
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Graph Foundation Models:
Concepts, Opportunities and Challenges

Jiawei Liu*, Cheng Yang*, Zhiyuan Lu, Junze Chen, Yibo Li,
Mengmei Zhang, Ting Bai, Yuan Fang, Lichao Sun, Philip S. Yu, and Chuan Shi

Abstract—Foundation models have emerged as critical components in a variety of artificial intelligence applications, and showcase
significant success in natural language processing and several other domains. Meanwhile, the field of graph machine learning is
witnessing a paradigm transition from shallow methods to more sophisticated deep learning approaches. The capabilities of foundation
models in generalization and adaptation motivate graph machine learning researchers to discuss the potential of developing a new
graph learning paradigm. This paradigm envisions models that are pre-trained on extensive graph data and can be adapted for various
graph tasks. Despite this burgeoning interest, there is a noticeable lack of clear definitions and systematic analyses pertaining to this
new domain. To this end, this article introduces the concept of Graph Foundation Models (GFMs), and offers an exhaustive explanation
of their key characteristics and underlying technologies. We proceed to classify the existing work related to GFMs into three distinct
categories, based on their dependence on graph neural networks and large language models. In addition to providing a thorough
review of the current state of GFMs, this article also outlooks potential avenues for future research in this rapidly evolving domain.

Index Terms—Graph Foundation Models, Large Language Models

✦

1 INTRODUCTION

W ITH the rise in computational power and breakthroughs
in deep learning techniques, the artificial intelligence (AI)

community has introduced the notion of “foundation models”:
A foundation model is any model that is trained on broad data
and can be adapted to a wide range of downstream tasks [1].
Foundation models enjoy unique attributes like emergence and ho-
mogenization, empowering them to serve as the primary building
blocks for a myriad of downstream AI applications [1]. Emergence
suggests that as a foundation model scales up, it may sponta-
neously manifest novel capabilities [2]. Meanwhile, homogeniza-
tion alludes to the model’s versatility, enabling its deployment
across diverse applications [1]. Thanks to the development of
large language models (LLMs), the concept of foundation models
first became a reality in natural language processing (NLP). Since
then, foundation models have demonstrated impressive versatility,
processing not just text but also image data, video data, audio
data and multi-modal inputs. This versatility empowers them to
excel in tasks ranging from computer vision [3] and audio signal
processing [4] to recommender systems [5].

Much like the evolution witnessed in NLP, graph machine
learning is also undergoing a paradigm transition. In its early

• Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Ting Bai
and Chuan Shi are with School of Computer Science, Beijing University
of Posts and Telecommunications, Beijing, China. E-mail: {liu jiawei,
yangcheng, luzy, junze, yiboL, baiting, shichuan}@bupt.edu.cn

• Mengmei Zhang is with China Telecom Bestpay, Beijing, China. E-mail:
zhangmengmei@bestpay.com.cn

• Yuan Fang is with School of Computing and Information Systems, Singa-
pore Management University, Singapore. E-mail: yfang@smu.edu.sg

• Lichao Sun is with Lehigh University, Bethlehem, Pennsylvania, USA. E-
mail: lis221@lehigh.edu

• Philip S. Yu is with University of Illinois Chicago, Chicago, USA. E-mail:
psyu@uic.edu

• Jiawei Liu and Cheng Yang contributed equally to this research.
• Corresponding author: Chuan Shi

stages, graph tasks predominantly employed shallow methods,
such as random walk [6, 7] and matrix factorization [8, 9,
10, 11, 12]. These methods, however, were typically limited to
transductive learning [13]. The more recent shift towards deep
learning methods has catalyzed the rise of graph neural networks
(GNNs). GNNs have revolutionized the landscape by introducing
the message-passing mechanism, where nodes iteratively aggre-
gate information from their neighbors. By harnessing GNNs in
fully supervised, semi-supervised, or unsupervised settings, re-
searchers have pioneered a variety of customized graph models.
These advancements have yielded substantial improvements in
tasks like node classification [14], link prediction [15], graph
classification [16], and graph clustering [17]. However, certain
challenges of GNN models still persist. For example, GNNs
are restricted with issues related to expressive power [18] and
generalizability [19], especially given the ever-expanding datasets
and the widening spectrum of tasks.

The remarkable success of foundation models in varied do-
mains is increasingly garnering the interest of graph machine
learning researchers. This naturally evokes the question: Could
graph foundation models represent the next frontier in graph
machine learning? Such models, if realized, would boast enhanced
expressive power, improved transferability, and applicability to
more intricate graph data and tasks. As illustrated in Figure 1,
a graph foundation model (GFM) is envisioned as a model pre-
trained on extensive graph data, primed for adaptation across
diverse downstream graph tasks. Drawing parallels with traditional
foundation models, a GFM is also anticipated to embody two prin-
cipal characteristics: emergence and homogenization. Specifically,
emergence refers to novel capabilities shown exclusively in large-
scale graph models, while homogenization denotes the model’s
adaptability across different types of graph tasks. Existing deep
graph learning methods struggle to encompass these features: their
inherent architectures and learning paradigms focus on specific
tasks, which restrict the utilization of extensive unlabeled data,

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

Graph Foundation ModelDeep Graph Learning

Downstream Tasks

Pre-training Adaptation

Emergence

Pe
rf

or
m

an
ce

#Parameters

Pe
rf

or
m

an
ce

#Parameters

...

? ...? ?

Pretext Task
(e.g., link prediction)

End-to-End

• In-context Learning
• Graph Reasoning
• Zero-shot Generation
• ...

(e.g., node classification) (Node-, Edge-, Graph-level Tasks)

Homogenization

Downstream Task

? ?
? ?

Fig. 1: The distinction between deep graph learning and graph foun-
dation models. Deep graph learning tackles specific tasks on specific
datasets through end-to-end training. In contrast, graph foundation
models (GFMs) are pre-trained on broad graph data and can be
adapted to a wide range of downstream graph tasks, expected to
demonstrate emergence and homogenization capabilities.

subsequently limiting their expressive and generalization abilities.
Inspired by the success of LLMs as foundation models in NLP,

researchers have explored the possibilities of graph foundation
models towards the emergence and homogenization capabilities.
These explorations primarily focus on the design of backbone
architectures for GFMs, and different learning paradigms includ-
ing pre-training and adaptation, as they are the key strategies
of LLMs to acheive the aforementioned capabilities. First and
foremost, the emergent abilities of foundation models typically
exist only in backbones with a large number of parameters,
whereas the parameter count of GNNs is significantly smaller than
that of the language backbones. This implies that the backbone of
GFMs may need to be redesigned to achieve more substantial
knowledge storage towards emergence. As graph data is typically
associated with rich text information, an alternative approach is to
use LLMs as GFMs. Nonetheless, it remains uncertain whether
LLMs can effectively handle graph data and associated tasks,
and it is crucial to determine how to model graph structures in
LLMs. Additionally, the homogenization of foundation models
necessitates the handling of diverse tasks in a uniform manner.
Devising effective pre-training tasks (also called pretext tasks) and
downstream task adaptation methods are challenging for graph
data, due to the complexity in interconnected nodes and various
forms of attributes, as well as the diversity in tasks across node-,
edge- and graph-levels. Therefore, there is also a need to design
suitable pre-training tasks and adaptation mechanisms.

While there is no definitive solution for designing and imple-
menting GFMs, this paper surveys some related researches and
categorizes them into three distinct approaches based on their
reliance on GNNs and LLMs: (1) GNN-based Models: They aim

to enhance existing graph learning paradigms through innovations
in the backbone, pre-training, and adaptation aspects; (2) LLM-
based Models: They explore the feasibility of using an LLM as a
GFM by converting graphs into text or tokens; (3) GNN+LLM-
based Models: They explore various forms of synergy between
GNNs and LLMs to empower them with enhanced capabilities.

To the best of our knowledge, this is the first survey towards
graph foundation models. Existing surveys of foundation models
typically explore modalities such as language and vision [1, 20],
rather than graphs. Additionally, there are two surveys [21, 22]
dedicated to knowledge graphs and large language models, but
knowledge graphs, due to their distinct nature in construction and
application, fall outside the scope of this article. We have also
noticed a very recent article that mentions the concept of large
graph models [23], but it emphasizes opinion statements and lacks
a systematic taxonomy. Therefore, the contributions of this article
can be summarized as follows:

• This article defines the concept of graph foundation models
for the first time, and examines the core issues and characteristics
of their capabilities.

• This article introduces a novel taxonomy and discusses
the strengths and limitations of each approach towards graph
foundation models.

• This article provides promising future directions towards
graph foundation models.

The subsequent sections are organized as follows. In Section 2,
we introduce the background related to GFMs. Section 3 defines
GFMs and highlights their similarities and differences with lan-
guage foundation models. Sections 4 - 6 delve into the relevant
works that consider GNN-based models, LLM-based models and
GNN+LLM-based models as GFMs, separately. Section 7 engages
in a discussion on the future directions of GFMs. In Section 8, we
summarize the key points of this paper.

2 BACKGROUND

Before introducing GFMs, we review background knowledge on
deep graph learning and language foundation models.

2.1 Deep Graph Learning
This section provides a concise overview from three key aspects:
graph data, backbone architectures, and learning paradigms.

2.1.1 Graph Data
Graphs capture intricate relationships among entities and possess
several key characteristics that make them challenging for machine
learning tasks. The primary challenge stems from their (1) Non-
Euclidean Nature: Graph data is inherently non-Euclidean [24],
lacking the rigid geometric structure of traditional data formats
such as 1D text, 2D images or tabular data. This means that graph
data cannot be adequately described within a simple flat space
because its intrinsic structure does not conform to the principles
of Euclidean geometry [25]. Unlike Euclidean data, which often
comes in predefined shapes (e.g., images of a specific resolution),
non-Euclidean data can vary greatly in size and shape. This
variability complicates the design of algorithms that often navigate
complex topologies, significantly increasing computational cost
compared to operations on simpler Euclidean spaces.

Beyond this fundamental structural complexity, two additional
challenges are posed by the nature of graph data. (2) Vari-
ous Domains: Graph data appears in domains such as social

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

networks [26], biology [27], and transportation [28]. It is also
used in tasks like 3D human skeleton recognition [29], semantic
segmentation [30], and video classification [31]. Domain-specific
variability with different node types and edge semantics makes
creating a universal model challenging [32]. (3) Various Types:
graph data includes homogeneous, heterogeneous [33], hyper-
[34], and dynamic ones [35]. Such diversity also brings challenges
to deep graph learning.

2.1.2 Backbone Architectures
GNNs are the current mainstream backbone architecture for
deep graph learning. Most GNNs follow the message-passing
framework [36], enabling nodes to exchange information with
neighbors. For example, GCN [14] introduces graph convolution
layers, GraphSAGE [37] generates node embeddings using in-
ductive learning, and GAT [38] adds an attention mechanism to
weigh neighbor importance, enhancing expressive power. These
contributions make GNNs versatile tools for deep graph learning.

However, deepening GNNs is challenging. Increasing layers
leads to over-smoothing, where node representations become
similar [39], and over-squashing, where information is overly
compressed [18]. Efforts like DropEdge [40], which randomly
removes edges, improve GCN performance and scalability. Graph
transformers [41, 42, 43], with their fully connected attention and
long-range relationship modeling, help alleviate over-smoothing
and over-squashing [44].

2.1.3 Learning Paradigms
The learning paradigms for deep graph learning encompass three
primary categories:

Supervised learning. In supervised learning, algorithms use
a training dataset with input data and output labels. This is used
in tasks like graph classification [45] and graph regression [46].
For instance, in molecular property prediction [47], GNNs predict
chemical properties using labeled data, aiding drug development
and materials research.

Semi-supervised learning. Semi-supervised learning, as dis-
cussed in [48], is a primary focus in deep graph learning. It
uses both labeled and unlabeled data to improve model perfor-
mance, with node classification [14] being a key application. The
message-passing mechanism [36] allows GNNs to exchange in-
formation among nodes, incorporating both data types for predic-
tions. GNNs can also combine with methods like label propagation
for better performance [49].

Unsupervised learning. Unsupervised learning discovers pat-
terns and structures without manual labels. Graph clustering iden-
tifies structures based on node relationships, while link prediction
estimates missing connections. A subclass, self-supervised learn-
ing, generates labels from the data itself [50], allowing GNNs to
be trained end-to-end for tasks like graph clustering [17] and link
prediction [15].

2.2 Language Foundation Models

AI is currently undergoing a transformative shift marked by the
emergence of some specific language models (such as GPT-3) that
are trained on extensive and diverse datasets using self-supervised
learning. These models, known as foundation models, are able
to produce a wide array of outputs, enabling them to tackle a
broad spectrum of downstream tasks. In contrast to the deep graph
learning pipeline, the foundation model’s approach embraces a

pre-training and adaptation framework, enabling the model to
achieve several significant advancements, including the emergence
[2] and homogenization [1]. Foundation models have primarily
established themselves in the field of NLP [1], so our discussion
will focus on language foundation models in this section.

2.2.1 Language Data
Language data refers to text or spoken content in a human
language, encompassing the grammar rules of the natural language
and the associated semantics of the words. The quality and
quantity of language data play a crucial role in the performance
of NLP systems, impacting their accuracy, robustness, and overall
effectiveness in various language tasks. In contrast to graph data,
language data as Euclidean data is easier to model, and its
rich semantic information significantly enhances the knowledge
transferability of language models.

