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ABSTRACT
Large language models (LLMs) like ChatGPT, exhibit powerful
zero-shot and instruction-following capabilities, have catalyzed a
revolutionary transformation across diverse fields, especially for
open-ended tasks. While the idea is less explored in the graph
domain, despite the availability of numerous powerful graph mod-
els (GMs), they are restricted to tasks in a pre-defined form. Al-
though several methods applying LLMs to graphs have been pro-
posed, they fail to simultaneously handle the pre-defined and open-
ended tasks, with LLM as a node feature enhancer or as a stan-
dalone predictor. To break this dilemma, we propose to bridge the
pretrained GM and LLM by a Translator, named GraphTransla-
tor, aiming to leverage GM to handle the pre-defined tasks effec-
tively and utilize the extended interface of LLMs to offer various
open-ended tasks for GM. To train such Translator, we propose a
Producer capable of constructing the graph-text alignment data
along node information, neighbor information and model infor-
mation. By translating node representation into tokens, Graph-
Translator empowers an LLM to make predictions based on lan-
guage instructions, providing a unified perspective for both pre-
defined and open-ended tasks. Extensive results demonstrate the
effectiveness of our proposed GraphTranslator on zero-shot node
classification. The graph question answering experiments reveal
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our GraphTranslator potential across a broad spectrum of open-
ended tasks through language instructions. Our code is available
at: https://github.com/alibaba/GraphTranslator.
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1 INTRODUCTION
Graph is commonly used to model many real-world relationships,
such as social networks [22, 28], citation networks [14] and the
e-commerce networks [41]. In recent years, graph models (GMs),
such as graph neural networks (GNNs) [8, 14], which combine node
feature information with the graph structure using neural networks,
have achieved state-of-the-art performance on a wide range of real-
world applications. Despite great success, GMs are restricted to
tasks within pre-defined format (e.g., node classification). They
only identify pre-defined classes that are present in training phase,
which inevitably makes it challenging for GMs to generalize to
unseen categories and concepts.

Recently, the emergence of large language models (LLMs) like
ChatGPT 1 has brought about a paradigm shift in natural language
processing (NLP) research, showcasing their impressive emergent

1https://openai.com/blog/chatgpt
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Figure 1: Intuitive illustration of our GraphTranslator (a)
Comparisons of GraphTranslator with popular paradigms of
applying LLMs to graphs. Unlike using LLM as enhancer or
sole predictor, GraphTranslator bridges LLM and GM, han-
dling both pre-defined and open-ended tasks. (b) Demonstra-
tions of tasks in GraphTranslator, where GM is leveraged for
pre-defined tasks, and the LLM is extended as the interface
of GM for open-ended tasks.

abilities [30] for flexible open-ended tasks based on natural lan-
guage instructions. Such development of LLMs also has revolution-
ized research of diverse modality [15, 16, 32]. Taking image as an
example, LLMs largely facilitates the visual-centric open-ended
tasks, such as instructed image-to-text generation and visual ques-
tion answering tasks, transforming how we interpret and interact
with visual information.

Similarly, for graphs, beyond the foundational pre-defined tasks,
there is a strong need for empowering the open-ended tasks. Es-
pecially for the text-attributed graphs, which are commonly used
in social media and e-commercial, supporting tasks that can be
customized by users with text instructions and yield interpretable
responses, will greatly enhance the user experience and expand the
business scope. To this end, several works have applied LLMs for
graph recently, which can be categorized into two classes [2] as
showed in Figure 1 (a)-1 and (a)-2: first, leveraging LLMs to enhance
nodes’ text attributes with their massive knowledge and then gen-
erating predictions through GMs [2, 3, 5, 10, 33]; second, regarding
node as token or text then employing LLM as standalone predic-
tor [2, 7, 27, 35]. However, when it comes to practical industrial
scenarios, there is a dilemma: The former methods, using LLM as
the enhancer of GM predictor, can produce accurate prediction on
pre-defined tasks, but fails to process open-ended tasks and lacks
interactivity and explainability. The latter methods, employing a
LLM as sole predictor, can handle the open-ended tasks while may
bring the hallucinations [37] and high cost of LLMs, which is un-
bearable for pre-defined tasks. It naturally raises a question: Can we
build a model that can solve both pre-defined and open-ended tasks?

To answer this question, we propose to align the pre-trained
GM to LLM, where GM focuses on the pre-defined tasks, and LLM
serves as an interface of GM for open-ended tasks. However, it
is non-trivial to align GM to LLM for facing two challenges: (1)
There exists a significant modality gap between the pre-trained GM
and LLM, due to their differences in data format and processing
mechanisms. LLMs only operate on sequences of tokens represent-
ing natural language text, and they are trained to understand and
generate human-readable text. While graph models process struc-
tured graph data and output node embeddings. These embeddings
capture the structure and features of graph but are not inherently
interpretable as natural language. (2) There lacks alignment data
for bridging GM and LLM. Without natural alignment data, it’s
difficult to train models to understand and translate between the
two modalities (node embeddings and textual tokens) effectively.
Directly converting may result in loss of information or introducing
noise. Ideally, for seamless alignment, there should be a dataset with
pairs of node embeddings and corresponding textual descriptions,
allowing the model to learn the intricate alignment between GM
and LLM.

In this paper, to address above challenges, we propose a novel
framework called GraphTranslator to align the pre-trained GM to
LLM, solving both pre-defined and open-ended tasks. Specifically,
for the challenge of modality gap, GraphTranslator introduces a
Translator module which converts node embedding into token em-
bedding space. To achieve this, the Translator module learns a set
of graph queries to extract the language information of node em-
beddings, then performs generative learning for adapting to LLM.
For the second challenge of lacking alignment data, we introduce
a Producer that capable of constructing (node embedding, textual
description) pairs through the powerful generation ability of LLMs.
To seamlessly textualize the information encoded in node embed-
dings, we generate the description step by step, including briefing
node’s attribute, summarizing neighbor attribute, then reasoning
their commonality. After training on the alignment data, as pre-
sented in Figure 1 (b), a frozen LLM, equipped with Translator, can
handle various open-ended tasks based on the node embedding and
instructions. In conclusion, in our GraphTranslator , pre-defined
tasks can be tackled efficiently by the customized GM, while LLMs
further provide GM with interactivity and interpretability.

