
SATGL: an Open-source Graph Learning Toolkit
for Boolean Satisfiability

HongTao Cheng1,†, Jiawei Liu1,†, Jianwang Zhai1, Mingyu Zhao1, Cheng Yang1, Chuan Shi1,B
1Beijing University of Posts and Telecommunications, Beijing, China

Email: †chenghongtao@bupt.edu.cn, †liu jiawei@bupt.edu.cn, Bshichuan@bupt.edu.cn

Abstract—As the first proven NP-complete problem, the
Boolean Satisfiability (SAT) problem holds significant theoretical
value and has wide-ranging practical applications. It has also
led to the development of numerous SAT-related tasks, such
as MaxSAT and UNSAT Core prediction. Due to the high
complexity of handling these SAT-related tasks and the natural
conversion of SAT formulas into graph structures, researchers
have recently developed various graph learning methods to assist
in prediction. However, these methods are often experimented
on different datasets, with different approaches and different
tasks, making it challenging to conduct unified evaluations and
develop new algorithms. In this paper, we introduce the SATGL
toolkit, the first open-source graph learning toolkit for the SAT
problem. We expect SATGL to contribute to the advancement of
artificial intelligence (AI) for SAT, facilitating SAT solving and
new algorithm design.

I. INTRODUCTION

The SAT problem is a fundamental conundrum in computer
science. It is the first problem to be formally proven as NP-
complete. The SAT problem is highly valuable because it can
represent many combinatorial problems, making it a crucial
part of computational complexity theory. The relevance of
SAT problem goes beyond its theoretical foundations and
extends to practical applications in various domains [1]. For
example, the technology’s utility can be extended to various
EDA scenarios, including test pattern generation, hardware
verification, and scheduling [2]. The objective of the SAT
problem is to determine whether a Boolean formula can be
satisfied by assigning variables. Moving beyond the classical
SAT, the maximum satisfiability (MaxSAT) problem is a
generalization of SAT, seeking to maximize the satisfaction of
clauses within propositional formulas. Moreover, the unsatis-
fiable core (UNSAT Core) prediction focuses on unsatisfiable
formulas, aiming to identify minimal subsets of clauses that
render the formula unsatisfiable.

There have been many efforts in these fields, and numerous
solvers have been developed in recent years. Most SAT
solvers are based on a combination of search methods and
heuristic strategies to accelerate the solving process. For ex-
ample, CaDiCal [3] is based on the CDCL [4] framework and
applies many heuristics to search for satisfactory assignments
for SAT problems. Open-WBO [5] is an open source MaxSAT
solver. PicoSAT [6] is a flexible solver that seeks UNSAT
Cores of SAT formulas. However, traditional solvers often

† Both authors contributed equally to this research.
B Corresponding author.

Config YAML File

Data

Model

Task

Parameter Dict Command Line

General ModelSAT Model

Node Level Graph Level

NeuroSAT NeuroCore GCN GIN
… …

UnSAT Core MaxSAT Satisfiability

Utils Trainer Logger Evaluator

SATDataloaderSATDataset LabelGen

Fig. 1 Overall framework of SATGL Toolkit.

require a lot of expert knowledge and complex handcrafted
heuristic strategies.

Thanks to the development of AI, researchers have ex-
plored the use of deep learning in SAT problems in recent
years. One of the most representative approaches is based on
graph learning, in particular graph neural networks (GNNs).
This is because SAT formulas can naturally be viewed as
graphs, where the variables and clauses of the formulas are
treated as nodes or edges in the graph [7]. As a pioneering
work, NeuroSAT [2] explores GNN approaches to determine
whether SAT instances are satisfiable. In addition to SAT
solving, GNNs also provide opportunities for predicting other
SAT-related tasks, such as MaxSAT [8] and UNSAT Core
prediction [9]. These studies show that GNNs can learn from
SAT problem instances and solve SAT problems to some
extent, and are likely to contribute to the advancement of
future SAT-solving techniques.

Although these works share a similar framework and have
achieved good performance in their respective experimental
settings, it is challenging to re-implement them and evaluate
them uniformly due to differences in the evaluation datasets
and tasks. This hinders the development of GNNs for the SAT
field to some extent. We believe that a toolkit is needed to
better evaluate and apply these models.

