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ABSTRACT temperature scaling-based methods for better calibration. Experi-

Graph neural networks (GNNs) have gained popularity in model-
ing various complex networks, e.g., social network and webpage
network. Despite the promising accuracy, the confidences of GNNs
are shown to be miscalibrated, indicating limited awareness of pre-
diction uncertainty and harming the reliability of model decisions.
Existing calibration methods primarily focus on improving GNN
models, e.g., adding regularization during training or introducing
temperature scaling after training. In this paper, we argue that the
miscalibration of GNNs may stem from the graph data and can be al-
leviated through topology modification. To support this motivation,
we conduct data observations by examining the impacts of decisive
and homophilic edges on calibration performance, where decisive
edges play a critical role in GNN predictions and homophilic edges
connect nodes of the same class. By assigning larger weights to
these edges in the adjacency matrix, we observe an improvement
in calibration performance without sacrificing classification accu-
racy. This suggests the potential of a data-centric approach for
calibrating GNNs. Motivated by our observations, we propose Data-
centric Graph Calibration (DCGC), which uses two edge weighting
modules to adjust the input graph for GNN calibration. The first
module learns the weights of decisive edges by parameterizing the
adjacency matrix and enabling backpropagation of the prediction
loss to edge weights. This emphasizes critical edges that fit the
prediction needs. The second module computes weights for ho-
mophilic edges based on predicted label distributions, assigning
larger weights to edges with stronger homophily. These modifica-
tions operate at the data level and can be easily integrated with
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mental results on 8 benchmark datasets demonstrate that DCGC
achieves state-of-the-art calibration performance, with an aver-
age relative improvement of 36.4% in ECE, while maintaining or
even slightly improving classification accuracy. Ablation studies
and hyper-parameter analysis further validate the effectiveness
and robustness of our proposed method DCGC. Code and data are
available at https://github.com/BUPT-GAMMA/DCGC.
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1 INTRODUCTION

With the widespread applications of complex networks in various
domains, the task of node classification has attracted significant
attention over the last decade [22, 26, 35, 36, 39]. As a powerful
framework for learning representations of graph-structured data,
graph neural networks (GNNs) have demonstrated promising accu-
racy on various benchmarks of node classification [3, 7, 15].
Besides the prediction accuracy, the awareness of prediction un-
certainty is also desired for trustworthy GNNs [17]. For example,
in safety-critical scenarios, GNNs are expected to know when their
predictions are likely to be incorrect and accordingly alert human
users. Recent advances [33] show that GNNs are usually under-
confident in node classification task, i.e., their prediction accuracies
are higher than their confidence of being correct. To calibrate the
confidence of GNNs, existing methods can be divided into two
categories. The in-processing methods [29, 32] jointly train and
calibrate GNNs by incorporating regularizations [32] or Bayesian
modelings [29, 41]. The post-hoc methods [10, 33] are applied on
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Figure 1: Comparison between (a) previous temperature
scaling-based methods [10, 33] and (b) our proposed data-
centric approach. Previous work focuses on tuning tempera-
tures in the final softmax function, while this work focuses
on modifying the input graph instead.

well-trained GNNs for calibration and focus on adjusting the tem-
peratures in the final softmax operation, known as temperature
scaling [8]. Recent work [10] has shown that the post-hoc methods
can achieve a better trade-off between accuracy and calibration
than in-processing ones. Thus, we follow the post-hoc setting and
aim to calibrate well-trained GNNss in this paper.

However, existing calibration methods focus on improving GNN
models, while we argue that the miscalibration of GNNs may come
from the graph data and can be alleviated via topology modification.
For example, we evaluate the expected calibration error (ECE) on
Cora [38] and Photo [28] datasets with five different GNNs, includ-
ing GCN [13], GraphSAGE [9], GAT[30], SGC[34] and TAGCN[2].
We find that the ECEs on Cora (10.25%-18.02%) are always larger
than those on Photo (4.38%-8.27%), indicating that the calibration
performance depends more on the datasets instead of GNN models
in this case. Inspired by this phenomenon, as shown in Fig. 1, we
innovatively propose to calibrate GNNs from a data-centric perspec-
tive: can we froze the well-trained GNNs and modify the graph data
instead for better calibration performance without losing accuracy?

To support the data-centric motivation, we further conduct data
observations by analyzing the impacts of decisive and homophilic
edges on calibration performance. Specifically, decisive edges refer
to the edges critical for the prediction of a GNN; while homophilic
edges refer to the edges whose endpoints belong to the same class.
By simply assigning larger weights to decisive or homophilic edges
in the adjacency matrix, we find that the calibration performance
can be improved without significant drop in classification accuracy,
showing the potential of data-centric calibration. But note that
the definitions of both decisive and homophilic edges in the above
observations involves the ground truth classes of unlabeled nodes,
and thus cannot be directly used in practice.

Inspired by the observations, we propose Data-centric Graph
Calibration (DCGC) with two edge weighting modules to adjust
the input graph. The two modules are respectively inspired by
the decisive and homophilic edges, and processed sequentially: (1)
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For weight learning of decisive edges, we parameterize the ad-
jacency matrix and enable the prediction loss to backpropagate
to edge weights. In this way, the edge weights can automatically
fit the need of label prediction, and critical edges will be empha-
sized. (2) For weight computation of homophilic edges, we quantify
the homophily of each edge by predicted label distributions, and
adaptively assign larger weights to edges with stronger homophily.
Moreover, the above modifications of edge weights operate on data
level, and can be easily integrated with various temperature scaling-
based methods [8, 10, 33] for better calibration. Experiments on 8
benchmark datasets show that the proposed DCGC can achieve
state-of-the-art (SOTA) calibration performance with 36.4% aver-
age relative improvement of ECE, and can even slightly improve
the classification accuracy. Ablation studies and hyper-parameter
analysis further demonstrate our effectiveness and robustness.

To summarize, our contributions are three-fold:

e We innovatively propose to calibrate GNNs from a data-centric
perspective, which aims to modify the graph data for better cali-
bration performance without losing accuracy.

o We propose a novel calibration method named DCGC by assign-
ing larger weights to decisive and homophilic edges. The proposed
DCGC operates on data level, and can be easily integrated with
previous temperature scaling-based methods.

o Experiments show that DCGC can effectively calibrate different
GNNs on 8 benchmark datasets, and achieves SOTA calibration
performance with 36.44% average relative improvement of ECE.

2 RELATED WORK
2.1 Graph Neural Network

During the last decade, various GNN models have been proposed
and show promising results in modeling structure data. As one of
the most popular GNNs, GCN [13] aggregates node information
from neighborhood structures using graph convolutional layers.
GraphSAGE[9] enables inductive representation learning by sam-
pling neighbor nodes and aggregating their features with multiple
pooling techniques. GAT [30] incorporates attention mechanisms
to learn node representations by assigning different importance
weights to neighboring nodes. Simple Graph Convolution (SGC)[34]
simplifies the graph convolution operation by a linear transforma-
tion on the node features. In addition to the mentioned models, there
are also many GNN variants specialized for graph-level modeling,
such as MoNet [20] and GIN [37]. Most GNNs focus on improving
expressive power [40], and target on accuracy instead of reliability.

