
A Generalized Neural Diffusion Framework on Graphs

Yibo Li1, Xiao Wang2, Hongrui Liu3, Chuan Shi1*

1Beijing University of Posts and Telecommunications
2Beihang University

3Ant Group
{yiboL, shichuan}@bupt.edu.cn, xiao_wang@buaa.edu.cn, liuhongrui.lhr@antgroup.com

Abstract

Recent studies reveal the connection between GNNs and
the diffusion process, which motivates many diffusion-based
GNNs to be proposed. However, since these two mechanisms
are closely related, one fundamental question naturally arises:
Is there a general diffusion framework that can formally unify
these GNNs? The answer to this question can not only deepen
our understanding of the learning process of GNNs, but also
may open a new door to design a broad new class of GNNs. In
this paper, we propose a general diffusion equation framework
with the fidelity term, which formally establishes the relation-
ship between the diffusion process with more GNNs. Mean-
while, with this framework, we identify one characteristic of
graph diffusion networks, i.e., the current neural diffusion
process only corresponds to the first-order diffusion equa-
tion. However, by an experimental investigation, we show that
the labels of high-order neighbors actually exhibit monophily
property, which induces the similarity based on labels among
high-order neighbors without requiring the similarity among
first-order neighbors. This discovery motives to design a new
high-order neighbor-aware diffusion equation, and derive a
new type of graph diffusion network (HiD-Net) based on the
framework. With the high-order diffusion equation, HiD-Net
is more robust against attacks and works on both homophily
and heterophily graphs. We not only theoretically analyze the
relation between HiD-Net with high-order random walk, but
also provide a theoretical convergence guarantee. Extensive
experimental results well demonstrate the effectiveness of
HiD-Net over state-of-the-art graph diffusion networks.

Introduction
Graphs, such as traffic networks, social networks, citation
networks, and molecular networks, are ubiquitous in the real
world. Recently, Graph Neural Networks (GNNs), which are
able to effectively learn the node representations based on
the message-passing manner, have shown great popularity
in tackling graph analytics problems. So far, GNNs have
significantly promoted the development of graph analysis
towards real-world applications. e.g, node classifification
(Abu-El-Haija et al. 2019; Lei et al. 2022), link prediction
(Kipf and Welling 2016b; You, Ying, and Leskovec 2019),
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subgraph isomorphism counting (Yu et al. 2023), and graph
classifification (Gao and Ji 2019; Zhang et al. 2018).

Some recent studies show that GNNs are in fact intimately
connected to diffusion equations (Chamberlain et al. 2021;
Wang et al. 2021; Thorpe et al. 2022), which can be consid-
ered as information diffusion on graphs. Diffusion equation
interprets GNNs from a continuous perspective (Chamberlain
et al. 2021) and provides new insights to understand exist-
ing GNN architectures, which motives some diffusion-based
GNNs. For instance, (Wang et al. 2021) proposes continuous
graph diffusion. (Thorpe et al. 2022) utilizes the diffusion
process to handle oversmoothing issue. (Song et al. 2022)
considers a graph as a discretization of a Riemannian mani-
fold and studies the robustness of the information propaga-
tion process on graphs. Diffusion equation can also build a
bridge between traditional GNNs and control theory (Zang
and Wang 2020). Although the diffusion process and graph
convolution are closely related, little effort has been made to
answer: Is there a unified diffusion equation framework to for-
mally unify the current GNN architectures? A well-informed
answer can deepen our understanding of the learning mecha-
nism of GNNs, and may inspire to design a broad new class
of GNNs based on diffusion equation.

Actually, (Chamberlain et al. 2021) has explained GCN
(Kipf and Welling 2016a) and GAT (Veličković et al. 2017)
from diffusion equation. However, with more proposed GNN
architectures, it is highly desired to formally revisit the re-
lation between diffusion equation and GNNs. In this paper,
we discover that many GNN architectures substantially can
be unified with a general diffusion equation with the fidelity
term, such as GCN/SGC [22], APPNP[14], GAT [19], AMP
[16], DAGNN [15]. Basically, the diffusion equation de-
scribes that the change of a node representation depends
on the movement of information on graphs from one node
to its neighbors, and the fidelity term constraints that the
change of a node representation depends on the difference
with its initial feature. Furthermore, we show that the uni-
fied diffusion framework can also be derived from an energy
function, which explains the whole framework as an energy
minimization process in a global view. Compared with other
unified frameworks (Zhu et al. 2021; Ma et al. 2021), our
framework is from the diffusion perspective, which has many
advantages. For example, diffusion-based methods are able to
address the common plights of graph learning models such as



oversmoothing (Chamberlain et al. 2021; Wang et al. 2021).
What’s more, the diffusion equation can be seen as partial
differential equations (PDEs) (Chamberlain et al. 2021), thus
introducing many schemes to solve the graph diffusion equa-
tion such as explicit scheme, implicit scheme, and multi-step
scheme, some of which are more stable and converge faster.

