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ABSTRACT
Graph neural networks (GNNs) have revolutionized molecule rep-

resentation learning by modeling molecules as graphs, with atoms

represented as nodes and chemical bonds as edges. Despite their

progress, they struggle with out-of-distribution scenarios, such

as changes in size or scaffold of molecules with identical proper-

ties. Some studies attempt to mitigate this issue through graph

invariant learning, which penalizes prediction variance across en-

vironments to learn invariant representations. But in the realm of

molecules, core functional groups forming privileged substructures

dominate molecular properties and remain invariant across distri-

bution shifts. This highlights the need for integrating this prior

knowledge and ensuring the environment split compatible with

molecule invariant learning. To bridge this gap, we propose a novel

framework named MILI. Specifically, we first formalize molecule

invariant learning based on privileged substructure identification

and introduce substructure invariance constraint. Building on this

foundation, we theoretically establish two criteria for environment

splits conducive to molecule invariant learning. Inspired by these

criteria, we develop a dual-head graph neural network. A shared

identifier identifies privileged substructures, while environment

and task heads generate predictions based on variant and privileged

substructures. Through the interaction of two heads, the environ-

ments are split and optimized to meet our criteria. The unified MILI

guarantees that molecule invariant learning and environment split

achieve mutual enhancement from theoretical analysis and network

design. Extensive experiments across eight benchmarks validate

the effectiveness of MILI compared to state-of-the-art baselines.
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1 INTRODUCTION
Molecules, the quintessential components of matter, hold a piv-

otal role in scientific exploration [2] and drug discovery [9, 53],

where deciphering their properties can drive substantial innovation.

Within this realm, Molecule Representation Learning (MRL) [4, 12,

18] becomes a vital field of study, which embeds complex molecules

into computationally manageable vector representations. Recently,

Graph Neural Networks (GNNs) [38, 43, 52, 54, 59, 61] have revolu-

tionizedMRL by leveragingmolecule graphs to learn these represen-

tations, achieving state-of-the-art results in predicting molecular

properties [17] and identifying potential drug candidates [69].

Despite their considerable achievements, they often rely on the

fundamental assumption that molecules are independently and

identically sampled from a consistent environment. In reality, the

ever-changing landscape of real-world scenarios results in environ-

mental changes and distribution shifts [25, 27, 58]. For example, in

drug repurposing, molecules initially screened under certain condi-

tions often require reassessment against entirely new diseases or bi-

ological targets. However, current GNN-basedMRLmethods exhibit

notable performance degradation [22] in these out-of-distribution

(OOD) scenarios, underscoring the pressing demand to enhance

their generalization capabilities.

Recent research addressing the OOD challenge of GNNs mainly

concentrates on graph invariant learning (GIL) [7, 14, 28, 46], assum-

ing that the causal subgraph is invariant across environments while

https://doi.org/10.1145/3637528.3671886
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environment subgraph varies. By penalizing prediction variance

across environments, models capture causal factors rather than spu-

rious correlations. Here, an open problem is effectively determining

the environment split. Existing methods have explored various

strategies, including predefined splits [3], graph augmentation [57],

and additional models specifically for environment split [29].

Nevertheless, applying GIL to GNN-based MRL involves three

key considerations: (1) Integration of domain knowledge. Privi-

leged substructures [26, 36] are core functional groups determining

molecular activity. For instance, the analgesic properties of As-

pirin can be attributed to its ester functional group −𝐶𝑂𝑂−. This
suggests that the invariant subgraph in MRL should be these chem-

ically privileged substructures. But most current methods [35, 46]

learn arbitrary subgraphs, overlooking this a priori knowledge. (2)

Theoretical guidance for environment split facilitating GIL. Meth-

ods [31, 70] using graph augmentation might result in nonsensical

molecules, losing the potential to provide insights to domain ex-

perts. On the other hand, predefined and learned splits from exist-

ing methods [29, 57] are independent of downstream GIL and do

not theoretically ensure compatibility with GIL. (3) Unified model

for environment split and downstream prediction. Current meth-

ods [62] often treat environment split and downstream prediction

as a two-stage process, leading to a lack of mutual awareness and

suboptimal performance.

To tackle the outlined key points, we propose a novel frame-

work named MILI to advance Molecule Invariant Learning via

privileged substructure Identification. To integrate domain knowl-

edge, we formulate molecule invariant learning based on privileged

substructure identification and introduce Substructure Invariance

Constraint (SIC). We then theoretically establish two criteria for en-

vironment split to guarantee the enhancement of molecule invariant

learning: the environments should be split based on the agreement

between ground truth and downstream predictions from variant

structures, aiming at (1) maximally violating SIC and (2) maintain-

ing class distribution fairness. To fulfill these criteria, we design

a dual-head graph neural network. A shared identifier identifies

privileged substructures, followed by task and environment heads

that make downstream predictions using privileged substructures

and variant structures. In line with our criteria, the environments

are split and optimized to violate SIC by maximizing invariant risk

while enhance class distribution fairness by reweighting empir-

ical risks. Ultimately, this unified framework allows for mutual

reinforcement between environment split and molecule invariant

learning. Extensive experiments across diverse datasets demon-

strate the effectiveness of the proposed MILI.

In summary, our contributions are three-fold:

• We formalize molecule invariant learning based on privi-

leged substructure identification and introduce substructure

invariance constraint. Building upon this foundation, we pro-

pose criteria for environment split, theoretically ensuring

their benefit to molecule invariant learning.

• To meet the criteria, we design a novel dual-head graph neu-

ral network with a shared identifier to identify privileged

substructures. Subsequently, the interaction between envi-

ronment and task heads mutually enhances the environment

split and molecule invariant learning.

• Comprehensive experiments demonstrate the effectiveness

of our MILI. Additionally, case studies of identified privi-

leged substructures reflect its effective utilization of domain

knowledge, offering valuable insights for drug design.

2 MOLECULE INVARIANT LEARNING
In this section, we define OOD generalization on molecules and

then expand the invariant learning framework based on privileged

substructure identification.