To evaluate, apply, and improve existing work in a unified
manner, we propose SATGL, a graph learning toolkit for
boolean satisfiability. As shown in TABLE I, SATGL offers
diverse support at various steps. It not only integrates over
a dozen GNN models but also provides the most commonly

used four graph construction methods, and three SAT tasks.
Additionally, as illustrated in Fig. 1, SATGL exhibits a high
degree of modularity, which is not only user-friendly but also
highly scalable. To the best of our knowledge, SATGL is the
first graph learning toolkit for multiple SAT datasets, diverse
graph construction methods, various models, and multiple
SAT-related tasks. The code can be found on this website1.

The contribution of SATGL can be summarized as follows:
• Firstly, we implement various GNN-based SAT models

and provide users with convenient and easy-to-use in-
terfaces. Users can easily run experiments on specific
datasets and tasks with just a few lines of Python code
using SATGL.

• Secondly, we design various GNN paradigms for dif-
ferent graphs and evaluate the models’ performance on
different graphs.

• Thirdly, we evaluate several GNN models on several
datasets with different distributions to explore the impact
of different model and graph construction methods on the
learning ability of GNN models.

II. RELATED WORK

Graph Neural Networks. Graph Neural Networks (GNNs)
have emerged as powerful tools for modeling complex inter-
actions within graph-structured data, showcasing remarkable
performance across various graph-related tasks. GCN [10]
pioneers the application of convolutional operations on graph-
structured data, enabling effective information propagation
and feature extraction. GraphSage [11] extends the capabil-
ities of GCNs by introducing a more scalable and flexible
framework for neighborhood aggregation. GIN [12] adopts
a different approach by focusing on learning permutation-
invariant node representations. In our work, we focus on
GNNs for learning in the context of SAT problems. Specif-
ically, we use SATGL to learn and optimize logical rules
represented as graphs.

Learning-based SAT solvers. The SAT problem, recog-
nized as NP-complete, revolves around ascertaining the feasi-
bility of satisfying a given Boolean formula by assigning truth
values to its variables. Traditional SAT solvers rely heavily on
heuristic search algorithms, which can be problematic when
dealing with complex scenarios or large problem sets. With
the development of deep learning, learning-based methods
have been applied to solve SAT problems. Since SAT prob-
lems can naturally be modeled as graphs, many works have
successfully applied GNNs to SAT solving with promising
results. For example, NeuroSAT [2] trains an end-to-end GNN
to predict the satisfiability of a given SAT problem. GMS
[8] treats MaxSAT as a binary classification task for nodes.
NeuroCore [13] learns to predict the presence of clauses in
the unsatisfiable core. Our toolkit focuses on these three tasks
to evaluate the performance of various models.

Open-source EDA Tools. Open-source electronic design
automation (EDA) toolchains have drawn growing attention

1https://github.com/BUPT-GAMMA/SATGL

TABLE I The supported tasks and graphs of SATGL

Model Graph Type Task

NeuroSAT LCG
Satisfiability

MaxSAT
UNSAT Core

NeuroCore LCG
Satisfiability

MaxSAT
UNSAT Core

NlocalSAT LCG
Satisfiability

MaxSAT
UNSAT Core

QuerySAT LCG
Satisfiability

MaxSAT
UNSAT Core

GMS LCG
Satisfiability

MaxSAT
UNSAT Core

General GNNs

LCG
VCG
LIG
VIG

Satisfiability
MaxSAT

UNSAT Core

recently due to the promise of unleashing innovation and
lowering costs in chip design. A variety of open-source
EDA projects span across the design flow, from high-level
synthesis to physical implementation and verification. For
the entire EDA pipeline, OpenROAD [14] provides an open-
source end-to-end silicon compiler, spanning from logic syn-
thesis to routing. iEDA [15] builds the infrastructure for
core EDA technologies. On the front-end design side, High-
Level Synthesis (HLS) compiles high-level specifications into
Register-Transfer Level (RTL) descriptions, which are further
synthesized by back-end tools. Bambu [16] is an open-source
HLS research framework, which takes compiler Intermediate
Representations (IRs) as input. RTLLM [17] provides bench-
marks for evaluating LLM-generated RTL design quality.
These two works demonstrate the needs and opportunities
of applying AI to front-end designs. On the back-end design
side, CircuitNet [18] and CircuitNet2.0 [19] provide realistic
chip design datasets for back-end machine learning tasks.
The iPD [20] toolchain covers the entire physical design flow
from floorplanning to routing. For formal verification, MEC
[21] reduces equivalence checking time cost after technology
mapping. However, there is no available toolkit for AI algo-
rithms on the fundamental SAT problem. To bridge this gap,
we develop the SATGL toolkit, targeting SAT solving and
new AI algorithm design via graph learning. It offers the first
toolkit and benchmarks focused on AI for SAT problems. By
open-sourcing SATGL, we expect it to greatly facilitate the
advancement of AI in the boolean satisfiability domain and
its application in fields such as EDA.