2.2.2 Backbone Architectures
An early breakthrough in foundation models is pre-trained lan-
guage models (PLMs), designed to capture context-aware word
representations, which proved remarkably effective as versatile
semantic features. Furthermore, researchers have observed that
increasing the scale of PLMs, whether by augmenting model size
or training data, frequently results in increased model capacity for
downstream tasks. These larger PLMs, collectively referred to as
LLMs, exhibit emergent abilities [2] compared to their smaller
counterparts (e.g., the 1.5B-parameter GPT-2 and 175B-parameter
GPT-3). LLMs primarily utilize the Transformer architecture,
because highly parallelizable Transformer-based architectures ac-
celerate the pre-training stage and enable the utilization of massive
datasets. In Transformer models, tokens serve as the input and
represent units at the word level in natural language texts.

2.2.3 Learning Paradigms
As the number of model parameters has rapidly increased, the de-
mand for significantly larger datasets has grown to effectively train
these parameters and avoid overfitting. Given the extremely expen-
sive costs associated with building large-scale labeled datasets,
the importance of utilizing extensive unlabeled text data has been
underscored. Leveraging these unlabeled datasets involves a two-
step approach: first, achieving universal representations through
self-supervised learning, and subsequently employing these rep-
resentations for various tasks [51]. Based on different adaptation
approaches, learning paradigms can be categorized into two types:
pre-train and fine-tune and pre-train, prompt, and predict [52].

Pre-train and Fine-tune. In this paradigm, a model is initially
pre-trained as a language model (LM), where it predicts the prob-
ability of observed textual data. Following the pre-training phase,
we need to tune the model for specific tasks, which is known
as fine-tuning. Building upon the success of models like ULMFit
[53] and BERT [54], fine-tuning has emerged as the predominant
method for adapting pre-trained models. In this framework, the
primary emphasis lies in objective engineering, encompassing
the design of training objectives for both pre-training and fine-
tuning phases. The advantage of fine-tuning is that it can transfer
knowledge between source and target tasks (or domains) and
benefit the model’s performance. For the small size of fine-tuning
dataset compared to pre-training dataset, this process can enable
adaptation effectively without losing much pre-trained knowledge.

Pre-train, Prompt and Predict. In this paradigm, rather than
adjusting PLMs to suit specific downstream tasks, the approach

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

involves reshaping the downstream tasks to align more closely
with those tackled during the original LM training, accomplished
by providing textual prompts. From the aspect of prompt engineer-
ing, the approaches to create a proper prompts can be classified to
manual methods and automated methods. Manual methods involve
creating intuitive templates based on human insight, which is
the most straightforward approach to crafting prompts. Manual
methods face challenges in terms of high cost and precision. To
address these issues, some approaches have started to experiment
with automated prompt generation. When LLMs have billions of
parameters, it is more effective if we can just adapt the downstream
tasks without adjusting model parameters. This makes prompt-
tuning a promising approach for adapting LLMs.

3 GRAPH FOUNDATION MODELS

In this section, we will first formally define the concepts of graph
foundation models, including the definition, key characteristics
and key technologies. Then, we will discuss the similarities and
differences between graph and language foundation models.

3.1 Definition and Key Characteristics

We define a graph foundation model as follows:
Definition A graph foundation model (GFM) is a model that

is expected to benefit from the pre-training of broad graph data,
and can be adapted to a wide range of downstream graph tasks.

Compared to deep graph learning that employs end-to-end
training, GFMs use pre-training to obtain the knowledge from
a substantial amount of unlabeled graph data, and then use
adaptation techniques to tailor to various downstream tasks. Some
studies [55, 56] have already demonstrated that the paradigm of
pre-training and adaptation outperform deep graph learning in
certain scenarios, e.g., few-shot learning [55], showcasing their
superior expressive power and generalization ability. Unlike deep
graph learning that aims to achieve better performance on a
single task, a GFM is expected to have two key characteristics:
emergence and homogenization.

Emergence. Emergence means that the graph foundation
model will exhibit some new abilities when having a large parame-
ters or trained on more data, which are also referred to as emergent
abilities. Inspired by the various emergent abilities [57, 58] pos-
sessed by foundation models, we expect GFMs to have similar
abilities, including in-context learning, graph reasoning, and zero-
shot graph generation, etc. In-context learning allows predictions
for various downstream tasks with few examples [59]. Graph
reasoning decomposes a complex problem into multiple sub-
problems based on the graph structure and addresses them step
by step, such as solving graph algorithm problems [60]. Zero-
shot graph generation requires the model to generate graphs based
on the desired conditions without the need for any examples [61].
Note that although language foundation models have demonstrated
various emergent abilities, only a few works [59, 60, 61] have
explored emergent abilities of GFMs so far.

Homogenization. Homogenization means that the graph foun-
dation model can be applied to different formats of tasks, such
as node classification, link prediction and graph classification.
Note that due to the distinct characteristics of tasks on graphs
compared to NLP tasks, achieving homogenization is not straight-
forward. The fundamental question in achieving homogenization
is to decide which form to unify different types of graph tasks.

Existing works have attempted homogenization through link pre-
diction [55] or graph-level tasks [56], but there is no consensus on
which approach is superior.

3.2 Key Technologies

Graph foundation models primarily comprise two key techniques:
pre-training and adaptation. This section will provide a brief
overview of these two techniques.

Pre-training. Pre-training is a pivotal concept in the devel-
opment of graph foundation models, akin to its role in language
models. It involves pre-training a neural network on a large graph
dataset in a self-supervised manner. During pre-training, the model
learns to capture the structural information, relationships, and
patterns within the graph. There are several pre-training strategies
for graph foundation models. Contrastive self-supervised learn-
ing [62, 63] leverages the idea of learning representations by con-
trasting positive samples (e.g., similar node pairs) against negative
samples (e.g., dissimilar node pairs). Generative self-supervised
learning [64, 65] encourages the model to reconstruct the structure
or predict the features of original graph data. If using LLM as
a part of the graph foundation model, we can also employ the
pre-training methods introduced in Section 2.2.3. These diverse
pre-training approaches enable graph foundation models to learn
meaningful representations from raw graph data, enhancing their
generalization and adaptability across various graph tasks.

Adaptation. The adaptation of graph foundation models in-
volves tailoring these models to specific downstream tasks or do-
mains to enhance their performance. This process includes several
techniques, i.e., vanilla fine-tuning, parameter-efficient fine-tuning
and prompt-tuning. Vanilla fine-tuning (Vanilla FT) entails train-
ing the entire pre-trained model on task-specific data, allowing for
the highest level of customization but often requiring substantial
data and computational resources. Parameter-efficient fine-tuning
(Parameter-efficient FT) [66, 67], on the other hand, adjusts only a
subset of the model’s parameters, striking a balance between task-
specific adaptation and resource efficiency. Prompt-tuning [56, 68]
is a versatile approach that relies on external prompts to guide
the model’s behavior, making it more adaptable and effective.
These adaptation techniques enable graph foundation models to
excel in a wide range of applications by leveraging their pre-
trained knowledge while tailoring their capabilities to specific
tasks or domains, making them valuable for diverse downstream
applications. Note that although LLMs have developed various
types of prompt-tuning methods [52] and some other efficient
tuning methods, such as Prefix Tuning [69], there are relatively
few prompt tuning methods for graph foundation models.

3.3 Comparison between GFMs and LLMs

Through conceptual comparison, we can observe similarities in the
goals and learning paradigms between graph foundation models
(GFMs) and language foundation models (commonly referred
to as large language models, LLMs). However, the uniqueness
of graph data and graph tasks creates fundamental differences
between them, which we refer to as their intrinsic differences.
Furthermore, due to the relatively limited research on GFMs at
present, many issues that have been extensively explored in LLMs
remain unresolved, which we refer to as their extrinsic differences.
We summarize the similarities and differences between GFMs and
LLMs in Table 1, and will delve into them in detail in this section.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

TABLE 1: The relationship between language foundation model and graph foundation model.

Language Foundation Model Graph Foundation Model

Similarities Goal Enhancing the model’s expressive power and its generalization across various tasks

Paradigm Pre-training and Adaptation

Intrinsic
differences

Data Euclidean data (text) Non-Euclidean data (graphs) or a mixture of Euclidean
(e.g., graph attributes) and non-Euclidean data

Task Many tasks, similar formats Limited number of tasks, diverse formats

Extrinsic
differences

Backbone Architectures Mostly based on Transformer No unified architecture

Homogenization Easy to homogenize Difficult to homogenize

Domain Generalization Strong generalization capability Weak generalization across datasets

Emergence Has demonstrated emergent abilities No/unclear emergent abilities as of the time of writing

3.3.1 Similarities

As shown in Table 1, both language foundation models and graph
foundation models share the common goal of enhancing a model’s
expressive power and improving its ability to generalize across
a wide range of tasks. They aim to create versatile, pre-trained
models that can be adapted for specific applications. In addition,
both follow the pre-training and adaptation paradigm. They begin
by pre-training a model on a large, diverse dataset and then adapt
it to task-specific data.

3.3.2 Intrinsic Differences

The intrinsic differences between GFM and LLM primarily man-
ifest in two aspects: data and tasks. As for input data, language
foundation models are primarily designed for processing Eu-
clidean data, i.e., text. They are trained on vast text corpora, which
are inherently sequential and follow a linear order of words or
tokens. On the other hand, GFMs are designed to handle non-
Euclidean data (represented as graph structures) or a mixture of
Euclidean data (like graph attributes) and non-Euclidean data.
Compared to text data, graph data can capture complex data rela-
tionships and is typically more sparse. Moreover, different graphs
may exhibit significant differences in type or structure/geometry,
all of which pose challenges in the design of GFMs. Furthermore,
language data, even when sourced from texts in different domains,
still share a common vocabulary. On the other hand, different
graph data may lack this common foundation. For instance, nodes
represent atoms in a molecular graph, while nodes represent users
in a social network, which are entirely different. Furthermore,
graphs from different domains can have different structures. Some
graphs have a more hierarchical structure, while others may have
a more cyclical structure [70]. Moreover, for a single graph, the
different regions can exhibit different structures. For example,
In recommender systems, the user-user subgraph and item-item
subgraph generally exhibit very distinct structures [71].

In addition, LLMs are typically designed to handle dozens of
tasks [72], but these tasks can all be unified under the format
of masked language modeling. The reason is that these tasks all
involve processing textual data and using the syntax and semantic
information within the text. In contrast, GFMs focus a narrower set
of tasks but with diverse formats. They excel at graph tasks such
as node classification, link prediction and graph classification. The
differences in tasks imply that GFMs cannot be learned using
methods similar to those in LLMs, significantly increasing the
adaptability challenges of GFMs in downstream tasks.

3.3.3 Extrinsic Differences

In addition to the intrinsic differences in data and tasks, there are
also some extrinsic differences between GFMs and LLMs, which
are due to the lag in technological advancements in GFMs. This
section summarizes these differences as follows:

Backbone Architectures. LLMs, such as GPT-3 [73] and
LLaMA [74], are mostly based on the Transformer architecture.
The advantages of Transformer in terms of expressive power, scal-
ability, parallelizability, and its excellent performance in handling
various NLP tasks have made it the mainstream backbone architec-
ture for LLMs. However, for GFMs, using mainstream GNNs as
the backbone architecture may not necessarily be suitable. This is
mainly because the expressive power and generalization of GNNs
have limitations, and their parameter sizes are often too small
to exhibit emergent abilities. To enhance the expressiveness of
capturing the graph structure, recent works [70, 71, 75] efforts to
extend GNN to mixed curvature Riemannian space, or to design
graph transformers [63] or models that incorporate LLMs [76].
However, there is still no unified backbone architecture for GFMs.

Homogenization. LLMs are relatively easy to homogenize.
This means that various NLP tasks can be formulated as the
same task [77], making it possible to use a single model with
unified training paradigm for a wide range of tasks. However,
due to the poor transferability of graph structural knowledge,
homogenization is more challenging for GFMs. Existing works
attempt to achieve homogenization by unifying various tasks
as link prediction [55] or graph-level tasks [56]. Additionally,
constructing a data-task heterogeneous graph [59] may establish
connections between tasks, but it is a more complex process.

Domain Generalization. LLMs have demonstrated strong do-
main generalization capabilities. They can often perform well on
tasks and datasets that were not seen during training, showcasing
their ability to generalize across various language-related domains.
However, due to the diversity and lack of unified vocabulary of
graph data, GFMs generally exhibit weaker generalization across
datasets, especially when moving to cross-domain graph data [78].
Their performance may degrade significantly when faced with
graph structures or characteristics that differ substantially from
their training data. Achieving strong domain generalization re-
mains a challenging research problem for GFMs.

Emergence. LLMs have shown emergent abilities, where they
can generate coherent and contextually relevant text based on
few examples or instructions. Representative emergent abilities
include in-context learning [57], chain of thought reasoning [58]
and zero-shot generation [79]. However, GFMs have not demon-

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

strated obvious emergent abilities to the same extent as language
foundation models. Only a few recent studies discuss the in-
context learning [59], graph reasoning [60] and zero-shot graph
generation [61] abilities of GFMs.

3.4 Summary
In this section, we define the concept of graph foundation models
and related technologies, and compares graph foundation models
with language foundation models. If readers wish to have a
more comprehensive understanding of the concept of GFMs, they
can refer to our supplementary materials A and B, where we
introduce the impact of graph data and graph tasks on GFMs.
In the following sections, we will introduce three categories of
methods for implementing graph foundation models, along with
representative works for each method. Specifically, GNN-based
models use GNN as the backbone architecture, while LLM-
based models transform the graph into the input format of LLM
and use LLM as the backbone architecture. GNN+LLM-based
models, on the other hand, utilize both GNN and LLM as the
backbone architecture simultaneously. The distinction in backbone
architecture also impacts the methods for pre-training and adap-
tation. Therefore, in the following sections, we will introduce the
backbone architectures, pre-training, and adaptation strategies for
each category of methods, seperately.