2.2 Confidence Calibration of Neural Networks

General calibration methods. Confidence calibration methods
aim to enhance the reliability of predicted probabilities. These meth-
ods can be categorized into in-processing methods and post-hoc
methods. In-processing methods, incorporate calibration directly
into the training process. These methods add specific regulariza-
tion terms to the loss function, encouraging the model to produce
well-calibrated probabilities, such as Focal loss [16] and Maximum
Mean Calibration Error (MMCE) [14]. Additional, there are some in-
processing methods to tackle confidence calibration by estimating
the uncertainty associated with the predictions. These techniques
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aim to provide not only accurate probabilities but also reliable es-
timates of uncertainty or confidence intervals. Bayesian neural
networks [5] and Monte Carlo (MC) dropout [6] are examples that
leverage probabilistic models to capture and quantify uncertainty.
In contrast, post-hoc methods focus on adjusting the predicted
probabilities after the initial model training. Techniques like Platt
Scaling [25] and Temperature Scaling (TS) [8] fall into this category.
These methods operate on the output scores of the trained model
and aim to align them with the true probabilities.

Calibration methods for GNNss. In recent years, there has been
a growing interest in developing confidence calibration methods
for GNNs. These methods can also be classified into two categories
as mentioned above. For in-processing methods, Graph Calibration
Loss (GCL) [32] achieves calibration by adding a minimal-entropy
regularizer to the KL divergence. Some approaches can calibrate
GNNs by reducing model uncertainty, such as Graph-based Kernel
Dirichlet distribution Estimation (GKDE) [41] and Graph Posterior
Network (GPN) [29]. For post-hoc methods, CaGCN [33] introduces
the confidence propagation mechanism to calibrate GNN using
GCN as a topology-aware post-hoc calibration function. Essentially,
CaGCN calibrates GNN by using GCN to generate node-specific
temperatures. Similar to CaGCN, GATS [10] also employs a post-
hoc function to obtain node-specific temperatures, and show that
post-hoc methods are superior to in-processing ones.

However, existing methods focus on improving GNN models for
calibration, and ignore the possibility of calibrating GNNs from the
data level. To the best of our knowledge, we are the first work to
calibrate GNNs from a data-centric perspective.

3 PRELIMINARY

Definition 1: Semi-supervised Node Classification. Let’s con-
sider a graph G = (V, &, X) with node labels Y, where V repre-
sents the set of nodes, & represents the set of edges, and X rep-
resents the node features. Each node v € V is associated with a
feature vector x, € X and ground-truth label y, € ¥ = {1, ..., K},
and each edge (v, u) € & represents the relationship between nodes
v and u. Given a limited number of labeled examples as the labeled
set L C V, the goal of semi-supervised node classification is to
assign class labels to the nodes in the unlabeled set ¢« =V \ L.

Definition 2: Graph Neural Network. A graph neural network
(GNN) is a parametric model that computes representations for each
node by aggregating information from its neighborhood. Formally,
the computation is performed by iterating over multiple layers: in
each layer [, the representation hﬁ, of node v will be updated by
combining the representations of v and its neighbors in the previous
layer:

hl — 1 hl_l, ® 1 hl_l,hl_l , 1
ARGl o)

where N (v) = {u|(u,v) € E} is the neighbor set of node v, ® de-
notes a differentiable, permutation-invariant function (e.g., sum,
mean or max), , ¢ denote differentiable transformation functions
such as multi-layer perceptrons (MLPs), and 49 is the initial feature
vector x,. For the semi-supervised classification task, the represen-
tation hL in the final layer L is usually K-dimensional, and can be
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converted into label distribution z, by the softmax function:
exp(hL )
S exp(hl )

where z, . and h]; .. are respectively the k-th elements of z, and AL,

Zok Vk=12...K, @)

More briefly, the label predictions of a GNN can be computed as
Z = softmax(GNNg (4, X)) € RIVI*K, 3)

where A € RIVIXIV js the adjacency matrix, © denotes the set
of trainable parameters, and each row of matrix Z corresponds
the predicted label distribution of a specific node. Then the GNN
will employ a loss function (e.g., cross entropy) to measure the
discrepancy between prediction Z and true labels on labeled set L,
and update parameters © via gradient descent.

Definition 3: Calibration of GNNs and Expected Calibra-
tion Error (ECE). Let §j, = arg maxy z, . be the label prediction
of node v, and p, = maxy z, ) be the corresponding confidence.
The GNN is calibrated if its prediction confidence aligns with the
chance being correct. Formally, a GNN is perfectly calibrated [33] if

Pr[fy = yolpo = p] = p. Vp € [0,1]. (4)
For example, if the GNN makes 100 predictions with confidence
0.9, then 90 of them are correct.

One common metric to quantify the calibration of neural net-
works is the expected calibration error (ECE) [21], which calculates
the average discrepancy between predicted probabilities and ob-
served accuracies in different bins. Formally, we first divide unla-
beled nodes into N equally spaced bins based on their confidence
scores, and denote the set of nodes in the n-th bin as B,,. Then we
compute the gap between the accuracy and average confidence for
each bin and take the weighted average of all bins as ECE:

1 1
A = — 1 =1y,), Conf, = — ,
CCn B, Z (Yo = J0) on Bl Z Po

veB, veB,

®)

S 1Bl
ECE = " |Accy, — Confy|,
2. i Acen = Conl

where 1(-) is the indicator function. A lower ECE value indicates
better calibration, i.e., the model’s confidence aligns well with the
accuracy of its predictions. Following previous GNN calibration
methods [33], we set the number of bins N = 20 for evaluation in
practice. For brevity, we regard the computation of ECE as a func-
tion ECE(Z) operating on prediction Z in the following sections.

4 OBSERVATION

In this section, we aim to investigate the factors influencing the
calibration of GNNs, and present two key observations to motivate
our method design. Specifically, we respectively explore the impacts
of decisive edges and homophilic edges on calibration performance.

4.1 Setup

We conduct observation experiments! on 8 datasets with GCN [13]
and GraphSAGE [9]. For each dataset, we first train GNNs in a
standard semi-supervised setting [10], and evaluate the calibra-
tion performance by ECE. Then we adjust the adjacency matrix

The dataset descriptions and detailed settings will be presented in Section 6.1.
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Table 1: Calibration performance with original/modified graphs on 8 datasets. Here Modified-D and Modified-H represent the
modified graphs based on decisive and homophilic edges, respectively. Decisive/homophilic edges are assigned with larger
weights than unimportant/heterophilic ones. ECE scores (%) are the lower the better.