III. PRELIMINARIES

SAT Problem. The SAT problem is represented as a
Boolean expression composed of Boolean variables and log-
ical operators. For consistency, such Boolean expressions are
typically represented in Conjunctive Normal Form (CNF),
which is a conjunction of clauses. Each clause is a disjunction

�1 ¬�1 �2 ¬�2 �3 ¬�3

�1 �2

�1 �2 �3

�1 �2

LCG VCG

�1

¬�1

�2 ¬�2

�3

¬�3

LIG

�1

�2

�3

VIG

Fig. 2 The four common graph construction of formula (x1∨
¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3).

of literals, where literals can be variables or their negations.
Formally, given a CNF F with n variables {x1, x2, . . . , xn}
and m clauses {C1, C2, . . . , Cm}, F can be represented as
C1 ∧ C2 ∧ . . . ∧ Cm. An SAT example expressed in CNF is:

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3).

In this example C1 = x1 ∨ ¬x2 ∨ ¬x3, C2 = ¬x1 ∨
x2 ∨ x3. For a CNF formula F , the SAT problem is to
find a boolean assignment for each variable such that all
clauses are satisfied (there exists an assignment such that
all clauses are true). For the above formula, the assign-
ment of all variables to 1 is one of the satisfied solutions.
Typically, to model the complex interactions between vari-
ables and clauses, graph-based data structures are often em-
ployed. Commonly used graph construction methods include
Literal-Clause Graph (LCG), Literal-Interaction Graph (LIG),
Variable-Clause Graph (VCG) and Variable Interaction Graph
(VIG). In LCG, nodes represent literals (variables or their
negations), and edges represent that the literals appear in
clauses. Similar to LCG, VCG nodes represent variables, and
edges represent that the variables appear in clauses. Nodes
in LIG are literals and edges represent their occurrences in
clauses, while in VIG nodes are variables and edges represent
their occurrences in clauses. Fig. 2 shows the examples of four
types of graphs.

GNN Paradigm. GNN is a branch of deep learning that
has been developing fast in recent years, with an excellent
ability to solve tasks related to abstract graph structures. The
paradigm can be described as follows: given a graph G =
(V,E), where V denotes the set of nodes and E ⊆ V × V
represents the set of edges, GNN models take G as input
and encode each node v as an initial embedding vector h(0)

v .
The core of GNN lies in its message-passing mechanism,
which iteratively updates node embeddings by aggregating
information from neighboring nodes. Formally, the operation

TABLE II The paradigm of four graphs of general GNNs

Graph Paradigm

LCG

m
(k)
l = AGG(k)

(
MLP ({h(k−1)

c)|c ∈ N(l)}
)

m
(k)
c = AGG(k)

(
MLP ({h(k−1)

l)|l ∈ N(c)}
)

h
(k)
l = UPD(k)

l

(
h
(k−1)
l , FLIP (h

(k−1)
l),m

(k)
l

)
h
(k)
c = UPD(k)

c

(
h
(k−1)
c ,m

(k)
c

)

VCG

m
(k)
v = AGG(k)

(
MLP ({h(k−1)

c)|c ∈ N(v)}
)

m
(k)
c = AGG(k)

(
MLP ({h(k−1)

v)|v ∈ N(c)}
)

h
(k)
v = UPD(k)

v

(
h
(k−1)
v ,m

(k)
v

)
h
(k)
c = UPD(k)

c

(
h
(k−1)
c ,m

(k)
c

)
LIG

m
(k)
l = AGG(k)

(
MLP ({h(k−1)

l′)|l′ ∈ N(l)}
)

h
(k)
l = UPD(k)

l

(
h
(k−1)
l , FLIP (h

(k−1)
l),m

(k)
l

)
VIG

m
(k)
v = AGG(k)

(
MLP ({h(k−1)

v′)|v′ ∈ N(v)}
)

h
(k)
v = UPD(k)

v

(
h
(k−1)
v ,m

(k)
v

)
* l, c, v represents literal, clause and variable nodes. FLIP(hk

l)
returns the embedding of corresponding negation hk

¬l.