Based on the above findings, we can see that the diffu-
sion process employed by most current GNNs just consid-
ers the first-order diffusion equation, which only diffuses
messages among 1-hop neighbors. That is, the first-order
diffusion has the underlying homophily assumption among 1-
hop neighbors. While we empirically discover that the labels
of 2-hop neighborhoods actually appear monophily prop-
erty (Altenburger and Ugander 2018), i.e., nodes may have
extreme preferences for a particular attribute which are un-
related to their own attribute and 1-hop neighbors’ attribute,
but are more likely to be similar with the attribute of their
2-hop neighbors. Simply put, monophily can induce a sim-
ilarity among 2-hop neighbors without requiring similarity
among 1-hop neighbors. So when the 1-hop neighbors are
heterophily-dominant or have noise, the 2-hop neighbors will
provide more relevant context. Therefore, a more practical
diffusion process should take both the first-order and second-
order neighbors into account. How can we design a new type
of graph diffusion networks satisfying the above requirement
based on our framework?

In this paper, we design a new high-order neighbor-aware
diffusion equation in our proposed diffusion framework, and
then derive a High-order Graph Diffusion Network (HiD-
Net). Specifically, our model simultaneously combines the
first-order and second-order diffusion process, then we regu-
larize the diffusion equation by minimizing the discrepancy
between the estimated and the original graph features. The
whole diffusion equation is finally integrated into the APPNP
architecture. With second-order diffusion equation, HiD-Net
is more robust against the attacks and more general on both
homophily and heterophily graphs. We theoretically prove
that HiD-Net is essentially related with the second-order ran-
dom walk. We also provide the convergence guarantee that
HiD-Net will converge to this random walk’s limit distribu-
tion as the number of layers increases, and meanwhile, the
learned representations do not converge to the same vector
over all nodes. The contributions of this paper are summa-
rized as follows:

• We propose a novel generalized diffusion graph frame-
work, consisting of diffusion equation and fidelity term.
This framework, formally establishing the relation be-
tween diffusion process with a wide variety of GNNs,
describes a broad new class of GNNs based on the dis-
cretized diffusion equations on graphs and provides new
insight to the current graph diffusion/neural networks.

• We discover the monophily property of labels, and based
on our diffusion framework, we propose a high-order
graph diffusion network, HiD-Net, which is more general
and robust. We theoretically build the relation between
HiD-Net and second-order random walk, together with
the convergence guarantee.

• Our extensive experiments on both the homophily and

heterophily graphs clearly show that HiD-Net outperforms
the popular GNNs based on diffusion equation.

Related Work
Graph convolutional networks. Recently, graph convolu-
tional network (GCN) models (Bruna et al. 2013; Defferrard,
Bresson, and Vandergheynst 2016; Kipf and Welling 2016a;
Veličković et al. 2017; Hamilton, Ying, and Leskovec 2017)
have been widely studied. Based on the spectrum of graph
Laplacian, (Bruna et al. 2013) generalizes CNNs to graph
signal. Then (Defferrard, Bresson, and Vandergheynst 2016)
further improves the efficiency by employing the Cheby-
shev expansion of the graph Laplacian. (Kipf and Welling
2016a) proposes to only aggregate the node features from the
one-hop neighbors and simplifies the convolution operation.
(Veličković et al. 2017) introduces the attention mechanisms
to learn aggregation weights adaptively. (Hamilton, Ying, and
Leskovec 2017) uses various ways of pooling for aggrega-
tion. More works on GNNs can be found in surveys (Wu et al.
2020b; Zhou et al. 2020).