Model Structure Cora Citeseer =~ Pubmed Photo  Computers  CoraFull Arxiv Reddit
Original 14.43£4.52 14.42+4.17 8.41£1.29 7.49+1.14  592+0.29  14.31£0.54 8.00£0.15 5.18+0.23
GCN Modified-D  14.01+3.54 13.97+3.24 7.06+1.20 4.29+0.56  4.35+0.18  12.84+0.41 7.10+0.13 3.45+0.19
Modified-H 13.61£3.92 14.35%+3.66 8.29+1.01 6.22+1.01  5.07+0.51  13.95%0.51 7.70£0.12 2.37+0.21
Original 10.25+£5.27 10.82+4.74 7.43+2.23 8.27£2.60  7.22+0.78  13.92+1.21 8.79+1.52 9.67%0.31
GraphSAGE Modified-D  8.22+1.61 9.65+3.52  6.85£1.45 4.53+1.00  6.41+0.76 9.95+£0.73  8.42+1.39 5.74£0.27
Modified-H 4.22+1.86  5.80+1.08 4.00+0.78 2.00£1.00  2.93+0.95 4.17+1.14  2.02+1.12 4.93+0.24

by highlighting some key edges, and re-evaluate the calibration
performance without updating the parameters of GNNS. Finally,
we observe how the ECE varies when the adjacency matrix A
changes to A’, i.e, comparing ECE(softmax(GNNg (A, X))) with
ECE(softmax(GNNg(A’, X))).

4.2 Impact of Decisive Edges

During the computation process of a GNN, some edges are more
important than others for the final predictions. For example, in a
citation network, some citation relationship may provide useful
contextual information for a GNN to decide the categories of unla-
beled papers. In this subsection, we aim to investigate whether the
calibration performance can be improved by enlarging the weights
of such decisive edges.

To quantify the importance of each edge, we can calculate the
change in the test loss of the GNN model when each edge is removed
from the graph. However, this calculation can be computationally
expensive. Therefore, as an alternative approach, we compute the
gradients of test loss Loss;ess With respect to the adjacency matrix
A, and take the absolute value as edge importance:

dLosSzest

oA " (©)

These gradients represent the sensitivity of the model classifica-
tion results to the edges. Larger gradient magnitudes indicate that
the corresponding edges have a stronger impact on the predictions
and can be considered more decisive.

Next, we will modify the adjacency matrix by assigning larger
weights to decisive edges. Since the gradient values may vary sig-
nificantly, we take the logarithm of the gradients and divide them
by the median to normalize the weight distribution, making it more
comparable across different edges. Formally, the edge weight matrix
is computed as:

VA= |

log(VA + 0)
median(log(VA + o))’

where o is a constant slightly greater than 1. Then we modify
the adjacency matrix as A’ = A © VA,yeight and re-evaluate the
calibration performance as ECE(softmax(GNNg(A’, X))), where
© is the element-wise product.

Table 1 shows the calibration performance with original/modified
graphs on 8 datasets over 10 runs. The results show that enlarging
the weights of decisive edges has a positive impact on calibration
performance for both GCN and GraphSAGE over all 8 datasets.

™

VAweight =

4.3 Impact of Homophilic Edges

Note that the above decisive edges are model-specific. For the node
classification task, the edges whose endpoints belong to the same
category are also critical for message passing and irrelevant to
GNN models. In this subsection, we aim to investigate whether the
calibration performance can be improved by enlarging the weights
of such homophilic edges.

In this observation, we use ground truth labels to define ho-
mophilic edges and set edge weights heuristically. Specifically, the
weights of homophilic edges are twice as the weights of heterophilic
ones. Similar to the previous subsection, we then modify the ad-
jacency matrix accordingly and re-evaluate the calibration perfor-
mance.

Table 1 shows the calibration performance with original/modified
graphs on 8 datasets over 10 runs. We can see that enlarging the
weights of homophilic edges also brings a notable improvement for
calibration performance.

4.4 Discussion

It is worth noting that decisive edges and homophilic edges are
quite independent with each other. For instance, given a random
homophilic edge and a random heterophilic one, the probability
that the homophilic edge has a larger importance score as Eq. (6)
is around 0.55 (0.5 if they are fully independent). Therefore, the
above two observations do not overlap.

More importantly, the above modifications of adjacency matrices
will not bring significant drop in classification accuracy when im-
proving the calibration performance. Therefore, these observations
show the potential that we can calibrate a well-trained GNN by
modifying edge weights without changing GNN parameters.

However, the weight computation of both decisive and homophilic
edges involves the ground truth classes of unlabeled nodes, and
thus cannot be directly used in practice. Hence, in next section, we
will propose our method that can identify these two kinds of edges
and enlarge their weights without using ground truth labels.

5 METHODOLOGY

In this section, we propose a data-centric approach for calibrating
GNNs, named Data-Centric Graph Calibration (DCGC). DCGC can
be applied on any well-trained GNNs, and is also compatible with
previous temperature scaling-based methods [8, 10, 33].
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Figure 2: Illustration of our proposed Data-Centric Graph Calibration (DCGC). The entire pipeline of calibrating GNNs with
DCGGC is as follows: (a) train the GNN to be calibrated in a standard semi-supervised manner; (b) learn larger weights for
decisive edges and accordingly modify the adjacency matrix; (c) assign larger weights for homophilic edges and accordingly

modify the adjacency matrix; (d) integrate DCGC with any temperature scaling-based method.

5.1 Overview

The overview of our method is shown in Figure 2. Given a well-
trained GNN, we design two modules to adjust the edge weights
of the input graph. The two modules are respectively inspired by
the observations of decisive and homophilic edges, and processed
sequentially in our method. Afterward, temperature scaling-based
methods [8, 10, 33] can be integrated to adjust the sharpness of
label predictions. Note that the parameters of learned GNNs are
frozen in the entire pipeline.

5.2 Weight Learning of Decisive Edges

Inspired by the first observation, we propose to parameterize the
adjacency matrix, and enable the prediction loss to backpropagate
to edge weights. In this way, the edge weights can be automatically
adjusted to fit the need of label prediction and assign larger weights
for critical edges.

Specifically, we first design a trainable module that estimates
the weight of an edge based on the representations of its endpoints.
Formally, for each edge (v, u) € &, we first encode nodes v and u as
hy and hy, by the well-trained GNN, and then introduce a 2-layer
MLP for weight computation:

w})’u = max(MLPg, (concat(hy, hy)), 0), (8)

where Q denotes the set of parameters in the MLP, and concat(-, -)
is the concatenation operation. We gather the weights of all edges
and denote the weight matrix as wl a sparse matrix with the
same shape as the adjacency matrix. Then we re-calculate the pre-
dictions of the GNN by the modified adjacency matrix as Z! =
softmax(GNNg (4 6 W1, X)).