We highlight our contributions as follows:

• We propose a novel model GraphTranslator that aligns graph
model to large language model, providing a unified perspec-
tive for both pre-defined and open-ended tasks.

• GraphTranslator introduces a Translator module to bridge
the modality gap, by converting node embeddings learned
by GM to a set of tokens. For further training, a Producer
module is designed to generate the alignment data, through
seamlessly textualizing the information encoded in node
embeddings.

• The experimental results on real-world datasets demonstrate
the effectiveness of GraphTranslator on zero-shot node clas-
sification. The graph question answering experiments reveal
the noteworthy potential of GraphTranslator when applied
to tasks predicated upon language instructions.
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Figure 2: The overall framework of our GraphTranslator, which aligns GM to LLM by Translator for open-ended tasks. We
train the lightweight Translator module following a two-stage paradigm, with the alignment data generated by our Producer.

2 METHODOLOGY
In this section, we first present the notations and problem settings
used in our model named GraphTranslator, then introduce the ar-
chitecture of GraphTranslator along with the training strategies.

2.1 Notations and Problem Settings
Text-Attributed Graphs We mainly focus on the ubiquitous
text-attributed graphs (TAGs), where nodes represent textual en-
tities such as documents or sentences, and edges denote the re-
lationships between them [10]. The representation learning on
TAGs has attracted attention for past years and is applied to broad
applications, ranging from text classification [11] to fake news de-
tection [18]. Formally, we define a TAG as G =

(
V,𝑨, {𝑠𝑣}𝑣∈V

)
,

whereV is a set of 𝑁 nodes, and 𝑨 ∈ {0, 1}𝑁×𝑁 is the adjacency
matrix of graph. For each node 𝑣 , it is associated with a sequential
text feature, denoted as 𝑠𝑣 . Here we use a subset of 𝑁𝑃 nodes for
training GraphTranslator, denoted as V𝑃 ⊂ V .
Pre-defined Tasks In the current landscape of the graph do-
main, numerous graph models are mainly designed and trained for
pre-defined tasks, which refer to tasks that are explicitly defined
and specified in advance. These tasks typically have well-defined
input and output specifications, along with clear evaluation metrics.
When training graph models, researchers or engineers will define
these tasks in advance and provide datasets associated with them
to train the models. This allows models to focus on solving specific
problems and achieve high performance on these tasks, such as
node/graph classification[34], link prediction[36, 39], node cluster-
ing, etc. On the one hand, these well-formalized tasks provide a

benchmark for model evaluation, on the other hand, these tasks
often serve as the core function of real-world graph systems, re-
quiring high levels of efficiency and precision, such as daily update
in e-commerce system.
Open-ended Tasks On the contrary, open-ended tasks offer
greater flexibility, characterized by the absence of explicit task spec-
ifications or evaluation criteria. Models designed for open-ended
tasks often depend on autonomous learning and creative problem-
solving approaches. In real-world scenarios, new tasks often emerge
with evolving business requirements, such as classifying new labels
or tasks driven entirely by human instructions. The computer vision
community has also adopted the language instruction paradigm
for tasks like image-to-text generation [15, 16]. However, current
graph models are constrained by predefined tasks and fail to adopt
to open-ended task customization guided by language instructions
like LLMs.

2.2 Overall Architecture
The primary goal of our GraphTranslator is to align graph models to
LLMs, to leverage the emergent capabilities of LLMs for open-ended
tasks. Specifically, GraphTranslator consists of four components:
(1) Frozen graph model (GM), is pre-trained on a large-scale graph,
such as e-commerce graphs with billions of nodes, yielding em-
beddings for all nodes that encoding the graph’s information for
downstream tasks. We use the pre-trained GraphSAGE model as an
example in this work. (2) Frozen LLM, is trained on broad text cor-
pus, showcasing emergent abilities when the number of parameters
reach a certain scale. We employ the pre-trained ChatGLM2-6B for
demonstration. (3) Producer, is designed to construct the alignment
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data for training the Translator module, i.e., (node embedding, tex-
tual description) pairs. (4) Translator module, is designed to project
the GM learned node embeddings into LLM space, eliminating the
modality gap between GM and LLM.

Figure 2 illustrates the pipeline of our GraphTranslator. With
the node embedding from pretrained graph model, the Producer
first textualizes target node, neighbors and their commonality, for
constructing alignment pairs. In first-stage training, the Transla-
tor is trained with the (node embedding, text description) pairs
for alignment. In order to facilitate the node embedding to follow
instructions better, we bridge the Translator with LLM, then fine-
tuning the Translator with the pairs. To the end, this framework can
be generalized to unseen node representation in inference phase,
solving open-ended tasks by conversation.

2.3 Frozen Graph Model
The representation learning of TAGs has been extensively studied.
Given a TAG G =

(
V,𝑨, {𝑠𝑣}𝑣∈V

)
, the typical graph neural net-

works (GNNs) [8, 14, 26] is denoted as 𝑔𝜽 (𝑨,𝑿 ), where 𝜽 is set of
learnable parameters, 𝑿 is the node features processed by shallow
methods such as bag-of-words (BoW) [9] or skip-gram [20]. Taking
the GraphSAGE [8] as an example, typically, GraphSAGE samples a
fixed-size neighbors N(𝑣) around target node 𝑣 , then concatenates
the node’s previous layer embedding 𝒉𝑘−1𝑣 with the aggregated
neighborhood vectors {𝒉𝑘−1𝑢 ,∀𝑢 ∈ N (𝑣)} by:

𝒉𝑘𝑣 = 𝜎 (𝑾𝑘 ·CONCAT(𝒉𝑘−1𝑣 ∪AGGREGATE𝑘 {𝒉𝑘−1𝑢 ,∀𝑢 ∈ N (𝑣)}).
(1)

Finally, the pre-trained GM𝑔𝜽 ∗ encodes the local graph information
of 𝑣 and yields node embedding 𝒛𝑣 = 𝑔𝜽 ∗ (𝑨,𝑿 )𝑣 .