OOD Generalization on Molecules. The random variable of a mol-

ecule graph is denoted as G, where nodes correspond to atoms and

edges represent chemical bonds. Let G be the molecule graph space

and Y the label space. We consider a dataset 𝐷 = {(𝐺𝑖 , 𝑌𝑖 )}𝑁𝑖=1
,

where𝐺𝑖 ∈ G and 𝑌𝑖 ∈ Y. In real-world applications, the dataset is

often sourced from multiple environments 𝐷 = {𝐷𝑒 }𝑒∈E𝑡𝑟 . Here,
𝐷𝑒 = {(𝐺𝑒

𝑖
, 𝑌𝑒

𝑖
)}𝑁𝑒

𝑖=1
represents the dataset from environment 𝑒 , and

E𝑡𝑟 denotes the environment space in the training data.

Definition 1. Let E represents the space of all possible environ-
ments andH denotes the molecule representation space. Suppose the
predictor 𝑓 can be decomposed into 𝑓 = 𝜔 ◦ Φ, where Φ : G → H is
an encoder mapping molecules into representations, and 𝜔 : H → Y
is a classifier that maps representations to the logit space of Y via a
linear map. The goal of OOD generalization on molecules is to find
an optimal predictor 𝑓 ∗ that performs well across all environments

𝑓 ∗ (·) = arg min

𝑓
sup

𝑒∈E
R𝑒 (𝑓 ) . (1)

Here, R𝑒 (𝑓 ) = E𝑃 (G,Y |𝑒 ) [ℓ (𝑓 (G),Y)] represents the empirical risk
on environment 𝑒 , and ℓ (·, ·) : Y ×Y → R is a loss funcion.

The joint distribution of the molecule graph and its correspond-

ing label is denoted as 𝑃 (G,Y) = 𝑃 (G,Y|𝑒) ∀𝑒 ∈ E. Distribution
shifts refer to the scenario where the joint distribution in the train-

ing data 𝑃𝑡𝑟 (G,Y) = 𝑃 (G,Y|𝑒) ∀𝑒 ∈ E𝑡𝑟 differs from that in the test

data 𝑃𝑡𝑒𝑠𝑡 (G,Y) = 𝑃 (G,Y|𝑒) ∀𝑒 ∈ E\E𝑡𝑟 .

Molecule Invariant Learning. Molecule graph G is characterized

by privileged substructures {G𝑝 } determining its properties. This

indicates that the relationship between these privileged substruc-

tures and the corresponding label is invariant across all environ-

ments. The complement of {G𝑝 } is denoted as G𝑣
, representing

the structure that varies with environments. Following the invari-

ant learning literature [8], we define the Substructure Invariance

Constraint (SIC) for molecule invariant learning.

Definition 2. (Substructure Invariance Constraint). Sup-
pose the optimal identifier 𝛿∗ is learned to identify privileged sub-
structures within a molecule graph G. Then, the molecule invariant
representation Φ∗ (𝛿∗ (G)) needs to satisfy the following constraint

𝑃 (Y|Φ∗ (𝛿∗ (G)), 𝑒1) = 𝑃 (Y|Φ∗ (𝛿∗ (G)), 𝑒2), ∀𝑒1, 𝑒2 ∈ E . (2)

To avoid trivial representations, this constraint is integrated as

a regularization term in the training objective. Similar to Invariant

Risk Minimization (IRM) [3], set 𝜔 as a constant scalar multiplier of

1.0 for each output dimension. The objective function for molecule

invariant learning can be written as follows

min

Φ,𝛿

∑︁
𝑒∈E𝑡𝑟

R𝑒 (𝑓 ◦ 𝛿) + 𝜆
∇𝜔R𝑒 (𝜔 ◦ Φ ◦ 𝛿) . (3)
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Obviously, Eq. (3) necessitates predefined environments, the ac-

quisition of which poses a practical challenge. Furthermore, the

availability of environment labels does not imply their suitability for

molecule invariant learning, leading to no guarantee of benefit [22].

3 CRITERIA FOR ENVIRONMENT SPLIT IN
MOLECULE INVARIANT LEARNING

With the above formulation, we aim to derive criteria for environ-

ment split that facilitate molecule invariant learning. Intuitively,

these environments should shed light on the variations of variant

features [32, 48]. Therefore, if the environment split is based solely

on the variant structure, it allows for an exposure of any variance.

Here, we use identifier
¯𝛿 (G) = G𝑣

to represent the complement of

the privileged substructure identification.

Suppose an alternative environment predictor 𝑓 𝑒 ◦ ¯𝛿 predicts the

label using the variant structure G𝑣
. Contrasting with the molecule

invariant representation that adheres to SIC, the results from the

environment predictor 𝑓 𝑒 ( ¯𝛿 (G)) intentionally violate SIC.

Theorem 1. For the optimal environment predictor 𝑓 𝑒∗ ( ¯𝛿∗ (G))
that relies solely on the variant structure, denote the prediction as Ŷ𝑒

and the ground truth as Y. If the environments are split by

e = I(Ŷ𝑒 = Y), (4)

where the function I determines the equality of two random variables,
the substructure invariance constraint will be maximally violated.

Unfortunately, this ideal scenario requires that the environment

predictor 𝑓 𝑒 ◦ ¯𝛿 exclusively utilizes the variant structure, a require-

ment complicated by no prior knowledge of its accurate extraction.

In practical implementation, the learned environment split should

maximally violate SIC to the fullest degree.

Criterion 1. The environments e are split according to the agree-
ment between the ground truth Y and the predictions Ŷ𝑒 from a
learnable environment predictor 𝑓 𝑒 ( ¯𝛿 (G)), i.e., e = I(Ŷ𝑒 = Y). This
environment split should be optimized to violate the substructure
invariant constraint maximally.

Furthermore, if the environment split e is determined by the

optimal environment predictor 𝑓 𝑒∗ ◦ ¯𝛿∗ and the ground truth Y, we
have molecule invariant representation Φ∗ (𝛿∗ (G)) ⊥ e|Y. Thus, a
theorem can be deduced as follows.