at the k-th iteration (layer) of GNNs can be defined as follows:

m(k)
v = AGG(k)

(
{h(k−1)

u |u ∈ N(v)}
)
, (1)

h(k)
v = UPD(k)

v

(
h(k−1)
v ,m(k)

v

)
, (2)

where h
(k)
v represents the embedding vector of node v after

the k-th iteration. In the aggregation step, the message m
(k)
v

is computed for each node by aggregating embeddings from
its neighbors N(v). Subsequently, in the updating step, the
embedding of each node is updated by incorporating the
aggregated message. After K iterations, the final embedding
h
(T)
v for each node is obtained. As a pioneering work,

NeuroSAT first applied the GNNs paradigm to LCG graphs,
and many subsequent works followed a similar paradigm, and
inspired by them, different GNN paradigms were designed for
our different graphs. In SATGL, we extend general GNNs to
use the four graphs mentioned above. The message-passing
and update paradigm follow TABLE II. Then, the node em-
beddings are used for various downstream tasks. Depending
on the specific downstream task, GNNs will apply different
READOUT functions:

ho = READOUT
(
{h(k)

u |u ∈ V }
)
. (3)

For example, in graph-level tasks, a common approach is to
average all node embeddings to obtain the graph embedding.

IV. SATGL FRAMEWORK

The SATGL toolkit framework is based on PyTorch and
DGL [22], where PyTorch is a widely-used open-source deep
learning library that has gained prominence in the machine
learning community and DGL is one of the most popular
graph learning frameworks, providing efficient low-level op-
erators for graph data processing and graph neural network

...
task: satisfiability
dataset_path: ./dataset/3-sat
...
model_settings:
 model: neurosat
 emb_size: 128
...
epochs: 100
lr: 1e-4
weight_decay: 1e-10
...

Fig. 3 An example of SATGL config file.

implementations. Leveraging the strengths of these frame-
works, SATGL provides a versatile and powerful environment
for graph-based machine learning. Following a modular and
decoupled architecture, SATGL allows for combinations of
diverse models, datasets, and training configurations. Re-
searchers and practitioners can seamlessly build experiments
following the instructions of SATGL. As shown in Fig. 1, a
complete training process in SATGL involves the following
important sections: Config, Task, Data, Model, Utils.

A. Config

The Config module aims to assist users in customizing
various parameters required for experiments. It reads both
the default configuration file provided and the user-defined
configuration file in YAML format. These configurations are
then used to generate a Config instance for subsequent train-
ing processes. Additionally, to facilitate direct modification
of configurations in the code or via command-line argu-
ments, the Config module also reads Python Dictionary and
command-line parameters. The priority order of configuration
from highest to lowest, is command-line parameters, Python
Dictionary, and YAML files. The higher-priority configura-
tions will override lower-priority configurations. Fig. 3 shows
an example of SATGL config file.

B. Task

SATGL supports three mainstream SAT tasks: satisfiability,
MaxSAT, and UNSAT Core prediction.

• Satisfiability [2]: As a fundamental task in computer
science and logic, satisfiability is treated as a graph-
level task. Given a SAT problem, the label is true if the
problem can be satisfied, otherwise false. Satisfiability
can be regarded as a graph classification problem.

• MaxSAT [8]: As an extension of the classical SAT prob-
lem, MaxSAT introduces the objective of maximizing
the number of satisfied clauses in a Boolean formula.
Unlike satisfiability, MaxSAT is treated as a node-level
task, the label of the MaxSAT task is the assignment
of the variables when the number of satisfied clauses
is maximized. MaxSAT can be regarded as a variable
classification problem.

• UNSAT Core [13]: Similar to MaxSAT, UNSAT Core
is another node-level task within the SATGL framework.

The goal of UNSAT Core prediction is to identify the
minimal subset of clauses within an unsatisfiable prob-
lem. The label of the UNSAT Core task is whether each
clause is in the minimum unsatisfiable subset. UNSAT
Core can be regarded as a clause classification problem.

C. Data

The Data module is designed to load datasets and construct
data loaders. Users are required to specify the task type and
the path to the data in the configuration file. This allows
the Data module to automatically generate the corresponding
dataset and data loader based on the provided configurations.
In the following, we will provide a detailed introduction to
the Data module.