2.4 Frozen Large Language Model
LLMs are trained on extensive text corpora, acquiring a substantial
amount of knowledge. It’s worth noting that LLMs reveal their
capabilities only when they reach a certain parameter scale [30].
To prevent the potential issues of catastrophic forgetting and the
unbearable training costs associated with handling a large number
of parameters, here we keep the LLM parameters fixed. Specifically,
we employ ChatGLM2-6B, which is open-source bilingual (Chinese-
English) language model. ChatGLM2-6B employs a specific type
of autoregressive blank infilling task, which aligns with the typ-
ical design philosophy of most pretraining tasks. This approach
involves a "disrupt and reconstruct" strategy, wherein portions of
the original text are masked (disrupted) and subsequently predicted
(reconstructed). After extensive training on large-scale corpora,
these LLMs acquire the ability to retain a considerable amount of
knowledge and provide reasonable answers to human queries.

2.5 Producer Module
To alignGMand LLM,we construct the alignment data 𝑃 = {(𝒛𝑣, 𝑡𝑣)}𝑁𝑃

𝑖=1,
where 𝑡𝑣 outline the information encoded within node embedding
𝒛𝑣 for each node 𝑣 ∈ V𝑃 . This process is not only related to
graph data but also intertwined with the design of the GMs, so
we employ LLM to construct high-quality description text with
Chain-of-Thought (CoT). Taking GraphSAGE as an example, we
have devised a pipeline that guides LLM in constructing descriptive

information along three key dimensions:
• Node Information: Generally, node attributes, such as text or nu-
merical data, are considered as the features for each node. In GMs,
these attributes are often transformed into node features, which is
achieved by Bag-of-Word or word embeddings models. Therefore,
the Producer uses LLM to summarize and analyze the attributes of
each node 𝑣 in the training set, yielding node description, denoted
as 𝑡𝑠𝑣 .
• Neighbor Information: GraphSAGE also consider neighboring
information. GraphSAGE randomly samples a subset of neighbor-
ing nodes N(𝑣) and aggregate their representations, yielding the
neighbor embedding. Node and neighbor information are further
fused through weighted summation or concatenation. So our Pro-
ducer employs LLM to summarize the attributes of the sampled
neighbors N(𝑣), resulting in the neighbor information description,
denoted as 𝑡N(𝑣)

𝑣 .
• Model Information: Given that most GNNs tend to uncover simi-
larities between nodes and their neighbors for smoothing purposes,
we instruct LLM to summarize the shared information. Therefore,
the Producer further utilizes LLM to infer the commonalities be-
tween node 𝑣 and its neighborsN(𝑣) based on 𝑡𝑠𝑣 and 𝑡

N(𝑣)
𝑣 , result-

ing in commonality information denoted as 𝑡𝑐𝑣 .
Through this carefully designed pipeline, we guide LLM step by step
to construct high-quality embedding description text 𝑡𝑣 for each
node 𝑣 ∈ V𝑃 , by concatenating node self information, neighbor
information, and the model bias, termed 𝑡𝑣 = {𝑡𝑠𝑣 , 𝑡

N(𝑣)
𝑣 , 𝑡𝑐𝑣 }.

2.6 Translator Module
There exists modality gap between the trained GMs and LLMs, so
LLMs fail to interpret node representations. Namely, the sizes of the
node embedding and the input token of LLM are different, and they
have different feature space. To resolve this discrepancy, inspired
by [15], we introduce the Translator module, which aims to align
GM and LLM by converting the learned node embedding into token
representations. A naive solution is applying a simple trainable
projection matrix can convert 𝒛𝒗 into language embedding tokens,
aligning their dimensionality with that of the word embedding
space within the language model. While the simple transformation
is hard to extract and translate the complex information contained
within node representations to natural language, and may struggle
to generalize to unseen nodes.

In our Translator module, for a pair (𝒛𝑣, 𝑡𝑣) in alignment data,
we utilize two encoders, denoted as 𝑓𝑧 (·) and 𝑓𝑡 (·), to extract their
language features for alignment. For textual description 𝑡𝑣 , we lever-
age the text encoder 𝑓𝑡 (𝑡𝑣) (e.g., BERT [4]) to extract the language
features 𝑻 𝑣 = 𝑓𝑡 (𝑡𝑣), where 𝑓𝑡 (·) contains 12 layers of Transformer
blocks. For node embedding 𝒛𝑣 , we also adopt a transformer-based
network 𝑓𝑧 (·) with𝑀 learnable token embeddings as input, termed
query tokens 𝑸 =

{
𝒒𝑖
}𝑀
𝑖=1, and output 𝑀 features 𝑯 𝑣 = {𝒉𝑣,𝑖 }𝑀𝑖=1

and 𝑯 𝑣 = 𝑓𝑧 (𝑸, 𝒛𝑣), extracting the information of 𝒛𝑣 that is most
related to 𝑡𝑣 . To achieve this, as inspired by [15], the query tokens
𝑸 are designed to interact with each another using self-attention
layers, interface with node embedding 𝒛𝑣 through cross-attention
layers, and communicate with description 𝑡𝑣 by sharing the self-
attention layers between 𝑓𝑡 and 𝑓𝑣 .
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2.7 Model Training
Inspired by [15], we train the lightweight Translator module fol-
lowing a two-stage training paradigm, bridging the gap between
graph and LLMs step by step. In the first stage, we train the Trans-
lator module for extracting 𝑯 𝑣 from the node embedding 𝒛𝑣 most
relevant to 𝑡𝑣 . In the second stage, we perform the generative learn-
ing by connecting the output of the Translator to the frozen LLM.
We continue to training the Translator such that its output can be
understood by LLM.