Theorem 2. For the environment split e determined by the optimal
environment predictor 𝑓 𝑒∗ ◦ ¯𝛿∗ and the ground truth Y, the following
equation

𝑃 (Y = 𝑦1 |𝑒1)
𝑃 (Y = 𝑦2 |𝑒1)

=
𝑃 (Y = 𝑦1 |𝑒2)
𝑃 (Y = 𝑦2 |𝑒2)

(5)

holds for any 𝑦1, 𝑦2 ∈ Y and any 𝑒1, 𝑒2 ∈ E.
This theorem establishes the relationship between the environ-

ment split and class distribution, indicating that the class distribu-

tion is fair to the environment split. Intending to reach the optimal

scenario, we introduce the second optimization criterion for the

environment split.

Criterion 2. The environments e are split based on the ground
truth Y and the predictions Ŷ𝑒 from a learnable environment predictor
𝑓 𝑒◦ ¯𝛿 . This environment split should be optimized to ensure the fairness
of class distribution across diverse environments.

We direct the readers to Appendix A for the proofs of all the

above theorems.

4 MILI METHODOLOGY
Guided by the established criteria, we propose MILI, a molecule

invariant learning model via privileged substructure identification.

In this section, we first present the details of its neural network

architecture. Following this, we illustrate the training procedure.

4.1 Dual-head Graph Neural Network
Revisiting the molecule invariant learning framework proposed in

Eq. (3), the molecular property predictor consists of two parts 𝑓 ◦ 𝛿 .
The identifier 𝛿 is designated to identify privileged substructures,

while 𝑓 predicts molecular properties. In Sect. 3, the environment

split is reliant on the environment predictor 𝑓 𝑒 ◦ ¯𝛿 , where ¯𝛿 acts as

the complement of privileged substructure identification, and 𝑓 𝑒

predicts the label from the resultant variant structure. This gives rise

to a dual-head graph neural network. Specifically, it utilizes a shared

backbone as the identifier 𝛿 for privileged substructures, with 𝑓 and

𝑓 𝑒 serving as the task and environment heads, respectively. The

overall framework is depicted in Fig. 1, and the implementation of

each module is introduced as follows.

Molecule Fragmentation. Initially, we fragmentize the molecule

G, provided in the SMILES format, into a collection of chemical

substructures {G𝑐
𝑖
}𝑁𝑠

𝑖=1
. This fragmentation is executed by Breaking

Retrosynthetically Interesting Chemical Substructures (BRICS) [10],

recognized for effectively isolating essential substructures from

complex molecules.

Privileged Substructure Identifier. We use the representation of

the complete molecule as a query, and substructure representations

as keys, identifying privileged substructures based on the attention

mechanism [49]. Specifically, a GIN encoder [60] is adopted to learn

the representation
®ℎ of the molecule G

®ℎ = GIN(G). (6)

We apply another GIN subencoder to chemical substructures {G𝑐
𝑖
}𝑁𝑠

𝑖=1

to obtain their representations {®ℎ𝑐
𝑖
}𝑁𝑠

𝑖=1
,

®ℎ𝑐𝑖 = GIN(G𝑐
𝑖 ) . (7)

Treating the molecule representation
®ℎ as a query and substructure

representations {®ℎ𝑐
𝑖
}𝑁𝑠

𝑖=1
as keys, the attention coefficients ®𝛼 can be

calculated as

𝛼𝑖 =
®ℎ𝑊 𝑞 ( ®ℎ𝑐

𝑖
𝑊 𝑘 )⊤
√
𝑑

, (8)

where matrices {𝑊 𝑞,𝑊 𝑘 } are learnable linear transformations used

to enhance expressive power, and 𝑑 is the representation dimension.

Considering that the task head 𝑓 requires privileged substructures

{G𝑝 } as input, we can directly feed the representation
®ℎ𝑝 of them

®ℎ𝑝 = softmax( ®𝛼)𝐻𝑐 , (9)

where 𝐻𝑐
represents a matrix stacked with substructure represen-

tations {®ℎ𝑐
𝑖
}𝑁𝑠

𝑖=1
. On the other hand, the environment head 𝑓 𝑒 neces-

sitates the variant structure
¯𝛿 (G) - the complement of privileged
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Figure 1: Overall framework of the proposed MILI. Fragmentized chemical substructures {G𝑐 } are fed into a dual-head graph
neural network. (1) The shared backbone serves as identifier 𝛿 to identify privileged substructures. (2) The task head 𝑓 and
environment head 𝑓 𝑒 respectively utilize privileged substructures {G𝑝 } and variant structures G𝑣 for molecular property
prediction. Aligning with environment split criteria, the environment head 𝑓 𝑒 assigns environments e based on the agreement
between predictions Ŷ𝑒 and ground truth Y. Meanwhile, the task head 𝑓 considers class distribution fairness across environments
and calculates invariant risk R𝑖𝑛𝑣 to refine the environment head. In each training iteration, the molecular property predictor
𝑓 ◦ 𝛿 and environment head 𝑓 𝑒 are optimized with awareness of each other.

substructures. To accomplish this, we utilize reverse attention

®ℎ𝑣 = softmax(−®𝛼)𝐻𝑐 . (10)

Here,
®ℎ𝑣 denotes the representation of the variant structure, serving

as the input for the subsequent environment head.

Dual Heads. The task and environment heads employ the repre-

sentations of privileged substructures and the variant structure for

classification, respectively. Particularly, the task head 𝑓 utilizes a

multi-layer perceptron (MLP) to generate predictions Ŷ,

Ŷ = softmax(MLP( ®ℎ𝑝 )) . (11)

Likewise, the environment head 𝑓 𝑒 obtains both a soft prediction ®𝑠
and the final prediction Ŷ𝑒 ,

®𝑠 = softmax(MLP( ®ℎ𝑣)), (12)

Ŷ𝑒 = argmax(®𝑠) . (13)

According to Theorem 1, the principle of splitting environment e is
the agreement between the ground truth Y and the predictions Ŷ𝑒 .
Therefore, 𝑒1 = I(Y = Ŷ𝑒 ) and 𝑒2 = I(Y ≠ Ŷ𝑒 ).