4 GNN-BASED MODELS

Thanks to effective model architectures and training paradigms,
language models have achieved remarkable performance in natural
language processing tasks. The backbone, pre-training and adap-
tation techniques employed in language models have inspired a
series of corresponding efforts in the field of graph-based tasks. In
this section, we will delve into GNN-based models, which draw in-
spiration from the model architectures or training paradigms used
in NLP to apply them to graph tasks. Importantly, unlike the LLM-
based models and GNN+LLM-based models to be introduced in
the following sections, GNN-based models do not explicitly model
text data in their pipeline. We have summarized and categorized
the works mentioned in this section in supplemental material C.

4.1 Backbone Architectures
Numerous GNNs have been proposed and widely used in various
graph-related downstream tasks. These networks are leveraged for
feature extraction, often serving as the foundational components
of graph models, commonly referred to as “backbones”. In this
subsection, we introduce two advanced GNN backbones: message-
passing-based and transformer-based methods.

4.1.1 Message Passing-Based Methods
Message Passing Neural Networks (MPNNs) [36] represent a
broad category of GNN architectures that operate based on the
concept of message passing between nodes in a graph. In the
message passing mechanism, each node aggregates information
from its neighboring nodes, processes the information, and then
sends messages to its neighbors in a series of iterative steps. A
typical message passing process can be formulated as :

hk+1
v = Uk(hk

v ,M
k
u∈N(v)(h

k
v , h

k
u,X

e
(u,v))), (1)

where hk
v and hk+1

v denote the embedding of node v at layer k
and layer k + 1, Xe

(u,v) denotes the edge attribute of edge (u, v),

1-hop aggregation

2-hop aggregation attention

Predictions Predictions

(a) Message Passing. (b) Graph Transformer.

Fig. 2: A comparison between message passing-based models and
graph transformer. A fundamental distinction is that the message
passing mechanism is constrained by the graph structure, and the
graph transformer treats the graph as a fully-connected network.

N(v) denotes the neighbors of node v, Mk
u∈N(v)(·) and Uk(·)

denote the message aggregation and update function at layer k.
Many existing GNN-based models utilize message passing-

based models as their backbone. Due to the simplicity and effec-
tiveness, several studies [56, 59, 62, 80, 81, 82] adopt GCN [14] as
their backbone architecture, where GCN [14] employs a localized
first-order approximation of spectral graph convolutions for the
dual purpose of capturing graph structure and encoding node
features. Several studies [56, 59, 64, 65] adopt GAT [38] as
their backbone architecture, where GAT [38] replaces the aver-
age aggregation operation in GCN with a weighted aggregation
approach, facilitated by an attention mechanism. Additionally, a
multi-head attention technique can be further used in GAT to
enhance its performance. GPPT [68] and VPGNN[83] uses Graph-
SAGE [37] as their backbone, which operates by sampling a fixed-
size subset of neighboring nodes for each target node and then
learns embeddings by aggregating and processing these sampled
neighbors’ embeddings. Unlike global attention, HGT employs
type-specific parameters to define heterogeneous attention over
each edge within the graph. To improve the expressive power, a
proportion of studies [55, 66, 84, 85, 86, 87] rely on GIN [16] as
their primary architecture, where GIN is a message passing-based
model with expressive power theoretically equivalent to a 1-WL
test [88]. Due to the expressive power of GIN, it is frequently
chosen as the backbone for many GNN-based graph models.
For an in-depth exploration of message passing-based GNNs, we
recommend referring to [50, 89, 90].

4.1.2 Graph Transformer-Based Methods
While GNNs have demonstrated significant success in learning
from graph data, they still confront fundamental limitations,
including issues related to limited expressive power [16], over-
smoothing [39] and over-squashing [18]. In parallel, the trans-
former architecture [91], which has revolutionized tasks in natural
language processing [54, 73] and computer vision [92, 93],
achieving the state-of-the-art performance. It has inspired the
development of transformer-based models tailored for graph data
[41, 42, 43, 94]. Graph transformers have exhibited promising
results, particularly in molecular prediction tasks [41], owing to
their fully-connected self-attention mechanism. This mechanism
enables them to address the shortcomings of traditional message-
passing GNNs thanks to its long-range modeling capability and
strong expressive power.

The principal distinction between the backbone architectures
with message passing mechanism and the graph transformer

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

lies in their treatment of the underlying graph structure. In the
case of the graph transformer, it treats the graph as if it were
fully connected, meaning it considers and measures the similarity
between every pair of nodes in the graph. Conversely, the message
passing mechanism operates under the constraint of the adjacency
matrix of the graph. It only propagates information between nodes
that are explicitly connected in the graph structure. We illustrate
the difference between message passing-based models and graph
transformers in Figure 2.

Currently, there are many research efforts focusing on graph
transformers. Here we will present part of these studies that
employ a pre-training and fine-tuning learning paradigm: Graph-
BERT [95] uses intimacy-based and hop-based relative positional
embeddings to encode node positions in a subgraph. The intimacy-
based relative positional embeddings capture the relative positions
of nodes in a subgraph based on their connectivity patterns.
The hop-based relative distance embeddings capture the relative
positions of nodes in a subgraph based on their hop distances.
GROVER [96] uses a variant of MPNN called Directed Message
Passing Networks (DyMPNs), which can capture the directed
nature of molecular graphs and distinguish different types of
edges. The DyMPNs in GROVER are used to compute the
node and edge embeddings in the Transformer-style architec-
ture. Graphormer [41] uses spatial encoding to represent node
relationships, adding shortest path distance as a bias in softmax
attention for better spatial dependency capture. Building upon this
foundation, G-Adapter [67] introduces a parameter-efficient fine-
tuning approach for graph transformers, utilizing Graphormer as
its backbone model. For a more comprehensive exploration, please
refer to other literature on graph transformers [97].

4.2 Pre-training

Pre-training in the field of NLP involves exposing a model to a
vast amount of unlabeled text data, allowing it to learn general
language semantic knowledge in a self-supervised manner. This
pre-training step equips the model with a foundational under-
standing of language, enabling it to transfer this knowledge to
downstream tasks. Similarly, the graph domain typically includes
many unlabeled nodes and graphs, providing opportunities for
pre-training on graphs. Graph pre-training enables the graph
models to understand graph structure and semantic information,
thus encoding meaningful node or graph embeddings [89, 90].
Recently, some graph pre-training methods have been proposed to
learn representations in a self-supervised manner. Based on self-
supervised tasks, graph pre-training methods can be categorized
into two types: contrastive methods and generative methods.

4.2.1 Contrastive Methods
Specifically, the contrastive graph pre-training methods aim to
maximize mutual information between different views [89], which
forces the model to capture invariant semantic information across
various views. The graph view can vary in scale, encompassing
local, contextual or global perspectives. These perspectives cor-
respond to node-level, subgraph-level, or graph-level information
within the graph, leading to two distinct categories: (1) Same-
scale contrastive learning and (2) Cross-scale contrastive learning.
Same-scale contrastive learning compares two graph views at
the same level. For example, GCC [84] uses a node’s subgraph
embedding as its representation, treating subgraphs of the same
node as positives and different nodes as negatives. It applies

NCE loss to align positives and separate negatives, capturing
general patterns. GraphCL [85] and GRACE [62] generate two
views by graph augmentation and then employ the InfoNCE loss
to contrast node-level embeddings, pushing the graph model to
acquire the invariant representations. MA-GCL [82] focuses on
manipulating the neural architectures of view encoders instead
of perturbing graph inputs or model parameters. GCOPE [98]
unifies cross-domain graph pre-training using virtual coordinators
and contrastive learning, reducing negative transfer and boosting
downstream performance. FUG [99] ensures near-lossless adap-
tation to diverse graph features with PCA-inspired dimensional
encoding and contrastive learning, enabling universal use without
preprocessing or model changes. Cross-scale contrastive learning
compares two graph views at different levels. For example, DGI
[80] utilizes a discriminator to maximize the mutual information
between the node embeddings and the graph embedding and
minimize the information between node and corrupted graph
embedding. Such a contrastive process encourages the encoder to
capture information of the whole graph. Although DGI enables the
model to capture semantic information about nodes and graphs, it
ignores the discrepancies between different nodes.

4.2.2 Generative Methods
In addition to contrastive methods, some generative graph pre-
training approaches have been proposed. The aim of generative
pre-training methods is to enable GNNs to understand the general
structural and attribute semantics of graphs. Thus, the GNNs
can be adapted to downstream tasks with universal information.
Generative learning frameworks for graphs can be classified into
two categories based on how they acquire generative targets [90]:
graph reconstruction and property prediction.

Graph reconstruction aims to reconstruct specific parts of given
graphs, emphasizing fidelity in reproducing the original graph
structure or node attributes. For example, VGAE [81] extends
the VAE to the graph domain, where it first employs GCN as
an encoder to generate node embeddings and then reconstructs
the adjacency matrix by the inner product of node embeddings.
Furthermore, GPT-GNN [100] proposes the self-supervised edge
and attribute generation tasks to push the model to understand the
inherent dependencies of attribute and structure. As a result, the
model can learn high-order structure and semantic information.
GraphMAEs [64, 65] consider that previous generative methods
overemphasize structure information, instead, they employ the
reconstruction of features and a re-mask decoding strategy in
a self-supervised manner. In the property prediction category,
models focus on learning and predicting non-trivial properties of
provided graphs. For instance, GROVER [96] introduces tasks for
nodes and edges, predicting context-aware properties within local
subgraphs. The graph-level self-supervision task aims to predict
motifs, framing it as a multi-label classification problem with each
motif as a label.

Although generative methods are capable of generating novel
content, the quality and interpretability of the content are hard to
guarantee. In the future, it remains to be explored how to enhance
the accuracy and rationality of the generative methods.

4.3 Adaptation

Typically, the objectives of pre-training tasks are different from
the downstream ones, which hinders the transferability of pre-
training models. To this end, fine-tuning is a common adaptation

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

approach based on subtle adjustments of model parameters. In
addition, the “pre-train, prompt and predict” paradigm has at-
tracted considerable attention in recent years. By using prompts,
the format of downstream tasks is aligned with that of pre-training
tasks, enabling pre-training models to handle downstream tasks in
a more effective manner.

4.3.1 Fine-Tuning
For the situation where the model conducts the pre-training and
downstream tasks in the same domain, we can utilize a pre-training
model to generate node embeddings or graph embeddings, and
subsequently fine-tune an external task-specific layer to generalize
the pre-training model to downstream tasks. DGI [80] and GRACE
[62] utilize the pre-trained encoder to obtain node embeddings,
and then fine-tune a logistic regression classifier with labeled data
to handle the node classification task. Additionally, there is a
more practical scenario where pre-training is performed on the
known graphs while tested on unseen graphs. Pre-training models
cannot encode unknown graphs appropriately, thus we need to
fine-tune the model in this situation. GPT-GNN [100] employs
the labeled data to fine-tune a downstream task-specific decoder,
which guides the pre-training model to adapt to downstream
tasks. Moreover, some parameter-efficient fine-tuning methods
have been proposed recently. AdapterGNN [66] employs two
parallel adapters before and after the message passing stage to
modify the input graph. Such addition-based methods only need
to fine-tune the introduced parameters. G-Adapter [67] proposes
a parameter-efficient fine-tuning method for graph transformer,
which introduces graph structure into the fine-tuning by message
passing. G-TUNING [101] is a fine-tuning strategy for GNNs
that utilizes graphon reconstruction to preserve generative patterns
and address structural divergence between pre-training and down-
stream datasets

Although the fine-tuning methods have achieved significant
success, they typically require sufficient labeled data to tune the
model parameters. Moreover, conventional fine-tuning methods
necessitate repetitive fine-tuning for each task, incurring signif-
icant computational costs. Therefore, more advanced fine-tuning
techniques for graph foundation models are still to be explored.

4.3.2 Prompt Tuning
Prompt tuning has recently emerged as a strategy to circumvent
the need for full-parameter tuning, facilitating both multi-task
adaptation and zero-shot learning [52, 102, 103]. This innovative
approach has found significant applications in graph data, where
recent studies have concentrated on using prompt tuning to en-
hance the performance and adaptability of GNN-based models.
Following the framework proposed by Guo et al. [86], these
methods can be categorized into two distinct groups: pre-prompt
methods and post-prompt methods, based on whether the task-
specific prompts operate before or after the backbone module.

Pre-prompt methods modify the input graph’s topology or
node features before message passing to aid downstream tasks
or construct a prompt graph to enhance model adaptation. For
example, AAGOD [86] proposes to implement the data-centric
manipulation by superimposing an amplifier on the adjacency
matrix of the original input graph as learnable instance-specific
prompts. All In One [56] converts the node-level and graph-level
tasks to graph-level tasks. It treats an extra subgraph as a prompt
and merges it with the node subgraph. The model subsequently
utilizes the combined graph to generate predictions. GPF [87]

introduces a uniform feature modification vector to each node in
the graph, which can be optimized to adapt pre-training GNN
models under any pre-training strategy. Additionally, it features
verbalizer-free prompting function, thus aligning the downstream
task with the pre-training method’s format. PRODIGY [59] is
a framework for pre-training an in-context learner over prompt
graphs. The goal is to enable a pretrained model to adapt to diverse
downstream tasks without optimizing any parameters. IGAP [104]
bridges the gap between graph pre-training and inductive fine-
tuning by addressing the graph signal and structure gaps using
learnable prompts in the spectral space. TPP [105] achieves a
replay-free and forget-free GCIL system by storing task-specific
knowledge in compact learnable tokens using graph prompts with
a frozen pre-trained GNN, avoiding model updates or data replay.

