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ABSTRACT
Pre-trained graph models (PGMs) aim to capture transferable inher-

ent structural properties and apply them to different downstream

tasks. Similar to pre-trained language models, PGMs also inherit

biases from human society, resulting in discriminatory behavior

in downstream applications. The debiasing process of existing fair

methods is generally coupled with parameter optimization of GNNs.

However, different downstream tasks may be associated with dif-

ferent sensitive attributes in reality, directly employing existing

methods to improve the fairness of PGMs is inflexible and inef-

ficient. Moreover, most of them lack a theoretical guarantee, i.e.,

provable lower bounds on the fairness of model predictions, which

directly provides assurance in a practical scenario. To overcome

these limitations, we propose a novel adapter-tuning framework

that endows pre-trained Graph models with Provable fAiRness
(called GraphPAR

1
). GraphPAR freezes the parameters of PGMs and

trains a parameter-efficient adapter to flexibly improve the fairness

of PGMs in downstream tasks. Specifically, we design a sensitive

semantic augmenter on node representations, to extend the node

representations with different sensitive attribute semantics for each

node. The extended representations will be used to further train an

adapter, to prevent the propagation of sensitive attribute seman-

tics from PGMs to task predictions. Furthermore, with GraphPAR,

we quantify whether the fairness of each node is provable, i.e.,

predictions are always fair within a certain range of sensitive at-

tribute semantics. Experimental evaluations on real-world datasets

demonstrate that GraphPAR achieves state-of-the-art prediction

performance and fairness on node classification task. Furthermore,

based on our GraphPAR, around 90% nodes have provable fairness.
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The source code can be found at https://github.com/BUPT-GAMMA/GraphPAR.
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1 INTRODUCTION
Graph Neural Networks (GNNs) [40, 45] have achieved signifi-

cant success in analyzing graph-structured data, such as social

networks [13] and webpage network [43]. Recently, inspired by

pre-trained language models, various pre-trained graph models

(PGMs) [18, 39, 46] have been proposed. Generally, PGMs capture

transferable inherent graph structure properties through unsuper-

vised learning paradigms in the pre-training phase, and then adapt

to different downstream tasks by fine-tuning. As a powerful learn-

ing paradigm, PGMs have received considerable attention in the

field of graph machine learning and have been broadly applied in

various domains, such as recommendation systems [15] and drug

discovery [41].

However, recent works [11, 31] have demonstrated that pre-

trained language models tend to inherit bias from pre-training

corpora, which may result in biased or unfair predictions towards

sensitive attributions, such as gender, race and religion. With the

same paradigm, PGMs raise the following question: Do pre-trained
graph models also inherit bias from graphs? To answer this question,
we evaluate the node classification fairness of three different PGMs

on datasets Pokec_z and Pokec_n [38], the results as depicted in

Figure 1. We observe that PGMs are more unfair than vanilla GCN.

This is because PGMs can well capture semantic information on

graphs during the pre-training phase, which inevitably contains

sensitive attribute semantics. A further question naturally arises:

How to improve the fairness of PGMs? Addressing this problem

is highly critical, especially in graph-based high-stake decision-

making scenarios, such as social networks [22] and candidate-job

https://github.com/BUPT-GAMMA/GraphPAR
https://doi.org/10.1145/3589334.3645703
https://doi.org/10.1145/3589334.3645703
https://doi.org/10.1145/3589334.3645703
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Figure 1: An example of evaluating the node classification
fairness of PGMsonPokec_z andPokec_n datasets. DP (↓) and
EO (↓) report the fairness of three PGMs (i.e., DGI, EdgePred,
GCA) and vanilla GCN.

matching [21], because biased predictions will raise severe ethical

and societal issues.

Although substantial methods have been proposed for develop-

ing fair GNNs in recent years, directly employing them to improve

the fairness of PGMs is inflexible and inefficient. Namely, most

existing works generally train a fair GNN for a specific task. For ex-

ample, methods based on counterfactual fairness [1, 12, 29] train a

fair GNN encoder by constructing different counterfactual training

samples. Approaches with sensitive attribute classifiers [7, 26, 42]

constrain GNNs to capture sensitive semantic information by intro-

ducing an adversarial loss in the training phase. Obviously, in the

above methods, the debiasing process is coupled with the parameter

optimization of GNNs. However, in reality, the same PGM can be

used in different downstream tasks and different downstream tasks

may be associated with different sensitive attributes [6, 32, 44]. De-

biasing for a specific task in the pre-training phase is inflexible,

and maintaining a specific PGM for each task is inefficient. Besides,

most existing fairness methods lack theoretical analysis and guaran-

tees [3, 20], meaning that they do not provide a practical guarantee,

i.e., provable lower bounds on the fairness of model prediction. This

is significant for determining whether to deploy models in practical

scenarios [5, 19, 34, 35].

In this paper, we attempt to address the above questions by

proposing GraphPAR, a novel adapter-tuning framework for effi-

ciently and flexibly endowing PGMs with provable fairness. Specif-

ically, in downstream tasks, we first freeze the parameters of PGMs,

then design a sensitive semantic augmenter on node representa-

tions, to extend the node representations with different sensitive

attribute semantics for each node. The extended representations

will be directly used to tune an adapter so that the adapter-processed

node representations are independent of sensitive attribute seman-

tics, preventing the propagation of sensitive attribute semantics

from PGMs to task predictions. Furthermore, with GraphPAR, we

quantify whether the fairness of each node is provable, i.e., predic-

tions are always fair within a certain range of sensitive attribute

semantics. For example, when a person’s gender semantics gradu-

ally transit from male to female, our provable fairness guarantees

that the prediction results will not change. In summary, GraphPAR

can apply to any PGMs while providing fairness with theoretical

guarantees.

Our main contributions can be summarized as follows:

• We first explore the fairness of PGMs and find that PGMs can cap-

ture sensitive attribute semantics during the pre-training phase,

leading to unfairness in downstream task predictions.

• We propose GraphPAR for efficiently and flexibly endowing

PGMs with provable fairness. Specifically, during the adaption of

downstream tasks, GraphPAR utilizes an adapter for parameter-

efficient adaption and a sensitive semantic augmenter for fairness

with practical guarantees.

• Extensive experiments on different real-world datasets demon-

strate that GraphPAR achieves state-of-the-art prediction per-

formance and fairness. Moreover, with the help of GraphPAR,

around 90% of nodes have provable fairness.

2 RELATEDWORK
2.1 Pre-trained Graph Models
Inspired by pre-trained language models, pre-trained graph models

(PGMs) capture transferable inherent graph structure properties

through unsupervised learning paradigms during the pre-training

phase, and then adapt to different downstream tasks by fine-tuning.

Based on different pre-training methods, the existing PGMs can

mainly be categorized into contrastive and predictive pre-training.

Contrastive pre-training maximizes mutual information between

different views, encouraging models to capture invariant semantic

information across various perspectives. For example, DGI [39]

and InfoGraph [36] generate expressive representations for nodes

or graphs by maximizing the mutual information between graph-

level and substructure-level. GraphCL [48] and its variants [37, 47]

further introduce a range of sophisticated augmentation strategies

for constructing different views. Unlike contrastive pre-training,

predictive pre-training enables models to understand the universal

structural and attribute semantics of graphs. For instance, attribute

masking is proposed by [18] where the input node attributes or

edge are randomly masked, and the GNN is asked to predict them.

EdgePred [14] samples negative edges and trains a general GNN

to predict edge existence. GraphMAE [17] incorporates feature

reconstruction and a re-mask decoding strategy to pre-train a GNN.