Optimization Objective. Given the environment split, we can

define per-environment risk R𝑒 ,

R𝑒 (𝑓 ◦ 𝛿) = E𝑃 (G,Y |𝑒 ) ℓ
(
Ŷ,Y

)
, (14)

where ℓ is the cross-entropy for classification. To fulfill Criterion 1

that the environment split maximally violates the substructure

invariant constraint, we fix the molecular property predictor 𝑓 ◦ 𝛿

and optimize the environment head 𝑓 𝑒 by maximizing the invariant

risk based on soft assignment

˜R𝑒 (𝑓 ◦ 𝛿, ®𝑠) = 1∑
𝑖′ I(𝑒𝑖′ = 𝑒)

∑︁
𝑖

I(𝑒𝑖 = 𝑒)®𝑠𝑖 [𝑌𝑒
𝑖 ]ℓ

(
𝑌𝑖 , 𝑌𝑖

)
, (15)

L(𝑓 𝑒 ) = −
∇𝜔 ˜R𝑒 (𝜔 ◦ Φ ◦ 𝛿, ®𝑠)

 . (16)

Here, ®𝑠𝑖 [𝑌𝑒
𝑖
] represents the element corresponding to the dimension

of 𝑌𝑒
𝑖
. Please note that Eq. (16) does not include empirical risk. To

prevent trivial solutions, we stop the backpropagation between the

environment head 𝑓 𝑒 and the identifier 𝛿 , refining 𝑓 𝑒 to concentrate

on variant information.

To ensure the fairness of class distribution stated in Criterion 2,

the per-environment risk is reweighted based on the class propor-

tion within environments

¥R𝑒 (𝑓 ◦ 𝛿) = E𝑃 (G,Y |𝑒 )
𝑃 (Y = 𝑦)
𝑃 (Y = 𝑦 |𝑒) ℓ

(
Ŷ = 𝑦,Y = 𝑦

)
. (17)

Aligned with Theorem 2, the ideal value of 𝑃 (Y = 𝑦)/𝑃 (Y = 𝑦 |𝑒) is
equal to 1. Practically, it serves to balance class distribution across

environments dynamically. By applying increased penalization to

larger values, the class distribution is refined through enhanced

extraction of privileged substructures. Thus following Eq. (3), the

loss function for the molecular property predictor 𝑓 ◦ 𝛿 is

L(𝑓 , 𝛿) =
∑︁

𝑒∈E𝑡𝑟

¥R𝑒 (𝑓 ◦ 𝛿) + 𝜆
∇𝜔R𝑒 (𝜔 ◦ Φ ◦ 𝛿) , (18)
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Table 1: Quantitative OOD generalization performance measured by ROC-AUC (%±𝜎). The best is marked with boldface and the
second best is with underline. (em dash: cannot run without environment labels)

Methods
OGB IC50 EC50

BACE BBBP Assay Scaffold Size Assay Scaffold Size

ERM [41] 78.10±1.30 68.77±0.85 70.87±0.99 68.96±0.26 68.03±1.96 67.87±2.22 66.03±1.18 62.49±1.17
IRM [3] — — 71.14±0.85 65.56±0.47 57.74±0.73 69.23±1.63 61.38±0.53 56.84±2.11
GroupDRO [40] — — 69.65±0.67 67.67±0.86 57.93±1.27 71.07±4.24 65.67±1.94 60.82±1.21
Mixup [66] — — 71.75±1.24 68.96±0.62 66.98±0.38 68.70±1.47 66.48±1.73 63.26±0.51

DIR [57] 76.49±2.80 66.52±1.33 67.16±2.00 64.45±1.39 59.03±1.67 67.07±2.22 63.14±1.64 59.64±1.20
GREA [31] 81.66±0.98 70.76±1.39 71.27±1.04 67.96±0.62 67.10±1.08 73.01±1.09 64.64±1.36 61.42±1.11
GSAT [35] 75.35±1.80 68.38±0.64 70.04±1.15 67.78±0.45 66.37±0.48 71.73±1.76 65.19±0.93 60.22±1.69
CAL [46] 77.29±1.60 68.33±1.27 69.42±1.64 64.64±0.80 64.44±1.51 70.54±2.30 64.96±0.83 60.56±1.26
CIGA [7] 76.29±2.50 68.06±1.37 70.80±1.13 68.37±1.88 66.25±0.47 69.37±1.81 67.53±1.07 65.54±0.67
MoleOOD [62] 77.61±4.90 64.77±2.44 71.60±1.00 67.68±1.12 66.47±1.67 70.77±1.93 65.71±1.45 64.21±1.02
iMoLD [70] 79.11±0.90 68.50±1.33 70.74±1.21 69.22±1.65 67.01±1.37 71.38±1.54 66.50±0.73 65.22±1.25

MILI 85.16±1.65 72.56±0.65 72.67±0.52 69.58±1.01 68.40±0.57 77.11±1.37 68.07±1.27 65.97±0.96

Algorithm 1Model Training for MILI

Input: Dataset 𝐷 = {(𝐺𝑖 , 𝑌𝑖 )}𝑁𝑖=1
; Number of training epochs for

environment head 𝑇1; Number of training epochs for molecule

property predictor 𝑇2; Number of training iterations 𝑇

Output: Trained molecule property predictor 𝑓 ◦ 𝛿
1: Pretrain the molecule property predictor 𝑓 ◦ 𝛿 using the cross-

entropy empirical risk;

2: Initialize the environment head 𝑓 𝑒 ← 𝑓 ;

3: for 𝑖 ← 1 to 𝑇 do
4: Fix the molecule property predictor 𝑓 ◦ 𝛿 ;
5: Obtain the prediction Ŷ;
6: for 𝑗 ← 1 to 𝑇1 do
7: Compute the soft prediction ®𝑠 and the final prediction Ŷ𝑒

of environment head 𝑓 𝑒 according to Eqs. (12) and (13);

8: Compute the environment split e = I(Ŷ𝑒 = Y);
9: Optimize the environment head 𝑓 𝑒 according to Eq. (16);

10: end for
11: Fix the environment head 𝑓 𝑒 ;

12: Obtain the prediction Ŷ𝑒 of environment head 𝑓 𝑒 ;

13: Obtain the environment split e = I(Ŷ𝑒 = Y);
14: for 𝑗 ← 1 to 𝑇2 do
15: Compute the prediction Ŷ;
16: Compute the reweighted risk according to Eq. (17);

17: Optimize the molecule property predictor 𝑓 ◦ 𝛿 according

to Eq. (18);

18: end for
19: end for
20: Output the molecule property predictor 𝑓 ◦ 𝛿 ;

where the first term represents the reweighted empirical risk and

the second term is the invariant risk, with 𝜆 denoting the trade-off

hyperparameter.