Post-prompt methods use task-specific prompts on represen-
tations after message passing to aid downstream task adaptation.
For example, GPPT [68] employs a prompting function to generate
a token pair for each class, transforming all node classification
tasks into link prediction tasks. GraphPrompt [55] unifies pre-
training and downstream tasks into a consistent task format based
on subgraph similarity, and utilizes labeled data to learn a task-
specific prompt vector for each task, which modifies the model’s
Readout operation and narrows the gap between link prediction
and downstream tasks. GraphPrompt+ [106] further enhances
GraphPrompt by generalizing pre-training tasks and employing
layer-wise prompts to capture hierarchical knowledge across the
graph encoder, improving task-specific knowledge extraction for
both node and graph classification. ProNoG [107] uses conditional
prompting for non-homophilic graphs, leveraging a condition-net
to generate node-specific prompts that refine embeddings for fine-
grained task adaptation.

Although these methods have improved the performance in
few-shot scenarios, further exploration is needed to understand
the semantics and interpretability of the graph prompts.

4.4 Discussion

GNN-based models offer several advantages, particularly their in-
genious inductive bias and compact parameter size. These models
naturally possess essential properties like permutation invariance,
enabling them to handle graph-structured data effectively. Ad-
ditionally, GNN-based models offer the advantage of low-cost
training and efficient resource usage, which reduces computational
requirements and makes them accessible for deployment even in
resource-constrained environments. Moreover, they can generalize
well from small amounts of labeled data. By propagating label in-
formation through the graph, they can enhance prediction accuracy
even when labeled data is sparse.

Furthermore, for more complex graph data such as hetero-
geneous graphs, hypergraphs, and temporal graphs, preliminary
research have investigated GNN-based graph foundation models.
For example, CPT-HG [108] and PT-HGNN [109] have designed
sophisticated pre-training methods tailored for high-order seman-
tic information in heterogeneous graphs. MultiGPrompt [110]
and HGPROMPT [111] both use prompt-based learning to link
pre-training and downstream tasks on heterogeneous graphs.
PhyGCN [112] and IHP [113] use self-supervised hyperedge
prediction and instruction-based prompts respectively to improve
node representations in hypergraphs. GraphST [114] and GPT-
ST [115] use pre-training to improve spatio-temporal representa-
tions for temporal graphs.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

Despite their many advantages, GNN-based models have
several notable disadvantages. One primary limitation is their
lack of explicit text modeling. They often underutilize the rich
semantic information embedded in textual attributes associated
with nodes or edges, leading to suboptimal exploitation of textual
data. Another significant drawback is the limited capacity of
GNN-based models to incorporate and utilize general knowledge
effectively. Unlike LLMs, which are pre-trained on vast corpora
of text and can leverage extensive world knowledge, GNN-based
models typically lack such pre-training on diverse and comprehen-
sive datasets. This gap restricts their ability to generalize across
different domains and limits their performance in tasks requiring
broad contextual understanding or common-sense reasoning.

One promising direction is the integration of LLMs with
GNN-based models. LLMs can provide a robust framework for
incorporating extensive textual knowledge, enhancing the models’
ability to understand and utilize semantic information embedded
in text. In the following sections, we will explore graph learning
models that incorporate LLMs.

5 LLM-BASED MODELS

Researchers are actively exploring ways to leverage LLMs as
core and sole backbone for graph learning [60, 116, 117], for
the following advantages that can not be underestimated. Firstly,
transformer-based models show a remarkable ability to seamlessly
integrate textual information in graph data [116]. Additionally,
employing a LLM-liked backbone empowers models to unify
diverse graph learning tasks, as these tasks can be described
using natural language. Furthermore, recent advancements, such as
NLGraph [60], GPT4Graph [117], showcase the LLMs’ prowess
in preliminary graph reasoning. These advantages mark a highly
promising direction for the development of such models. To
discover the potential of engaging LLMs into graph learning,
these works involve both graph-based properties and textual in-
formation as input for the backbone networks. Following some
surveys [21, 118], our characterization of the backbone is not
confined solely to the narrow definition of LLMs (like GPT-4); it
also encompasses certain transformer-based models that leverage
textual information. We have summarized and categorized the
works mentioned in this section in supplemental material D.

5.1 Backbone Architectures
A central question in employing LLMs for graph data is how to
align graph data with natural language so that LLMs can under-
stand them. Given that LLMs initially accept tokens as their inputs
and rely on self-attention layers to process input sequences for
producing hidden representations, it can be a difficult task to attain
a fine-grained modeling of graph structure information [116].
As illustrated in Figure 3, we categorize existing LLM-based
methods into two types, graph-to-token and graph-to-text. The
key distinction between these two approaches lies in the use of an
additional encoder. Graph-to-token methods rely on an additional
encoder (e.g., BERT) to generate embedding-level representations
for each node, while graph-to-text method directly translates graph
representations into natural language input for LLMs without the
need for an additional encoder.

5.1.1 Graph-to-token
One approach entails the tokenization of graph information and
imitates the standardized input format of transformer-based mod-
els. This methodology necessitates not only the serialization of

graph data into tokens but also the solutions for encoding the
graph’s structural information. Since this method uses node repre-
sentations as unique tokens for the input of backbone models, the
backbone need to be either trainable transformers or open source
LLMs. For instance, InstructGLM [116] uses LLaMA [74] and T5
[77] to be their backbones for further tuning.

The concept of graph-to-token initially surfaces in GIMLET
[119] that treats node representations as tokens and aims to inte-
grate graph data with textual data. Specifically, GIMLET expands
the capabilities of LLMs to accommodate both graph and text data
by using the transformer architecture, incorporating generalized
position embedding and instruction-based pre-training. Further-
more, efforts have been made to integrate graph data with other
modalities beyond just text data. For instance, Meta-Transformer
[120] introduces a transformer-based architecture designed to
incorporate various forms of multimodal data, including graphs,
text, and images. However, despite the promising trend indicated
by developing unified multimodal intelligence using a transformer
backbone, their approaches cannot be considered as graph foun-
dation models because they do not involve any pre-training and
adaptation learning paradigm.

InstructGLM [116] on the other hand, adopts a pre-training and
adaptation framework and introduces LLMs to further enhance the
model’s text processing capabilities, making it a strong contender
for the position of a graph foundation model. In this framework,
the vocabulary of the LLMs is expanded by incorporating the
inherent node feature vectors from the graph as distinct and unique
tokens for each node. Leveraging LLMs and the transferability of
natural language, InstructGLM makes a valuable contribution to
the ongoing movement towards graph foundation model architec-
tures and pipelines that span multiple modalities.

These efforts tokenize graph data to align it with natural
language, enabling joint understanding with data from other
modalities. Their conclusions showcase promising results for
integrating graph data with natural language. However, despite
these promising results, how to inform LLMs of underlying graph
structures remains an important challenge in this approach.

5.1.2 Graph-to-text
To align graph data with natural language, another approach in-
volves describing graph information using natural language. Sev-
eral approaches have been developed along this line of thoughts,
utilizing prompts to integrate the capabilities of LLMs into clas-
sical tasks on graphs. For this method, which exclusively relies
on natural language prompts, the associated backbone model can
be any LLM, even if it is not open-sourced. For instance, Graph-
LLM [118] utilizes multiple language models of different sizes,
including BERT [54], DeBERTa [121], Sentence-BERT [122],
GPT-4 [123] and LLaMA [74].

Initial attempts mainly use edge list to describe graph struc-
tures in natural language and make assessment on various graph
tasks. NLGraph [60] also conducts a comprehensive assessment of
LLMs across eight graph reasoning tasks as well as popular GNN
tasks in natural language. Similarly, utilizing edge lists to describe
graph structure, the results once again underscores the limitations
of this approach when dealing with complex graph problems.
TextForGraph [124] designed two types of prompts, full text and
reduced text, to describe information on the graph, effectively
compressing the prompt length. When&Why [125] designs several
styles of prompts and offers key insights into the use of LLMs
for processing structured data. GraphWiz [126] designs different

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

Token

LLMPredictions

The title of Paper_4 is: Can … The title of
Paper_1 is: Exploring … Paper_1 cites Paper_4 …
Question: The category of Paper_4 is …

Categorize the central node: (<node_4>,
Title_4>) is connected to (<node_1>, Title_1),
(<node_3>, Title_3) within one hop. Which
category should (<node_4>, Title_4) belong to?

Token

LLMPredictions

1
24 3

5

1
24 3

5

(a) Graph-to-token.

Token

LLMPredictions

The title of Paper_4 is: Can … The title of
Paper_1 is: Exploring … Paper_1 cites Paper_4 …
Question: The category of Paper_4 is …

Categorize the central node: (<node_4>,
Title_4>) is connected to (<node_1>, Title_1),
(<node_3>, Title_3) within one hop. Which
category should (<node_4>, Title_4) belong to?

Token

LLMPredictions

1
24 3

5

1
24 3

5

(b) Graph-to-text.

Fig. 3: An illustration of two existing approaches to align graph data with natural language. One approach tokenizes graph data and use node
representations (depicted as red tokens) as well as text tokens (depicted as green tokens) to be the input of LLMs. Another approach represents
graph data with prompts in natural language and uses text tokens only (depicted as green tokens) as the input of LLMs.

prompts for various tasks on graphs, including cycle detection,
subgraph matching, and more.

Moreover, GPT4Graph [117] introduces a novel approach to
prompt engineering that combines manually crafted prompts with
prompts generated by the language model itself, referred to as
handcrafted prompts and automatic prompts. Specifically, for man-
ual prompting, it utilizes description languages such as edge lists,
adjacency lists, Graph Modeling Language (GML), and Graph
Markup Language (GraphML) to represent graph structures and
compare their effectiveness. For automatic prompting, it employs
techniques like graph summarization, neighborhood summariza-
tion, graph exploration, and graph completion to actively engage
LLMs in understanding and manipulating graphs, facilitating
graph-based reasoning and learning. The findings indicate that
self-prompting is a more effective method for informing LLMs
about graph structures. Graph-LLM [118] further supports this
conclusion, emphasizing that neighbor summarization is the most
effective technique in existing prompt engineering methods.

These studies highlight significant potential for using natural
language to describe graph data and using textual tokens as the
input of LLMs for graph learning. Nevertheless, a key takeaway
from their conclusions is that, at the present moment, the way we
use these prompts may not be an effective approach for mining
underlying graph structures.

5.2 Pre-Training
The methods discussed in this section solely employ LLMs as
the backbone. Hence, the pre-training phase for these methods
corresponds to the pre-training phase of LLMs. There are mainly
two tasks used in LLM-based models for graph learning, we will
provide a concise overview of these two pre-training tasks.
5.2.1 Language Modeling (LM)
Language Modeling (LM) is one of the most common self-
supervised task in NLP, and is widely adopted by many state-
of-the-art LLMs, such as LLaMA [74] and GPT-3 [127]. LM
task can be essentially addressed to the challenge of estimating
probability distributions of the next word. While LM represents a
broad concept, it frequently pertains specifically to auto-regressive
LM or unidirectional LM in practical applications [51]. Many
methods involve LM as their pre-training method, namely In-
structGLM [116], NLGraph [60], GPT4Graph [117], Graph-LLM
[118], TextForGraph [124], When&Why [125], GraphWiz [126]
and CGForLLM [128].

In the context of a text sequence represented as s1:L =
[s1, s2, · · · , sL], its overall joint probability, denoted as p (s1:L),
can be expressed as a product of conditional probabilities, as
shown in equation:

p (s1:L) =

L∏
l=1

p (sl |s0:l−1) . (2)

Here, s0 represents a distinct token signifying the commencement
of the sequence. The conditional probability p (sl |s0:l−1) is essen-
tially a probability distribution over the vocabulary based on the
linguistic context s0:l−1. To model the context s0:l−1, a neural
encoder fnenc(·) is employed, and the conditional probability is
calculated as follows:

p (sl |s0:l−1) = flm(fnenc(s0:l−1)). (3)

In this equation, flm represents the prediction layer. By training the
network using maximum likelihood estimation (MLE) with a large
corpus, we can effectively learn these probabilities. Nevertheless,
a drawback of unidirectional language models is their encoding
of contextual information for each token, which is solely based
on the preceding leftward context tokens and the token itself.
However, for more robust contextual representations of text, it is
preferable to capture contextual information from both the forward
and backward directions.

5.2.2 Masked Language Modeling (MLM)
Masked language modeling (MLM) is introduced to address the
limitation of the traditional unidirectional language model, fre-
quently denoted as a Cloze task [51]. In MLM, specific tokens
within the input sentences are randomly masked, and the model is
then tasked with predicting these masked tokens by analyzing the
contextual information in the surrounding text. As an effective pre-
training task, MLM is adopted in BERT [54] and T5 [77]. Addi-
tionally, MLM can be categorized into two subtypes: Sequence-to-
Sequence MLM (Seq2Seq MLM) and Enhanced MLM (E-MLM).
Seq2Seq MLM involves utilizing the masked sequences as input
for a neural encoder, and the resulting output embeddings are used
to predict the masked token through a softmax classifier. On the
other hand, E-MLM extends the mask prediction task to various
types of language modeling tasks or enhances MLM by integrating
external knowledge. MLM also faces some drawbacks as this pre-
training method may result in a disconnection between the pre-
training and fine-tuning stages since the mask token is absent

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

during fine-tuning. InstructGLM [116] and Graph-LLM [118] use
T5/BERT as backbones, and adopt MLM pre-training strategy.