Despite the ability of PGMs to capture abundant knowledge that

proves valuable for downstream tasks, the conventional fine-tuning

process still has some drawbacks, such as overfitting, catastrophic

forgetting, and parameter inefficiency[25]. To alleviate these issues,

recent research has focused on developing parameter-efficient tun-

ing (delta tuning) techniques that can effectively adapt pre-trained

models to downstream tasks [8]. Delta tuning [8] seeks to tune a

small portion of parameters and keep the left parameters frozen. For

example, prompt tuning [28] aims to modify model inputs rather

than PGMs parameters. Adapter tuning [25] trains only a small

fraction of the adapter parameters to adapt pre-trained models to

downstream tasks.

Though a large number of researches have been proposed on how

to design pre-training methods and fine-tune PGMs in downstream

tasks, most of them focus on improving performance while ignoring

their plausibility in fairness and so on.

2.2 Fairness of Graph
Recent study [7] shows that GNNs tend to inherit bias from training

data and the message-passing mechanism of GNNs could magnify

the bias. Hence, many efforts have been made to develop fair GNNs.

According to the stage at which the debiasing process occurs, the ex-

isting methods could be split into the pre-processing, in-processing,
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and post-processing methods [3]. Pre-processing methods remove

bias before GNN training occurs by targeting the input graph struc-

ture, input features, or both. For instance, EDITS [9] propose a

novel approach that utilizes the Wasserstein distance to mitigate

both attribute and structural bias on graphs. In-processing methods

focus on modifying the objective function of GNNs to learn fair

or unbiased embeddings during training. For example, NIFTY [1]

proposes a novel multiple-objective function incorporating fairness

and stability. Graphair [26] introduces an automated augmentation

model that generates a graph for fairness and informativeness. A

few post-processing methods have been proposed to remove bias

from GNNs. FairGNN [7] trains a fair GNN encoder through an

adversary task of predicting sensitive attributes. FLIP [30] further

addresses the problem of link prediction homophily by adversarial

learning.

Although all the methods above have achieved significant suc-

cess in graph fairness, most of them require optimizing the param-

eters of GNN. Since different downstream tasks may be associated

with different sensitive attributes, these methods cannot flexibly

and efficiently improve the fairness of PGMs. Besides, they all lack

theoretical analysis and fairness guarantees, which are significant

for determining whether to deploy a model in a real-world scenario.

3 PRELIMINARY
3.1 Notations
Given an attributed graph as G = (V, E,X), whereV = {𝑣1, ..., 𝑣𝑛}
represents the set of𝑛 nodes, E ⊆ V×V represents the set of edges,

X = {x1, . . . , x𝑛} represents the node features and x𝑖 ∈ R𝑑 . The
adjacency matrix of the graph G is denoted as A ∈ R𝑛×𝑛 , where
A𝑖 𝑗 = 1 if nodes 𝑣𝑖 and 𝑣 𝑗 are connected, otherwise A𝑖 𝑗 = 0. Each

node 𝑖 is associated with a binary sensitive attribute 𝑠𝑖 ∈ {0, 1} (we
assume one single, binary sensitive attribute for simplicity, but our

method can easily handle multivariate sensitive attributes as well).

Furthermore, we consider a PGM or GNN denoted as 𝑓 , which takes

the graph structure and node features as input and produces node

representations. The encoded representations for the 𝑛 nodes are

denoted by H = {h𝑖 }𝑛𝑖=1, where H = 𝑓 (V, E,X) and h𝑖 ∈ R𝑝 .
In the pre-training phase, the parameters of a PGM 𝑓 are opti-

mized via self-supervised learning, such as graph contrastive learn-

ing [36, 39, 47, 48] or graph context prediction [14, 16–18]. In the

downstream adaption phase, adapter tuning freezes the parame-

ter 𝑓𝜃 of the PGM 𝑓 and tunes parameter 𝑔𝜃 of an adapter 𝑔 to

adapt PGM for different downstream tasks. Generally, |𝑔𝜃 | ≪ |𝑓𝜃 |,
where |·| denotes the number of parameters. In the adapter, given

an input h𝑖 ∈ R𝑝 , a down projection projects the input to a 𝑞-

dimensional space, after which a nonlinear function is applied.

Then the up-projection maps the 𝑞-dimensional representation

back to 𝑝-dimensional space.

3.2 Fairness Definition on Graph
The fairness definition on the graph refers to the model prediction

results not being influenced by sensitive attributes of nodes, i.e., the

prediction results will not change as the sensitive attribute value

variations [29].

Definition 1 (Fairness onGraph). Given a graphG = (V, E,X),
the encoder 𝑓 (·) and the classifier 𝑑 (·) trained on this graph satisfies
fairness if for any node 𝑣𝑖 :

𝑃 ((𝑦𝑖 )𝑆←𝑠 |X,A) = 𝑃 ((𝑦𝑖 ))𝑆←𝑠′ |X,A), s.t. ∀𝑠 ≠ 𝑠′, (1)

where 𝑦𝑖 = 𝑑 ◦ 𝑓 (X,A)𝑖 denotes the predicted label for node 𝑣𝑖 , and
𝑠, 𝑠′ ∈ {0, 1}𝑛 are two arbitrary sensitive attribute values.

4 THE PROPOSED FRAMEWORK
In this section, we proposed a novel adapter-tuning framework,

GraphPAR, which flexibly and efficiently improves the fairness of

PGMs. First, we define the fairness of PGMs on GraphPAR, requir-

ing that the predictions are not affected by the sensitive attribute

semantics variations of the node. Next, to achieve the fairness objec-

tive, as depicted in Figure 2 (a) Adapter Tuning, GraphPAR consists

of two key components: (1) A sensitive semantic augmenter, which

extends the node representations with different sensitive attribute

semantics for each node, to help further train an adapter. (2) An

adapter, which transforms the node representations to be inde-

pendent of sensitive attribute semantics by adversarial debiasing

methods, preventing the propagation of sensitive attribute seman-

tics from PGMs to task predictions.

4.1 Fairness Definition of PGMs
Given a graph G = (V, E,X) and the PGM 𝑓 pre-trained on this

graph. GraphPAR freezes the parameters of 𝑓 to obtain node repre-

sentations H = 𝑓 (V, E,X), where H inevitably contains sensitive

attribute semantics on graph G and therefore we hope utilizes an

adapter 𝑔 to remove them. Combined with Definition 1, the fairness

of PGMs on GraphPAR is defined as follows:

Definition 2 (Fairness of PGMs). In GraphPAR, a PGM 𝑓 (·),
an adapter 𝑔(·) and a classifier 𝑑 (·) satisfy fairness during adaptation
to downstream tasks if for any node 𝑣𝑖 :

𝑃 ((𝑦𝑖 )Sh←s |H) = 𝑃 ((𝑦𝑖 )Sh←s′ |H), ∀s, s′ s.t. | |s − s′ | |2 ≠ 0, (2)

where 𝑦𝑖 = 𝑑 ◦ 𝑔(h𝑖 ) denotes the predicted label for node 𝑣𝑖 . s and s′
are two vectors with the same dimension as the node representation
h𝑖 , i.e., s, s′ ∈ R𝑝 , representing different sensitive attribute semantics.

The Definition 2 means that the model prediction results remain

consistent as the sensitive attribute semantics change. For example,

when a person’s gender semantics gradually transits from male

to female, fairness is satisfied if the model predictions are always

consistent, otherwise not satisfied. Thus, the objective of GraphPAR

is to remove the impact of sensitive attribute semantics from H on

model prediction by training an adapter 𝑔, improving the fairness

of PGMs in downstream tasks.