4.2 Training Procedure
We adopt an iterative training strategy between the molecule prop-

erty predictor 𝑓 ◦ 𝛿 and the environment head 𝑓 𝑒 , allowing mutual

benefit and enhancement. Alg. 1 presents the pseudocode.

The computational complexity of MILI primarily stems from

iterative optimization. Each iteration mainly involves the updating

of the environment head 𝑓 𝑒 and the molecule property predictor

𝑓 ◦ 𝛿 . The complexity for the environment head 𝑓 𝑒 is O(𝑇1𝑑
2),

while O(𝑇2 ( |E |𝐷𝑑 + 𝑑2)) is for molecule property predictor 𝑓 ◦ 𝛿 .
Here, |E | represents the number of edges in the molecule graph,

and 𝐷 denotes the feature dimension. Consequently, the overall

complexity of𝑇 -iteration MILI is around𝑇 (𝑇1𝑑
2 +𝑇2 |E |𝐷𝑑). Please

note that the values of {𝑇 1,𝑇 2} are significantly smaller than those

in traditional Empirical Risk Minimization (ERM) training. More-

over, the number of iterations𝑇 is relatively modest. Therefore, the

added computational overhead remains acceptable.

5 EXPERIMENTS
In this section, we assess the effectiveness of MILI via extensive ex-

periments. Firstly, we compare MILI with state-of-the-art methods

in OOD generalization for molecule representation learning. Fol-

lowing this, we present that the identified privileged substructures

have substantial chemical significance. Subsequently, we analyze

the mechanisms of MILI, validating the contributions of its modules.

Lastly, we investigate the hyper-parameter sensitivity.

5.1 Experimental Setup
Datasets. We evaluated the proposed MILI on eight benchmark

datasets. BACE and BBBP, fromOpenGraph Benchmark (OGB) [20],

focus on binding affinity against human beta-secretase 1 and brain-

blood barrier penetration, respectively. Their train-validation-test

splits are determined by scaffold differences. The other six datasets

are provided by DrugOOD [22], offering binary classification for
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Figure 2: Visualization of three test cases from the BBBP dataset. The identified privileged substructures are highlighted using
a color-coded scheme based on their learned weights. Functional group nodes are distinctly marked with the most significant
group in red, followed by the second in blue, and the third in purple.

drug target binding affinity prediction. DrugOOD utilizes three

split strategies (assay, scaffold, size) across IC50 and EC50 measure-

ments, thus creating six datasets IC50/EC50-assay/scaffold/size. For

all datasets, we adhere to the standard train-validation-test split. It

is important to note that only the six DrugOOD datasets include

manually specified environment labels. As the above property pre-

diction tasks all relate to classification, we report the ROC-AUC

score, consistent with previous studies [51, 62, 70]. The statistics of

these datasets are summarized in Appendix B.

Baselines. We thoroughly compare our MILI against ERM [41]

and three categories of OOD baselines. Specifically, (1) three general

OOD methods for Euclidean data, including the invariant learn-

ing method IRM [3], the group distributionally robust optimiza-

tion method GroupDRO [40], and the data augmentation method

Mixup [66]. Notably, these methods necessitate manual specifica-

tion of environments, we limited this comparison to DrugOOD

datasets. (2) Two interpretable graph learning methods, DIR [57]

and GREA [31]. (3) Five graph OOD methods, namely GSAT [35],

CAL [46], CIGA [7], MoleOOD [62], and iMoLD [70]. All meth-

ods use GIN [60] backbones and are configured using parameters

reported in the original papers or selected via grid search.

Implementation. We implement MILI using the PyTorch deep

learning library
1
. For the encoder and subencoder in the identi-

fier, we adopt GIN implementations from the Open Graph Bench-

mark [20]. As outlined in Alg. 1, during the pretraining of the

molecule property predictor using cross-entropy empirical risk, we

save the model parameters that exhibit the largest performance

gap between the training and validation sets. For hyper-parameter

tuning, we employ grid search on the validation set, adjusting the

learning rate from {1𝑒 − 2, 5𝑒 − 3, 1𝑒 − 3, 5𝑒 − 4, 1𝑒 − 4, 5𝑒 − 5, 1𝑒 −
5}, the number of GIN layers from 2 to 6, the dropout rate from

{0.1, 0.3, 0.5, 0.7}, and the trade-off parameter 𝜆 in Eq. (18) from

{0.1, 1, 10, 50, 100, 150, 200, 250}. The Adam optimizer [23] is used

for efficient gradient-based optimization.

1
https://pytorch.org/

5.2 Main Results
Performance Comparison. In Table 1, we report the mean and

standard deviation results over 5 independent trials with different

random seeds.

From these results, we draw several conclusions: (1) The pro-

posed MILI consistently outperforms all baselines on the datasets,

demonstrating that our unified molecule invariant learning frame-

work substantially enhances the generalizability of molecule rep-

resentation learning. (2) The performance advantage of MILI over

MoleOOD can be attributed to the environment split criteria and

the inspired dual-head graph neural network architecture, which

ensures that the environment split and molecule invariant learning

reinforce each other. (3) The improvements of OOD baselines over

ERM highlight the importance of considering the OOD scenario

in molecule representation learning. Without specialized design,

neural networks are prone to adopting spurious correlations. Fur-

thermore, the superior performance of graphOODbaselines relative

to those for Euclidean data underscores the inherent suitability of

graph-based learning for capturing intricate patterns in molecules.

(4) The distribution shifts of IC50/EC50-scaffold/size datasets have

a relatively small impact on ERM models, resulting in limited ad-

vantages for OOD methods on these datasets. A large portion of

OOD methods fail to surpass ERM, whereas the proposed MILI still

achieves the best performance in this scenario.

Privileged Substructure Identification. To enhance the understand-
ing of MILI, we detail three cases of identified privileged substruc-

tures on the BBBP dataset, as shown in Fig. 2. These substructures

are ranked by the learned weights, highlighted in red, blue, and

purple, respectively.