Stage 1: Training the Translator for GM-text alignment.
In training, we keep the pretrained node representations frozen

and only train Translator module. We jointly optimize three objec-
tives to align 𝑯 𝑣 and 𝒕𝑣 , which is the [CLS] token embedding of
𝑻 𝑣 . First, the contrastive objective aligns 𝑯 𝑣 and 𝒕𝑣 by maximizing
their mutual information. We first compute the pairwise similarity
between 𝒕𝑣 and each token in 𝑯 𝑣 , and select the highest one as
the similarity score, then contrast the similarity of a positive pair
against those of negative pairs. Second, the generative objective
aims to train the Translator module for generating text based on
the given embedding 𝒛𝑣 . The essential information of given 𝒛𝑣 is
extracted by query tokens 𝑸 = {𝑞𝑖 }𝑀𝑖=1 in 𝑓𝑧 , then is seamlessly
relayed to text tokens in 𝑓𝑣 through the shared self-attention lay-
ers. Now we replace the [CLS] token with [DEC] token for the
generation task. By optimizing the cross entropy loss between the
generated text and the actual description 𝑡𝑣 , the 𝑸 is forced to
capture more details in 𝒛𝑣 related to the 𝑡𝑣 . Third, the matching
objective aims to learn the fine-grained alignment. We concatenate
each token 𝒉𝑣,𝑖 ∈ 𝑯 𝑣 (𝑖 ∈ [1 · · ·𝑀]) with the [CLS] token 𝒕𝑣 of 𝑻 𝑣 ,
then feed them into a binary classifier and compute the matching
score by averaging the logits across all queries. More details can be
found in [15].

Stage 2: Training the Translator for GM-LLM alignment.
We use a linear layer to project the output of Translator module,

i.e., token embeddings 𝑯 𝑣 , into the same dimension with the word
embedding of LLM. And the projected embeddings, which can be
regarded as a soft prompt, are concatenated with human instruc-
tions as the input of LLM. Then we perform generative learning to
tune the parameters of Translator with alignment data. In this way,
the node embedding 𝒛𝑣 can be aligned with the pre-trained LLM
word embedding.

3 EXPERIMENT
3.1 Experimental Setting
3.1.1 Dataset. We conducted experiments of the proposed Graph-
Translator on real-world datasets, including the industrial dataset
Taobao and the widely used benchmark dataset ArXiv:
• Taobao dataset is a subset extracted from the Taobao e-commerce
platform. It consists of 980,000 nodes representing unique Taobao
users. The associated attributes include user behaviors like pur-
chases, searches, browsing, favorites, and cart additions. The ex-
tracted graph includes 1,790,000 edges, indicating social connec-
tions between users.
• ArXiv dataset is a graph constructed by a collection of ArXiv
research papers with 169,343 nodes and 1,166,243 edges. Each node
represents an individual research paper with textual attributes in-
cluding the paper’s title and abstract, and the edges reflect the

paper citation relationship. For training the graph model, we di-
vide nodes into 90,941 training nodes and 29,799 validation nodes
following [12]. In consideration of LLM’s inference speed, our test
set contains 4,000 data points for 40 computer science categories,
chosen proportionally based on the labels in the public split.

3.1.2 Baselines. We compare our model with several pre-trained
transformer-based language models. In the zero-shot scenario, we
calculate the similarity between node description and the labeled
text with a prompt, and predict the most similar class.
• BERT [4] and BERT∗: BERT is a pre-trained transformer leverag-
ing masked language modeling for bidirectional context representa-
tion from unlabeled text. BERT∗ further refines this by fine-tuning
on given datasets, improving adaptability and knowledge for down-
stream tasks.
• RoBERTa [17] and RoBERTa∗: RoBERTa is a variant of the BERT
model which incorporates additional training techniques and data
augmentation strategies to improve the model’s performance fur-
ther. Similar to BERT∗, we finetune RoBERTa to obtain RoBERTa∗.
To further examine the effectiveness of our GraphTranslator , we
compare with the methods only using text to query LLM:
• LLM+𝑠𝑣 : It directly appends the original attribute description 𝑠𝑣
to instruction, serving as input for ChatGLM2-6B.
• LLM+𝑠𝑣+𝑠N(𝑣) : It simply merges the vanilla text attribute of node
and neighbors to instruction to serve as input for ChatGLM2-6B.

3.1.3 Model Details.
Graph Model. In Taobao dataset, we utilize GraphSAGE [8] to
generate node embeddings. The GraphSAGE model employs a 2-
layer aggregation and samples 10 neighbors for each layer. The
dimensions of the intermediate layer isset to 768. For the ArXiv
dataset, we configure the intermediate dimension as 1024, while
maintaining the remaining settings identical to the Taobao dataset.
Large LanguageModel. The LLMmodel employed in this research
is ChatGLM2-6B, which possesses a total parameter size of approx-
imately 6 billion. The model is composed of 28 Transformer blocks,
each with a hidden size of 4096 and 32 attention heads. Addition-
ally, the feed-forward network incorporates an intermediate layer
dimension of 13,696. The vocabulary size is set at 65,024, while the
maximum sequence length is capped at 32,768.
Translator. The Translator module is implemented based on a
BERT model, BERT-base-Chinese for the Taobao dataset and BERT-
base-English for the ArXiv dataset. It includes 12 layers of Trans-
former blocks, with alternate layers conducting cross-attention
between node embeddings and query tokens, which includes 32
tokens with the dimension of 768. The attention head’s number
is set to 12. The maximum sequence length is set at 512, with a
vocabulary size of 21,128 for the Taobao dataset and 30,522 for
the ArXiv dataset. The final output of the Translator contains 32
embeddings with the dimension of 768.

3.1.4 Experiment Environment. All experiments are conducted on
a Linux server with four GPU (Tesla V100, Memory 32G) and CPU
(Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz),and its operating
system is Ubuntu 20.04. We implement the proposed GraphTrans-
lator with deep learning library PyTorch and PyTorch Geometric.
The Python and PyTorch versions are 3.8 and 1.12, respectively.
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Table 1: Results on zero-shot node classification.