There are also many pre-training tasks like Permuted Lan-
guage Modeling (PLM) [129], Denoising Autoencoder (DAE)
[130], Text-Text Contrastive Learning (TTCL), [131] and others.
These pre-training tasks are currently not adopted by existing
LLM-based models in graph learning, and thus not within the
scope of our discussion in this section. However, we believe that
in the future, more research will be developed on graph tasks
involving these pre-training tasks, offering additional possibilities
for the establishment and refinement of graph foundation models.

5.3 Adaptation
The adaptation phase plays a pivotal role in enhancing the per-
formance of LLM-based models in graph learning. LLMs are
primarily trained on textual corpora, which results in a significant
gap between the pre-training phase and their deployment on
graph tasks. Both the graph-to-token and graph-to-text methods
are accompanied by specific adaptation techniques designed to
enhance the LLM’s ability to understand graph data effectively.
As these methods share a fundamentally similar training procedure
that utilizes prompts, we classify these adaptation strategies in the
aspect of prompt engineering: manual and automatic.

5.3.1 Manual Prompting
Methods mentioned here use manually created prefix style
prompts. For instance, LLMtoGraph [132] and NLGraph [60]
employ node and edge lists incorporating other graph properties
described in natural language to form a comprehensive prompt.
GPT4Graph [117] goes a step further by utilizing additional
description languages to represent graph data, such as edge list,
adjacency list, GML and GraphML, providing a more extensible
framework for manual graph prompts. Furthermore, InstructGLM
[116] employs instruction prompting to involve the design of a
set of graph descriptions centered around a central node, coupled
with task-specific descriptions. Graph-LLM [118], TextForGraph
[124], When&Why [125], GraphWiz [126] and CGForLLM [128]
also use natural language instructions and subsequently conduct a
series of comprehensive experiments.

5.3.2 Automatic Prompting
Creating prompts manually is a time-consuming task, and these
prompts can sometimes be sub-optimal [133]. To address these
drawbacks, automatically generated prompts have been introduced
for further adaptation. GPT4Graph [117] firstly tries to employ
three different types of prompts generated by LLM itself, namely
graph summarization, graph exploration and graph completion,
in graph tasks. Specifically, graph summarization generates a
summary of the given graph by extracting key features or a
summary of the neighborhood information of target nodes. Graph
exploration means generating a sequence of queries or actions
to retrieve information from the given graph. Graph completion
generates partial graphs and prompt itself to complete the missing
parts. By leveraging these self-prompting strategies, LLMs can
actively engage in the understanding and manipulation of graphs,
facilitating graph-based reasoning and learning. Graph-LLM [118]
uses automatic prompts as well in the form of neighbor summary,
and their experimental results once again emphasize the efficiency
of automatic prompting.

Additionally, there are various adaptation approaches based
on fine-tuning, including Vanilla Fine-Tuning [54], Intermediate

Fine-Tuning (IFT) [134], Multi-task Fine-Tuning (MTFT) [135],
and Parameter Efficient Fine-Tuning [136]. These methods offer
efficient ways to adapt pre-trained models to downstream tasks,
although they have not been applied to graph tasks at this time.
However, we anticipate that future research will explore the
integration of these adaptation approaches into graph tasks, further
advancing the development of the graph foundation model.

5.4 Discussion
Efforts of aligning graph data with natural language and using
sole LLMs as graph learners has paved the way for exciting
developments. The integration of graph data, text, and other
modalities into transformer-based models presents a promising
way, with the potential to connect techniques from the GNN field
with advancements in the LLM domain. Moreover, leveraging
LLMs allows for the unification of various graph tasks, as these
tasks can all be described in natural language. This makes LLM-
based backbones a more competitive selection for building GFMs.

Nonetheless, it is essential to acknowledge that the current
ways of utilizing LLMs as backbones for graph learning also
presents inherent limitations. These limitations encompass the
inability of LLMs to effectively process the lengthy textual in-
formation required to describe graph structures, their incapacity
to engage in multi-hop logical reasoning through graph links, the
challenge they face in capturing the topological structures preva-
lent in highly connected graphs, and their struggle in handling
the dynamic nature of graphs that evolve over time. Furthermore,
graph-to-text methods are constrained by the LLM’s input length,
limiting the size of the graph data they can handle. In contrast,
graph-to-token methods incur higher computational costs but can
process large-scale graph data encountered in real-world scenar-
ios, as each node can usually be represented by just a single
token [116]. These shortcomings underscore the need for further
research in using LLM-based models for graph learning.

Future research directions for LLM-based approaches in-
clude enhancing the ability of LLMs to more effectively and
efficiently understand critical information in graphs, including
node features and topological structures. Considering that LLMs
cannot directly comprehend graphs, and flattened natural language
description of graphs are likely to result in information loss,
efficient and structured modeling techniques for graphs need to
be developed. These methods are expected to help bridge the
gap between natural language prompts and the comprehensive
information present in graph data. Moreover, existing research,
such as LLM4DYG [137], has explored the application of LLMs to
complex graph data, specifically temporal graphs. However, more
diverse types of graph data, such as hypergraphs and heteroge-
neous graphs, need to be explored.

6 GNN+LLM-BASED MODELS

GNN-based models lack the ability to process text and thus cannot
directly make predictions based on textual data. Additionally, they
cannot make predictions based on natural language instructions
provided by users. Consequently, exploring the performance of
models with a substantial parameter count in graph-related tasks
is imperative. On the other hand, LLM-based models for graph
learning have their inherent limitations. These limitations include
the incapability of LLMs to process precise mathematical calcula-
tions and the inability to handle multi-hop logical reasoning, etc.
These shortcomings underline the necessity for further research

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

LLM

GNN Predictions LLM

GNN

Predictions

Alignment

Predictions

Adaptation

LLM PredictionsInstruction

GNN

(a) GNN-centric methods.

LLM

GNN Predictions LLM

GNN

Predictions

Alignment

Predictions

Adaptation

LLM PredictionsInstruction

GNN

(b) Symmetric methods, where the aligned embeddings
can be further utilized for downstream tasks.

LLM

GNN Predictions LLM

GNN

Predictions

Alignment

Predictions

Adaptation

LLM PredictionsInstruction

GNN

(c) LLM-centric methods, which take an in-
struction as input and output an answer.

Fig. 4: An illustration of GNN+LLM-based models.

and innovation in this domain. To overcome these limitations and
harness the strengths of both language understanding from LLMs
and structural analysis from GNNs, integrating LLMs and GNNs
can potentially lead to a more comprehensive and powerful model.
We summarize and categorize the works mentioned in this section
in supplemental material E.

6.1 Backbone Architectures
To simultaneously utilize information from both the graph and text
and accomplish a variety of tasks, we need to design a framework
that effectively integrates LLM and GNN. Depending on the
prediction model, GNN+LLM-based methods can be classified as:
1) GNN-centric Methods, 2) Symmetric Methods, and 3) LLM-
centric Methods, as illustrated in Figure 4.

6.1.1 GNN-centric Methods
Several works aim to utilize LLM to extract node features from
raw data and make predictions using GNN. These approaches
are denoted as GNN-centric models. For example, GraD [138]
performs a parameter-efficient fine-tuning of an LLM on the
textual dataset of a TAG (text-attributed graph). The textual dataset
T is annotated with task-specific labels Y, where G = (V,E, T)
and T is the set of texts with each element aligned with a node in
V . Then the downstream task loss for fine-tuning is:

LossCLS = Lθ(ϕ(LLM(T)),Y),

LossLINK = Lθ (ϕ (LLM(Tsrc) ,LLM(Tdst)) ,Y) ,
(4)

where ϕ(·) is the classifier for the classification task or similarity
function for the link prediction task, Tsrc and Tdst are the texts
of the source node and the target node, respectively, LossCLS and
LossLINK are the loss of classification and link prediction task,
respectively. Thus we can get the node representations X with
fine-tuned LLM, achieved by removing the head layer. Then we
can train GNN with the loss:

LossCLS = Lθ(ϕ(GNN(LLM(T))),Y),

LossLINK = Lθ

(
ϕ
(
GNN(LLM(Tsrc)) ,GNN

(
LLM(Tdst)

))
,Y

)
,

(5)

where ϕ(·) is the classifier for the classification task or similarity
function for the link prediction task, Y is the task-specific labels,
T is the set of texts, Tsrc and Tdst are the texts of the source node
and the target node, respectively.

For LLMs that do not provide direct access to their embed-
dings such as ChatGPT, TAPE [76] engages these LLMs through

text interactions. Specifically, TAPE first utilizes an LLM to gen-
erate a ranked prediction list and explanation based on the original
text, and then an LM is utilized and fine-tuned to transform the
original text and additional features of predictions and explanation
generated by LLM into node features. Subsequently, downstream
GNNs can utilize the features for prediction tasks. TAPE extracts
graph-agnostic features and cannot capture correlations between
graph topology and raw features. To this end, GIANT [139]
utilizes a graph-structure aware self-supervised learning method to
finetune the LM. Consequently, the text representations encompass
graph-related information. WTGIA [140] focuses on text-level
Graph Injection Attacks (GIAs), enhancing the interpretability
and real-world applicability of graph injection attacks. In GALM
[141], the focus is on exploring pre-training approaches for
models that combine text and graph data, particularly on exten-
sive heterogeneous graphs enriched with rich textual data. OFA
[142] introduces text-attributed graphs that use natural language
to describe nodes and edges, unified by language models into
a common embedding space. Heterformer [143] integrates con-
textualized text encoding and heterogeneous structure encoding
within a single model. It incorporates heterogeneous structure
information into each Transformer layer as it encodes node
texts. Edgeformers [144], which are based on graph-enhanced
Transformers, perform edge and node representation learning
by contextually modeling texts associated with edges. LLMRec
[145] improves recommender systems by using three straightfor-
ward yet powerful LLM-based graph augmentation techniques,
addressing the issues of sparse implicit feedback and low-quality
side information commonly found in recommendation systems.
WalkLM [146] conducts attributed random walks on the graph and
uses an automated program to generate approximately meaningful
textual sequences from these walks. It then fine-tunes a language
model (LM) with these textual sequences and extracts embedding
vectors from the LM, capturing both attribute semantics and graph
structures. TOUCHUP-G [147] enhances the node features derived
from a pre-trained model for downstream graph tasks and intro-
duces. Multiplex graph neural networks initialize node attributes
as feature vectors for node representation learning, but they fall
short in capturing the full semantics of the nodes’ associated texts.
METERN [148] addresses this by using a single text encoder
to model the shared knowledge across relations and employing
a small number of parameters per relation to generate relation-
specific representations. Another research [149] investigates the
use of LLMs to improve graph topological structures, a relatively
unexplored area. A label-free pipeline, LLM-GNN [150], uses

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

LLMs for annotation and supplies training signals to GNNs for
subsequent prediction.

6.1.2 Symmetric Methods
Also, there are some works that align the embeddings of GNN and
LLM to make better predictions or utilize the embeddings for other
downstream tasks, denoted as symmetric methods. Most GNN-
centric based methods involve two sequential steps: text encoding
and graph aggregation. It is important to note that during the
generation of text embeddings, there is no exchange of information
between nodes. To consider the interrelated nature of connected
nodes, several works try to utilize GNN and LLM together to
get structure-aware text features. GraphFormer [151] fuses text
embedding and graph aggregation as an iterative workflow. During
each iteration, the interconnected nodes will engage in information
exchange within the layerwise GNN component, formulated as
ẑl = GNN(zl), where zl is the output of l-th layer of GNN.

As a result, each node will incorporate information from its
neighboring nodes. The Transformer component then operates
on these enhanced node features, enabling the generation of
progressively more informative node representations as zl+1 =
TRM(CONCAT(ẑl, hl)), where TRM is the transformer, and
hl is the output of l-th layer of transformer. However, this method
suffers from scalability issues because the memory complexity
is proportional to the graph size as neighborhood texts are also
encoded. GLEM [152] employs a variational EM framework
to alternatively update the LLMs and GNNs, thus essentially
capturing the node label distribution conditioned on the local text
attributes. In contrast, GNN uses the text and label information
of neighboring nodes to predict labels, thus characterizing global
conditional label distribution. By doing so, GLEM efficiently
incorporates local textual data and global structural information
into its components and can ease the scalability issue.

Other studies employ distinct encoders for graph nodes and
texts, training them to align their representations within a shared
latent space. G2P2 [153] jointly pre-trains a graph-text model
utilizing three graph interaction-based contrastive strategies, and
then explores prompting for the downstream tasks. [154] utilizes
GNN to model the structural information of nodes, which is then
integrated with the corresponding text fragment encoded by a
language model. The model subsequently predicts the masked
token. ENGINE [155] integrates large language models and graph
neural networks using an adjustable side structure. This approach
significantly reduces training complexity while maintaining the
capacity of the combined model. To address this, PATTON [156]
incorporates two pre-training strategies: network-contextualized
masked language modeling and masked node prediction, aiming
to capture the inherent relationship between textual attributes and
network structure. OpenGraph [157] enhances the graph learning
paradigm by developing a flexible graph foundation model. This
model can understand complex topological patterns in diverse
graph data, enabling it to excel in zero-shot graph learning tasks
across a range of downstream datasets. RLMRec [158] improves
the recommendation performance of current recommender sys-
tems by utilizing large language models (LLMs) and aligning their
semantic space with collaborative relation modeling to achieve
better representation learning. Some other works [159, 160, 161]
also utilize GNN and LLM to learn representations for molecules.
These models employ a contrastive learning strategy to effectively
pre-train on a dataset containing pairs of molecular graphs and
corresponding textual descriptions. By simultaneously learning

the chemical structures of molecules and their associated text
through this approach, these models can then be applied to
various downstream tasks. Furthermore, MolCA [162] allows a
language model (LM) to comprehend both text-based and graph-
based molecular information through the use of a cross-modal
projector. GIT-Mol [163] encompasses all three modalities in
molecular science—graph, image, and text—supporting tasks such
as molecule generation, molecule captioning, molecular image
recognition, and molecular property prediction.