Diffusion equation on graphs. Graph Heat Equation
(GHE) (Chung and Graham 1997), which is a well-known
generalization of the diffusion equation on graph data, mod-
els graph dynamics with applications in spectral graph theory.
GRAND (Chamberlain et al. 2021) studies the discretized
diffusion PDE on graphs and applies different numerical
schemes for their solution. GRAND++ (Thorpe et al. 2022)
mitigates the oversmoothing issue of graph neural networks
by adding a source term. DGC (Wang et al. 2021) decouples
the terminal time and propagation steps of linear GCNs from
a perspective of graph diffusion equation, and analyzes why
linear GCNs fail to benefit from deep layers. ADC (Zhao et al.
2021) strategies to automatically learn the optimal diffusion
time from the data. However, these works focus on specific
graph diffusion network, thus there is not a framework to
formally unify the GNNs.

The unified GNN framework. (Zhu et al. 2021) estab-
lishes a connection between different propagation mecha-
nisms with a unified optimization problem, and finds out
that the proposed propagation mechanisms are the optimal
solution for optimizing a feature fitting function over a wide
class of graph kernels with a graph regularization term. (Ma
et al. 2021) establishes the connections between the intro-
duced GNN models and a graph signal denoising problem
with Laplacian regularization. It essentially is still an opti-
mization solving framework from the perspective of signal
denoising. However, our framework is based on the diffu-
sion equation, where the advantages are two fold: one is that
diffusion-based methods are able to address the oversmooth-
ing problem (Chamberlain et al. 2021; Wang et al. 2021).
The other is that the diffusion equation can be seen as par-
tial differential equations (PDEs) (Chamberlain et al. 2021)
and thus can introduce many schemes that have many good
properties such as fast convergence rate and high stability.

The Generalized Diffusion Graph Framework
Notations. Consider an undirected graph as G = (V,E)
with adjacency matrix A ∈ Rn×n, where V contains n
nodes {v1, . . . , vn} and E is the set of edges. The initial



node feature matrix is denoted as X(0) ∈ Rn×q, where q is
the dimension of node feature. We denote the neighbors of
node i at exactly k hops/steps away as Nk(i). For example,
N1(i) = {j : (i, j) ∈ E} are the immediate neighbors of i.

Diffusion is a physical process that equilibrates concen-
tration differences without creating or destroying mass. This
physical observation can be easily cast in the diffusion equa-
tion, which is a parabolic partial differential equation. Fick’s
law of diffusion describes the equilibration property (Weick-
ert 1998):

J = −f · ∇u, (1)
where J is the diffusion flux, which measures the amount

of substance that flows through a unit area during a unit time
interval. f is the diffusivity coefficient, which can be constant
or depend on time and position. ∇u is the concentration gra-
dient. This equation states that a concentration gradient ∇u
causes a flux J which aims to compensate for this gradient.
The observation that a change in concentration in any part of
the system is due to the influx and outflux of substance into
and out of that part of the system can be expressed by the
continuity equation:

∂u

∂t
= −div J, (2)

where t denotes the time. Plugging in Fick’s law (1) into
the continuity equation we end up with the diffusion equation:

∂u

∂t
= div(f · ∇u). (3)

As div is the sum of the second derivatives in all direc-
tions, please note that normal first order derivatives and sec-
ond order derivatives are on continuous space and can not
be generalized directly to graph which is on discrete space.
As (Chamberlain et al. 2021) defined, the first derivative is
the difference between the feature of a node and its neighbor.
And the second derivative can be considered as the differ-
ence between the first derivatives of the node itself and its
neighbors.

For better illustration, we provide an example. Consider
a chain graph in Figure 1, where i, i+ 1, and i− 1 are the
indexes of the nodes. The feature of node i is denoted as xi.

Figure 1: Chain graph
The first order derivatives on node i is defined as xi+1−xi

and xi − xi−1. The diffusion flux from node j to node i at
time t on a graph is:

J
(t)
ij = −f · (∇x)

(t)
ij = −f(x

(t)
j − x

(t)
i ). (4)

The second order derivative is the difference of first order
derivatives: (xi+1 − xi) − (xi − xi−1) = (xi+1 − xi) +
(xi−1 − xi). We notice that the chain graph only has one
dimension, so the divergence of node i on a chain graph is
equal to its second order derivative: div(∇xi) = (xi+1 −
xi) + (xi−1 − xi).

Thus, on a normal graph, we have the generalized form:
div(∇xi) =

∑
j∈N1(i)

(xj − xi).