4.2 Sensitive Semantic Augmenter
The sensitive semantic augmenter extends the node representation

with different sensitive attribute semantics for each node, to help

further train the adapter. Initially, according to known sensitive

attribute information on the graph and representations of the nodes,

we calculate a vector 𝜶 that represents the direction of the sensitive

attribute semantics. Subsequently, we extend the node representa-

tion h𝑖 for each node via linearly interpolating in the direction of

𝜶 , obtaining a sensitive attribute semantics augmentation set S𝑖 .
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Figure 2: Overview of GraphPAR. In the adapter tuning phase, we first utilize the PGMs to obtain node representations H. Then,
we design a sensitive semantic augmenter to extend the node representations with different sensitive attribute semantics, i.e.,
sensitive attribute samples S. Finally, the extended node representations are used to train an adapter, transforming the node
representations to be independent of sensitive attribute semantics. In the provable fairness phase, based on the smoothed
versions of the well-trained adapter and classifier, we use the smooth adapter to get its output bound guarantee 𝑑𝑐𝑠 and use
the smooth classifier to get its local robustness guarantee 𝑑𝑟𝑠 . Sequentially, we quantify whether the fairness of each node is
provable by comparing 𝑑𝑐𝑠 with 𝑑𝑟𝑠 .

Computing the sensitive attribute semantics vector𝜶 . Lever-
aging the capabilities of PGMs in capturing both graph structure

and node attributes, we expect to derive a vector 𝜶 that effectively

represents the sensitive attribute semantics. First, we utilize the

given PGM 𝑓 to obtain node representations H. Then, based on

known node sensitive attribute 𝑠 on the graph, we partition the

node representations into positive and negative sets, i.e., H𝑝𝑜𝑠 and

H𝑛𝑒𝑔 . Subsequently, we calculate the average representation h𝑝𝑜𝑠
for nodes with the sensitive attribute and h𝑛𝑒𝑔 for nodes without
it, both obtained from H𝑝𝑜𝑠 and H𝑛𝑒𝑔 , respectively. Lastly, the dif-

ference between h𝑝𝑜𝑠 and h𝑛𝑒𝑔 represents the sensitive attribute

semantics vector:

𝜶 = h𝑝𝑜𝑠 − h𝑛𝑒𝑔, (3)

h𝑝𝑜𝑠 =
1

𝑛𝑝𝑜𝑠

𝑛𝑝𝑜𝑠∑︁
𝑖=1

H𝑝𝑜𝑠,𝑖 , h𝑛𝑒𝑔 =
1

𝑛𝑛𝑒𝑔

𝑛𝑛𝑒𝑔∑︁
𝑖=1

H𝑛𝑒𝑔,𝑖 , (4)

where 𝑛𝑝𝑜𝑠 and 𝑛𝑛𝑒𝑔 denote the number of positive and negative

samples. Intuitively, the key thought in calculating 𝜶 is to represent

the semantic relationships between groups by using the average

difference in embeddings across different groups. Averaging is done

to obtain a semantic embedding that represents the characteristics

of a group and eliminates individual characteristic differences. For

example, Mean (salesman, waiter, king) yields an embedding repre-

senting the male group, and Mean (saleswoman, waitress, queen)

can produce an embedding for the female group. Subtraction is used

to capture the semantic relationship between groups. For instance,

man − woman represents the translation vector from female to

male. If a user 𝑢 is female, 𝑢 + (man − woman) can yield a male

representation of that user. In summary, with the vector 𝜶 , we

expect to move in the direction of 𝜶 to increase the presence of the

sensitive attribute, while moving in the opposite direction dimin-

ishes its presence. In the experiment section, we conduct detailed

experiments to illustrate the effectiveness of 𝜶 .

Augmenting sensitive attribute semantics. After calculating
the sensitive attribute semantics vector 𝜶 , we employ it to augment

a set of sensitive attribute S𝑖 for each node representation h𝑖 . This
augmentation is achieved through a linear interpolation method

and can be expressed as:

S𝑖 := {h𝑖 + 𝑡 · 𝜶 | |𝑡 | ≤ 𝜖} ⊆ R𝑝 , (5)

where 𝜖 represents the augmentation range applied to the direc-

tion of the sensitive attribute semantics. The above augmentation

method offers two key advantages: (1) It efficiently extends node rep-

resentations with different semantics of sensitive attributes as line

segments. These line segments correspond to multiple points in the

original input space, bypassing complex augmentation designs in

the original graph [1, 49]. (2) Although this work primarily focuses

on single sensitive attribute scenarios, this method can be simply

extended to situations involving multiple sensitive attributes. In

such cases, interpolation can be performed along multiple sensitive

attribute semantics vectors.

4.3 Training Adapter for PGMs Fairness
Given any PGM 𝑓 and the sensitive attribute augmentation set S,
we now outline how to improve the fairness of PGMs by train-

ing a parameter-efficient adapter 𝑔 while ensuring the prediction

performance of downstream tasks. In GraphPAR, we employ two

adversarial debiasing methods for training the adapter: random

augmentation and min-max adversarial training.

Randomaugmentation adversarial training (RandAT).Dur-
ing the adapter 𝑔 training process, we choose 𝑘 samples from the

augmented sensitive attribute set S𝑖 to obtain adversarial training



Endowing Pre-trained Graph Models with Provable Fairness WWW ’24, May 13–17, 2024, Singapore, Singapore

set
ˆS𝑖 , i.e.,

ˆS𝑖 = {h𝑖 + 𝑡 𝑗 · 𝜶 }𝑘𝑗=1, 𝑡 𝑗 ∼ Uniform(−𝜖, 𝜖), (6)

where 𝜖 represents the augmentation range. These selected sam-

ples are then incorporated into the training of the adapter. The

optimization loss can be formulated as follows:

L
RandAT

= E𝑖∈V𝐿

[
Eh′

𝑖
∈ ˆS𝑖

[
ℓ (𝑑 ◦ 𝑔(h′𝑖 ), 𝑦𝑖 )

] ]
, (7)

whereV𝐿 is the set of labeled nodes, 𝑑 is a downstream classifier,

and ℓ (·) is cross-entropy loss which measures the prediction error.

In RandAT, by introducing diverse sensitive attribute semantic

samples in the training process, the adapter 𝑔 and the classifier 𝑑

become more robust to variations in sensitive information, mitigat-

ing potential discriminatory predictions. At the same time, these

augmented samples share the same task-related semantics as the

original sample, which further helps the adapter and classifier cap-

ture task-related semantics.

Min-max adversarial training (MinMax). Unlike RandAT,

the key thought behind MinMax is to find and optimize the worst-

case in each round. Our objective is to minimize the discrepancy

between the representation h𝑖 and its corresponding augmented

sensitive attribute semantics set S𝑖 . This is achieved by ensuring

that the representation h𝑖 closely aligns with the representations

within S𝑖 . To quantify this alignment, we seek to minimize the

distance between h𝑖 and S𝑖 . The optimization objective of MinMax

is minimizing the following loss function:

L𝑀𝑖𝑛𝑀𝑎𝑥 (h𝑖 ) = max

h′
𝑖
∈S𝑖



𝑔 (h𝑖 ) − 𝑔 (
h′𝑖
)


2
, (8)

where h′
𝑖
have different sensitive attribute semantics with h𝑖 . Mini-

mizing L𝑎𝑑𝑣 (h𝑖 ) is a min-max optimization problem, and adversar-

ial training is effective in this scenario. Since the input domain of

the inner maximization problem is a simple line segment about 𝜶 ,

we can perform adversarial training [10] by uniformly sampling 𝑘

points from S𝑖 to construct
ˆS𝑖 and approximate it as follow:

L𝑀𝑖𝑛𝑀𝑎𝑥 (h𝑖 ) ≈ max

h′
𝑖
∈ ˆS𝑖



𝑔 (h𝑖 ) − 𝑔 (
h′𝑖
)


2
. (9)

To further ensure that the adapter 𝑔 does not filter out useful

task information, we introduce cross-entropy classification loss to

ensure the performance of the downstream task:

L𝑐𝑙𝑠 (h𝑖 , 𝑦𝑖 ) = ℓ (𝑑 ◦ 𝑓 (h𝑖 ), 𝑦𝑖 ). (10)

The final optimization objective of MinMax is as follows:

L = 𝜆L𝑀𝑖𝑛𝑀𝑎𝑥 + L𝑐𝑙𝑠 , (11)

where 𝜆 is a scale factor for balancing accuracy and fairness.