6.1.3 LLM-centric Methods

While LLMs have shown impressive performance in various
natural language tasks, they struggle with precise mathematical
calculations, multi-step logic reasoning, spatial and topological
perception, and handling temporal progression. Hence some works
utilize GNNs to enhance the performance of LLM, denoted as
LLM-centric methods. For example, GraphTranslator [164] uti-
lizes a Graph Model to efficiently manage predefined tasks and
takes advantage of the extended interface of Large Language Mod-
els to support a variety of open-ended tasks for the Graph Model.
GraphGPT [165] integrates large language models with graph
structural knowledge through graph instruction tuning, enabling
LLMs to understand complex graph structures and improving
adaptability across various datasets and tasks. THLM [166] in-
troduces a novel pre-training framework for language models that
explicitly incorporates the topological and heterogeneous informa-
tion found in text-attributed heterogeneous graphs. GraphPrompter
[167] aligns graph information with LLMs via soft prompts.
InstructGraph [168] enhances LLMs with graph reasoning and
generation capabilities through instruction tuning and preference
alignment. RELM [169] utilizes the chemical knowledge embed-
ded in LMs to support GNNs, thereby improving the accuracy
of real-world chemical reaction predictions. TEA-GLM [170]
pretrains a GNN using contrastive learning to capture structural
and semantic graph information, then employs a linear projector
to map GNN representations into unified task-specific instructions
for LLMs, enabling effective cross-dataset and cross-task general-
ization without fine-tuning the LLM. G-Retriever [171] introduces
G-Retriever, a retrieval-augmented generation (RAG) framework
that enables question answering on real-world textual graphs
through a conversational interface, mitigating hallucinations and
scaling efficiently to large graphs.

6.2 Pre-training

To train the model and enable it to handle both graph and text
information, we need to train the model on a large amount of
data. LLM and GNN can be pre-trained on textual data and graph
data respectively, and the GNN+LLM-based methods can be pre-
trained on both data. In this subsection, we category the pre-
training strategies as GNN or LLM-based, and alignment-based.

6.2.1 GNN or LLM-based

Other frameworks leverage pre-trained LLMs to obtain text
embeddings. The majority of existing models [138, 139, 151,
152, 159, 160, 161, 162] employ Masked Language Modeling
(MLM) during pre-training. Some models, like TAPE and Graph-
ToolFormer, opt for Language Modeling (LM) in the pre-training
phase. Additionally, SimTeG integrates Text-Text Contrastive
Learning (TTCL), a technique that leverages certain observed text

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

pairs exhibiting more semantic similarity than randomly selected
pairs during the pre-training phase as:

LossTTCL = Ex,y+,y−

[
− log

exp(k(x,y+))
exp(k(x,y+))+exp(k(x,y−))

]
, (6)

where E is the expectation, k is the score function, y+ is the pos-
itive sample and y− is the negative sample. Additionally, GALM
[141] utilizes graph reconstruction for pre-training on extensive
graph datasets, and thus can incorporate the graph information
into the pre-trained LLMs.

6.2.2 Alignment-based
Symmetric methods of LLM and GNN like Text2Mol [159],
MoleculeSTM [160], and CLAMP [161] are pre-trained on large
datasets with Graph-Text Contrastive Learning (GTCL), which
aligns the embeddings of the graph encoder and the text encoder.
The embeddings involve rich information about graph structure
and text, thus demonstrating appealing performance on down-
stream datasets. For a molecule example, CLAMP minimizes the
contrastive loss as below:

LossNCE = − 1

N

N∑
i=1

yi log(k(LLM(µi),GNN(ξi)))

+ (1− yi) log(1− k(LLM(µi),GNN(ξi))),

(7)

where µi is the text representation, ξi is the graph representation,
and k is a score function to predict the activity of a molecule. The
contrastive loss promotes the active molecules on a bioassay to
have similar embeddings to the specific bioassay, while ensuring
that inactive molecules have dissimilar embeddings to it.

6.3 Adaptation

The adaptation phase plays a pivotal role in optimizing
GNN+LLM-based models for efficient graph learning. Apart from
some works [159, 160, 161] which test the model’s performance
on zero-shot tasks such as zero-shot structure-text retrieval and
zero-shot text-based molecule editing, models in most cases need
adaptation. In this subsection, we categorize these adaptation
strategies into two main types: fine-tuning and prompt-tuning.

6.3.1 Fine-tuning
To adapt to the downstream tasks, some works [139, 141, 143, 144,
146, 151, 151, 152] utilize vanilla fine-tuning methods for node
classification tasks. However, vanilla fine-tuning methods involve
adjusting a broad range of model parameters, which can be com-
putationally intensive and resource-demanding. So other works
utilize parameter-efficient fine-tuning methods for downstream
tasks, resulting in a more efficient and resource-friendly approach.
Specifically, several studies [159, 160, 161] align the embedding
space of GNN and LLM utilizing paired molecule graph-text
data, while other research [138, 145, 148, 150, 156, 166] is
tuned on TAGs with classification task. Additionally, some works
[162, 164, 167] adapt to downstream tasks by generating text
captions or descriptions.

6.3.2 Prompt-Tuning
The prompt-tuning approach is employed in certain studies
[153, 154, 163, 165, 168]. For example, G2P2 [153] leverages
prompt-tuning to automatically optimize prompts with limited
labeled data for efficient adaptation to downstream tasks. Other

studies [76, 142, 145, 169] exclusively focus on utilizing Tuning-
Free Prompting to generate text. These approaches leverage the
inherent capabilities of language models without any additional
fine-tuning or parameter adjustments, thereby relying solely on
the pre-trained knowledge embedded within the models to produce
text outputs. For example, in TAPE [76], the initial text features
are incorporated into a specialized prompt to interrogate a lan-
guage model, generating a ranked list of predictions along with
explanations. Subsequently, the expanded text features are utilized
for finetuning on an LLM.

6.4 Discussion
To summarize, LLMs excel in capturing complex linguistic pat-
terns and semantics from textual data, allowing the GNN+LLM-
based models to generate embeddings that involve rich text,
structure information, and even external knowledge of LLMs,
thus leading to better model performance. Also, when integrated
with GNN, LLM’s reasoning capabilities over graphs may be
enhanced. At the same time, these models can also be regarded
as multimodal models to accomplish cross-modal tasks, such as
text-graph retrieval tasks. The embeddings can be then utilized for
a bunch of downstream tasks.

Also, it is challenging to align LLMs and GNNs into a com-
mon representational space. To tackle this problem, it is essential
to establish a robust standard for measuring the alignment between
LLM and GNN representations. This standard should evaluate the
degree to which the embeddings from both models capture similar
semantic and structural information. Additionally, it is crucial to
design effective methods for achieving this alignment. By doing
so, we can ensure that the combined model leverages the strengths
of both LLMs and GNNs, ultimately enhancing performance on
various downstream tasks. Moreover, existing work has begun
to extend the GNN+LLM approach to heterogeneous graphs and
hypergraphs. For heterogeneous graphs, HiGPT [172] introduces
an in-context heterogeneous graph tokenizer and a heterogeneity-
aware instruction-tuning framework to address distribution shifts,
enhancing generalization and performance across various hetero-
geneous graph learning scenarios, and GHGRL [173] employs
LLM to automatically summarize and classify different data
formats and types of heterogeneous graph data. For hypergraph,
HyperBERT [174] augments a pre-trained BERT model with
specialized hypergraph-aware layers for the task of node classi-
fication.

7 CHALLENGES AND FUTURE DIRECTIONS

Although the previous sections have discussed the concepts and
a lot of related works towards graph foundation models, there are
still many avenues for future exploration in this research area. This
section will delve into these issues.

7.1 Challenges about Data and Evaluation
7.1.1 Data Quantity and Quality
The improvements in data quantity and data quality are the key
factors contributing to the effectiveness of foundation models [1].
At present, there is still a limited amount of open-source large-
scale graph data [175, 176], and each dataset is primarily concen-
trated in a single domain. This poses a challenge to learn graph
foundation models for diverse data domains. Hence, it is necessary
to collect and organize a unified, massive dataset that covers

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 15

graph data and related corpora across different domains. Note that
some works have constructed cross-domain datasets [177, 178],
which aid in developing cross-domain graph foundation models.
Additionally, if the graph data are noisy, incomplete, or not
properly curated, it will negatively affect the performance of graph
foundation models. To enhance the data quality of GFMs, efforts
have been made to propose augmentation strategies from various
perspectives, including graph structure learning, feature competion
and label mixing, etc. However, since existing data augmentation
techniques are typically tailored for individual GNN-based mod-
els, there is a need for further exploration on how to effectively
augment graph data for LLM-based or GNN+LLM-based models.

7.1.2 Evaluation
With the help of natural language instructions and powerful
generation capabilities, LLMs can support a variety of open-ended
tasks [74]. This presents new opportunities for graph foundation
models based on LLM. However, due to the lack of labels in open-
ended tasks, evaluating the performance of GFMs in such tasks is
a challenge. When using LLM as a language foundation model,
the evaluation of its performance on open-ended tasks has evolved
from human evaluation [127] to meta-evaluation [179]. The ques-
tion of whether existing LLM evaluation methods [127, 179] can
be applied to GFMs remains to be explored. Beyond evaluating the
performance of GFMs, it is also worth evaluating their robustness,
trustworthiness, or holistic performance, similar to the current
practices for language foundation models [180, 181, 182].

7.2 Challenges about Models
7.2.1 Model Architectures
As mentioned above, the designs of backbone architectures and
learning paradigms are crucial for the implementation of GFMs.
Although this article has outlined some potential solutions, it does
not rule out the possibility of better ones. For example, regarding
the backbone architecture, recent works have proposed model
architectures that go beyond the Transformer, offering improved
performance [183] or interpretability [184]. However, it is still
unknown whether these backbone architectures can be used for
dealing with graph data. Additionally, when utilizing GNN+LLM-
based models, it is worth exploring how to more effectively align
the outputs of both models. Furthermore, there is limited research
regarding the emergent abilities or neural scaling law [185, 186] of
GNN-based [59] or LLM-based [60] graph foundation models. It
is yet unclear whether GNN+LLM-based models may have greater
potential for emergence. Furthermore, considering the diverse
types of graphs (such as heterogeneous graphs [172], temporal
graphs [137], and hypergraphs [174]), designing a GFM capable
of handling multiple types of graphs is a valuable direction for
future research. A potential solution is to use a mixture of experts
(MoE) model [187], where each expert handles one type of graph.
Finally, given that current multimodal foundation models [188]
primarily handle text, images, audio, and other modalities, it is
an interesting research direction to explore whether GNNs can be
employed to further expand the diversity of modalities covered
by multimodal foundation models or enhance the capabilities of
foundation models for multimodal learning [189].

7.2.2 Model Training
In order to achieve homogeneity and make effective use of pre-
training data, it is crucial to design appropriate pre-training tasks

in pre-training. Unlike many language foundation models, which
often use LM [127] or MLM [54] as pre-training tasks, there
are now various forms of pre-training tasks tailored to different
GFM model architectures. Whether each type of pre-training task
has its own applicable scope and whether there will be a uni-
fied pre-training task are worth further exploration. Additionally,
enabling graph foundation models to support cross-domain data
is a vital concern. Some works use data from different domains
as model input for pre-training [98, 190], or enable adaptation
to data from different domains through methods such as LLM-
based embedding [142], condition generation [191] and zero-shot
transfer [172]. Finally, apart from fine-tuning and prompting that
are introduced in this article, there are other potential training
techniques that can be applied to improve efficiency or update
knowledge, such as knowledge distillation [192], reinforcement
learning from human feedback (RLHF) [127] and model edit-
ing [193]. Whether the above-mentioned techniques can be applied
to graph foundation models will be a focal point of future research.

7.3 Challenges about Applications
7.3.1 Killer Applications
In comparison to the outstanding performance of language foun-
dation models in tasks like text translation [194] and text gener-
ation [195], whether GFMs can similarly catalyze groundbreak-
ing applications in graph tasks is not yet clear. For scenarios
that are well-suited for the application of GNNs, such as e-
commerce [196] and finance [197], potential research directions
include leveraging graph-based models integrated with LLMs to
better support open-ended tasks [164], or enhancing the reasoning
capabilities of LLMs through graph learning techniques [198].
Furthermore, GFMs have the potential to make breakthroughs in
some emerging fields. For example, drug development is a time-
consuming and costly process [199], and language foundation
models have already been successfully used for related tasks like
target identification and side effect prediction [1]. Given the 3D
geometric structure of proteins [200], GFMs hold the promise of
enhancing the drug discovery pipeline by leveraging their ability
to model graph structure information [201], potentially speeding
up the process further. Additionally, urban computing may also
represent a crucial application scenario for GFMs. It is worth
noting that traditional traffic prediction techniques have been
primarily focused on addressing individual tasks such as travel
demand prediction [202] and traffic flow prediction [203], lacking
a comprehensive understanding of the entire transportation system.
Given that the transportation system can be viewed as a spatio-
temporal graph, graph foundation models hold the potential to
capture the participation behavior of actors in the transportation
system [204], thereby offering a unified approach to addressing
various issues in urban computing.