Here we normalize the diffusion process utilizing the de-
gree of the nodes to down-weight the high-degree neighbors,

and we have div(∇xi) =
∑

j∈N1(i)

Ãij√
d̃i

√
d̃j

(xj − xi),

where Ãij is the element of Ã = A+ I, and di =
∑

j Ãij .
So the diffusion equation on node i can be defined as:

∂x
(t)
i

∂t
= −div J

(t)
ij = div[f(∇x)

(t)
ij ]

= f
∑

j∈N1(i)

Ãij√
d̃i

√
d̃j

(x
(t)
j − x

(t)
i ).

(5)

The diffusion equation models the change of representa-
tion x

(t)
i with respect to t, which depends on the difference

between the nearby nodes, implying that the greater the differ-
ence between a node and its neighbors, the faster it changes.

However, how fast x(t)
i changes should not only depend

on the representation difference between node i and its neigh-
bors, otherwise, it will cause oversmoothing issue, i.e., as the
diffusion process goes by, the nodes are not distinguishable.
Based on this phenomenon, we think that the representation
change of x(t)

i should be also related with the node feature
x
(0)
i itself, i.e., if the difference between x

(t)
i and x

(0)
i is

small, the change of x(t)
i should also be small. Then we add

another fidelity term and obtain our general graph diffusion
framework as follows:

∂x
(t)
i

∂t
= α(x

(0)
i − x

(t)
i ) + β div(f(∇x)

(t)
ij ), (6)

where α, β are coefficients.
Remark 1. (6) can be derived from the energy function:

E(x) :=

∫
Ω

(
α · (xi − x

(0)
i )2 + β · |f(∇x)ij |2

)
dθ, (7)

where θ represents the position of the nodes, and Ω represents
the entire graph domain. The corresponding Euler–Lagrange
equation, which gives the necessary condition for an ex-
tremum of (7), is given by:

0 = α(xi − x
(0)
i ) + β div(f(∇x)ij). (8)

(8) can also be regarded as the steady-state equation of (6).
Based on the energy function, we can see that (6) constrains
space variation and time variation of the diffusion process,
indicating that the representations of the graph nodes will
not change too much between nearby nodes, as well as not
change too much from the initial features.

Remark 2. The framework (6) is closely related to
many GNNs, such as GCN/SGC (Wu et al. 2019),
APPNP (Klicpera, Bojchevski, and Günnemann 2018), GAT
(Veličković et al. 2017), AMP (Liu et al. 2021), DAGNN (Liu,
Gao, and Ji 2020), as demonstrated by the following propo-
sitions. We provide the proofs of all the subsequent proposi-
tions in Appendix.

Proposition 1. With α = 0, β = 1, ∆t = 1 and f = 1 in
(6), the diffusion process in SGC/GCN is:

∂x
(t)
i

∂t
= div((∇x)

(t)
ij ). (9)



Proposition 2. Introducing η as coefficient, with α = 1,

β = 1− 1

η
, ∆t = 1 and f = 1 in (6), the diffusion process

in APPNP is:

∂x
(t)
i

∂t
= (x

(0)
i − x

(t)
i ) + (1− 1

η
) div((∇x)

(t)
ij ). (10)

Proposition 3. With α = 0, β = 1, ∆t = 1 and the
learned similarity coefficient f (t)

ij between nodes i and j at
time t in (6), the diffusion process in GAT is:

∂x
(t)
i

∂t
= div(f

(t)
ij (∇x)

(t)
ij ). (11)

Proposition 4. With stepsize ϵ and coefficient λ, β(t)
i =

max

(
1− ϵλ∥∥∥(1−2ϵ(1−λ))X

(t)
i +2ϵ(1−λ)ÃX

(t)
i −(X(0))

i

∥∥∥
2

, 0

)
.

Let α = 1− β
(t)
i , β = 2ϵ(1− λ)β

(t)
i , ∆t = 1 and f = 1 in

(6), the diffusion process in AMP is:

∂x
(t)
i

∂t
= (1−β

(t)
i )(x

(0)
i −x

(t)
i )+2ϵ(1−λ)β

(t)
i div((∇x)

(t)
ij ).