To optimize this edge weighting module, we simply minimize
the cross-entropy loss on the validation set? by gradient descent:

K
inn— Z Z 1(y, = k) log zzl)’k,

veD k=1

©)

ZPrevious GNN calibration methods [10, 33] also use the validation set for parameter
learning.

where D is the validation set, and 221) . is the corresponding element

in matrix Z1.

Compared with the observation of decisive edges in Section 4.2,
we use the prediction loss on validation set instead, and dynamically
adjust the edge weights by optimization. By minimizing Eq. (9),
the module learns to assign larger weights to edges critical to the
classification task, and help improve the calibration performance.

5.3 Weight Computation of Homophilic Edges

Inspired by the second observation, we propose to quantify the
homophily of each edge by predicted label distributions, and assign
larger weights to edges with stronger homophily. This module
requires no training process, and is heuristically designed.

Specifically, we first measure the homophily of edge (v, u) by
the Euclidean distance between the label predictions z} and z}, and
then define the edge weight as

1
wvu = (|| softmax- TS(zZ,,ﬁ) — softmax- TS(zu,ﬁ)Hz + a) , (10)

where softmax-TS(+, -) is the softmax function with temperature
scaling:

exp(2zo/7)
S exp(zop [7)
Here temperature 7 > 0 controls the sharpness of predicted label
distribution: a smaller 7 will push the prediction towards one-hot
vector. Besides f, another hyper-parameter o ensures that the edge
weight will not be excessively large when the predicted distributions
are too close to each other.

Then we gather the weights of all edges and denote the weight
matrix as W2, which is also a sparse matrix as W1. The label predic-
tions can be calculated as Z2 = softmax(GNNg (A © W! 0 W2, X)).

Compared with the observation of homophilic edges in Sec-
tion 4.3, we use the predicted label distributions to define ho-
mophilic edges instead, and design a smooth function as in Eq. (10)
to compute edge weights. The module heuristically assigns larger
weights to edges with similar labels, and help improve the calibra-
tion performance.

(11)

softmax(zy, 7) =
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5.4 Integration with Temperature Scaling

The above modifications of edge weights operate on data level, and
can be easily integrated with previous temperature scaling-based
methods [8, 10, 33] for better calibration. Specifically, given the
weight matrices w! W2 we denote the representation of node
v encoded by GNNg(A © W! ©® W?,X) as h2. Then we rewrite
the computation of prediction Z2 by defining the prediction of
node v as zzz, = softmax(h%, 7p), where 7, is the temperature. In
practice, the temperatures can be global [8], class-specific [8] or
node-specific [10, 33]. We will evaluate the integration with differ-
ent temperature scaling methods in our experiments. Finally, we
take Z?2 as algorithm output and compute ECE(Z?) for evaluation.
Note that we only model edge weights for existing edges, and thus
enjoy linear computational complexity. We will demonstrate the
efficiency of our algorithm in Section 6.4. Besides, we present the
pseudo code of DCGC in Appendix A.

6 EXPERIMENT

In this section, we conduct experimental evaluation to answer the
following research questions (RQs): RQ1: How does DCGC perform
compared with state-of-the-art GNN calibration algorithms? RQ2:
How does the two weighting modules contribute to the overall
performance? RQ3: How about the efficiency of DCGC? RQ4: How
about the hyper-parameter sensitivity of DCGC?

6.1 Experimental Settings

6.1.1 Dataset. We consider 8 popular graph datasets from vari-
ous domains to evaluate the effectiveness of our proposed DCGC:
Cora [38], Citeseer [38], Pubmed [38], CoraFull [1], Photo [28],
Computers [28], Arxiv [11] and Reddit [9]. Descriptions and sta-
tistics of these datasets are listed in Appendix B. Following the
partition settings of GATS[10], we use 10% random nodes as the
training set, 5% random nodes as the validation set, and the other
85% nodes as the test set for all 8 datasets.

6.1.2  GNNsto be Calibrated. In our experiments, we train GCN [13]
and GraphSAGE [9] on each dataset as the GNNs to be calibrated.
For GCN, we use a 2-layer architecture and 16-dimensional hidden
size. For GraphSAGE, we adopt the default average aggregation
variant with 2-layer architecture and 16-dimensional hidden size.
Model parameters of GCN and GraphSAGE are fixed after training.

6.1.3 Baselines. To prove the effectiveness and compatibility of
DCGC, we consider four temperature scaling-based baselines for
comparison and integration: Temperature Scaling (TS) [8], Vector
Scaling (VS) [8], CaGCN [33] and Graph Attention Temperature
Scaling (GATS) [10]. TS and VS are calibration methods designed for
general classification task, while CaGCN and GATS are specialized
for GNNGs. Specifically, TS employs a global temperature parameter
in the final softmax function. VS learns class-specific temperatures
for calibration. CaGCN calibrates GNNs by employing GCN to
generate node-specific temperatures. Similar to CaGCN, GATS also
learns node-specific temperatures based on a heuristic formula.
We integrate our DCGC with each of the four scaling methods,
respectively. All calibration methods are trained on the validation
set, including our DCGC. The implementation of GATS requires
the entire graph, and thus is not compatible with sampling or batch
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processing of large-scale graphs. Hence we ignore the results of
GATS on Reddit dataset.

6.1.4  Ablated Variants. We consider two ablated variants of DCGC
for comparison: DCGCy/, p indicates that the weighting module
of decisive edges is removed; while DCGCy, g indicates that the
weighting module of homophilic edges is removed.

6.1.5 Evaluation Metrics. Following previous calibration meth-
ods [33], we adopt Expected Calibration Error (ECE) with 20 bins as
the metric for calibration. Besides, since the modification of graph
structure may influence the predicted label g, we also adopt clas-
sification accuracy as another evaluation metric. In addition, we
train GNNs with five random dataset divisions, and conduct five
runs of calibration for each well-trained GNN, i.e., a total of 25 runs
for each pair of dataset and GNN. We report both the average and
standard deviation.

6.1.6  Implementation Details. For hyper-parameters in DCGC, we
tune @ € {0.1,0.3,0.5,1} and f € {0.1,0.2,1,10} based on the
performance on validation set. For the MLP in the decisive edge
weighting module, we adopt 2-layer architecture and 2X input
dimension as hidden size, i.e.,, 4x the number of classes. We fix
weight decay as 0.005 and learning rate as 0.01, and train calibration
methods for at most 1000 epochs using early stop of 200 patience.

6.2 Main Results (RQ1)

The results of calibration and accuracy are shown in Table 2 and 3,
respectively, and we have the following observations:

(1) Before evaluating the calibration performance, we first show
that our data-centric approach will not harm the classification
accuracy. As shown in Table 2, compared with uncalibrated GCN
and GraphSAGE, DCGC and its variants have competitive or even
better prediction accuracy. The average relative improvement of
DCGC over GCN/GraphSAGE are 0.51%/0.32%, respectively. Thus,
instead of sacrificing precision as a trade-off, our proposed DCGC
can bring accuracy gains as a by-product.