Focusing on the brain-blood barrier (BBB) penetration, the BBBP

dataset classifies molecules based on their ability to permeate the

brain cell membrane. Notably, the most significant functional group

𝑁1𝐶𝐶𝑁 (𝐶𝐶1) (piperazine), marked in red, is pivotal in aiding

molecular penetration through the BBB. Piperazine’s presence en-

hances BBB crossing, beneficial for central nervous system en-

try [45]. Additionally, the blue-highlighted 𝐶𝐶 (= 𝑂)𝑁 (acetamide)

moderately supports BBB penetration, leveraging its amide group
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Figure 3: Optimization analysis on BACE dataset.
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Figure 4: Impact of environment optimization, empirical risk
reweighting, and iterative optimization on (a) BACE and (b)
BBBP datasets.

for hydrogen bonding and polarity. Despite this, piperazine struc-

tures outperform acetamide in BBB penetration due to their nitrogen-

rich ring structure, which receives higher importance in the ranking.

These findings underscore the proficiency of MILI in identifying

and analyzing substructures crucial for drug efficacy and safety.

Meanwhile, its capability to adapt to distribution shifts ensures that

the designed drugs are robust and reliable, making it a useful tool

in modern pharmaceutical research and development.

5.3 Model Analysis
Ablation Studies. Recall that MILI optimizes the environment

head by maximizing invariant risk to satisfy Criterion 1, addresses

Criterion 2 by reweighting empirical risks according to class pro-

portions, and establishes mutual reinforcement between molecule

invariant learning and environment split via iterative optimization.

To ascertain the effectiveness of these modules, we conduct ablation

studies. Specifically, we compare MILI with three variants: w/o EO

(MILI without environment optimization), w/o RW (with empirical

risk reweighting), and w/o IO (without iterative optimization). The

results on the BACE and BBBP datasets are depicted in Fig. 4.

From the plots, we observe that MILI consistently outperforms

the other variants. Such a phenomenon is not surprising and under-

scores that the integration of environment optimization, empirical

risk reweighting, and iterative optimization is critical for the robust

performance of MILI. Each module contributes to the effectiveness

of the overall framework.

Optimization Analysis. To elucidate the learning process of MILI,

We present invariant risk changes of the environment head and their

impact on model performance, the class ratio and the reweighted

empirical risk changes within environments on the BACE dataset,

as illustrated in Fig. 3.

Fig. 3 (a) reveals an upward trend in the invariant risk as the

optimization progresses, which aligns with the optimization objec-

tive in Eq. (16). Here, the environment head maximizes invariant

risk to ensure that the environment split maximally violates SIC

and exploits variant information to the utmost. Furthermore, it can

be observed that the loss gradually converges, which is consistent

with theoretical findings in related work [3, 39] demonstrating the

existence of an upper bound on invariant risk. To investigate how

the loss of the environment head impacts the model’s effectiveness,

we vary the number of training epochs for the environment head

on the BACE dataset while setting the iteration number to one. We

plot the invariant risk and ROC-AUC as a scatter plot in Fig. 3 (b).

It shows that the invariant risk and the final model performance

are generally positively correlated, indicating that optimizing the

environment head more effectively benefits downstream molecule

invariant learning.

According to Theorem 2, class ratios between different environ-

ments should ideally equalize. Fig. 3 (c) shows that initial disparities

in class ratios 𝑃 (𝑦1 |e)/𝑃 (𝑦2 |e) between environments 𝑒1 and 𝑒2

gradually narrow. This indicates that the reweighting in Eq. (17) ef-

fectively refines the shared identifier, moving the class ratios closer

to the ideal state. Fig. 3 (d) depicts a consistent decline in empirical

risks across different environments during optimization, suggesting

that the proposed molecule invariant learning framework indeed

facilitates downstream tasks.

5.4 Hyper-parameter Sensitivity
In this subsection, we investigate the hyper-parameter sensitivity

of MILI, focusing on GIN layers, the number of iterations, and the

trade-off hyperparameter 𝜆. Specifically, we adjust the number of

GIN layers in the encoder (𝑙1) and subencoder (𝑙2) from 2 to 6. As for

the number of iterations, the value ranges from 1 to 6. The trade-off

hyperparameter 𝜆 is explored in {0.1, 1, 10, 50, 100, 150, 200, 250}.
We report the results on the BACE dataset in Fig. 5.

Effect of GIN Layers. As observed in Fig. 5 (a), both the encoder

and subencoder exhibit relatively poor performance when the num-

ber of GIN layers is too low or too high. We infer that fewer layers

may limit the representation capacity to encapsulate the intricate

patterns in molecule structures, whereas too many layers risk over-

parameterization.
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Figure 5: The hyper-parameter sensitivity on BACE dataset.

Effect of Iterations. Improvements in performancewith additional

iterations indicate that MILI benefits from iterative optimization.

Each iteration might enable environment split and molecule invari-

ant learning to promote each other. Nevertheless, more iterations

escalate time complexity. Thus, we should balance the trade-off

between performance and complexity.

Effect of Trade-off Hyperparameter. Considering the relatively

small value of invariant risk, too small 𝜆 causes the optimization to

neglect the associated penalty for invariant risk. As depicted in Fig. 5

(c), this may lead the model to learn more spurious correlations,

subsequently degrading its performance on the OOD test set. On

the other hand, setting 𝜆 too high may result in the inadequate

optimization of empirical risk, affecting its predictive performance.

6 RELATEDWORK
In line with the focus of our work, we briefly review themost related

work on molecule representation learning and OOD generalization.

6.1 Molecule Representation Learning
Existing molecule representation learning methods can be clas-

sified into three categories. The first is fingerprint-based meth-

ods [4, 13, 21], which utilize handcrafted representations [12, 37]

to encode topological substructures. While effectively capturing

substructural presence, these methods suffer from bit collisions and

vector sparsity, limiting their representation capacity. The second

is sequence-based methods [18, 21] that leverage SMILES (Simpli-

fied Molecular Input Line Entry System) [55] strings to represent

molecules. These methods employ sequence-based models such as

recurrent neural networks [65] and Transformer [49] to learn mole-

cule representations. However, their main challenge lies in compre-

hending SMILES syntax. For example, spatially distant atoms may

appear adjacent in the sequence. The final category is graph-based

methods [38, 43, 59], which model molecules by treating each atom

as a node and each chemical bond as an edge. Many works have

showcased the profound potential of graph neural networks [17, 44]

in analyzing and predicting molecular behavior, significantly ad-

vancing the field of molecule representation learning.