5 PROVABLE FAIR ADAPTATION OF PGMS
In this section, based on GraphPAR, we primarily discuss how to

provide provable fairness for each node, i.e., the prediction results

are consistent within a certain range of sensitive attribute semantics.

We divide this process into two key components as depicted in

Figure 2 (b) Provable Fairness: (1) Smooth adapter. We construct

a smoothed version for the adapter using center smooth, which

provides a bound for the output variation of node representation

h within the range of sensitive attribute semantics change. This

guarantees that the range of output results is contained within a

minimal enclosing ball centered at zwith a radius of 𝑑𝑐𝑠 . (2) Smooth

classifier. We construct a smoothed version for the classifier using

random smooth, which provides local robustness against the center

z. By determining whether all points within the minimum enclosing

ball are classified into the same class, i.e., 𝑑𝑐𝑠 < 𝑑𝑟𝑠 , we quantify if

the fairness of each node is provable. Note that based on the well-

trained adapter and classifier, the smoothed models are constructed

by different definitions of the smoothing function. Thus, the process

of construction does not require training in any parameters. We

leave out the subscript (·)𝑖 for notation simplicity.

5.1 Provable Adaptation
To guarantee the range of change in the representation after ap-

plying the adapter 𝑔, we employ center smoothing [24] to obtain a

smoothed version of the adapter, denoted as 𝑔. It provides a guar-

antee for the output bound of the adapter with a representation h
as the input, described in Theorem 1:

Theorem 1 (Center Smoothing [24]). Let 𝑔 denote an approx-
imation of the smoothed version of the adapter 𝑔, which maps a
representation h to the center point 𝑔(h) of a minimum enclosing
ball containing at least half of the points z ∼ 𝑔(h + N(0, 𝜎2𝑐𝑠 𝐼 )). The
formal definition of 𝑔 as follows:

𝑔(h) = argmin

z
𝑟 s.t. P[𝑔(h + N(0, 𝜎2𝑐𝑠 𝐼 )) ∈ B(z, 𝑟 )] ≥

1

2

, (12)

where z and 𝑟 are the center and radius of the minimum enclosing
ball, respectively. Then, for an 𝑙2-perturbation size 𝜖1 > 0 on h, we
can produce a guarantee 𝑑𝑐𝑠 of the output change with confidence
1 − 𝛼𝑐𝑠 :

∀ h′ 𝑠 .𝑡 . ∥h − h′∥2 ≤ 𝜖1 , ∥𝑔(h) − 𝑔(h′)∥2 ≤ 𝑑𝑐𝑠 , (13)

since h′ − h = 𝑡 · 𝜶 , we have:

𝜖1 = max

𝑡
∥𝑡𝜶 ∥ = 𝜖 ∥𝜶 ∥2, (14)

where 𝜖 represents the augmentation range applied to the direction of
the sensitive attribute semantics.

Theorem 1 implies that given a node representation h and its set

of sensitive attribute samples S with range 𝜖 , a guarantee 𝑑𝑐𝑠 can

be computed with high probability. This 𝑑𝑐𝑠 represents the range of

the adapter output changes, serving as a meaningful certificate. It

guarantees that when the sensitive attribute semantics of input h is

perturbed within a range defined by 𝜖 , the range of output remains

within a minimal enclosing ball.

5.2 Provable Classification
Next, it is necessary to demonstrate that predictions for all points

within this minimum enclosing ball are classified consistently. This

consistency guarantees the effectiveness of debiasing results.

Theorem 2. (Random Smoothing [4]) Let 𝑑 be a classifier and let
𝜀 ∼ N(0, 𝜎2𝑟𝑠 𝐼 ). The smoothing version of the classifier 𝑑 is defined as
follows:

𝑑 (z) = argmax

𝑦∈Y
P𝜀 (𝑑 (z + 𝜀) = 𝑦). (15)



WWW ’24, May 13–17, 2024, Singapore, Singapore Zhongjian Zhang et al.

Suppose 𝑦𝐴 ∈ Y and 𝑝𝐴, 𝑝𝐵 ∈ [0, 1] satisfy:

P𝜀 (𝑑 (z + 𝜀) = 𝑦𝐴) ≥ 𝑝𝐴 ≥ 𝑝𝐵 ≥ max

𝑦𝐵≠𝑦𝐴
P𝜀 (𝑑 (z + 𝜀) = 𝑦𝐵) . (16)

Then, we have 𝑑 (z + 𝛿) = 𝑦𝐴 for all 𝛿 satisfying ∥𝛿 ∥2 < 𝑑𝑟𝑠 , where
𝑑𝑟𝑠 can be obtain as follow:

𝑑𝑟𝑠 :=
𝜎𝑟𝑠

2

(Φ−1 (𝑝𝐴) − (Φ−1 (𝑝𝐵)), (17)

whereY denotes the set of class labels,Φ is the cumulative distribution
function (CDF) of the standard normal distribution N(0, 1), and Φ−1
is its inverse.

Theorem 2 derives a local robustness radius 𝑑𝑟𝑠 for the input z
by employing the smoothed version 𝑑 of the classifier 𝑑 . This ro-

bustness guarantees that within the verified region of input, which

is bounded by 𝑑𝑟𝑠 , the classification output of 𝑑 remains consistent,

providing a guarantee of stability and consistency in the prediction

results. Theorem 2 is especially important for providing provable

fairness, because if 𝑑𝑐𝑠 < 𝑑𝑟𝑠 , then it guarantees consistency in the

predictions to different sensitive attribute semantic samples.

5.3 GraphPAR Provides Provable Fairness
To establish a theoretical guarantee for the debiasing effect of

adapter 𝑔, combining Theorem 1 and Theorem 2, we define the

provable fairness of PGMs as follows:

Definition 3 (Provable Fairness of PGMs). Given a node
representation h, the debiasing process𝑀 satisfies:

𝑀 (h) = 𝑀 (h′),∀ h′ ∈ S , (18)

where S is the set of sensitive attribute augmentations for h.

With the aforementioned two smoothing techniques, the prov-

able fairness of PGMs is naturally achieved with the following

theorem:

Theorem 3. Assuming we have a PGM 𝑓 , a center smoothing
adapter 𝑔, and a random smoothing classifier 𝑑 . For the 𝑖-th node, if 𝑔
obtains a output guarantee 𝑑𝑐𝑠 with confidence 1 − 𝛼𝑐𝑠 and 𝑑 obtains
a local robustness guarantee 𝑑𝑟𝑠 with confidence 1 − 𝛼𝑟𝑠 , and satisfy
𝑑𝑐𝑠 < 𝑑𝑟𝑠 , then the fairness of the debiasing𝑀 = 𝑑 ◦ 𝑔 ◦ 𝑓 (V, E,X)𝑖
is provable with a confidence 1 − 𝛼𝑐𝑠 − 𝛼𝑟𝑠 , the definition of the
formalization is as follows:

∀ h′ ∈ S : 𝑑 ◦ 𝑔 (h) = 𝑑 ◦ 𝑔
(
h′
)
, (19)

where h ∈ H,H = 𝑓 (V, E,X).