(2) By integrating with temperature scaling-based methods, DCGC
can achieve SOTA calibration performance on all datasets and
GNN:s. In terms of ECE, the average relative improvement over
TS, VS, CaGCN and GATS are respectively 39.8%, 38.6%, 34.4% and
33.0%. In fact, even when equipped with the vanilla TS, DCGC+TS
is already better than SOTA GNN calibration methods, i.e., CaGCN
and GATS. This observation validates the effectiveness and com-
patibility of our proposed data-centric calibration.

(3) For some datasets such as Pubmed, calibration methods spe-
cialized for GNNs (CaGCN and GATS) do not show significant
advantages over graph-irrelevant ones (TS and VS). Thus, only uti-
lizing graph information in modeling node-specific temperatures
may not make full use of the structure data. In contrast, our DCGC
calibrates GNN predictions by modifying the input graph, and thus
has stronger impact on the calibration performance.

6.3 Ablation Study (RQ2)

In this subsection, we will conduct ablation study to discuss the im-
pact of two weighting modules in DCGC. The two ablated variants,
i.e, DCGCyy/o p and DCGCyy, 1, respectively remove the modeling
of decisive and homophilic edges. The accuracy and calibration
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Table 2: The classification accuracy (in percentage) of uncalibrated GNNs and their calibrated versions based on DCGC. Note
that temperature scaling tricks will not affect the accuracy. The accuracy is the higher the better.

Model Method Cora Citeseer Pubmed Photo Computers | CoraFull Arxiv Reddit
Original 82.84+1.64 | 72.40+1.14 | 87.23+0.24 | 92.50+0.55 | 87.88+0.45 | 62.04+0.58 | 63.94+0.57 | 90.34+0.38
GCN DCGCy/op | 82.80£1.73 | 72.38+0.81 | 87.59+0.38 | 92.55%0.46 | 87.43%0.33 | 61.97£0.60 | 64.14+0.25 | 90.41£0.33
DCGCy/on | 82.73£1.54 | 72.7241.26 | 87.63+0.40 | 93.34+0.29 | 89.07+0.53 | 63.12£0.58 | 64.05£0.16 | 90.36+0.27
DCGC 82.62+1.72 | 72.40+0.94 | 87.72+0.48 | 93.39+0.38 | 88.80+0.42 | 63.09+0.60 | 64.07+0.12 | 90.37+0.27
Original 83.49+0.57 | 70.93%£0.68 | 86.58+0.36 | 92.29+0.39 | 87.09+0.83 | 60.02+0.25 | 61.79+0.35 | 90.21+0.12
GraphSAGE DCGCyy/op | 83.65%0.72 | 71.09+0.74 | 86.85+0.47 | 92.30+0.42 | 87.11+0.87 | 60.05£0.25 | 61.66+0.23 | 90.29£0.16
DCGCy/o 1 | 83.66£0.50 | 71.89£0.52 | 86.98+0.54 | 92.43+0.24 | 87.70+0.76 | 60.32+0.54 | 61.50£0.20 | 90.39+0.08
DCGC 83.78+0.60 | 71.04+0.61 | 87.24+0.69 | 92.51+0.31 | 87.74+0.76 | 60.28+0.24 | 61.46+0.17 | 90.40+0.09

Table 3: The calibration results of different methods on eight datasets. ECE scores (%) are the lower the better.

Model Method Cora Citeseer | Pubmed Photo | Computers | CoraFull Arxiv Reddit
Original 14.43+4.52 | 14.42+4.17 | 8.41+1.29 | 7.49+1.14 | 5.92+0.29 | 14.31£0.54 | 8.00+0.15 | 5.18+0.23
TS 6.60+1.83 | 10.22+1.92 | 4.43£0.58 | 3.16£1.02 | 3.92+1.56 | 11.00£0.78 | 6.39+0.31 | 5.12+0.22
DCGC+TS 4.89+1.41 8.13+2.36 | 2.18+0.71 | 1.72+0.62 1.93+0.50 5.63+£0.78 | 4.26%0.37 | 4.17£0.32
VS 8.26+1.80 | 10.86+1.38 | 5.02+0.68 | 4.54+0.96 | 4.46%+1.31 13.68+0.37 | 7.68+0.21 | 4.36%0.05
GCN DCGC+VS 6.04+1.67 | 8.86+1.69 | 2.50+0.85 | 1.77£0.49 | 1.67+0.70 8.32+0.85 | 4.60+0.27 | 3.84+0.27
CaGCN 6.88+1.29 8.41+1.87 | 3.52+0.56 | 1.75+0.72 | 2.94£3.33 7.09£0.58 | 3.87+£0.39 | 2.92+0.14
DCGC+CaGCN | 5.42+1.25 6.68+1.85 | 1.68+0.54 | 1.11+0.24 | 2.55%2.84 4.52+0.47 | 2.86+0.37 | 1.23%£0.26
GATS 5.27£1.86 9.09£2.03 | 3.69+0.51 | 1.41+0.41 | 1.61+0.85 9.07+£0.61 | 4.42+0.31 -
DCGC+GATS 4.23+1.24 7.17£2.30 | 1.66+0.47 | 1.30+£0.26 | 1.58+0.41 4.21+0.56 | 3.87+0.33 -
Original 10.25+5.27 | 10.82+4.74 | 7.43£2.23 | 8.27£2.60 | 7.22+0.78 | 13.92+1.21 | 8.79£1.52 | 9.67+0.31
TS 9.68+3.83 9.42+£1.68 | 5.15%£0.80 | 2.76x0.79 | 2.85+0.69 10.54+1.33 | 7.77£0.99 | 9.05+0.20
DCGC+TS 6.03£1.19 5.00£0.68 | 3.54£1.06 | 1.45%£0.50 | 2.26+0.66 5.39+1.25 | 4.14£1.21 | 4.04+0.47
VS 9.91+£3.75 9.184£3.19 | 5.14+0.35 | 4.11+0.89 | 4.25+0.68 | 14.47£1.66 | 8.55+1.18 | 9.87+0.26
GraphSAGE DCGC+VS 5.14+0.72 5.91£0.76 | 2.19+0.63 | 1.62+0.71 | 2.14+0.55 8.28+1.63 | 5.10+1.36 | 8.16%0.36
CaGCN 9.49+2.29 8.67£1.64 | 4.63£1.74 | 2.05£0.63 | 2.38+0.36 6.91+1.35 | 4.13+1.22 | 5.02+0.22
DCGC+CaGCN | 5.26+1.35 5.38+£3.10 | 2.30+0.69 | 1.31+0.36 | 2.13+0.43 4.29+0.84 | 3.83%£1.15 | 2.15%0.17
GATS 9.68+3.38 8.86+2.05 | 5.04%1.33 | 2.44+0.77 | 2.76x0.58 8.69£1.27 | 5.96x1.21 -
DCGC+GATS 6.99£1.61 6.18+1.73 | 3.70+1.25 | 1.43+£0.40 | 2.31+0.67 4.50£0.99 | 2.92+1.16 -
performance of ablated models are shown in Table 2 and 4. From 150 250
the results, we can see that: % 120 % 200
(1) The full model DCGC has better calibration performance than E 9 E 150
the two ablated variants with 22.03% and 15.29% average relative im- £ 60 £ 100
provement of ECE. Hence, both weighting modules of decisive and £ 30 g so
homophilic edges contribute to the final calibration performance 0+ . \ . \ 0+ . . . ‘
GCN CaGCN GATS DCGC GCN CaGCN GATS DCGC

of DCGC, which validates the effectiveness of our design.