Dataset Metric BERT RoBERTa BERT∗ RoBERTa∗ LLM+𝑠𝑣 LLM+𝑠𝑣+𝑠N(𝑣) GraphTranslator

Taobao
(Lifestage)

Legality Rate (%) 100.00 100.00 100.00 100.00 50.10 55.57 58.80
Accuracy (%) 34.73 33.10 32.97 34.53 33.46 34.59 35.33
Recall (%) 34.73 33.10 32.97 34.53 33.46 34.59 35.33

Macro-F1 (%) 27.17 24.56 25.06 25.73 31.63 32.60 32.62

Taobao
(Cat Owner)

Legality Rate (%) 100.00 100.00 100.00 100.00 31.20 45.43 98.97
Accuracy (%) 51.13 50.87 49.03 48.77 51.92 58.55 50.99
Recall (%) 87.40 60.40 63.27 11.73 12.82 45.56 95.69

Macro-F1 (%) 43.73 50.42 47.98 40.62 21.05 52.96 66.14

Taobao
(Vehicle Owner)

Legality Rate (%) 100.00 100.00 100.00 100.00 63.97 86.17 94.60
Accuracy (%) 47.53 47.93 47.37 48.73 46.74 49.09 49.40
Recall (%) 59.00 54.73 51.53 64.60 63.01 61.29 83.27

Macro-F1 (%) 46.83 47.69 47.28 47.41 54.62 55.15 61.87

ArXiv

Legality Rate(%) 100.00 100.00 100.00 100.00 99.15 99.40 97.8
Top-1 Acc (%) 1.63 3.55 14.53 6.95 14.07 17.90 28.48
Top-3 Acc (%) 7.63 11.98 29.60 16.53 26.98 28.43 37.62
Top-5 Acc (%) 28.00 22.93 38.30 23.75 42.46 37.99 39.87
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Figure 3: Quantitative analysis of graph question answering. The order of response quality ranking is as follows: A > B > C > D.

3.2 Zero-shot Node Classification
Zero-shot classification, as an emergent capability of LLMs, allows
the model to predict the class that has not been seen during the
training phase. Our GraphTranslator , aligned to LLMs, is expected

to classify the nodes to unseen classes. We conduct zero-shot node
classification on four tasks as follows: (1) Taobao Lifestage predic-
tion aims to reason the life stage of user to three categories [Single,
Married, Parented]. (2) Taobao Cat Owner prediction is to infer
whether the user has cat. (3) Taobao Vehicle Owner prediction is to
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+ Please summarize the user's interests.

1.In terms of interests and hobbies, this user pays much attention to car-
related products, indicating that he is a person who likes cars and 
technology.  
2. In terms of personality, his attention to car-related products indicates that he 
is a person who likes challenges and has the spirit of adventure; He bought a 
variety of auto parts, which shows that he is a detail-oriented and patient person; 

His collection of model cars shows that he is a collector with good taste.

3. In terms of life needs, he purchased automobile-related goods, 
indicating that he has the need to use cars; Purchased auto parts, indicating that 
he has the need to maintain the car; The purchase of a model car indicates that 
he has a need to show the car. 

Please summarize the common interests and preferences of these friends.

According to the information provided, these friends have the following 
interests in common:

1. Like to buy a variety of goods, including auto related goods, 
auto parts, car models, etc.

2. Like collecting car related goods, such as car models, auto 
parts, etc. 
Therefore, the common interest preference of these friends is to buy a variety 

of goods and collect car-related goods.

Why does this user become friends with these people?

1. In terms of similarity of hobbies, what this user has in common with his 

friends is that they are interested in cars, technology 
and collecting. As a result, they are able to become friends and share 
their experiences and insights with each other in these areas.
2. In this user's hobby, he focuses on auto-related goods, auto parts, and car 
models. These hobbies take time and effort to collect and maintain. Therefore, 

his friends also need to have similar interests in order to be friends 
with him. If his friends are also not interested in the goods and areas he likes, 
then it is difficult for them to become friends, let alone maintain friendship.
3. In terms of friend influence, the user and his friends can influence each 
other. For example, if his friends have experience in car maintenance, he can 

ask them for advice on how to better maintain his 
car; If his friends have experience with model cars, he can ask them for 

advice on how to make his own model cars. By learning from and 
sharing with each other, they can get to know each other better 
and achieve greater success in life. 

…
Based on the following information about the browsing, collecting and purchasing behavior of a 
user and his friends on the e-commerce platform, analyze why the user became friends with 

these people. Here is some information about their behavior:
This user purchased […4 items…]; Search and collect […4 items…]; Browse […3 items…].
He has several friends, and their purchase information is as follows: Friend 53: Purchased […3 
items…], Searched and collected […4 items…], Browsed […3 items…]. Friend 11:......

Please summarize the user's interests.

This user has a wide range of interests and hobbies, involving a number of

categories, including shoe bags, belt accessories, car accessories, 

massage equipment, lighting systems, tablet computers, etc. In 
addition, users' search and favorite records also involve a number of product 

categories, including lighting systems, car bulbs, tablets, 

mobile phones, new energy vehicles, etc. Judging from this user's 
shopping behavior, he/she has diversified interests and likes to try different 
goods and services.

(1232 words in total)

Among these friends, most of them prefer to buy electronic products, such as 

mobile phones, tablets, cars, etc., and are also very concerned about peripheral 
products such as charging banks and mobile phone holders. In addition, many 
people also like to travel and photography, like to buy some unique ornaments and 
decorations to decorate the room. In terms of their interests and hobbies, these 
friends pay more attention to technology and fashion, and like to try new electronic 
products and travel experiences.

As can be seen from the user's behavior information, there may be many reasons for 
this user to become friends with these people. 
First of all, these users have common interests with this user, such as e-commerce 

platforms, shopping, travel and photography, etc., and the common topics 
and interests make them easier to get to know. 
Secondly, these users and this user have similar preferences in shopping behavior, such 

as buying shoes and bags, belt accessories, massage equipment, car interior 
accessories, etc., which makes it easier for them to discover each other and form 
friendships. 
Finally, these users may learn about this user through social media and other channels, 
and then take the initiative to approach and communicate with each other, and finally 
become friends.

Why does this user become friends with these people?

Please summarize the common interests and preferences of these 
friends.

The output of Translator (𝑯! = 𝒉!,# #$%
& ) 

(a) Vanilla LLM: using text attribute of node and its neighbors as prompt (b) GraphTranslator: using translated node embedding as prompt 
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Figure 4: A case of graph question answering on Taobao Dataset.

infer whether the user has vehicle. (4) Arixv CS sub-catgories pre-
diction is to determine the paper’s category from 40 sub-categories.

The effectiveness is evaluated by utilizing several metrics: (1)
Legality Rate, follow [40], we use legality rate to measure the ratio
that model produces valid answers. (2) Accuracy stands for the per-
centage of the correct predictions over total predicted samples. (3)
Recall is calculated as the positive class recall rate in the 2 class task
and macro-recall rate in the muli-class task. (4) F1-score is defined
as the harmonic mean of precision and recall. The higher F1-score
and legality rate hint the better effectiveness. (5) Top-k classifica-
tion accuracy represents the percentage of the correct labels which
are among the top-k predicted labels (only for Arxiv dataset). Note
that the LLM-based models typically make predictions within the
format of text rather than discrete labels, so we employ regular
expression matching to extract the predicted class from response
for evaluation. More details can be found in the Appendix D.