The detailed algorithms process of Theorem 3 is referred to

Appendix A, and the proof of Theorem 3 is referred to Appendix B.

6 EXPERIMENTS
In this section, we extensively evaluate GraphPAR to answer the

following research questions (RQs). RQ1: How effective is Graph-

PAR compared to existing graph fairness methods?RQ2: Compared

to methods without debiasing adaptation, does GraphPAR show

improvement in the number of nodes with provable fairness? RQ3:
How effective is the vector 𝜶 in representing the sensitive attribute

semantics direction? RQ4: How do different hyperparameters of

Table 1: Datasets Statistics.

Dataset Credit Pokec_n Pokec_z Income
#Nodes 30,000 66,569 67,797 14,821

#Features 13 266 277 14

#Edges 1,436,858 729,129 882,765 100,483

Node label Future default Working field Working field Income level

Sensitive attribute Age Region Region Race

Avg. degree 95.79 16.53 19.23 13.6

GraphPAR impact the classification performance and fairness?RQ5:
How parameter-efficient is GraphPAR?

Experimental setup. We test GraphPAR on the node classifica-

tion task. These are common graph datasets with sensitive attributes

collected from various domains. We choose four public datasets

Income [2], Credit [1], Pokec_z and Pokec_n [7]. Datasets statistics

refer to Table 1 and more details refer to Appendix C.1. Implemen-

tation details of GrahPAR refer to Appendix C.2. We report the

experiment results over five runs with different random seeds.

Baselines. We compare GraphPAR to four baselines: vanilla

GCN [23], graph fairness methods FairGNN [7], NIFTY [1], and ED-

ITS [9]. We choose contrastive pre-training DGI [39] and GCA [50],

as well as predictive pre-training EdgePred [14] as the backbone of

GraphPAR. More details of baselines refer to Appendix C.3.

6.1 Prediction Performance and Fairness (RQ1)
We choose accuracy (ACC) and macro-F1 (F1) to measure how well

the nodes are classified, demographic parity (DP) and equality of

opportunity (EO) to measure how fair the classification is. The

results are shown in Table 2; additional results on Income refer to

Table 4 in Appendix D.1. We interpret the results as follows:

• GraphPAR outperforms baseline models both in classification

and fairness performance. GraphPAR is demonstrated to be su-

perior in both classification and fairness performances, enhanc-

ing existing PGM models and outperforming other graph fairness

methods. This result supports the effectiveness of GraphPAR in

addressing fairness issues in the embedding space: (1) Powerful

pre-training strategies enable the embeddings to include intrinsic

information for downstream tasks. (2) Since PGMs also capture sen-

sitive attribute information, the sensitive semantics vector can be

effectively constructed. (3) Augmenting in the embedding space is

independent of task labels; thus, the sensitive semantic augmenter

does not corrupt the downstream performance.

• Performance of GraphPAR varies among different PGMs. The

prediction performance and fairness vary when choosing different

PGMs as the backbone. Usually, we observe that contrastive pre-

training methods DGI and GCA perform better than the predictive

method EdgePred, implying the performance of GraphPAR is posi-

tively related to the semantic capture ability of PGMs.

• RandAT and MinMax perform well but in different ways. It is

worth mentioning that RandAT often achieves the best result on

classification while MinMax often performs the best on fairness.

The following differences in the training schemes directly lead to

the result above: (1) In downstream classification loss, RandAT

utilizes all augmented samples, while MinMax only utilizes the

original sample. As a result, RandAT often outperforms MinMax

on classification metrics ACC and F1. We regard that classification

benefits from data augmentation [33], as these augmented sam-

ples share the same task-related semantics as the original samples,
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Table 2: Performance and fairness (%±𝜎) on node classification. The best results are in bold and runner-up results are underlined.

Method
Credit Pokec_z Pokec_n

ACC (↑) F1 (↑) DP (↓) EO (↓) ACC (↑) F1 (↑) DP (↓) EO (↓) ACC (↑) F1 (↑) DP (↓) EO (↓)

GCN 69.73±0.04 79.14±0.02 13.28±0.15 12.66±0.24 67.54±0.48 68.93±0.39 5.51±0.67 4.57±0.29 70.11±0.34 67.37±0.38 3.19±0.86 2.93±0.95

FairGNN 72.50±4.09 81.80±3.86 9.20±3.35 7.64±3.58 67.47±1.12 69.35±3.14 1.91±1.01 1.04±1.11 68.42±2.04 64.34±2.32 1.41±1.30 1.50±1.23

NIFTY 70.89±0.59 80.23±0.54 9.93±0.59 8.79±0.71 65.83±3.90 66.99±4.26 5.47±2.13 2.64±1.02 68.97±1.21 66.77±1.27 1.68±0.90 1.38±0.91

EDITS 66.80±1.03 76.64±1.13 10.21±1.14 8.78±1.15 OOM OOM OOM OOM OOM OOM OOM OOM

DGI

Naive 75.72±2.18 84.73±2.00 7.87±2.22 6.51±2.79 67.87±0.51 70.23±0.80 4.69±1.95 3.03±1.34 68.58±1.22 65.66±1.37 3.58±3.09 4.99±3.68

GraphPAR𝑅𝑎𝑛𝑑𝐴𝑇 76.88±1.33 85.85±1.36 5.93±2.91 4.44±3.34 67.05±1.33 70.50±0.69 1.90±1.22 0.84±0.28 68.92±1.55 65.61±1.33 1.19±0.65 2.11±1.60

GraphPAR𝑀𝑖𝑛𝑀𝑎𝑥 74.37±2.91 83.46±2.64 3.81±2.37 2.60±2.48 68.32±0.55 68.35±2.38 1.64±0.78 0.53±0.39 68.43±0.55 68.20±2.22 1.73±0.76 1.11±0.88

EdgePred

Naive 69.66±1.74 79.30±1.63 7.89±2.28 6.67±2.42 67.33±0.44 69.17±0.52 6.00±3.04 3.95±2.52 68.60±0.53 65.56±0.79 2.48±0.86 5.29±2.71

GraphPAR𝑅𝑎𝑛𝑑𝐴𝑇 69.97±2.35 79.55±2.24 6.36±2.19 4.83±2.70 66.87±1.12 68.86±0.46 1.99±1.12 2.27±1.23 68.49±1.41 65.45±1.02 1.79±0.85 3.69±0.68

GraphPAR𝑀𝑖𝑛𝑀𝑎𝑥 68.53±1.23 78.19±1.14 5.10±2.31 4.52±2.17 67.51±0.55 69.03±0.82 1.45±1.40 1.15±0.85 69.10±0.91 65.00±1.10 1.28±0.97 3.31±2.06

GCA

Naive 75.28±0.51 84.35±0.47 8.56±0.97 6.21±0.90 67.63±0.44 70.24±0.98 7.68±2.19 4.82±1.43 67.85±1.23 65.81±1.35 2.90±2.61 3.23±1.05

GraphPAR𝑅𝑎𝑛𝑑𝐴𝑇 75.50±1.29 84.66±1.27 5.51±2.44 3.98±1.96 66.73±2.22 70.32±0.73 4.23±2.50 2.94±1.84 68.11±0.44 64.43±1.05 2.35±1.12 2.42±1.62

GraphPAR𝑀𝑖𝑛𝑀𝑎𝑥 73.74±2.01 82.96±1.74 4.90±1.90 2.96±1.66 66.59±1.28 68.74±1.17 2.33±2.28 2.42±1.72 68.11±0.70 65.49±1.57 1.41±0.86 0.94±0.59

which helps the adapter and classifier further capture task-related

semantics. (2) To debias sensitive information, MinMax minimizes

the largest distance between an individual h𝑖 and other samples

h′
𝑖
in the sensitive augmentation set S𝑖 , which can achieve a bet-

ter debiasing result against the sampling strategy in RandAT that

performs adversarial training on all augmented samples.