(2) Compared with uncalibrated GNNs, both DCGCy, p and
DCGCy0 g have competitive or even better classification accu-
racy. The two ablated variants can also improve the calibration
performance over temperature scaling baselines. Therefore, the
two weighting modules can be deployed separately for calibrating
GNNs without sacrificing prediction accuracy.

(3) The decisive edge weighting module is more important the
homophilic one. Compared with DCGCyo p, DCGCyy/o 1 has 0.44%
and 7.36% relative improvement in accuracy and calibration. A
possible reason is that the decisive edge weighting module is learned
via optimization instead of heuristically designed. We will explore
more powerful edge weighting methods for homophilic edges in
the future work.

(a) CoraFull (b) Arxiv

Figure 3: Training time comparison between different meth-
ods on CoraFull and Arxiv datasets.

6.4 Efficiency Analysis (RQ3)

To demonstrate the efficiency of DCGC, we present the training time
of DCGC and other methods on CoraFull and Arxiv datasets. We
can see that compared with the semi-supervised training of GCN,
all three calibration methods are very efficient. In particular, the
training time of DCGC (excluding the integration of temperature
scaling) is the least. Thus, when equipping DCGC with temperature
scaling-based methods for calibration, the computational overhead
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Table 4: The calibration results of different model variants on eight datasets. ECE scores are the lower the better.

Model Method Cora Citeseer | Pubmed Photo | Computers | CoraFull Arxiv Reddit
DCGCyy/o p+TS 5.27#1.53 | 9.90+#1.95 | 3.49+0.58 | 2.11£0.61 | 2.49+0.68 9.70+£0.52 | 5.81£0.29 | 4.94+0.36
DCGCy/o g+TS 5.26+1.78 | 8.32+2.35 | 2.47£0.99 | 1.76£0.44 | 2.05+0.88 6.85+1.14 | 5.49+0.36 | 4.67+0.47
DCGC+TS 4.89+1.41 | 8.13£2.36 | 2.18+0.71 | 1.72+0.62 | 1.93£0.50 5.6310.78 | 4.26%0.27 | 4.17£0.32
DCGCyy/o p+VS 7.32£1.59 | 10.50+1.36 | 4.16£0.60 | 2.62+0.79 | 2.36£0.59 | 12.51+0.49 | 6.51£0.37 | 4.21+0.14
DCGCy/o g+VS 6.61+1.89 | 9.16£1.49 | 2.95+1.09 | 1.84+0.55 | 2.03+£0.96 9.57£0.72 | 6.04£0.33 | 3.92+0.28
GCN DCGC+VS 6.04+1.67 | 8.86%£1.69 | 2.50+0.85 | 1.77+0.49 | 1.67£0.70 8.32+0.85 | 4.60+0.27 | 3.84+0.27
DCGCy/o p+CaGCN | 6.00+1.34 | 8.26%1.70 | 2.48+0.51 | 1.31+0.25 | 2.55+3.18 6.72+0.41 | 3.4240.23 | 2.53+0.34
DCGCy/o g+GaGCN | 5.72£1.70 | 6.77£2.05 | 2.08+0.87 | 1.16+0.25 | 2.62+2.61 4.68+0.82 | 3.28+0.29 | 1.86+0.25
DCGC+CaGCN 5.42+1.25 | 6.68+1.85 | 1.68+0.54 | 1.11+£0.24 | 2.55+2.84 4.52+0.47 | 2.86+0.27 | 1.23+0.26
DCGCy/o p+GATS | 4.14+1.43 | 8.64+2.25 | 2.47+0.34 | 1.43+0.11 | 1.66%0.25 7.90£0.43 | 4.32+0.19 -
DCGCy/o g+GATS | 4.62+1.32 | 7.38+2.42 | 2.05+0.89 | 1.36+0.47 | 1.72+0.62 5.00+0.92 | 3.99+0.29 -
DCGC+GATS 4.23+1.24 | 7.17£2.30 | 1.66+0.47 | 1.30£0.26 | 1.58+0.41 4.21+£0.56 | 3.87£0.33 -
DCGCy/o p+TS 6.29+0.81 | 6.98+£2.35 | 3.68+1.25 | 2.73£0.75 | 2.84£0.68 7.23+£1.38 | 7.76£0.99 | 5.05+0.24
DCGCy/o g+TS 8.20+3.90 | 8.14£2.06 | 4.71+1.60 | 1.50+0.48 | 2.33%0.66 8.01+2.74 | 4.10+1.18 | 4.18+0.32
DCGC+TS 6.03£1.19 | 5.00+£0.68 | 3.54£1.06 | 1.45+0.50 | 2.26+0.66 5.39+£1.25 | 4.14+1.21 | 4.04+0.47
DCGCy/o p+VS 5.82+0.87 | 6.11+£3.37 | 2.29£0.14 | 4.06£0.83 | 4.19+0.64 8.50+1.03 | 8.51£1.17 | 9.10+0.22
DCGCy/o u+VS 8.87+3.78 | 8.82%£3.12 | 4.70£1.82 | 1.69+£0.65 | 2.19+0.55 9.73£2.35 | 5.12%#1.35 | 8.85%0.28
GraphSAGE DCGC+VS 5.14+£0.72 | 5.91+0.76 | 2.1940.63 | 1.62+£0.71 | 2.14%0.55 8.28+1.63 | 5.10+1.36 | 8.16+0.36
DCGCy/o p+CaGCN | 5.46+0.97 | 6.74%1.89 | 2.33+0.69 | 2.01£0.63 | 2.37+0.39 6.00£2.45 | 4.00+1.26 | 4.85%0.25
DCGCy/o g+GaGCN | 6.65£2.10 | 6.91£1.99 | 4.16£1.60 | 1.36+0.38 | 2.18+0.49 7.17£1.67 | 3.89+£1.17 | 2.89+0.27
DCGC+CaGCN 5.26%£1.35 | 5.38+£3.10 | 2.30+0.69 | 1.31£0.36 | 2.13+0.43 4.29+0.84 | 3.83%£1.15 | 2.15%0.17
DCGCy/o p+GATS | 6.14+0.91 | 6.01+1.35 | 3.90+1.26 | 2.16+0.71 | 2.58+0.45 6.78+1.51 | 6.00£1.20 -
DCGCy/o g+GATS | 7.55#3.20 | 7.05%¥1.05 | 4.39+1.55 | 1.40+0.37 | 2.39+0.68 7.52+2.55 | 2.86+1.12 -
DCGC+GATS 6.99+1.61 | 6.18£1.73 | 3.70+1.25 | 1.43+0.40 | 2.31£0.67 4.50£0.99 | 2.92%1.16 -

brought by DCGC is very limited, making DCGC applicable for
large-scale graphs.