(12)
Proposition 5. With α+ β = 1, ∆t = 1 and the learned

coeffiecient f(t) at time t satisfying
∑T

t=0(βf(t))
t = 1

α in
(6), the diffusion process in DAGNN is:

∂x
(t)
i

∂t
= α(x

(0)
i − x

(t)
i ) + β div(f(t)((∇x)

(t)
ij )). (13)

The High-order Graph Diffusion Network
High-order Graph Diffusion Equation

(a) (b) (c)

Figure 2: Illustration of the same node pair in different con-
texts.

In the first-order diffusion process, the diffusion equation
only considers 1-hop neighbors. As shown in Figure 2, the
nodes in (a), (b), and (c) are the same, but the structures are
different. The first-order diffusion flux from node j to node i
will be the same, even if the local structure of node i and j is
very different. Based on the specific local environments, the
diffusion flux should be either different, so as to provide more
additional information and make the learned representations
more discriminative. To better understand the effect of local
structures, we conduct an experiment on six widely used
graphs to evaluate the effect of 2-hop neighbors. First, we
have the following definition of k-hop neighbor similarity
score.

Definition 1. Let yi be the label of node i, the k-hop neigh-

bor similarity score hk =
|
∑

i∈V 1yi=O({yj ,j∈Nk(i)})|
|Nk(i)|

,

and ha+b =
|
∑

i∈V 1yi=O({yj ,j∈{Na(i),Nb(i)}})|
|{Na(i), Nb(i)}|

, where

O({yj , j ∈ Nk(i)}) represents the element with the highest
frequency in {yj , j ∈ Nk(i)}.

The similarity score is based on node labels, and higher
similarity score implies the labels of a node and its k-hop
neighbors are more consistent. The scores of the six graphs
are shown in Table 1. Interestingly, we find that the labels of
2-hop neighbors show monophily property (Altenburger and
Ugander 2018), i.e., as can be seen from both the homophily
graphs (Cora, Citeseer, Pubmed) and heterophily graphs
(Chameleon, Squirrel, Actor), without requiring the similar-
ity among first-order neighbors, the second-order neighbors
are more likely to have the same labels.

cora citeseer pubmed chameleon squirrel actor
h1 0.8634 0.7385 0.7920 0.2530 0.1459 0.2287
h2 0.8696 0.8476 0.7885 0.3131 0.1600 0.3716
h1+2 0.8737 0.8206 0.7880 0.3070 0.1530 0.3363

Table 1: The similarity scores of six graphs.

To take advantage of 2-hop neighbors, we regularize the
gradient ∇xi utilizing the average gradient of 1-hop neigh-
bors:

(∇x)j = avg(∇xjk) =
∑

k∈N1(j)

Ãjk√
d̃j
√
d̃k

(xk −xj). (14)

We propose the high-order graph diffusion equation:
∂x

(t)
i

∂t
= α(x

(0)
i −x

(t)
i )+β div(f(∇x

(t)
ij )+γ(∇x)

(t)
j ), (15)

where γ is the parameter of the regularization term. The
iteration step of (15) is:

xt+∆t
i = α∆tx

(0)
i + (1− α∆t)x

(t)
i

+ β∆tdiv(f(∇x
(t)
i )) + βγ∆tdiv((∇x)

(t)
j ),

(16)

which is the diffusion-based message passing scheme (DMP)
of our model. We can see that DMP utilizes the 2-hop neigh-
bors’ information, where the advantages are two-fold: one
is that the 2-hop neighbors capture the local environment
around a node, even if there are some abnormal features
among 1-hop neighbors, their negative effect can still be alle-
viated by considering a larger neighborhood size, making the
learning process more robust. The other is that the monophily
property of 2-hop neighbors provides additional stronger cor-
relation with labels, thus even if the 1-hop neighbors may
be heterophily, DMP can still make better predictions with
information diffused from 2-hop neighbors.

Comparison with other GNN models. Though exist-
ing GNN iteration steps can capture high-order connectivity
through iterative adjacent message passing, they still have
their limitations while having the same time complexity as
DMP. DMP is superior because it can utilize the monophily
property, adjust the balance between first-order and second-
order neighbors, and is based on diffusion equation which has
some unique characteristics. More comparisons are discussed
in Appendix.



Theoretical Analysis

Next, we theoretically analyze some properties of our
diffusion-based message passing scheme.