These empirical findings straightforwardly demonstrate the char-

acteristics of RandAT in Equation 7 and MinMax in Equation 8.

6.2 Debiasing Guarantee (RQ2)
To additionally guarantee how fair the classification is, we evaluate

the provable fairness of GraphPAR compared with methods without

debiasing adaptation, i.e., naive PGMs. Here, with the smoothed

adapter and classifier, the metrics are accuracy (ACC) and provable

fairness (Prov_Fair) in Definition 3. The result is presented in Ta-

ble 3; additional results on Income refer to Table 5 in Appendix D.1.

We have the following observations:

•Different from naive PGMs that show little or nearly zero provable

fairness, RandAT achieves much better provable fairness, and Min-

Max has its fairness guaranteed very well. According to Theorem 3

where the provable fairness of PGMs satisfies 𝑑𝑐𝑠 < 𝑑𝑟𝑠 , since 𝑑𝑟𝑠 is

the same, but 𝑑𝑐𝑠 is different among training schemes: naive PGMs

do not optimize 𝑑𝑐𝑠 , thus the fairness is nearly not guaranteed;

RandAT conduct adversarial training by using many samples with

different sensitive attribute semantics, which has a positive effect

on minimizing 𝑑𝑐𝑠 but not in an explicit way; MinMax achieves the

best provable fairness by directly finding and optimizing 𝑑𝑐𝑠 with

min-max training.

• The classification performances of RandAT and MinMax are com-

petitive to naive PGMs. On the one hand, RandAT does not lose its

classification performance because its augmentation is performed

in sensitive semantics and does not introduce noise to task-related

information; on the other hand, MinMax trains the downstream

classifier with original data, implying that the adapter almost has

no adverse effect on the classification while guaranteeing fairness.

In conclusion, the empirical results above support that when

trained with RandAT and MinMax, GraphPAR guarantees fairness

without compromising its classification performance.

6.3 The Effectiveness of 𝜶 (RQ3)
To verify whether 𝜶 satisfies our expectations, i.e., moving in the

direction of 𝜶 increases the presence of the sensitive attribute while

Table 3: Provable fairness under different training schemes.

Dataset PGM

Naive GraphPAR𝑅𝑎𝑛𝑑𝐴𝑇 GraphPAR𝑀𝑖𝑛𝑀𝑎𝑥

ACC (↑) Prov_Fair (↑) ACC (↑) Prov_Fair (↑) ACC (↑) Prov_Fair (↑)

Credit

DGI 72.80 27.63 75.39 37.05 72.71 89.59
EdgePred 66.87 5.41 67.02 44.20 66.41 96.28
GCA 72.86 0.28 73.25 20.26 70.10 92.92

Pokec_z

DGI 67.30 1.47 67.21 10.99 67.28 94.51
EdgePred 66.02 0 66.27 37.51 66.80 90.97
GCA 66.92 13.9 66.67 16.14 65.22 95.75

Pokec_n

DGI 68.45 0.70 67.52 0.52 68.38 77.97
EdgePred 67.58 0 68.15 21.17 68.15 88.76
GCA 67.49 17.80 67.52 10.03 67.30 91.16

moving in the opposite direction diminishes its presence. First, we

divide H into training and test sets. We take the training set to

train a sensitive attribute classifier 𝑑𝑠𝑒𝑛𝑠 and compute 𝜶 by Equa-

tion 3. Next, we randomly construct 100 vectors at angles of 30,

60, and 90 to 𝜶 , respectively. We use 𝜶 ′
to denote the vector with

different angles and the same size as 𝜶 . Then, we move the node

representations in the test set along the direction of 𝜶 and 𝜶 ′
with

varying augmentation degree 𝑡 . Lastly, we utilize the classifier 𝑑𝑠𝑒𝑛𝑠
to predict the accuracy of the sensitive attribute on the test set. We

report the average accuracy at different angles, and the results are

presented in Figure 3, revealing the following findings:

•When no movement is performed, i.e., 𝑡 = 0, the accuracy is the

highest. This again demonstrates that the pre-training inevitably

captures the sensitive attribute information present in the dataset.

• For the original 𝜶 , i.e., the angle is 0 (red dotted line), as the

augmentation degree |𝑡 | increases, the prediction accuracy of 𝑑𝑠𝑒𝑛𝑠
gradually decreases until it reaches 50%. This is because modify-

ing the node representations along the same sensitive semantics

direction makes all nodes increasingly similar in sensitive attribute

semantics. For instance, when moving toward 𝑡 > 0, nodes initially

classified as negative samples move to positive samples, while nodes

previously classified as positive samples remain positive. Conse-

quently, the classifier 𝑑𝑠𝑒𝑛𝑠 can only accurately classify half of the

nodes. To gain a more concrete understanding, we also visualized

the augmentation process using t-SNE. The visualization results

are depicted in Figure 4; more results refer to the Appendix D.2.

• For the 𝜶 ′
that has different angles and the same size as 𝜶 , we

observe that as the angle increased, the impact of augmentation

on sensitive attribute semantics decreased, meaning the change in

accuracy of the sensitive attribute classifier 𝑑𝑠𝑒𝑛𝑠 was smaller. This

also validates the effectiveness of the direction of 𝜶 .
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(b) Pokec_z.
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(c) Credit.
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(d) Income.
Figure 3: Sensitive attribute prediction accuracy under different augmentation degree 𝑡 .

(a) Representations gradually move from negative to positive. (b) Representations gradually move from positive to negative.
Figure 4: The effect of augmentation degree 𝑡 to node representations on pokec_z.
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(a) DGI-MinMax.
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(b) DGI-RandAT.
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(c) EdgePred-MinMax.
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(d) EdgePred-RandAT.
Figure 5: The effect of augmentation range 𝜖 to GraphPAR𝑚𝑖𝑛𝑚𝑎𝑥 and GraphPAR𝑅𝑎𝑛𝑑𝐴𝑇 on Pokec_z.
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Figure 6: Comparison of PGMs and Adapter in the number
of parameters tuned.

6.4 Hyperparameter Sensitivity Analysis (RQ4)
To further validate how the hyperparameters impact the perfor-

mance of GraphPAR, we conduct hyperparameter sensitivity analy-

sis experiments on the augmentation range 𝜖 , augmentation sample

number 𝑘 , and fairness loss scale 𝜆. The best hyperparameter 𝜖, 𝑘, 𝜆

for fairness metrics varies among PGMs, datasets, and training

methods (RandAT and MinMax). Still, they consistently outperform

naive PGMs, illustrating the effectiveness of GraphPAR in improv-

ing the fairness of PGMs. For example, as shown in Figure 5, on

Pokec_z trained with MinMax, GraphPAR on DGI achieves the best

fairness when 𝜖 = 0.5, while 𝜖 = 0.3 for EdgePred. A key observa-

tion is that when 𝜖 is tuned between 0 and 1, ACC and F1 are stable,

while EO and DP fluctuate. This suggests the sensitive semantic

augmenter does not corrupt task-related information while success-

fully capturing sensitive attribute information. More experiment

results and analysis refer to the Appendix D.3.