ECE(%)

8 9 o4 8 ~
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Figure 4: Hyper-parameter sensitivity of @ and f in Eq. (10)
on Cora and Photo. For legibility, we use 1/ as the axis.

6.5 Hyper-parameter Sensitivity (RQ4)

In this subsection, we explore the influence of hyper-parameters
on calibration performance. Fixed hyper-parameters of DCGC have

been introduced in Section 6.1.6. Besides, DCGC has two key hyper-
parameters in computing the weights of homophilic edges: o €
{0.1,0.3,0.5,1} and f§ € {0.1,0.2, 1, 10}. Fig. 4 presents the calibra-
tion performance of DCGC under different hyper-parameters a
and f on Cora and Photo datasets. We can see that a larger « is
preferred in all four cases, and the calibration performance is not
very sensitive to the change of f at this time. This suggests the
robustness of DCGC under proper hyper-parameter settings.

7 CONCLUSION

In this paper, we propose a novel data-centric perspective for the
calibration of graph neural networks, which aims to modify the
graph structure for better calibration performance without sacrific-
ing prediction accuracy. By analyzing the impact of decisive and
homophilic edges on calibration, we design DCGC with two corre-
sponding edge weighting modules that can adaptively assign larger
weights to such important edges. The proposed DCGC is also highly
compatible with existing temperature scaling-based methods. Ex-
perimental results on eight datasets demonstrate the effectiveness
and efficiency of DCGC. For future work, we will consider the ap-
plication on graph-level tasks as well as other trustworthy graph
learning scenarios.

ACKNOWLEDGEMENT

This work is supported in part by the National Natural Science
Foundation of China (No. U20B2045, 61772082, 62002029, 62192784,
62172052, U1936104) and Young Elite Scientists Sponsorship Pro-
gram (No. 2023QNRC001) by CAST.




Calibrating Graph Neural Networks from a Data-centric Perspective

REFERENCES

(1]

[2

[

[9

=

[10]

—
—

[12]

[13

[14]

[16

[17]

[18]

[19]

™
=

[21]

Aleksandar Bojchevski and Stephan Giinnemann. 2018. Deep Gaussian Embed-
ding of Graphs: Unsupervised Inductive Learning via Ranking. In International
Conference on Learning Representations.

Jian Du, Shanghang Zhang, Guanhang Wu, José MF Moura, and Soummya
Kar. 2017. Topology adaptive graph convolutional networks. arXiv preprint
arXiv:1710.10370 (2017).

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent,
Yoshua Bengio, and Xavier Bresson. 2020. Benchmarking graph neural networks.
arXiv preprint arXiv:2003.00982 (2020).

Matthias Fey and Jan Eric Lenssen. 2019. Fast graph representation learning with
PyTorch Geometric. arXiv preprint arXiv:1903.02428 (2019).

Meire Fortunato, Charles Blundell, and Oriol Vinyals. 2017. Bayesian Recurrent
Neural Networks. arXiv e-prints (2017), arXiv-1704.

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a bayesian approximation:
Representing model uncertainty in deep learning. In International Conference on
Machine Learning. PMLR, 1050-1059.

Shurui Gui, Xiner Li, Limei Wang, and Shuiwang Ji. 2022. Good: A graph out-of-
distribution benchmark. Advances in Neural Information Processing Systems 35
(2022), 2059-2073.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. 2017. On calibration
of modern neural networks. In International Conference on Machine Learning.
PMLR, 1321-1330.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017).

Hans Hao-Hsun Hsu, Yuesong Shen, Christian Tomani, and Daniel Cremers.
2022. What Makes Graph Neural Networks Miscalibrated? Advances in Neural
Information Processing Systems 35 (2022), 13775-13786.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets for
machine learning on graphs. Advances in neural information processing systems
33 (2020), 22118-22133.

DP Kingma. 2015. Adam: a method for stochastic optimization. In International
Conference on Learning Representations.

Thomas N Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In International Conference on Learning Repre-
sentations.

Aviral Kumar, Sunita Sarawagi, and Ujjwal Jain. 2018. Trainable calibration
measures for neural networks from kernel mean embeddings. In International
Conference on Machine Learning. PMLR, 2805-2814.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar
Bhalerao, and Ser Nam Lim. 2021. Large scale learning on non-homophilous
graphs: New benchmarks and strong simple methods. Advances in Neural Infor-
mation Processing Systems 34 (2021), 20887-20902.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. 2017.
Focal loss for dense object detection. In Proceedings of the IEEE international
conference on computer vision. 2980-2988.

Yang Liu, Xiang Ao, Fuli Feng, and Qing He. 2022. UD-GNN: Uncertainty-aware
Debiased Training on Semi-Homophilous Graphs. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 1131-1140.
Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel.
2015. Image-based recommendations on styles and substitutes. In Proceedings
of the 38th international ACM SIGIR conference on research and development in
information retrieval. 43-52.

Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore.
2000. Automating the construction of internet portals with machine learning.
Information Retrieval 3 (2000), 127-163.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda,
and Michael M Bronstein. 2017. Geometric deep learning on graphs and manifolds
using mixture model cnns. In Proceedings of the IEEE conference on computer vision
and pattern recognition. 5115-5124.

Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. 2015. Obtaining
well calibrated probabilities using bayesian binning. In Proceedings of the AAAI

[22]

(23]

&
3

[29

[30

[31

(33]

[34

(35]

&
2

[37

[38

[39

WWW ’24, May 13-17, 2024, Singapore, Singapore

conference on artificial intelligence, Vol. 29.

Kenta Oono and Taiji Suzuki. 2020. Graph Neural Networks Exponentially Lose
Expressive Power for Node Classification. In International Conference on Learning
Representations.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532-1543.

John Platt et al. 1999. Probabilistic outputs for support vector machines and com-
parisons to regularized likelihood methods. Advances in large margin classifiers
10, 3 (1999), 61-74.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. 2020. DropEdge:
Towards Deep Graph Convolutional Networks on Node Classification. (2020).
Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3(2008), 93-93.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Giinnemann. 2018. Pitfalls of Graph Neural Network Evaluation. arXiv e-prints
(2018), arXiv-1811.