Definition 2. Consider a surfer walks from node j to i
with probability Pij . Let Xt be a random variable repre-
senting the node visited by the surfer at time t. The prob-
ability Pij can be represented as a conditional probability
P [Xt = i | Xt−∆t = j]. Let

Pij =


1− (α+ β)∆t, i = j

(β − βγ)∆t ˆ̃Aij , j ∈ N1(i)
βγ∆tBij , j ∈ N2(i)
α∆t, restart,

(17)

where ˆ̃A = D̃− 1
2 ÃD̃− 1

2 , Bij is the element of B = ˆ̃A2,
and restart means that the node i will teleport back to the
initial root node i. Based on the definition, we have the fol-
lowing propositions.

Proposition 6. Given the probability H(t)
ij =

P [Xt = i | X0 = j], DMP (16) is equivalent to the
second-order random walk with the transition probability
Pij in (17):

x
(t)
i =

∑
j∈V

H(t)
ij x

(0)
j . (18)

Proposition 7. With f = 1, α, β, γ,∆t ∈ (0, 1],
DMP (16) converges, i.e., when t → ∞, X(∞) = α((α +

β)I− β(1− γ) ˆ̃A− βγ ˆ̃A2)−1X(0).
Proposition 8. When t → ∞, the representations of any

two nodes on the graph will not be the same as long as the
two nodes have different initial features, i.e., ∀i, j ∈ V , if
x
(0)
i ̸= x

(0)
j , then x

(t)
i ̸= x

(t)
j as t → ∞.

The proofs of the above propositions are in Appendix.

Our Proposed HiD-Net

To incorporate the high-order graph diffusion DMP (16) into
deep neural networks, we introduce High-Order Graph Diffu-
sion Network (HiD-Net). In this work, we follow the decou-
pled way as proposed in APPNP (Klicpera, Bojchevski, and
Günnemann 2018):

Y′ = DMP
(
lω

(
X(0)

)
, t,∆t, α, β, γ

)
, (19)

where lω is a representation learning model such as an MLP
network, ω is the learnable parameters in the model. The
training objective is to minimize the cross entropy loss de-
fined by the final prediction Y′ and labels for training data.
Because of DMP, HiD-Net is more robust and works well on
both homophily and heterophily graphs in comparison with
other graph diffusion networks.

Time complexity. The time complexity of HiD-Net can be
optimized as O(n2ζ), which is the same as the propagation
step of GCN, where n is the number of the nodes, ζ is the
dimension of the feature vector. We provide the proof in
Appendix.

Experiments
Node Classification
Datasets. For comprehensive comparison, we use seven real-
world datasets to evaluate the performance of node classi-
fication. They are three citation graphs, i.e., Cora, Citeseer,
Pubmed (Kipf and Welling 2016a), two Wikipedia networks,
i.e., Chameleon and Squirrel (Pei et al. 2020), one Actor co-
occurrence network Actor (Pei et al. 2020), one Open Graph
Benchmark(OGB) graph ogbn-arxiv(Hu et al. 2020). Among
the seven datasets, Cora, Citeseer, Pubmed and ogbn-arxiv
are homophily graphs, Chameleon, Squirrel, and Actor are
heterophily graphs. Details of datasets are in Appendix.

Baselines. The proposed HiD-Net is compared with sev-
eral representative GNNs, including three traditional GNNs:
GCN (Kipf and Welling 2016a), GAT (Veličković et al. 2017),
APPNP (Klicpera, Bojchevski, and Günnemann 2018), and
four graph diffusion networks: GRAND (Chamberlain et al.
2021), GRAND++ (Thorpe et al. 2022), ADC (Zhao et al.
2021), DGC (Wang et al. 2021). They are implemented based
on their open repositories, where the code can be found in
Appendix.

Experimental setting. We perform a hyperparameter
search for HiD-Net on all datasets and the details of hyperpa-
rameter can be seen in Appendix. For other baseline models:
GCN, GAT, APPNP, GRAND, GRAND++, DGC, and ADC,
we follow the parameters suggested by (Kipf and Welling
2016a; Veličković et al. 2017; Klicpera, Bojchevski, and Gün-
nemann 2018; Chamberlain et al. 2021; Thorpe et al. 2022;
Wang et al. 2021; Zhao et al. 2021) on Cora, Citeseer, and
Pubmed, and carefully fine-tune them to get optimal perfor-
mance on Chameleon, Squirrel, and Actor. For all methods,
we randomly run 5 times and report the mean and variance.
More detailed experimental settings can be seen in Appendix.