The experimental results on Taobao and ArXiv are presented in
Table 1, where we have the following observations:
• Our model GraphTranslator achieves better performance than
most of baselines, which indicates GM can greatly benefit from
LLMs within our GraphTranslator. The BERT-based method per-
forms poorly, as it relies solely on similarity calculations and is

unable to handle complex zero-shot scenarios. Our GraphTrans-
lator model performs better than Vanilla LLM, including LLM+𝑠𝑣
and LLM+𝑠𝑣+𝑠N(𝑣) , since LLM directly processes the raw text that
contains both node and neighbor attribute, bringing noises and
excessive complexity. It demonstrates the superior of GraphTransla-
tor to extract the graph information using the soft prompt translated
from node embedding.
• In LLM-based methods, our approach achieves the highest le-
gality rate. The reason may be that LLM+𝑠𝑣 only inputs the raw
text attribute 𝑠𝑣 of nodes into the LLM, which contains limited in-
formation and poses significant reasoning challenges for the LLM.
Then LLM+𝑠𝑣+𝑠N(𝑣) enriches it with the attributes of neighbors
N(𝑣), and gain the higher legality rate but still suffer from the noisy
and redundant text. Especially for Taobao dataset, it is challeng-
ing for LLM to derive answers of instructions from the intricate
shopping history within user attribute. While our GraphTransla-
tor introduces a Producer module to succinctly summarize 𝑠𝑣 , 𝑠N(𝑣)
and its commonalities, providing rich content while reducing noise.
And GraphTranslator takes node representations translated by the
Translator, serving as a soft graph prompt that can encapsulate
more intricate details than discrete text. Moreover, GraphTransla-
tor projects input embeddings into fixed-length tokens, facilitating
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the comprehension of LLM for graph information.
• Our GraphTranslator exhibits a particularly notable improvement
in recall for positive instances. Taking the Cat Owner prediction on
the Taobao dataset as an example, LLM+𝑠𝑣+𝑠N(𝑣) method requires
explicit product terms in the text, such as "cat food" or "cat litter", to
predict as a positive instance. However, the translated node embed-
ding in GraphTranslator encodes and compresses the information,
where the products implicitly related to cats are also summarized
as cat product explicitly. Hence, GraphTranslator is more adept at
accurately identifying the positive instances, which is crucial for
industrial applications.

3.3 Graph Question Answering (GQA)
To further reveal the potential and commercial value of our Graph-
Translator across a wide range of open-ended applications, we
showcase the graph question answering (GQA) experiments on
Taobao dataset. We query the LLM in a multi-turn dialogue for-
mat to deeply investigate the capability of our GraphTranslator to
extract, explain and reason the unseen node embedding.

To provide the quantitative analysis of GraphTranslator, we build
an evaluation set by randomly sampling 100 nodes and construct-
ing three questions as follows: (1) User Understanding: “Please
summarize the user’s interests." (2)Friends Understanding: “Please
summarize the common interests and preference of these friends."
(3)Friendship Analysis: “Why does this user become friends with
these people? " For GraphTranslator the translated user embedding
is only concatenated with the first question, serving a soft prompt.
As a comparison, we directly feed the text attributes of user and
neighbors to ChatGLM2-6B. More details of prompts can be found
in the Appendix D. As questions are open-ended, we employ both
human volunteers and ChatGPT (GPT-3.5-turbo-16k) as the evalu-
ators to perform quantitative analysis. Following [29], we gather
question-answering pairs of each test sample and use the four-level
rating system:

• Rating-A: The answer is correct and concise, the information
is correct, and the reasoning is accurate.

• Rating-B: The answer is reasonable, with minor errors or
imperfections.

• Rating-C: The answer is relevant to the question, but has
obvious errors or inaccuracies in the content.

• Rating-D: The response is irrelevant or completely invalid.
The comparison results are presented in Figure 3, where we have

following observations:
• Only provided unseen node embedding as prompt for LLM, our
GraphTranslator gets 210 A in total, showcasing strong performance
comparable to Vanilla LLM which gets 203. This is because that
GraphTranslator are trained on the low-noise descriptions gen-
erated by our Producer, thus the trained Translator can extract
high-quality information from the node embedding for multi-turn
dialogue.
• One can observe that our GraphTranslator consistently achieves
better performance in Q1 and Q3, especially for the challenging
question Q3 which requires model to understand graph and reason
why these people become friends. It demonstrates the superior
of GraphTranslator to extract graph information based on node
embedding.

A detailed case is showed in Figure 4. We analyse several basic
abilities which are reflected in the model’s response, and have the
following observations:
• Graph understanding: Taking the summarization of user’s and
friends’ interests (i.e., car) as examples, the Vanilla LLM can un-
derstand the instructions, but struggles to extract the key charac-
teristics. Specifically, in response A1, Vanilla LLM lists numerous
specific products as marked by the red strikethrough, which belong
to friends, not users. And by A2, Vanilla LLM summaries too many
hobbies, but only car is the true shared interest. The reason is that
the lengthy prompt in Q1 (over 1000 words) may disturb the atten-
tion mechanism of LLM. On the other hand, as highlighted in green,
our GraphTranslator identifies the primary interests and hobbies in
A1, analyzes the personality and life needs, and in A2, successfully
concludes that their common interest is cars. It demonstrates the
superior ability of GraphTranslator to extract and interpret graph
information using the soft prompt translated from node embedding.
• Reasoning ability: The question Q3 requires models to understand
graph information and reason why these people become friends.
The Vanilla LLM captures much noise information of friends, tend-
ing to give a general explanation. Our GraphTranslator provides
explanations from three perspectives, i.e., the similarity of hobbies,
the maintenance of friendship, and friend influence, which are all
centered around the user and friends’ shared interest of cars. The
final answer is fundamentally accurate, and it presents an explicit
and logical reasoning process.
• Multi-turn dialogue ability: By providing graph information only
in the first question Q1, we can observe the improvement in our
model’s multi-turn dialogue capability compared to Vanilla LLM.
Our GraphTranslator maintains a consistent graph-centric response
throughout the conversation. This capability is attributed to the
low-noise descriptions generated by our Producer, thus the trained
Translator can extract high-quality information from the node em-
bedding for multi-turn dialogue.