6.5 Efficiency Analysis (RQ5)
We demonstrate the parameter efficiency of GraphPAR by compar-

ing the parameters in PGMs with the adapter. As shown in Figure 6,

the number of tuned parameters in GrahpPAR is 91% smaller than

in the PGM. By contrast, since the parameter of the GNN encoder

has to be tuned in existing fair methods, the number of tuned pa-

rameters would be equal to or even larger than the size of PGMs,

far exceeding that in GraphPAR. In conclusion, GraphPAR is super

parameter-efficient, which is well-suited for PGMs.

7 CONCLUSION
In this work, we explore fairness in PGMs for the first time. We

discover that PGMs inevitably capture sensitive attribute seman-

tics during pre-training, resulting in unfairness in downstream

tasks. To address this problem, we propose GraphPAR to efficiently

and flexibly endow PGMs with fairness during the adaptation for

downstream tasks. Furthermore, with GraphPAR, we provide theo-

retical guarantees for fairness. Extensive experiments on real-world

datasets demonstrate the effectiveness of GraphPAR in achieving

fair predictions and providing provable fairness. In the future, we

will further explore other trustworthy directions of PGMs.
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A ALGORITHM
We present the whole algorithm process of GraphPAR as follows:

Algorithm 1: GraphPAR
Data: Graph G = (V, E,X), pre-trained graph model 𝑓

Result: Adapter 𝑔 and classifier 𝑑 , and the provable fairness

of each node

1 1. GraphPAR Training:
2 Compute the sensitive semantic vector 𝜶 as Eq 3;

3 for each epoch do
4 Sample the augmentation set

ˆS𝑖 for each node 𝑖 as Eq 6;

5 if Train with RandAT then
6 Compute L by Eq 7;

7 else
8 Compute L by Eq 11;

9 end
10 Backward pass with L;
11 end

12 2. Provide Provable Fairness with Smoothing:
13 Do adversarial training on the classifier 𝑑 ;

14 Construct the smoothed adapter 𝑔 by Eq 12 and the

smoothed classifier 𝑑 by Eq 15;

15 for each node 𝑖 inV do
16 Compute the guarantee 𝑑𝑐𝑠,𝑖 of the adapter as

Theorem 1;

17 Compute the guarantee 𝑑𝑟𝑠,𝑖 of the classifier as

Theorem 2;

18 If 𝑑𝑐𝑠,𝑖 < 𝑑𝑟𝑠,𝑖 , then node 𝑖 has a provable fairness;

19 end

B PROOF OF THEOREM 3
Proof. Recall the definition of 𝑔h (𝑡) := 𝑔(h + 𝑡 · 𝜶 ) and note

that for h′ = h + 𝑡 ′ · 𝜶 , the center smoothing of

𝑔h′ (𝑡) ∼ 𝑔h′ (𝑡 + N(0, 𝜎2𝑐𝑠 )) = 𝑔(h′ + (𝑡 + N(0, 𝜎2𝑐𝑠 )) · 𝜶 ),
𝑔h (𝑡 + 𝑡 ′) ∼ 𝑔h (𝑡 + 𝑡 ′ + N(0, 𝜎2𝑐𝑠 )) = 𝑔(h + (𝑡 + 𝑡 ′ + N(0, 𝜎2𝑐𝑠 )) · 𝜶 ).

Since h′ = h + 𝑡 ′ · 𝜶 , the sampling distributions are the same,

hence 𝑔h′ (𝑡) = 𝑔h (𝑡 + 𝑡 ′), and in particular 𝑔(h′) = 𝑔h′ (0) = 𝑔h (𝑡 ′).
Now, let us get back to Equation 19. By definition of S, for all

h′ ∈ S, h′ = h+ 𝑡 ′ ·𝜶 for some 𝑡 ′ ∈ [−𝜖, 𝜖]. Moreover, z𝑐𝑠 = 𝑔(h) =
𝑔h (0) and 𝑔(h′) = 𝑔h (𝑡 ′). Theorem 1 tells us that with confidence

1 − 𝛼𝑐𝑠 : 

𝑔h (0) − 𝑔h (
𝑡 ′
)


2
≤ 𝑑𝑐𝑠 , ∀ 𝑡 ′ ∈ [−𝜖, 𝜖]

⇐⇒


z𝑐𝑠 − 𝑔 (

h′
)


2
≤ 𝑑𝑐𝑠 , ∀ h′ ∈ S, (20)

provided that the center smoothing computation of 𝑑𝑐𝑠 does not

abstain.

Finally, we consider the last component of the pipeline, i.e., the

smoothed classifier 𝑑 . Provided that 𝑑 does not abstain at the input

𝑑𝑐𝑠 , Theorem 2 provides us with a radius 𝑑𝑟𝑠 around z𝑐𝑠 such that

with confidence 1 − 𝛼𝑟𝑠 :
𝑑 (z𝑐𝑠 ) = 𝑑 (z𝑐𝑠 + 𝜹) , ∀𝜹 s.t. ∥𝜹 ∥2 < 𝑑𝑟𝑠

⇐⇒𝑑 (z𝑐𝑠 ) = 𝑑
(
z′
)
, ∀z′ s.t.



𝒛𝑐𝑠 − z′


2
< 𝑑𝑟𝑠 . (21)

If 𝑑𝑐𝑠 < 𝑑𝑟𝑠 , combining the conclusions in Equation 20 and

Equation 21 and applying the union bound, we obtain that with

confidence 1 − 𝛼𝑐𝑠 − 𝛼𝑟𝑠 we have 𝑑 (z𝑐𝑠 ) = 𝑑 (𝑔(h′)) for all h′ ∈ S,
that is,

∀ h′ ∈ S (h) : 𝑑 ◦ 𝑔 (h) = 𝑑 ◦ 𝑔
(
h′
)

(22)

as required by Definition 3. The same proof technique can extend

to the multiple sensitive attribute vectors case. □

C MORE EXPERIMENTAL DETAILS
C.1 Datasets
Detailedly, Income [2] is collected from the Adult Data Set. The

sensitive attribute is race, and the task is to classify whether an

individual salary exceeds 50,000$. Credit [1] encompasses a network

of individuals connected according to the likeness of their spending

and payment habits. The sensitive attribute is the age of these

individuals, and the objective is to predict whether their default

payment method is credit card or not. Pokec_z and Pokec_n [7] are

created by sampling from Pokec based on geographic regions. Pokec

encompasses anonymized data from the complete social network

in 2012. The sensitive attribute is the region, and the predicted label

is the working field.

C.2 Implementations
Unless otherwise specified, we set the hyperparameters as follows:

For the sensitive semantics augmented, sensitive attribute semantics

augmentation range 𝜖 = 0.5, number of randomly selected augmen-

tation samples 𝑘 = 20, fairness loss scale factor 𝜆 = 0.1. For the

adapter, the dimension size of the down projection is half of the in-

put, the learning rate is 0.01, and the training epoch is 1000. We use

GCN as the backbone for all PGMs and take the Adam optimizer.

Referring to random smooth [4], after adapting PGMs to down-

stream tasks, we uniformly utilize Gaussian data augmentation

with a variance of 1 to additionally adversarial train the classifier

for 100 rounds, whichmaximizes the number of nodeswith provable

fairness without compromising accuracy. Following the parameter

settings in center smooth [24] and random smooth [4], we utilize the

well-trained adapter and the classifier to construct their smoothed

versions, respectively. In the future, we will also provide an imple-

mentation based on GammaGL [27] at https://github.com/BUPT-

GAMMA/GammaGL.

