled
data with label propagation,” Center for Automated Learning and
Discovery, CMU: Carnegie Mellon University, USA., 2002.

[31] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf,
“Learning with local and global consistency,” in NeurIPS, 2003,
pp. 321–328.

[32] X. Zhu, J. Lafferty, and R. Rosenfeld, “Semi-supervised learning
with graphs,” Ph.D. dissertation, Carnegie Mellon University,
school of language technologies institute, 2005.

[33] H. Wang and J. Leskovec, “Unifying graph convolutional neural
networks and label propagation,” arXiv preprint arXiv:2002.06755,
2020.

[34] Y. Yang, Y. Zhuang, and Y. Pan, “Multiple knowledge representa-
tion for big data artificial intelligence: framework, applications,
and case studies,” Frontiers Inf. Technol. Electron. Eng., vol. 22,
no. 12, pp. 1551–1558, 2021.

[35] L. Yang, F. Wu, Y. Wang, J. Gu, and Y. Guo, “Masked graph
convolutional network.” in IJCAI, 2019, pp. 4070–4077.

[36] W. Wang, X. Liu, P. Jiao, X. Chen, and D. Jin, “A unified weakly
supervised framework for community detection and semantic
matching,” in PAKDD, 2018, pp. 218–230.

[37] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu,
“Heterogeneous graph attention network,” in WWW, 2019, pp.
2022–2032.

[38] Z. Meng, S. Liang, H. Bao, and X. Zhang, “Co-embedding at-
tributed networks,” in WSDM, 2019, pp. 393–401.

[39] A. Bojchevski and S. Günnemann, “Deep gaussian embedding of
graphs: Unsupervised inductive learning via ranking,” in ICLR,
2018.

[40] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in WWW, 2015, pp.
1067–1077.

[41] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional
neural networks on graphs with fast localized spectral filtering,”
in NeurIPS, 2016, pp. 3844–3852.

[42] L. van der Maaten and G. Hinton, “Visualizing data using t-sne,”
Journal of Machine Learning Research, vol. 9, pp. 2579–2605, 2008.

[43] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation
and validation of cluster analysis,” Journal of computational and
applied mathematics, vol. 20, pp. 53–65, 1987.

[44] M. Newman, “Modularity and community structure in networks,”
Bulletin of the American Physical Society, 2006.

[45] M. E. J. Newman and M. Girvan, “Finding and evaluating com-
munity structure in networks.” Physical Review E, vol. 69, no. 2,
pp. 26 113–26 113, 2004.

[46] H. Gao, Z. Wang, and S. Ji, “Large-scale learnable graph convolu-
tional networks,” in SIGKDD, 2018, pp. 1416–1424.

[47] J. Chen, T. Ma, and C. Xiao, “Fastgcn: Fast learning with graph
convolutional networks via importance sampling,” in ICLR, 2018.

[48] T. Derr, Y. Ma, and J. Tang, “Signed graph convolutional net-
works,” in ICDM, 2018, pp. 929–934.

[49] Y. Ma, S. Wang, C. C. Aggarwal, and J. Tang, “Graph convolutional
networks with eigenpooling,” in SIGKDD, 2019, pp. 723–731.

[50] M. Qu, Y. Bengio, and J. Tang, “Gmnn: Graph markov neural
networks,” in ICML, 2019, pp. 5241–5250.

[51] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are
graph neural networks,” in ICLR, 2019.

[52] Z. Ying, I. Chami, C. Ré, and J. Leskovec, “Hyperbolic graph
convolutional neural networks,” in NeurIPS, 2019, pp. 4869–4880.

[53] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks
and locally connected networks on graphs,” in ICLR, 2014.

[54] L. Yang, Z. Chen, J. Gu, and Y. Guo, “Dual self-paced graph
convolutional network: Towards reducing attribute distortions
induced by topology,” in IJCAI, 2019, pp. 4062–4069.

[55] S. Vashishth, P. Yadav, M. Bhandari, and P. P. Talukdar,
“Confidence-based graph convolutional networks for semi-
supervised learning,” in AISTATS, 2019, pp. 1792–1801.

[56] L. Franceschi, M. Niepert, M. Pontil, and X. He, “Learning discrete
structures for graph neural networks,” in ICML 2019 : Thirty-sixth
International Conference on Machine Learning, 2019, pp. 1972–1982.

[57] Y. Chen, L. Wu, and M. J. Zaki, “Deep iterative and adaptive
learning for graph neural networks,” arXiv:1912.07832, 2019.

[58] K. Zhang, Y. Zhu, J. Wang, and J. Zhang, “Adaptive structural
fingerprints for graph attention networks,” in ICLR, 2020.

[59] K. K. Thekumparampil, S. Oh, C. Wang, and L.-J. Li, “Attention-
based graph neural network for semi-supervised learning,” arXiv
preprint arXiv:1803.03735, 2018.

Meiqi Zhu received the B.S. degree in 2019 and
the M.S. degree in 2022 from Beijing University
of Posts and Telecommunications. She currently
works for the AntGroup, Beijing. Her current re-
search interests are in graph neural networks,
data mining and machine learning.

Xiao Wang is an Assistant Professor in the
School of Computer Science, Beijing Univer-
sity of Posts and Telecommunications. He re-
ceived his Ph.D. degree from the School of Com-
puter Science and Technology, Tianjin Univer-
sity, Tianjin, China, in 2016. He was a post-
doctoral researcher in Department of Computer
Science and Technology, Tsinghua University,
Beijing, China. He got the China Scholarship
Council Fellowship in 2014 and visited Wash-
ington University, as a joint training student from

2014 to 2015. His current research interests include data mining, social
network analysis, and machine learning. Until now, he has published
more than 50 papers in conferences such as AAAI, IJCAI, WWW, KDD,
etc. and journals such as IEEE TKDE, IEEE Trans. on Cybernetics, etc.

Chuan Shi received the B.S. degree from the
Jilin University in 2001, the M.S. degree from
the Wuhan University in 2004, and Ph.D. degree
from the ICT of Chinese Academic of Sciences
in 2007. He joined the Beijing University of Posts
and Telecommunications as a lecturer in 2007,
and is a professor and deputy director of Beijing
Key Lab of Intelligent Telecommunications Soft-
ware and Multimedia at present. His research
interests are in data mining, machine learning,
and evolutionary computing. He has published

more than 40 papers in refereed journals and conferences.

Yibo Li received the BS degree from the Bei-
jing University of Posts and Telecommunications,
China, in 2022. She is currently a master student
in Beijing University of Posts and Communica-
tions, China. Her current research interests are
in graph neural networks and machine learning.

Junping Du received the PhD degree in com-
puter science from the University of Science and
Technology Beijing (USTB), and then held post-
doc fellowship in the Department of Computer
Science, Tsinghua University, Beijing, China.
She joined the School of Computer Science, Bei-
jing University of Posts and Telecommunications
(BUPT), in July 2006, where she is currently
a professor of computer science. She was a
visiting professor with the Department of Com-
puter Science, Aarhus University, Denmark, from

September 1996 until September 1997. Her current research interests
include artificial intelligence, data mining, intelligent management sys-
tem development, and computer applications.