Dataset. The Dataset module is responsible for pre-
processing the data. Specifically, the dataset must perform
the following steps:

• Load Data: To read the data, the dataset module needs
to access the data from the dataset path specified by
the user. The data consists of conjunctive normal form
(CNF) files and a label file. CNF is a standard format of
SAT problems, which is equivalent to the original SAT
problem. The CNF files must adhere to the DIMACS
format, a widely used standard file format for repre-
senting CNF formulas. The label file is in CSV format,
containing the labels corresponding to each CNF file.

• Graph Construction: The SAT problem is defined as
a Boolean formula containing Boolean variables and
logical connectives. The Dataset module supports four
different types of graphs, and all construction methods
are supported, including: LCG, LIG, VCG, and VIG.

• Auxiliary information generation: The Dataset module
stores essential information about the SAT problem, e.g.,
the number of variables, the number of clauses, etc.

DataLoader. After creating the dataset, the dataloader will
collate and batch the dataset. In SATGL, we utilize DGL’s
batch method.

LabelGen. We also provide APIs for generating labels.
For the satisfiability task, we use the PySAT toolkit [23]
to determine whether SAT problems have solutions. For
the MaxSAT task, we use the Open-WBO solver to obtain
variable assignments for MaxSAT problems. For the UNSAT
core task, we use PicoSAT-965 to determine if each clause is
part of the UNSAT core.

D. Model

In the Model module, we implement two different types
of models: general models and specific models. General
models include eight commonly used GNN models such as
GCN [10], GIN [12] and more. Specific models are tailored
for SAT-related tasks, including NeuroSAT [2] and its variants
- NeuroCore [13], NLocalSAT [24], QuerySAT [25] and
GMS [8].

To enable support for different tasks within the framework,
we implement a wrapper class to provide post-processes for
different tasks. SATGL makes it easy for users to adapt the

load config file
config = Config(

config_file_list=['./example.yaml']
)

get dataset and dataloader
data = get_data(config)

initialize model and trainer
model = get_model(config)
Trainer = get(trainer)

start train
Trainer.train(

model,
data.train_dataloader,
data.valid_dataloader,
data.test_dataloader

)

Fig. 4 An example of SATGL training process.

framework to their needs. Users can switch between different
methods by simply modifying the task and model settings.
Fig. 4 illustrates an example of usage.

E. Utils

The Utils contains other important modules, The
Trainer primarily supportthe s training and evaluation pro-
cess, while the Logger records the experiment information,
and the Evaluator provides evaluation metrics for tasks.

V. IN PRACTICE

In this section, we will give a comprehensive overview
of how to use SATGL, and Fig. 4 gives an example. First,
the user needs to specify a config file. Here we only read
YAML files, but it is also possible to use Python dictionaries
and command line options. Users can customize the config
to suit their needs for different datasets, models, and other
parameters. Next, the get data function is called to automati-
cally generate the dataset and dataloader. Then, the get model
function is used to get the desired model. Then, the config is
passed to the trainer, which initializes the components in the
Trainer based on the config. Finally, train is run to train and
evaluate the model.

VI. EVALUATION

We evaluate the performance of all baselines across three
distinct tasks: Satisfiability, MaxSAT, and UNSAT Core.

A. Datasets

Datasets from three different distributions are used: SR,
3-SAT, and K-Clique. The SR dataset follows the paradigm
proposed by NeuroSAT to generate random SAT problems.
The 3-SAT dataset is a classic distribution of SAT problems
in which each clause consists of three literals. K-Clique is
a classical problem in graph theory, which involves finding
a complete subgraph with k vertices in an undirected graph
(i.e., every pair of vertices in the subgraph is connected by
an edge), we restrict 3 ≤ k ≤ 5. As NeuroSAT [2], for all

TABLE III The overview of datasets

Distribution #Variable #Clause #Benchmark

SR 10-40 47-308 2000
3-SAT 10-40 55-175 2000

K-Clique 30-100 387-4465 2000

TABLE IV Results on Satisfiability task

Model SR 3-SAT K-Clique

NeuroSAT 0.815 0.825 0.780
NeuroCore 0.765 0.825 0.610
NlocalSAT 0.830 0.845 0.565
QuerySAT 0.730 0.825 0.635

GMS 0.845 0.860 0.740

distributions, we generate pairwise instances that differed by
only one clause, but for the UnSAT Core task, we use only
unsatisfied instances as UNSAT Core only exists in unsatisfied
instances. All datasets are split into training, validation, and
testing sets in an 8:1:1 ratio. Details of each dataset are shown
in TABLE III.