Results. Table 2 summarizes the test results. Please note
that OGB prepares standardized evaluators for testing results
and it only provides accuracy metric for ogbn-arxiv. As can be
seen, HiD-Net outperforms other baselines on seven datasets.
Moreover, in comparison with the graph diffusion networks,
our HiD-Net is generally better than them with a large margin
on heterophily graphs, which indicates that our designed
graph diffusion process is more practical for different types
of graphs.

Robustness Analysis
Utilizing the information from 2-hop neighbors, our model
is more robust in abnormal situations. We comprehensively
evaluate the robustness of our model on three datasets (Cora,
Citeseer and Squirrel) in terms of attacks on edges and fea-
tures, respectively.

Attacks on edges. To attack edges, we adopt random edge
deletions or additions following (Chen, Wu, and Zaki 2020;
Franceschi et al. 2019). For edge deletions and additions,
we randomly remove or add 5%, 10%, 15%, 20%, 25%,
30%, 35%, 40% of the original edges, which retains the
connectivity of the attacked graph. Then we perform node
classification task. All the experiments are conducted 5 times
and we report the average accuracy. The results are plotted
in Figure 3 and Figure 4. From the figures, we can see



Datasets Metric GCN GAT APPNP GRAND GRAND++ DGC ADC HiD-Net

Cora
F1-macro 81.5±0.6 79.7±0.4 82.2 ±0.5 79.4±2.4 81.3±3.3 82.1±0.1 80.0±1.0 82.8±0.6
F1-micro 82.5 ±0.6 80.1±0.8 83.2±0.2 80.1±2.7 82.95 ±1.4 83.1±0.1 81.0±0.7 84.0±0.6

AUC 97.3 ±0.1 96.4 ±0.5 97.5±0.1 96.0±0.3 97.3±0.5 97.2±0.0 97.1±0.1 97.6±0.0

Citeseer
F1-macro 66.4 ±0.4 68.5 ±0.3 67.7±0.6 64.9±1.5 66.4±2.6 68.3±0.4 47.0±1.4 69.5±0.6
F1-micro 69.9 ±0.5 72.2 ±0.3 71.0 ±0.4 68.6±1.7 70.9±2.3 72.5±0.4 53.7±1.5 73.2±0.2

AUC 89.9 ±0.4 90.2 ±0.1 90.3 ±0.0 89.5±0.8 91.2±2.8 91.0 ±0.0 87.1±1.1 91.5±0.1

Pubmed
F1-macro 78.4 ±0.2 76.7 ±0.5 79.3±0.2 77.5±3.2 78.9±2.5 78.4±0.1 73.7±2.3 80.1±0.1
F1-micro 79.1 ±0.4 77.3 ±0.4 79.9±0.3 78.0±3.2 79.8±1.6 79.2±0.1 74.3±2.3 81.1±0.1

AUC 91.2 ±0.2 90.3±0.5 92.2±0.1 90.7±1.6 91.5±2.2 92.0±0.0 89.1±1.9 92.2±0.1

Chameleon
F1-macro 38.5 ±2.1 45.0 ±1.0 57.5±1.0 35.7±1.8 46.3±2.4 58.0±0.1 32.6±0.6 61.0±0.3
F1-micro 41.8 ±1.2 44.4 ±1.9 57.1±1.4 37.7±1.5 45.7±3.4 58.2±0.1 33.2±0.5 60.8±0.7

AUC 69.8±0.5 75.5 ±1.0 85.0±0.6 69.0 ±1.3 74.8 ±2.8 82.4±0.0 63.7±0.8 85.2±0.3

Squirrel
F1-macro 25.2 ±1.2 26.5 ±1.3 41.1±1.1 24.7±2.0 30.5±3.7 42.1±0.4 24.7±1.2 47.5±0.9
F1-micro 25.8 ±0.8 27.3. ±0.7 43.2±1.0 28.6 ±1.0 34.6 ±2.5 43.1±0.3 25.4±1.0 48.4±0.8

AUC 57.5 ±0.5 58.2±1.1 78.9±0.3 60.2±1.0 65.6±1.4 74.3±0.0 55.0±2.4 79.4±0.3

Actor
F1-macro 21.5±0.4 19.7 ±0.8 30.3±4.7 28.0±1.1 30.4±1.1 31.6±0.0 20.0±0.6 25.7±0.44
F1-micro 29.2 ±0.6 27.1 ±0.5 33.2±0.6 32.5±1.0 33.7±2.3 34.1±0.0 25.5±0.5 34.7±0.4