4 CONCLUSIONS
In this paper, we propose a novel framework to align graph models
(GMs) to LLM, named GraphTranslator, aiming to utilize the ex-
tended interface of LLMs to offer various open-ended tasks for GM.
GraphTranslator introduces a Translator module to eliminate the
modality gap, by converting node embeddings learned by GM to a
set of tokens. For further training, a Producer module is designed
to generate the alignment data, through seamlessly textualizing the
information encoded in node embeddings. We evaluate our method
on real-world datasets for open-ended tasks. The experimental re-
sults demonstrate the effectiveness of GraphTranslator on zero-shot
node classification. The preliminary graph question answering ex-
periments indicate the capability of our GraphTranslator to extract,
explain and reason the graph information, revealing the potential
and commercial value.
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A DISCUSSION
In this paper, we investigate the alignment of graph models (GMs)
with Large Language Models (LLMs) to augment the capability
of GMs in addressing open-ended tasks. While the preliminary
experiments reveal our GraphTranslator potential on open-ended
applications, there are several limitations listed as follows:
• The Producer plays a pivotal role in dictating the overall quality
of the Translator model. In future work, more topology information
encoded in node embeddings, like node degree, can be included
in the description in order to reduce information loss. Moreover,
due to limited resources, we employed ChatGLM2-6B to generate
descriptions in Producer. In future work, we can use larger-scale
LLMs such as ChatGPT, to improve the quality of the generated text
descriptions. And integrating novel LLM utilities and techniques,
such as with Chain-of-Thought [31] and AutoPrompt [23], also
could further improve the performance.
• In the experiment, we only have labels for quantitative analysis in
our zero-shot node classification, and for the GQA task, we merely
showcase our GraphTranslator performance through specific cases.
To offer a complete and quantitative evaluation of model capabili-
ties in open-ended tasks, such as graph understanding, explaining,
reasoning, and multi-round conversation, it’s important to develop
an evaluation dataset and devise corresponding metrics in future
work.

B RELATEDWORK
B.1 Graph Representation Learning
Graph representation learning, including earlier shallow graph em-
bedding [22] and graph neural networks [8, 14, 26], aims to capture
and encode these relationships in a way that facilitates various
downstream tasks. Traditional graph models primarily focus on
supervised learning, requiring a substantial amount of labeled data
for tasks such as node classification. These methods achieve strong
performance when sufficient labeled data is available, but tend to
underperform in scenarios with limited labeled data. Inspired by pre-
trained language models, the new paradigm of "Pre-train, Prompt,
and Predict" has been recognized for its effectiveness in addressing
few-shot downstream tasks [6, 13, 19, 24, 25, 38, 42]. Despite their
advancements, achieving zero-shot learning and open-ended tasks
remains challenging.

B.2 Large Language Model for Graph
The NLP landscape has recently been revolutionized by language
modeling (LM), which is one of the major approaches to advancing
the language intelligence of machines [4]. The goal of LM is to
model the generative likelihood of text for predicting future (or
masked) token probabilities. Recently, researchers have observed
that when the model sizes of the pre-trained LMs up to a certain
scale, the LMs will showcase some remarkable capabilities, named
emergent abilities [30]. Here we use the term "large language mod-
els" (LLMs) to denote such language models that have the extensive
number of billions parameters, and have been pre-trained on vast
corpora of data [1]. These LLMs, like ChatGPT and GPT4 [21], can
effectively follow language even multi-modal instructions, aligned
with human intent to complete various real-world tasks. More

recently, applying LLMs for graph domain has received several
preliminary research experimental trials already, which can be cate-
gorized into two classes [2]: The first, LLMs-as-Enhancers [3, 5, 10],
augments node text attributes with LLM knowledge, and still uti-
lizes GMs for predictions. They can produce accurate predictions on
traditional tasks, but fail to make full use of the capabilities of text
generation, instruction following for open-ended tasks. The second,
LLMs-as-Predictors, treats nodes as tokens or text and uses LLMs
as the standalone predictor, which often can generate imaginative
content but training/inferring LLMs can be time-consuming. This
can actually hinder their widespread deployment for web-scale
pre-defined tasks.

C EXPERIMENT DETAILS
C.1 Code
In the development of our work, we have built upon the efforts and
open-source contributions of several pioneering projects, for which
we extend our heartfelt gratitude.
• LAVIS (https://github.com/salesforce/LAVIS): The logical archi-
tecture of LAVIS library served as the foundation for our code
development.
• ChatGLM (https://github.com/THUDM/ChatGLM-6B): An open-
source LLM with the amazing language capabilities.
• BLIP2 (https://arxiv.org/abs/2301.12597): our model is inspired
from BLIP2.

In the spirit of open science and collaboration, we are also excited
to share the source code of our work with the community: https:
//github.com/alibaba/GraphTranslator.

C.2 Training Details.
• Pre-training Graph Model Phase. In the pre-training phase, we
employ link prediction as the self-supervised task for pre-training
the graph model. For each batch in the Taobao dataset, we randomly
select 1024 positive and negative edges. In the case of the ArXiv
dataset, we sample 65,536 edges for each batch, and the ratio of
positive and negative examples is set to 1:1 in both datasets. We use
Adam as the optimizer and set the learning rate and weight decay
to 1e-4 and 1e-3 for the Taobao dataset. For the Arxiv dataset, we
set the learning rate to 0.01 and omit the weight decay.
• Pre-training LLM Phase.We adopt the well-pretrained ChatGLM2-
6B 2, which is the second-generation version of the open-source
bilingual (Chinese-English) chat model ChatGLM-6B.
• Stage 1 Training Phase. We utilize the 274,168 and 90,941 pairs of
node representation and textual description for Taobao and ArXiv
datasets respectively. We employ a batch size of 16 and train the
GraphTranslator for 8 epochs. We adopt the AdamW optimizer and
set the learning rate and weight decay to 1e-6 and 0.05 respectively.
Furthermore, to accelerate the training process and enlarge the
batch size of gradient backpropagation, we incorporate the tech-
nique of gradient accumulation with 32 steps. The implementation
of gradient accumulation results in an augmented batch size of 512
for gradient backpropagation.
• Stage 2 Training Phase. We maintain the same number of pairs as
in stage 1. Due to memory limitations, we employ a batch size of 8