7.3.2 Trustworthiness
Despite the strong performance of LLM-based foundation models,
their black-box nature [205] introduces a host of safety concerns,
such as hallucination and privacy leaks. The hallucination refers
to the output appearing plausible but deviating from user input,
context, or facts [206]. Existing research suggests that this phe-
nomenon is associated with multiple factors, such as the model’s
overconfidence in its own behavior [207] and the misunderstand-
ing of false correlations [208]. Similarly, recent work has pointed
out that pre-trained GNNs also pose certain trustworthy risks about

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 16

fairness [209] and robustness against attacks [210, 211]. Given the
unique nature of graph data, we may require certain techniques
to prevent or mitigate security risks on GFMs, such as confidence
calibration [212] or counterfactual reasoning [213]. Additionally,
given that existing research has indicated privacy risks in both
GNN [214, 215] and LLM [216], enhancing the privacy of
GFMs is also a critical concern. Some potential solutions include
federated learning [217], RLHF [127] and red teaming [218], but
whether these methods can be applied to GFMs is still unknown.
Finally, graph data in real-world applications frequently encounter
challenges such as noise [219], class imbalance [220], data in-
completeness [221], and multi-modal features [222]. Developing
methods to utilize these graph data for constructing GFMs, or
adapting existing GFMs to accommodate these characteristics,
will be a critical area of focus for future research.

8 CONCLUSIONS

The development of foundation models and graph machine learn-
ing has spurred the emergence of a new research direction, with
the aim to train on broad graph data and apply it to a wide
range of downstream graph tasks. In this article, we propose the
concept of graph foundation models (GFMs) for the first time, and
provide an introduction to relevant concepts and representative
methods. We summarize existing works towards GFMs into three
main categories based on their reliance on graph neural networks
(GNNs) and large language models (LLMs): GNN-based models,
LLM-based models, and GNN+LLM-based models. For each
category of methods, we introduce their backbone architectures,
pre-training, and adaptation strategies separately. After providing
a comprehensive overview of the current landscape of graph
foundation models, this article also points out the future directions
for this evolving field.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Founda-
tion of China (No.U20B2045, 62192784, 62236003), Young Elite
Scientists Sponsorship Program (No.2023QNRC001) by CAST,
NSF under grants III-2106758 and POSE-2346158.

REFERENCES
[1] R. Bommasani, D. A. Hudson, E. Adeli et al., “On the

opportunities and risks of foundation models,” arXiv preprint
arXiv:2108.07258, 2021.

[2] J. Wei, Y. Tay, R. Bommasani et al., “Emergent abilities of
large language models,” TMLR, 2022.

[3] W. Wang, Z. Chen, X. Chen et al., “Visionllm: Large language
model is also an open-ended decoder for vision-centric tasks,”
in Proc. of NeurIPS, vol. 36, 2023.

[4] H. Zhang, X. Li, and L. Bing, “Video-llama: An instruction-
tuned audio-visual language model for video understanding,”
in Proc. of EMNLP demo, 2023, pp. 543–553.

[5] Z. Zhao, W. Fan, J. Li et al., “Recommender systems in the era
of large language models (llms),” IEEE TKDE, 2024.

[6] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online
learning of social representations,” in Proc. of KDD, 2014.

[7] A. Grover and J. Leskovec, “node2vec: Scalable feature learn-
ing for networks,” in Proc. of KDD, 2016.

[8] S. Yan, D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, and S. Lin,
“Graph embedding and extensions: A general framework for
dimensionality reduction,” IEEE TPAMI, 2006.

[9] T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard,
“Complex embeddings for simple link prediction,” in Proc. of
ICML. PMLR, 2016, pp. 2071–2080.

[10] M. Nickel, V. Tresp, H.-P. Kriegel et al., “A three-way model
for collective learning on multi-relational data.” in Proc. of
ICML, vol. 11, no. 10.5555, 2011, pp. 3 104 482–3 104 584.

[11] C. Yang, Z. Liu, D. Zhao et al., “Network representation
learning with rich text information.” in Proc. of IJCAI, 2015,
pp. 2111–2117.

[12] J. Wang, Z. Zhang, Z. Shi, J. Cai, S. Ji, and F. Wu, “Duality-
induced regularizer for semantic matching knowledge graph
embeddings,” IEEE TPAMI, vol. 45, no. 2, pp. 1652–1667,
2022.

[13] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang,
C. Li, and M. Sun, “Graph neural networks: A review of
methods and applications,” AI open, vol. 1, pp. 57–81, 2020.

[14] T. N. Kipf and M. Welling, “Semi-supervised classification
with graph convolutional networks,” in Proc. of ICLR, 2017.

[15] M. Zhang and Y. Chen, “Link prediction based on graph neural
networks,” in Proc. of ICONIP, 2018.

[16] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are
graph neural networks?” in Proc. of ICLR, 2019.

[17] C. Wang, S. Pan, R. Hu et al., “Attributed graph clustering: a
deep attentional embedding approach,” in Proc. of IJCAI, 2019.

[18] U. Alon and E. Yahav, “On the bottleneck of graph neural
networks and its practical implications,” in Proc. of ICLR,
2021.

[19] L. Yang, J. Zheng, H. Wang et al., “Individual and structural
graph information bottlenecks for out-of-distribution general-
ization,” IEEE TKDE, 2023.

[20] C. Zhou, Q. Li, C. Li et al., “A comprehensive survey on
pretrained foundation models: A history from bert to chatgpt,”
IJMLC, pp. 1–65, 2024.

[21] S. Pan, L. Luo, Y. Wang, C. Chen, J. Wang, and X. Wu,
“Unifying large language models and knowledge graphs: A
roadmap,” IEEE TKDE, 2024.

[22] J. Z. Pan, S. Razniewski, J.-C. Kalo et al., “Large language
models and knowledge graphs: Opportunities and challenges,”
TGDK, pp. 1–38, 2023.

[23] Z. Zhang, H. Li, Z. Zhang, Y. Qin, X. Wang, and W. Zhu,
“Graph meets llms: Towards large graph models,” in NeurIPS
2023 Workshop: New Frontiers in Graph Learning, 2023.

[24] Z. Wu, S. Pan, F. Chen et al., “A comprehensive survey on
graph neural networks,” IEEE TNNLS, vol. 32, no. 1, pp. 4–24,
2020.

[25] S. Zafeiriou, M. Bronstein, T. Cohen et al., “Guest editorial:
Non-euclidean machine learning,” IEEE TPAMI, pp. 723–726,
2022.

[26] L. Freeman, “The development of social network analysis,” A
Study in the Sociology of Science, 2004.

[27] G. Muzio, L. O’Bray, and K. Borgwardt, “Biological network
analysis with deep learning,” Briefings in bioinformatics, 2021.

[28] W. Jiang and J. Luo, “Graph neural network for traffic forecast-
ing: A survey,” Expert Systems with Applications, 2022.

[29] M. Li, S. Chen, X. Chen et al., “Symbiotic graph neural
networks for 3d skeleton-based human action recognition and
motion prediction,” IEEE TPAMI, pp. 3316–3333, 2021.

[30] B. Zhang, J. Xiao, J. Jiao, Y. Wei, and Y. Zhao, “Affinity
attention graph neural network for weakly supervised semantic
segmentation,” IEEE TPAMI, 2021.

[31] J. Gao, T. Zhang, and C. Xu, “Learning to model relation-
ships for zero-shot video classification,” IEEE TPAMI, vol. 43,
no. 10, pp. 3476–3491, 2020.

[32] S. Fan, X. Wang, C. Shi et al., “Generalizing graph neural
networks on out-of-distribution graphs,” IEEE TPAMI, 2023.

[33] C. Shi, Y. Li, J. Zhang et al., “A survey of heterogeneous
information network analysis,” IEEE TKDE, 2016.

[34] Y. Feng, H. You, Z. Zhang, R. Ji, and Y. Gao, “Hypergraph
neural networks,” in Proc. of AAAI, 2019.

[35] R. Lu, Z. Cheng, B. Chen, and X. Yuan, “Motion-aware
dynamic graph neural network for video compressive sensing,”
IEEE TPAMI, 2024.

[36] J. Gilmer, S. S. Schoenholz, P. F. Riley et al., “Neural message
passing for quantum chemistry,” in Proc. of ICML, 2017.

[37] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representa-
tion learning on large graphs,” Proc. of NeurIPS, 2017.

[38] P. Velickovic, G. Cucurull, A. Casanova et al., “Graph attention
networks,” in Proc. of ICLR, 2018.

[39] Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph
convolutional networks for semi-supervised learning,” in Proc.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 17

of AAAI, 2018.
[40] Y. Rong, W. Huang, T. Xu, and J. Huang, “Dropedge: Towards

deep graph convolutional networks on node classification,” in
Proc. of ICLR, 2020.

[41] C. Ying, T. Cai, S. Luo et al., “Do transformers really perform
badly for graph representation?” Proc. of NeurIPS, 2021.

[42] D. Chen, L. O’Bray, and K. Borgwardt, “Structure-aware trans-
former for graph representation learning,” in Proc. of ICML,
2022.

[43] D. Kreuzer, D. Beaini, W. Hamilton, V. Létourneau, and
P. Tossou, “Rethinking graph transformers with spectral atten-
tion,” in Proc. of NeurIPS, 2021.

[44] L. Rampášek, M. Galkin, V. P. Dwivedi, A. T. Luu, G. Wolf,
and D. Beaini, “Recipe for a general, powerful, scalable graph
transformer,” Proc. of NeurIPS, 2022.

[45] J. B. Lee, R. Rossi, and X. Kong, “Graph classification using
structural attention,” in Proc. of KDD, 2018.

[46] X. Jiang, P. Ji, and S. Li, “Censnet: convolution with edge-node
switching in graph neural networks,” in Proc. of IJCAI, 2019.

[47] O. Wieder, S. Kohlbacher, M. Kuenemann et al., “A compact
review of molecular property prediction with graph neural
networks,” Drug Discovery Today: Technologies, 2020.

[48] Z. Song, X. Yang, Z. Xu, and I. King, “Graph-based semi-
supervised learning: A comprehensive review,” IEEE TNNLS,
2022.

[49] C. Yang, J. Liu, and C. Shi, “Extract the knowledge of graph
neural networks and go beyond it: An effective knowledge
distillation framework,” in Proc. of WWW, 2021.

[50] Y. Liu, M. Jin, S. Pan et al., “Graph self-supervised learning:
A survey,” IEEE TKDE, 2022.

[51] X. Qiu, T. Sun, Y. Xu, Y. Shao, N. Dai, and X. Huang, “Pre-
trained models for natural language processing: A survey,”
Science China Technological Sciences, 2020.

[52] P. Liu, W. Yuan, J. Fu et al., “Pre-train, prompt, and predict:
A systematic survey of prompting methods in natural language
processing,” ACM CSUR, 2023.

[53] J. Howard and S. Ruder, “Universal language model fine-tuning
for text classification,” in Proc. of ACL, 2018.

[54] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT:
pre-training of deep bidirectional transformers for language
understanding,” in Proc. of NAACL, 2019.

[55] Z. Liu, X. Yu, Y. Fang, and X. Zhang, “Graphprompt: Unifying
pre-training and downstream tasks for graph neural networks,”
in Proc. of WWW, 2023.

[56] X. Sun, H. Cheng, J. Li et al., “All in one: Multi-task prompting
for graph neural networks,” in Proc. of KDD, 2023.

[57] Q. Dong, L. Li, D. Dai et al., “A survey on in-context learning,”
in Proc. of EMNLP, 2024, pp. 1107–1128.

[58] J. Wei, X. Wang, D. Schuurmans et al., “Chain-of-thought
prompting elicits reasoning in large language models,” in Proc.
of NeurIPS, 2022.

[59] Q. Huang, H. Ren, P. Chen et al., “PRODIGY: Enabling in-
context learning over graphs,” in Proc. of NeurIPS, 2023.

[60] H. Wang, S. Feng, T. He et al., “Can language models solve
graph problems in natural language?” in Proc. of NeurIPS,
vol. 36, 2023.

[61] B. Su, D. Du, Z. Yang et al., “A molecular multimodal founda-
tion model associating molecule graphs with natural language,”
arXiv preprint arXiv:2209.05481, 2022.

[62] Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang, “Deep Graph
Contrastive Representation Learning,” in ICML Workshop on
Graph Representation Learning and Beyond, 2020.

[63] M. Sun, J. Xing, H. Wang, B. Chen, and J. Zhou, “Mocl: data-
driven molecular fingerprint via knowledge-aware contrastive
learning from molecular graph,” in Proc. of KDD, 2021.

[64] Z. Hou, X. Liu, Y. Cen, Y. Dong, H. Yang, C. Wang, and
J. Tang, “Graphmae: Self-supervised masked graph autoen-
coders,” in Proc. of KDD, 2022.

[65] Z. Hou, Y. He, Y. Cen, X. Liu, Y. Dong, E. Kharlamov,
and J. Tang, “Graphmae2: A decoding-enhanced masked self-
supervised graph learner,” in Proc. of WWW, 2023.

[66] S. Li, X. Han, and J. Bai, “Adaptergnn: Parameter-efficient
fine-tuning improves generalization in gnns,” in Proc. of AAAI,
vol. 38, no. 12, 2024, pp. 13 600–13 608.

[67] A. Gui, J. Ye, and H. Xiao, “G-adapter: Towards structure-
aware parameter-efficient transfer learning for graph trans-
former networks,” in Proc. of AAAI, 2024.

[68] M. Sun, K. Zhou, X. He, Y. Wang, and X. Wang, “Gppt: Graph
pre-training and prompt tuning to generalize graph neural
networks,” in Proc. of KDD, 2022.