B. Experiment Settings

• Model Settings: The hidden dimension of each model
is 128. The number of MLP layers is set to 3. All GNNs
perform 32 iterations of message passing.

• Training Settings: For all models, we use Adam [26]
with a learning rate selected from {10−5, 5×10−5} and
weight decay is 10−10. Due to the limitations of the GPU
memory, we set the batch size to 32 or 16.

• Training Method for Satisfiability Tasks: During train-
ing, pairwise satisfiable (SAT) and unsatisfiable (UN-
SAT) problems are included in batches. This approach
is crucial for improving the model’s performance and
speeding up the training process. Since each pair differs
by only one literal, not using this training method may
cause the model’s performance to deteriorate.

• Loss Function and Evaluation Metric: As all three
tasks are classification tasks, we use binary cross-entropy
as the loss function for training and evaluate the accuracy
of classification.

C. Satisfiability

TABLE IV presents the results of all SAT models on the
Satisfiability task. According to the results, GMS achieves the
best performance on SR and 3-SAT datasets, and NeuroSAT
achieves the best performance on K-Clique datasets. The rea-
son for the inferior performance of NeuroCore and QuerySAT
compared to the other baselines is that they replace RNN (e.g.
LSTM) with MLP in their model architectures for efficiency
reasons. Also, due to the larger size of the graphs in the
K-Clique dataset, all models do not perform as well on the
K-Clique dataset as they do on the other two datasets.

D. MaxSAT

TABLE V presents the experimental results on the MaxSAT
task. The results show little variation across baselines, Nlo-
calSAT achieves the best performance on SR and K-Clique
datasets, and GMS achieves the best performance on 3-SAT

datasets. All models performed well on the K-Clique dataset,
this may be due to the solutions of the K-Clique distribution
have some regularity.

TABLE V Results on MaxSAT task

Model SR 3-SAT K-Clique

NeuroSAT 0.786 0.761 0.943
NeuroCore 0.779 0.745 0.938
NlocalSAT 0.787 0.767 0.944
QuerySAT 0.781 0.762 0.942

GMS 0.781 0.773 0.943

E. UNSAT Core
TABLE VI presents the experimental results on the UNSAT

core task. Similar to the MaxSAT task, the UNSAT Core
is also a node-level task. The performance of the different
baselines is very close, but it can be observed that NlocalSAT
slightly outperforms the other baselines.

TABLE VI Results on UNSAT Core task

Model SR 3-SAT K-Clique

NeuroSAT 0.883 0.693 0.743
NeuroCore 0.883 0.693 0.733
NlocalSAT 0.885 0.698 0.734
QuerySAT 0.877 0.690 0.733

GMS 0.882 0.693 0.747

F. Graph Paradigm Evaluation
TABLE VII gives the results of different graphs using two

general GNNs. We only perform experiments on the MaxSAT
task. For the satisfiability task, the pairwise benchmarks differ
only in the value of one literal, so their VCG and VIG graphs
remain identical, but with different labels. As for the UNSAT
Core prediction task, LIG and VIG do not construct clause
nodes and are not suitable for this task, therefore.

Upon observing the experimental results, all baselines
perform significantly better on the LCG compared to the other
three graphs. This is due to the fact that the LCG is equivalent
to the original SAT problem, while the other three graphs lack
some information. The LIG loses information of clauses, but
still distinguishes positive and negative literals, resulting in
slightly higher accuracy of variable assignment than VIG and
VCG, which merge positive and negative literals.

VII. CONCLUSIONS AND FUTURE WORK

This work proposes SATGL, an open-source graph learning
toolkit designed for the SAT field, which is useful for com-
paring the performance of different GNN models on SAT-
related tasks. SATGL allows users to experiment with diverse
tasks and datasets. In the future, SATGL aims to expand its
capabilities by including additional tasks and more datasets.
Additionally, SATGL will further support more popular GNN
models in the SAT field.

ACKNOWLEDGMENT

This work is supported in part by the National Natural
Science Foundation of China (No. U20B2045, U1936220,
62192784, 62172052, 62002029, 61772082) and Beijing Nat-
ural Science Foundation (No. 4244107).