Despite their remarkable achievements, these methods predom-

inantly assume that training and testing molecules are indepen-

dently sampled from an identical environment. However, this as-

sumption often falls short in real-world scenarios, underscoring

the urgency for OOD generalization.

6.2 OOD Generalization
The vulnerability of deep neural networks to significant perfor-

mance drops under distribution shifts has spurred extensive re-

search in OOD generalization [42]. Three lines of methods have

emerged for OOD generalization in Euclidean data: group distribu-

tionally robust optimization [27, 67], domain adaptation [15, 30],

and invariant learning [1, 3, 6]. Group distributionally robust op-

timization considers groups of distributions and optimizes across

all groups. Domain adaptation [11, 34, 47] strives to align data dis-

tributions with some additional assumptions [68]. Invariant learn-

ing [5, 8] seeks an invariant predictor that upholds invariant rela-

tionships across all environments. It does this by learning invariant

representations that meet the invariant principle: sufficiency for

predictive accuracy and invariance to environmental changes.

However, most existing methods require explicitly multiple envi-

ronments within the training dataset. This requirement for detailed

annotation is not only exceedingly expensive for non-Euclidean

data [33, 39] but also inherently problematic due to potential inac-

curacies in the predefined split. Furthermore, some studies have

indicated that the direct application of these methods to complex

molecule graphs [7] frequently fails to yield promising results [22].

6.3 OOD Generalization on Graphs
Recently, there has been a surge of interest regarding OOD gener-

alization on non-Euclidean graphs. Some methods [7, 14, 28, 46]

adopt the "first-separation-then-encoding" paradigm to identify

invariant substructures in the explicit structural space. Moreover,

MoleOOD [62] and GIL [29] utilize inferred environmental labels

to learn invariant representations based on the invariant principle;

GREA [31] and iMoLD [70] learn disentangled invariant repre-

sentations within the latent space. OOD generalization on graphs

can also be enhanced by related works [35, 57] in the explainabil-

ity [63, 64] of graph neural networks (GNNs) [16, 19, 24, 50, 56],
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which aim to pinpoint a subgraph as the rationale behind a GNN

prediction. Although some methods incorporate causality to justify

the generated explanations, their primary focus remains on the

explainability of GNN predictions rather than OOD generalization.

Methods learning invariant representations in the latent space

lack interpretability, while those in the explicit structural space

usually use arbitrary subgraphs as basic units. In molecule repre-

sentation learning, the properties of molecules are frequently deter-

mined by chemical substructures [26, 36]. Injecting this prior knowl-

edge is crucial for identifying invariant substructures in molecules

and providing new insights to experts. Notably, the most relevant

work [62] incorporates this knowledge, whose core idea of envi-

ronment split is to use variational inference to approximate the

posterior 𝑝𝜏 (𝑒 |𝐺,𝑦). Specifically, two GINs are employed to model

𝑞𝜅 (𝑒 |𝐺,𝑦) and 𝑝𝜏 (𝑦 |𝐺, 𝑒), and environment split is achieved by

maximizing the ELBO. The separation between environment split

and molecule representation learning as independent models leads

to a lack of awareness that cannot guarantee mutual benefits.

7 CONCLUSION
In this paper, we formalize molecule invariant learning based on

privileged substructure identification and propose substructure in-

variance constraint. On this foundation, we theoretically derive

criteria for environment split and implement them through a dual-

head graph neural network. Therefore, our framework ensures

mutual enhancement between environment split and molecule in-

variant learning from theoretical and network design perspectives.

Limitations and Broader Impact. One limitation of MILI is its

current focus on classification tasks, presenting an opportunity for

future work to broaden its application across more diverse down-

stream tasks. Our work delves into the OOD problems in molecule

representation learning, a prevalent and inevitable scenario in real-

world applications. Applying machine learning to molecules still

faces numerous practical challenges, such as accurately predict-

ing chemical reactivity. We expect our work will inspire further

research combining domain knowledge with machine learning tech-

niques, contributing to the realization of AI4Science.
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Table 2: Statistics of datasets.

Dataset # Train # Validation # Test # Total Split Scheme
O
G
B BACE 1,210 151 152 1,513 Scaffold

BBBP 1,631 204 204 2,039 Scaffold

D
ru

gO
O
D

IC50-assay 34,179 19,028 19,028 72,235 Assay

IC50-scaffold 21,519 19,041 19,048 59,608 Scaffold

IC50-size 36,597 17,660 16,415 70,672 Size

EC50-assay 4,540 2,572 2,490 9,602 Assay

EC50-scaffold 2,570 2,532 2,533 7,635 Scaffold

EC50-size 4,684 2,313 2,398 9,395 Size

A PROOFS
Theorem. For the optimal environment predictor 𝑓 𝑒∗ ( ¯𝛿∗ (G)) that

relies solely on the variant structure, denote the prediction as Ŷ𝑒 and
the ground truth as Y. If the environments are split by

e = I(Ŷ𝑒 = Y), (19)

where the function I determines the equality of two random variables,
the substructure invariance constraint will be maximally violated.