2https://huggingface.co/THUDM/chatglm2-6b
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Table 2: Impact of Stage 1 and Stage 2

Legality Rate Top-1 Top-3 Top-5
GraphTranslator (Stage1 Only) 98.28 8.22 16.94 25.92
GraphTranslator (Stage2 Only) 99.60 16.94 27.54 41.24
GraphTranslator 97.80 28.28 37.63 39.88

Table 3: Prompts For the Producer

Dataset Step Prompt

Taobao User behavior summary
User Behavior Description: <User Behavior Description>. Please summarize the characteristics of this user
according to the product behavior information. The answer format is: What kind of characteristics does the
user have in terms of interests, hobbies, personality traits, and life needs

Neighbor behavior summary
Neighbor Behavior Description: <Neighbor Behavior Description>. Please summarize most of the similarities
that this user’s friends have based on the product behavior information. The answer format is: What do several
friends of this user have in common in interests, hobbies, personality traits, and life needs?

ArXiv Paper Summary The title and abstract of this paper are as follows: <Title text> \t <Abstract text>. please summarize this paper
and list five keywords of this paper.

Neighbor Paper Summary
The paper title and abstract are provided as follows: <Title text> \t <Abstract text>. \n <Title text> \t <Abstract
text>.... \n Please summarize the topic and content of these papers. All answers are in English and No Chinese
in your answer

Table 4: Prompts For the Training Stage

Dataset Prompt

Taobao Based on the product information, please describe the characteristics of this user, and the common characteristics of his friends in interests,
hobbies, personality traits, and life needs.

ArXiv Please summarize the topic and content of the paper and its cited papers in English.

and train the GraphTranslator for 3 epochs. We adopt the AdamW
optimizer, and set the learning rate and weight decay to 1e-6 and
0.05 respectively. We also incorporate gradient accumulation tech-
nique during the Stage 2, which results in an augmented batch size
of 256 for gradient backpropagation.

C.3 Further Experiment
To validate the effectiveness of training strategies, we compare
our GraphTranslator with its variants, "Stage 1 Only" and "Stage 2
Only". Taking Arxiv dataset as an example, the results are presented
in the Table 2. We observe that the training of stage 1, despite ef-
fectively aligning graph embeddings and texts, fails to map graph
embeddings into the semantic space of the LLM. As a result, the
LLM is hard to understand semantic information and it exhibits
significantly lower performance compared to GraphTranslator. On
the other hand, although stage 2 bridges the gap between graph
embedding and LLM directly, it lacks the understanding between

embeddings and texts, thus contributing to the sub-optimal perfor-
mance. In conclusion, the two-phase training of GraphTranslator is
crucial for enabling LLM to comprehend the graph information,
ultimately leading to the optimal results.

D PROMPT DESIGN
The prompts of Taobao and ArXiv datasets are presented in the
Table 3, 4, 5. For the prompts of the Taobao dataset, we translate
them into English with Youdao 3. The prompts for the inference
stage are shown in Table 5, we force themodel to answer the number
corresponding to the label in the Taobao dataset. Therefore, we
employ regular expression matching to identify the relevant labels
based on the digital number. For the ArXiv dataset, we extract labels
based on the textual descriptions associated with each category.

3https://fanyi.youdao.com/

https://fanyi.youdao.com/
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Table 5: Prompts For the Inference Stage

Dataset Step Prompt

Lifestage Prediction

Question: You are a home marketing analyst, you must use only one character to answer the guess about the
user’s family situation based on the user’s purchase information for yourself or for the family, the answer
format is [X] : Answer if the user is a single person who is not in a relationship [1], answer if the user is a
childless person who is in a relationship and has no children [2], answer if the user is a married and childless
person who has children in the family [3]. Answer:

Taobao Cat Owner Prediction

Question: You are a brand of cat food operator, and you need to distribute the brand of cat food experience kits
to users who have pets at home. According to the user’s product information, you must use only one character
to answer whether to issue brand cat food experience to this user, the answer format is [X]: If it is not necessary
to issue experience cat food to this user answer [0], if issue experience cat food to this user answer [1]. Answer:

Vehicle Owner Prediction

Question: You are an automobile traffic safety propagandist of the government transportation department, and
you need to spend time and energy to popularize automobile driving safety education for users with cars. Please
use only one character to answer whether it is necessary to conduct automobile driving safety education for
this user according to the product information of the user. The answer format is [X]: If the user does not have a
car at home and therefore does not require a car driving safety education answer [0], if the user has a car at
home requires a car driving safety education answer [1]. Answer:

ArXiv CS sub-categories Prediction

The summary of the paper is as follows: <Paper Summary>. The summary of the related paper is as follows:
<Neighbor Paper Summary>. \n Question: Based on the summary of the above paper and citations, please
determine into which of the following 40 ArXiv CS sub-categories would this paper most likely fall? cate-
gories: <Artificial Intelligence; Hardware Architecture; Computational Complexity; Computational Engineering,
Finance, and Science; Computational Geometry; Computation and Language; Cryptography and Security;
Computer Vision and Pattern Recognition; Computers and Society; Databases; Distributed, Parallel, and Cluster
Computing; Digital Libraries; Discrete Mathematics; Data Structures and Algorithms; Emerging Technologies;
Formal Languages and Automata Theory; General Literature; Graphics; Computer Science and Game The-
ory; Human-Computer Interaction; Information Retrieval; Information Theory; Machine Learning; Logic in
Computer Science; Multiagent Systems; Multimedia; Mathematical Software; Numerical Analysis; Neural and
Evolutionary Computing; Networking and Internet Architecture; Other Computer Science; Operating Systems;
Performance; Programming Languages; Robotics; Symbolic Computation; Sound; Software Engineering; Social
and Information Networks; Systems and Control>. Please give 5 likely categories, in order from most likely
to least likely, and give your reasoning. Provide response in JSON format with the following keys: category,
reason.
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