AUC 58.0 ±0.5 55.8±0.4 64.8±0.1 56.2±2.0 60.8.2±0.6 64.7±0.0 53.8±0.1 68.1±0.2

ogbn-arxiv Accuracy 71.5±0.3 71.6±0.5 71.2 ±0.3 71.7 ±0.1 71.9 ±0.6 70.9±0.2 70.0±0.1 72.2±0.1

Table 2: Quantitative results (%±σ) on node classification. (bold: best)
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Figure 3: Results of different models under random edge addition.

that as the addition or deletion rate rises, the performances
on three datasets of all the models degenerate, and HiD-Net
consistently outperforms other baselines.

Attacks on features. To attack features, we inject random
perturbation into the node features as in (Wu et al. 2020a).
Firstly, we sample a noise matrix M ∈ Rn×q, where each
entry in M is sampled from the normal distribution N(0, 1).
Then, we calculate reference amplitude r, which is the mean
of the maximal value of each node’s feature. We add Gaus-
sian noise µ · r · M to the original feature matrix, and get
the attacked feature matrix, where µ is the noise ratio. The
results are reported in Figure 5. Again, HiD-Net consistently
outperforms all other baselines under different perturbation
rates by a margin for three datasets.

Non-over-smoothing with Increasing Steps
To demonstrate that our model solves the oversmoothing
problem compared with other graph diffusion networks, we
test different graph diffusion models with increasing prop-
agation step k from 2 to 20. Baselines include DGC, ADC
and GRAND. The results are plotted in Figure 7. We can see
that with the increase of k, HiD-Net consistently performs
better than other baselines.

Parameter Study
In this section, we investigate the sensitivity of parameters
on all datasets.

Analysis of α. We test the effect of α in (16), and vary
it from 0 to 1. From Figure 8(a) we can see that with the
increase of α, the performances of citation graphs rise first
and then start to drop slowly, the performances of Chameleon
and Squirrel have not changed too much, and the performance
of Actor first rises and then remains unchanged. As citation
graphs are more homophily, we need to focus less on the
node itself, implying a small α, while on heterophily graphs,
we need to focus more on the node itself.

Analysis of β. In order to check the impact of the diffusion
term, we study the performance of HiD-Net with β varying
from 0 to 1. The results are shown in Figure 8(b). We can
see that as the value of β increases, the accuracies generally
increase, while the accuracy on Actor remains relatively sta-
ble, implying that the features diffused from 1-hop and 2-hop
neighbors are very informative.

Analysis of γ. Finally we test the effect of γ in (16) and
vary it from 0 to 0.6. With the increase of γ, the accuracies on
different datasets do not change much, so we just separately
plot each dataset for a clearer illustration here. As can be
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Figure 4: Results of different models under random edge deletion.
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Figure 5: Results of different models under random feature perturbation.
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Figure 6: Analysis of parameter γ.

(a) Chameleon (b) Actor
Figure 7: Non-over-smoothing with increasing steps.

seen in Figure 6, with the increase of γ, the performance on
Cora and Chameleon rises first and then drops, and different
graphs have different best choices of γ. The results on other
datasets are shown in Appendix.

Conclusion
In this paper, we propose a generalized diffusion graph frame-
work, which establishes the relation between diffusion equa-
tion with different GNNs. Our framework reveals that current
graph diffusion networks mainly consider the first-order dif-

(a) α (b) β

Figure 8: Analysis of parameter α and β.

fusion equation, then based on our finding of the monophily
property of labels, we derive a novel high-order diffusion
graph network (HiD-Net). HiD-Net is more robust and gen-
eral on both homophily and heterophily graphs. Extensive
experimental results verify the effectiveness of HiD-Net. One
potential issue is that our model utilizes a constant diffusiv-
ity coefficient, and a future direction is to explore a learn-
able diffusivity coefficient depending on time and space. Our
work formally points out the relation between diffusion equa-
tion with a wide variety of GNNs. Considering that previous
GNNs are designed mainly based on spatial or spectral strate-
gies, this new framework may open a new path to understand-
ing and deriving novel GNNs. We believe that more insights
from the research community on the diffusion process will
hold great potential for the GNN community in the future.
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