Maximilian Stadler, Bertrand Charpentier, Simon Geisler, Daniel Ziigner, and
Stephan Giinnemann. 2021. Graph posterior network: Bayesian predictive uncer-
tainty for node classification. Advances in Neural Information Processing Systems
34 (2021), 18033-18048.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, Yoshua Bengio, et al. 2018. Graph attention networks. (2018).

Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong,
and Anshul Kanakia. 2020. Microsoft academic graph: When experts are not
enough. Quantitative Science Studies 1, 1 (2020), 396-413.

Min Wang, Hao Yang, and Qing Cheng. 2022. GCL: Graph Calibration Loss for
Trustworthy Graph Neural Network. In Proceedings of the 30th ACM International
Conference on Multimedia. 988—-996.

Xiao Wang, Hongrui Liu, Chuan Shi, and Cheng Yang. 2021. Be confident!
towards trustworthy graph neural networks via confidence calibration. Advances
in Neural Information Processing Systems 34 (2021), 23768-23779.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian
Weinberger. 2019. Simplifying graph convolutional networks. In International
Conference on Machine Learning. PMLR, 6861-6871.

Jun Wu, Jingrui He, and Jiejun Xu. 2019. Net: Degree-specific graph neural
networks for node and graph classification. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining. 406—
415.

Shunxin Xiao, Shiping Wang, Yuanfei Dai, and Wenzhong Guo. 2022. Graph
neural networks in node classification: survey and evaluation. Machine Vision
and Applications 33 (2022), 1-19.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In International Conference on Learning Representa-
tions.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. 2016. Revisiting semi-
supervised learning with graph embeddings. In International Conference on Ma-
chine Learning. PMLR, 40-48.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining. 974-983.

Bingxu Zhang, Changjun Fan, Shixuan Liu, Kuihua Huang, Xiang Zhao, Jincai
Huang, and Zhong Liu. 2023. The Expressive Power of Graph Neural Networks:
A Survey. arXiv preprint arXiv:2308.08235 (2023).

Xujiang Zhao, Feng Chen, Shu Hu, and Jin-Hee Cho. 2020. Uncertainty aware
semi-supervised learning on graph data. Advances in Neural Information Process-
ing Systems 33 (2020), 12827-12836.



WWW ’24, May 13-17, 2024, Singapore, Singapore

Cheng Yang et al.

Table 5: Dataset statistics of eight graph datasets.

Cora Citeseer Pubmed Photo Computers CoraFull — Arxiv Reddit
# Nodes 2,708 3,327 19,717 7,650 13,752 19,793 169,343 232,965
# Edges 10,556 9,104 88,648 238,162 491,722 126,842 1,166,243 114,615,892
# Features 1,433 3,703 500 745 767 8,710 128 602
# Classes 7 6 3 8 10 70 40 41

A PSEUDO CODE

Algorithm 1 Data-Centric Graph Calibration (DCGC)
Require: Graph G = (V, &, X), well-trained GNN model GNNg,

initialized parameter Q, hyper-parameters a, f5;
Ensure: Learned parameter Q and prediction Z2;
1: Encode every node v as hy by GNNg (A, X);
2: while not converge do
3. Compute each element wzl,’u of edge weight matrix W! with
parameter Q as Eq. (8);
4 Compute label prediction Z! = softmax(GNNg (A0W!, X));

5. Backpropagate Q by minimizing the loss as Eq. (9);

6: end while

7. Compute each element wg,u of edge weight matrix W? with
prediction Z! as Eq. (10);

8: Encode every node v as h2 by GNNg (A @ W! 0 W2, X);

9: Employ any temperature scaling-based methods to assign tem-
perature 7, for each node v;

10: Compute the final label distribution prediction z2 for each node

2 _ 2 ..
v as z = softmax(hZ, 7p);

B DETAILS OF DATASETS

Cora, Citeseer, Pubmed are three well-known citation network
datasets and CoraFull is the extended version of Cora. Photo and
Computers are subsets of the Amazon co-purchase graph dataset,
where nodes represent different Amazon goods and edges indicate
frequent co-purchases between goods. Arxiv dataset comes from
OGB [11], and is an arxiv citation network extracted from the
Microsoft Academic Graph [31]. Reddit dataset is a large-scale
graph where nodes represent posts, and edges represent that the
same user comments on both. We summarize the dataset statistics
in Table 5 and the detailed dataset descriptions are as follows:

e Cora, Citeseer and Pubmed: These datasets are constructed
by three text classification datasets [27]. Each node feature
vector is the bag-of-words representation of a document,
and each edge indicates a citation relationship between two
documents. The task is to classify each document into the
correct class.

e Photo and Computers: Both datasets are parts of the Ama-
zon co-purchase graph [18]. Each node feature vector is the
bag-of-words encoded product reviews, and each edge indi-
cates a co-purchase relationship between two goods.

e CoraFull: Cora dataset is constructed on a small subset of
the original citation dataset [19], while CoraFull additionally
extracts the entire network.

e Arxiv: This dataset comes from OGB [11], and is an arxiv
citation network extracted from the Microsoft Academic
Graph [31]. Each node can be mapped to a research paper.

¢ Reddit: Reddit is a large online discussion forum where
users can post and comment in different communities. Each
node feature vector is 300-dimensional GloVe word vec-
tors [24] of a post, and each edge indicates that the same
user comments on both posts. The task is to classify which
community different Reddit posts belong to.

C MORE EXPERIMENTAL SETTING DETAILS

C.1 Optimizer

We choose Adam optimizer [12] with fixed learning rate as 0.01 to
train GNNs and calibration models. For GNNs, we follow PyTorch
Geometric (PyG) [4] by setting weight decay as 0.005 on the first
layer and 0 on the second layer. For calibration methods, we fix
weight decay as 0.005.

C.2 Implementation Details

We implement GNNs and calibration methods based on PyTorch [23]
and PyTorch Geometric (PyG) [4]. For all experiments, we employ
GeForce RTX 2080 as our GPU device.

D ADDITIONAL EXPERIMENTS

Here we present extra figures of the efficiency analysis (RQ3) and
hyper-parameter analysis (RQ4). These figures show similar pat-
terns with those in Section 6.

D.1 Training Time on Other Datasets
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Figure 5: Training time on Cora and Citeseer datasets.
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Figure 6: Training time on Pubmed and Photo datasets.
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Figure 7: Training time on Computers dataset.

D.2 Hyper-parameter Sensitivity on Other
Datasets with GCN
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Figure 8: Hyper-parameter sensitivity of o and § on Citeseer
and Pubmed datasets.
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Figure 9: Hyper-parameter sensitivity of « and  on Comput-
ers and CoraFull datasets.
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Figure 10: Hyper-parameter sensitivity of o and f on Arxiv
and Reddit datasets.
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