TABLE VII Results using different paradigms on MaxSAT

Model Graph SR 3-SAT K-Clique

GCN

LCG 0.769 0.750 0.939
VCG 0.516 0.518 0.938
LIG 0.564 0.625 0.938
VIG 0.516 0.518 0.938

GIN

LCG 0.783 0.756 0.947
VCG 0.516 0.518 0.938
LIG 0.560 0.619 0.938
VIG 0.517 0.518 0.938

REFERENCES

[1] K. Iwama, “SAT-variable complexity of hard combinatorial problems,”
in Proc. IFIP 13th World Computer Congress, 1994, pp. 253–258.

[2] D. Selsam et al., “Learning a SAT Solver from Single-Bit Supervision,”
in Proc. ICLR, 2018.

[3] S. D. QUEUE, “CaDiCaL at the SAT Race 2019,” SAT RACE, vol.
2019, p. 8, 2019.

[4] M. W. Moskewicz et al., “Chaff: Engineering an efficient SAT solver,”
in Proc. DAC, 2001, pp. 530–535.

[5] R. Martins et al., “Open-WBO: A modular MaxSAT solver,” in Proc.
SAT, 2014, pp. 438–445.

[6] A. Biere et al., “Consistency checking of all different constraints over
bit-vectors within a SAT solver,” in Proc. FMCAD, 2008, pp. 1–4.

[7] W. Guo et al., “Machine learning methods in solving the boolean
satisfiability problem,” Machine Intelligence Research, pp. 1–16, 2023.

[8] M. Liu et al., “Can graph neural networks learn to solve the MaxSAT
problem?” in Proc. AAAI, vol. 37, 2023, pp. 16 264–16 265.

[9] Z. Shi et al., “Satformer: Transformers for SAT solving,” arXiv preprint
arXiv:2209.00953, 2022.

[10] T. N. Kipf et al., “Semi-Supervised Classification with Graph Convo-
lutional Networks,” in Proc. ICLR, 2016.

[11] W. Hamilton et al., “Inductive representation learning on large graphs,”
Proc. NeurIPS, 2017.

[12] K. Xu et al., “How Powerful are Graph Neural Networks?” in
Proc. ICLR, 2018.

[13] D. Selsam et al., “Neurocore: Guiding high-performance SAT solvers
with unsat-core predictions,” CoRR, abs/1903.04671, 2019.

[14] T. Ajayi et al., “INVITED: Toward an Open-Source Digital Flow: First
Learnings from the OpenROAD Project,” in Proc. DAC, 2019, pp. 1–4.

[15] X. Li et al., “iEDA: An Open-Source Intelligent Physical Implementa-
tion Toolkit and Library,” in Proc. ASPDAC, 2023.

[16] F. Ferrandi et al., “Invited: Bambu: an Open-Source Research Frame-
work for the High-Level Synthesis of Complex Applications,” in
Proc. DAC, 2021, pp. 1327–1330.

[17] Y. Lu, S. Liu, Q. Zhang, and Z. Xie, “RTLLM: An Open-Source
Benchmark for Design RTL Generation with Large Language Model,”
ArXiv, vol. abs/2308.05345, 2023.

[18] Z. Chai et al., “CircuitNet: an open-source dataset for machine learning
applications in electronic design automation (EDA),” Science China
Information Sciences, vol. 65, 2022.

[19] X. Jiang et al., “CircuitNet 2.0: An Advanced Dataset for Promoting
Machine Learning Innovations in Realistic Chip Design Environment,”
in Proc. ICLR, 2024.

[20] X. Li et al., “iPD: An Open-source intelligent Physical Design
Toolchain,” in Proc. ASPDAC, 2024.

[21] L. Ni et al., “MEC: An Open-source Fine-grained Mapping Equivalence
Checking Tool for FPGA,” Proc. ISEDA, pp. 131–136, 2023.

[22] M. Y. Wang, “Deep graph library: Towards efficient and scalable deep
learning on graphs,” in Proc. ICLR, 2019.

[23] A. Ignatiev et al., “PySAT: A Python toolkit for prototyping with SAT
oracles,” in Proc. SAT, 2018.

[24] W. Zhang et al., “NLocalSAT: boosting local search with solution
prediction,” in Proc. IJCAI, 2021.

[25] E. Ozolins et al., “Goal-aware neural sat solver,” in Proc. IJCNN, 2022.
[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

arXiv preprint arXiv:1412.6980, 2014.