Proof. To measure how well the substructure invariant con-

straint (SIC) is maintained, we introduce an environment sufficiency

gap metric

Δ(𝑓 𝑒 ◦ ¯𝛿, e) = E
[��E[ (Y | 𝑓 𝑒 ( ¯𝛿 (G) ), 𝑒1 )

]
− E

[
(Y | 𝑓 𝑒 ( ¯𝛿 (G) ), 𝑒2 )

] ��] . (20)

By substituting the definition of environment split e = I(Ŷ𝑒 = Y),
we obtain

Δ(𝑓 𝑒 ◦ ¯𝛿, e) = E
[��E[ (Y |Ŷ𝑒 , I(Ŷ𝑒 = Y) )

]
− E

[
(Y |Ŷ𝑒 , I(Ŷ𝑒 ≠ Y) )

] ��] . (21)
Given that the prediction Ŷ𝑒 relies solely on the variant structure,

it follows that Y ⊥ Ŷ𝑒 . Consequently,

Δ(𝑓 𝑒 ◦ ¯𝛿, e) = E
[��E[ (Y |I(Ŷ𝑒 = Y) )

]
− E

[
(Y |I(Ŷ𝑒 ≠ Y) )

] ��] . (22)

Considering the downstream binary classification, we have Ŷ𝑒 ∈
{0, 1}. When Ŷ𝑒 = 0,��E[ (Y |I(Ŷ𝑒 = Y) )

]
− E

[
(Y |I(Ŷ𝑒 ≠ Y) )

] �� = |0 − 1 | = 1. (23)

Similarly, when Ŷ𝑒 = 1,��E[ (Y |I(Ŷ𝑒 = Y) )
]
− E

[
(Y |I(Ŷ𝑒 ≠ Y) )

] �� = |1 − 0 | = 1. (24)

Therefore, for each instance, the absolute difference is 1. This leads

to an overall environment sufficiency gap Δ(𝑓 𝑒 ◦ ¯𝛿, e) equating to

the maximum value 1. □

Theorem. For the environment split e determined by the optimal
environment predictor 𝑓 𝑒∗ ◦ ¯𝛿∗ and the ground truth Y, the following
equation

𝑃 (Y = 𝑦1 |𝑒1)
𝑃 (Y = 𝑦2 |𝑒1)

=
𝑃 (Y = 𝑦1 |𝑒2)
𝑃 (Y = 𝑦2 |𝑒2)

(25)

holds for any 𝑦1, 𝑦2 ∈ Y and any 𝑒1, 𝑒2 ∈ E.

Proof. Considering that the molecule invariant representation

Φ∗ (𝛿∗ (G)) satisfies the substructure invariant constraint (SIC),
𝑃 (Y = 𝑦1 |Φ∗ (𝛿∗ (G) ), 𝑒1 ) = 𝑃 (Y = 𝑦1 |Φ∗ (𝛿∗ (G) ), 𝑒2 ), ∀𝑒1, 𝑒2 ∈ E (26)

holds for any 𝑦1 ∈ Y. Since the environment split e is determined

by the optimal environment predictor 𝑓 𝑒∗ ◦ ¯𝛿∗ and the ground truth
Y, we have Φ∗ (𝛿∗ (G)) ⊥ e|Y. Therefore,

𝑃 (Φ∗ (𝛿∗ (G) ) |𝑒1,Y = 𝑦1 ) = 𝑃 (Φ∗ (𝛿∗ (G) ) |𝑒2,Y = 𝑦1 ), ∀𝑒1, 𝑒2 ∈ E .
(27)

Combining Eq. (26), we can obtain

𝑃 (Y = 𝑦1 |Φ∗ (𝛿∗ (G) ), 𝑒1 )
𝑃 (Φ∗ (𝛿∗ (G) ) |𝑒1,Y = 𝑦1 )

=
𝑃 (Y = 𝑦1 |Φ∗ (𝛿∗ (G) ), 𝑒2 )
𝑃 (Φ∗ (𝛿∗ (G) ) |𝑒2,Y = 𝑦1 )

⇐⇒

𝑃 (Y = 𝑦1, 𝑒1 )
𝑃 (Φ∗ (𝛿∗ (G) ), 𝑒1 )

=
𝑃 (Y = 𝑦1, 𝑒2 )

𝑃 (Φ∗ (𝛿∗ (G) ), 𝑒2 )
⇐⇒

𝑃 (Y = 𝑦1 |𝑒1 )
𝑃 (Φ∗ (𝛿∗ (G) ) |𝑒1 )

=
𝑃 (Y = 𝑦1 |𝑒2 )

𝑃 (Φ∗ (𝛿∗ (G) ) |𝑒2 )
⇐⇒

𝑃 (Y = 𝑦1 |𝑒1 )
𝑃 (Y = 𝑦1 |𝑒2 )

=
𝑃 (Φ∗ (𝛿∗ (G) ) |𝑒1 )
𝑃 (Φ∗ (𝛿∗ (G) ) |𝑒2 )

.

(28)

For any 𝑦2 ∈ Y, a similar conclusion can be drawn

𝑃 (Y = 𝑦2 |𝑒1 )
𝑃 (Y = 𝑦2 |𝑒2 )

=
𝑃 (Φ∗ (𝛿∗ (G) ) |𝑒1 )
𝑃 (Φ∗ (𝛿∗ (G) ) |𝑒2 )

. (29)

Noting that the RHS of Eq. (28) and Eq. (29) are equal, thus

𝑃 (Y = 𝑦1 |𝑒1 )
𝑃 (Y = 𝑦1 |𝑒2 )

=
𝑃 (Y = 𝑦2 |𝑒1 )
𝑃 (Y = 𝑦2 |𝑒2 )

⇐⇒

𝑃 (Y = 𝑦1 |𝑒1 )
𝑃 (Y = 𝑦2 |𝑒1 )

=
𝑃 (Y = 𝑦1 |𝑒2 )
𝑃 (Y = 𝑦2 |𝑒2 )

.

(30)

□

B DETAILS OF DATASETS
In this work, we leverage eight public benchmarks to evaluate our

model. Specifically,

• Open Graph Benchmark (OGB) [20] provides two notable

datasets: BACE and BBBP. BACE focuses on binding affin-

ity to human beta-secretase 1, with each molecule labeled

according to its binding interaction with this enzyme, a cru-

cial target in Alzheimer’s disease research. BBBP assesses

Brain-Blood Barrier Penetration, an essential factor for the

effectiveness of neuroactive drugs. The labels indicate the

ability of molecules to permeate the brain cell membrane

and enter the central nervous system.
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• The remaining six datasets originate from DrugOOD [22]:

IC50-assay, IC50-scaffold, IC50-size, EC50-assay, EC50-scaffold,

and EC50-size. The suffixes appended to these dataset names

delineate themethodology for their respective train-validation-

test splits. These six datasets are primarily concerned with

ligand-based affinity prediction, a critical measure in phar-

macology, where each molecule is labeled as either active or

inactive based on bioassay results.

The statistics of datasets are summarized in Table 2.
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