C.3 Baselines
We compare GraphPAR to four baseline models: GCN [23] is the

most common GNN; FairGNN [7] is a framework for fair node clas-

sification using GNNs given limited sensitive attribute information;

NIFTY [1] achieves fairness by maximizing the similarity of rep-

resentations learned from the original graph and their augmented

counterfactual graphs. EDITS [9] debiases the input network to re-

move the sensitive information in the graph data. Since GraphPAR

is based on PGMs, we include three types of PGM as baseline mod-

els: contrastive pre-training models DGI [39] and GCA [50] that

maximize the mutual information between different views, as well

as predictive pre-training model EdgePred [14] that reconstructs

masked edges as its task.

https://github.com/BUPT-GAMMA/GammaGL
https://github.com/BUPT-GAMMA/GammaGL
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(a) Representations gradually move from negative to positive. (b) Representations gradually move from positive to negative.
Figure 7: The effect of augmentation degree 𝑡 to node representations on Income.

(a) Representations gradually move from negative to positive. (b) Representations gradually move from positive to negative.
Figure 8: The effect of augmentation degree 𝑡 to node representations on pokec_n.

Table 4: Performance and fairness (% ± 𝜎) on node classifica-
tion. The best results are in bold and runner-up results are
underlined.

Method

Income

ACC (↑) F1 (↑) DP (↓) EO (↓)

GCN 69.08±0.35 49.39±0.13 29.73±1.43 33.54±3.43

FairGNN 68.90±1.49 47.26±0.70 15.39±2.45 21.51±3.59

NIFTY 70.37±1.86 47.87±0.33 26.84±1.27 29.09±1.53

EDITS 69.02±0.59 49.21±0.37 27.11±2.76 31.11±4.23

DGI

Naive 76.62±0.60 48.15±2.35 23.07±5.81 30.26±7.59

GraphPAR𝑅𝑎𝑛𝑑𝐴𝑇 76.63±1.10 46.94±1.19 15.43±4.48 19.80±7.93

GraphPAR𝑀𝑖𝑛𝑀𝑎𝑥 75.29±1.60 47.27±1.08 8.75±1.33 7.90±3.84

EdgePred

Naive 69.15±2.02 46.34±2.63 29.73±3.19 35.79±7.83

GraphPAR𝑅𝑎𝑛𝑑𝐴𝑇 70.41±2.03 45.51±3.27 23.51±7.42 28.40±13.50

GraphPAR𝑀𝑖𝑛𝑀𝑎𝑥 69.06±3.69 46.58±1.28 11.68±7.06 14.18±7.65

GCA

Naive 75.00±2.10 46.91±3.76 21.52±6.25 27.73±9.08

GraphPAR𝑅𝑎𝑛𝑑𝐴𝑇 74.95±1.41 46.55±2.72 16.72±3.80 22.30±6.05

GraphPAR𝑀𝑖𝑛𝑀𝑎𝑥 75.44±1.79 46.70±1.74 9.92±3.75 16.99±4.56

D ADDITIONAL EXPERIMENT ANALYSIS
D.1 Effectiveness of GraphPAR on Income
As shown in Table 4 and Table 5, similar to performance on the

Credit, Pokec_n, and Pokec_z datasets, GraphPAR outperforms

baseline models in terms of classification performance and fairness.

By employing the two proposed adapter tuningmethods, GraphPAR

significantly enhances the fairness of PGMs in downstream tasks

without nearly compromising prediction performance. Moreover,

based on GraphPAR𝑀𝑖𝑛𝑀𝑎𝑥 , around 83% of nodes exhibit provable

fairness.

D.2 More Visualization Results on 𝜶
To gain a more concrete understanding of the augmentation process

in the direction of 𝛼 , we also visualized the augmentation process

using t-SNE on Income and Pokec_n datasets, and the visualization

results depicted in Figure 7 and Figure 8, respectively.

Table 5: Provable fairness under different training schemes.

Dataset PGM

Naive GraphPAR𝑅𝑎𝑛𝑑𝐴𝑇 GraphPAR𝑀𝑖𝑛𝑀𝑎𝑥

ACC (↑) Prov_Fair (↑) ACC (↑) Prov_Fair (↑) ACC (↑) Prov_Fair (↑)

Income

DGI 72.85 0.02 73.42 0.94 73.19 81.01
EdgePred 67.17 0.01 68.24 7.64 66.09 80.62
GCA 70.91 0.45 71.59 5.84 72.47 90.68

D.3 More Hyperparameter Analysis
We conduct a more detailed hyperparameter sensitivity analysis

for GraphPAR, focusing on three key hyperparameters: the aug-

mentation range 𝜖 , the augmentation sample number 𝑘 , and the

fairness loss scale 𝜆. They play a crucial role in shaping the predic-

tion performance and fairness of GraphPAR, and understanding

their sensitivity is vital for finding the best model for prediction

performance and fairness.

Augmentation range sensitivity (𝜖). The augmentation range

𝜖 dictates the range of linear interpolation on sensitive attribute

semantics. Empirically, we find that the range of [0.2,0.4,0.8,1.0]

works well for all datasets. An 𝜖 larger than 1 would probably

harm the prediction accuracy. Within a certain range, the larger

the augmentation range 𝜖 , i.e., the larger the range of sensitive

attributes considered, the model fairer. For example, as depicted in

Figure 10 (a), when the PGM is DGI and the debiasing method is

MinMax, the metrics of DP and EO tend to decrease with increasing

𝜖 on the Credit dataset.

Fairness loss scale factor sensitivity (𝜆). 𝜆 is a scale factor for

balancing accuracy and fairness. We find that different pre-training

methods require different values of 𝜆. As depicted in Figure 9, when

the PGM is DGI, the optimal 𝜆 is 0.7 in the Pokec_z and Credit

datasets. However, the optimal 𝜆 is 0.2 when the PGM is EdgePred.

Augmentation sample number sensitivity (𝑘). 𝑘 is the aug-

mentation sample number for each node. According to Figure 11

and Figure 12, the optimal 𝑘 is associated with the dataset, the pre-

training method, and the adapter training strategy, but the general

RandAT requires a larger 𝑘 value than MinMax.
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(a) DGI-Pokec_z.

0.2 0.4 0.6 0.8 1.0
Fairness Loss Scale 

70.4

73.7

77.1

80.5

83.8

A
C

C
/F

1(
%

)

2.0

2.9

3.8

4.7

5.6

E
O

/D
P(

%
)

(b) DGI-Credit.
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(c) EdgePred-Pokec_z.
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(d) EdgePred-Credit.

Figure 9: The effect of fairness loss scale factor 𝜆 to GraphPAR𝑚𝑖𝑛𝑚𝑎𝑥 .
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(a) DGI-MinMax.
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Figure 10: The effect of augmentation range 𝜖 to GraphPAR𝑚𝑖𝑛𝑚𝑎𝑥 and GraphPAR𝑅𝑎𝑛𝑑𝐴𝑇 in the Credit dataset.
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(a) DGI-MinMax.
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(b) DGI-RandAT.
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(c) EdgePred-MinMax.
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Figure 11: The effect of augmentation sample number 𝑘 to GraphPAR𝑚𝑖𝑛𝑚𝑎𝑥 and GraphPAR𝑅𝑎𝑛𝑑𝐴𝑇 in the Pokec_z dataset.
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(a) DGI-MinMax.
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(b) DGI-RandAT.
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Figure 12: The effect of augmentation sample number 𝑘 to GraphPAR𝑚𝑖𝑛𝑚𝑎𝑥 and GraphPAR𝑅𝑎𝑛𝑑𝐴𝑇 in the Credit dataset.
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