[69] X. L. Li and P. Liang, “Prefix-tuning: Optimizing continuous
prompts for generation,” in Proc. of ACL, 2021.

[70] L. Sun, Z. Zhang, J. Ye et al., “A self-supervised mixed-
curvature graph neural network,” in Proc. of AAAI, 2022.

[71] J. Ye, Z. Zhang, L. Sun, Y. Yan, F. Wang, and F. Ren, “Sincere:
sequential interaction networks representation learning on co-
evolving riemannian manifolds,” in Proc. of WWW, 2023.

[72] Q. Lhoest, A. V. del Moral, Y. Jernite et al., “Datasets: A
community library for natural language processing,” in Proc.
of EMNLP, 2021.

[73] T. Brown, B. Mann, N. Ryder et al., “Language models are
few-shot learners,” Proc. of NeurIPS, 2020.

[74] H. Touvron, T. Lavril, G. Izacard et al., “Llama: Open
and efficient foundation language models,” arXiv preprint
arXiv:2302.13971, 2023.

[75] L. Sun, Z. Huang, Z. Wang, F. Wang, H. Peng, and S. Y.
Philip, “Motif-aware riemannian graph neural network with
generative-contrastive learning,” in Proc. of AAAI, 2024.

[76] X. He, X. Bresson, T. Laurent et al., “Harnessing explanations:
Llm-to-lm interpreter for enhanced text-attributed graph repre-
sentation learning,” in Proc. of ICLR, 2024.

[77] C. Raffel, N. Shazeer, A. Roberts et al., “Exploring the limits of
transfer learning with a unified text-to-text transformer,” JMLR,
2020.

[78] D. Zhou, L. Zheng, D. Fu et al., “Mentorgnn: Deriving curricu-
lum for pre-training gnns,” in Proc. of CIKM, 2022.

[79] J. Li, D. Li, S. Savarese, and S. C. H. Hoi, “BLIP-2: bootstrap-
ping language-image pre-training with frozen image encoders
and large language models,” in Proc. of ICML, 2023.

[80] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and
R. D. Hjelm, “Deep graph infomax,” in Proc. of ICLR, 2019.

[81] T. N. Kipf and M. Welling, “Variational graph auto-encoders,”
NIPS Workshop on Bayesian Deep Learning, 2016.

[82] X. Gong, C. Yang, and C. Shi, “Ma-gcl: Model augmentation
tricks for graph contrastive learning,” in Proc. of AAAI, 2023.

[83] Z. Wen, Y. Fang, Y. Liu, Y. Guo, and S. Hao, “Voucher
abuse detection with prompt-based fine-tuning on graph neural
networks,” in Proc. of CIKM, 2023.

[84] J. Qiu, Q. Chen, Y. Dong et al., “Gcc: Graph contrastive coding
for graph neural network pre-training,” in Proc. of KDD, 2020.

[85] Y. You, T. Chen, Y. Sui et al., “Graph contrastive learning with
augmentations,” Proc. of NeurIPS, 2020.

[86] Y. Guo, C. Yang, Y. Chen, J. Liu, C. Shi, and J. Du, “A data-
centric framework to endow graph neural networks with out-
of-distribution detection ability,” in Proc. of KDD, 2023.

[87] T. Fang, Y. M. Zhang, Y. Yang et al., “Universal prompt tuning
for graph neural networks,” in Proc. of NeurIPS, 2023.

[88] B. Weisfeiler and A. Leman, “The reduction of a graph to
canonical form and the algebra which appears therein,” nti,
Series, 1968.

[89] L. Wu, H. Lin, C. Tan, Z. Gao, and S. Z. Li, “Self-supervised
learning on graphs: Contrastive, generative, or predictive,”
IEEE TKDE, 2021.

[90] Y. Xie, Z. Xu, J. Zhang, Z. Wang, and S. Ji, “Self-supervised
learning of graph neural networks: A unified review,” IEEE
TPAMI, 2022.

[91] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all
you need,” Proc. of NeurIPS, 2017.

[92] A. Dosovitskiy, L. Beyer, A. Kolesnikov et al., “An image
is worth 16x16 words: Transformers for image recognition at
scale,” in Proc. of ICLR, 2021.

[93] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer
using shifted windows,” in Proc. of ICCV, 2021.

[94] J. Kim, D. Nguyen, S. Min, S. Cho, M. Lee, H. Lee, and
S. Hong, “Pure transformers are powerful graph learners,” in
Proc. of NeurIPS, 2022.

[95] J. Zhang, H. Zhang, C. Xia, and L. Sun, “Graph-bert: Only
attention is needed for learning graph representations,” arXiv
preprint arXiv:2001.05140, 2020.

[96] Y. Rong, Y. Bian, T. Xu et al., “Self-supervised graph trans-
former on large-scale molecular data,” Proc. of NeurIPS, 2020.

[97] L. Müller, M. Galkin, C. Morris, and L. Rampásek, “Attending

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 18

to graph transformers,” TMLR, 2024.
[98] H. Zhao, A. Chen, X. Sun, H. Cheng, and J. Li, “All in one

and one for all: A simple yet effective method towards cross-
domain graph pretraining,” in Proc. of KDD, 2024, pp. 4443–
4454.

[99] J. Zhao, D. Jin, M. Ge et al., “Fug: Feature-universal graph
contrastive pre-training for graphs with diverse node features,”
in Proc. of NeurIPS, 2024.

[100] Z. Hu, Y. Dong, K. Wang et al., “Gpt-gnn: Generative pre-
training of graph neural networks,” in Proc. of KDD, 2020.

[101] Y. Sun, Q. Zhu, Y. Yang, C. Wang, T. Fan, J. Zhu, and
L. Chen, “Fine-tuning graph neural networks by preserving
graph generative patterns,” in Proc. of AAAI, 2024, pp. 9053–
9061.

[102] B. Lester, R. Al-Rfou, and N. Constant, “The power of scale for
parameter-efficient prompt tuning,” in Proc. of EMNLP, 2021.

[103] X. Liu, K. Ji, Y. Fu, W. Tam, Z. Du, Z. Yang, and J. Tang, “P-
tuning: Prompt tuning can be comparable to fine-tuning across
scales and tasks,” in Proc. of ACL, 2022, pp. 61–68.

[104] Y. Yan, P. Zhang, Z. Fang, and Q. Long, “Inductive graph
alignment prompt: Bridging the gap between graph pre-training
and inductive fine-tuning from spectral perspective,” in Proc. of
WWW, 2024, pp. 4328–4339.

[105] C. Niu, G. Pang, L. Chen, and B. Liu, “Replay-and-forget-
free graph class-incremental learning: A task profiling and
prompting approach,” in Proc. of NeurIPS, 2024.

[106] X. Yu, Z. Liu, Y. Fang, Z. Liu, S. Chen, and X. Zhang, “Gener-
alized graph prompt: Toward a unification of pre-training and
downstream tasks on graphs,” IEEE TKDE, 2024.

[107] X. Yu, J. Zhang, Y. Fang, and R. Jiang, “Non-homophilic graph
pre-training and prompt learning,” in Proc. of KDD, vol. 34,
2025, pp. 22 667–22 681.

[108] X. Jiang, Y. Lu, Y. Fang, and C. Shi, “Contrastive pre-training
of gnns on heterogeneous graphs,” in Proc. of CIKM, 2021.

[109] X. Jiang, T. Jia, Y. Fang et al., “Pre-training on large-scale
heterogeneous graph,” in Proc. of KDD, 2021.

[110] X. Yu, C. Zhou, Y. Fang, and X. Zhang, “Multigprompt for
multi-task pre-training and prompting on graphs,” in Proc. of
WWW, 2024, pp. 515–526.

[111] X. Yu, Y. Fang, Z. Liu, and X. Zhang, “Hgprompt: Bridging
homogeneous and heterogeneous graphs for few-shot prompt
learning,” in Proc. of AAAI, 2024.

[112] Y. Deng, R. Zhang, P. Xu, J. Ma, and Q. Gu, “Pre-trained
hypergraph convolutional neural networks with self-supervised
learning,” TMLR, 2024.

[113] M. Yang, Z. Liu, L. Yang et al., “Instruction-based hypergraph
pretraining,” in Proc. of SIGIR, 2024.

[114] Q. Zhang, C. Huang, L. Xia et al., “Spatial-temporal graph
learning with adversarial contrastive adaptation,” in Proc. of
ICML, 2023.

[115] Z. Li, L. Xia, Y. Xu, and C. Huang, “Gpt-st: Generative pre-
training of spatio-temporal graph neural networks,” in Proc. of
NeurIPS, 2023.

[116] R. Ye, C. Zhang, R. Wang, S. Xu, and Y. Zhang, “Language is
all a graph needs,” in Proc. of EACL, 2024.

[117] J. Guo, L. Du, and H. Liu, “Gpt4graph: Can large language
models understand graph structured data? an empirical eval-
uation and benchmarking,” arXiv preprint arXiv:2305.15066,
2023.

[118] Z. Chen, H. Mao, H. Li et al., “Exploring the potential of large
language models (llms) in learning on graphs,” ACM SIGKDD
Explorations Newsletter, vol. 25, no. 2, pp. 42–61, 2024.

[119] H. Zhao, S. Liu, M. Chang et al., “Gimlet: A unified graph-
text model for instruction-based molecule zero-shot learning,”
in Proc. of NeurIPS, vol. 36, 2023.

[120] Y. Zhang, K. Gong, K. Zhang, H. Li, Y. Qiao, W. Ouyang,
and X. Yue, “Meta-transformer: A unified framework for mul-
timodal learning,” arXiv preprint arXiv:2307.10802, 2023.

[121] P. He, X. Liu, J. Gao, and W. Chen, “Deberta: Decoding-
enhanced bert with disentangled attention,” in Proc. of ICLR,
2021.

[122] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embed-
dings using siamese bert-networks,” in Proc. of EMNLP, 2019.

[123] OpenAI, “GPT-4 technical report,” arXiv preprint
arXiv:2303.08774, 2023.

[124] F. Wenkel, G. Wolf, and B. Knyazev, “Pretrained language
models to solve graph tasks in natural language,” in ICML

2023 Workshop on Structured Probabilistic Inference {\&}
Generative Modeling, 2023.

[125] J. Huang, X. Zhang, Q. Mei, and J. Ma, “Can llms effec-
tively leverage graph structural information: when and why,”
NeurIPS2023 workshop, 2023.

[126] N. Chen, Y. Li, J. Tang, and J. Li, “Graphwiz: An instruction-
following language model for graph problems,” in Proc. of
KDD, 2024.

[127] L. Ouyang, J. Wu, X. Jiang et al., “Training language models to
follow instructions with human feedback,” in Proc. of NeurIPS,
2022.

[128] A. Antonucci, G. Piqué, and M. Zaffalon, “Zero-shot causal
graph extrapolation from text via llms,” AAAI 2024 XAI4Sci
workshop, 2024.

[129] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov,
and Q. V. Le, “Xlnet: Generalized autoregressive pretraining
for language understanding,” Proc. of NeurIPS, 2019.

[130] M. Lewis, Y. Liu, N. Goyal et al., “BART: denoising sequence-
to-sequence pre-training for natural language generation, trans-
lation, and comprehension,” in Proc. of ACL, 2020.

[131] N. Saunshi, O. Plevrakis, S. Arora, M. Khodak, and H. Khan-
deparkar, “A theoretical analysis of contrastive unsupervised
representation learning,” in Proc. of ICML, 2019.

[132] C. Liu and B. Wu, “Evaluating large language models on
graphs: Performance insights and comparative analysis,” arXiv
preprint arXiv:2308.11224, 2023.

[133] Z. Jiang, F. F. Xu, J. Araki, and G. Neubig, “How can we know
what language models know?” TACL, 2020.

[134] C. Poth, J. Pfeiffer, A. Rücklé, and I. Gurevych, “What to
pre-train on? efficient intermediate task selection,” in Proc. of
EMNLP, 2021.

[135] X. Liu, P. He, W. Chen, and J. Gao, “Multi-task deep neural
networks for natural language understanding,” in Proc. of ACL,
2019.

[136] N. Houlsby, A. Giurgiu, S. Jastrzebski et al., “Parameter-
efficient transfer learning for nlp,” in Proc. of ICML, 2019.

[137] Z. Zhang, X. Wang, Z. Zhang, H. Li, Y. Qin, S. Wu, and
W. Zhu, “Llm4dyg: Can large language models solve problems
on dynamic graphs?” in Proc. of KDD, 2024.

[138] C. Mavromatis, V. N. Ioannidis, S. Wang et al., “Train your
own GNN teacher: Graph-aware distillation on textual graphs,”
in Proc. of KDD, 2023.

[139] E. Chien, W. Chang, C. Hsieh, H. Yu, J. Zhang, O. Milenkovic,
and I. S. Dhillon, “Node feature extraction by self-supervised
multi-scale neighborhood prediction,” in Proc. of ICLR, 2022.

[140] R. Lei, Y. Hu, Y. Ren, and Z. Wei, “Intruding with words:
Towards understanding graph injection attacks at the text level,”
in Proc. of NeurIPS, 2024.

[141] H. Xie, D. Zheng, J. Ma et al., “Graph-aware language model
pre-training on a large graph corpus can help multiple graph
applications,” in Proc. of KDD, 2023.

[142] H. Liu, J. Feng, L. Kong, N. Liang, D. Tao, Y. Chen, and
M. Zhang, “One for all: Towards training one graph model for
all classification tasks,” in Proc. of ICLR, 2024.

[143] B. Jin, Y. Zhang, Q. Zhu, and J. Han, “Heterformer:
Transformer-based deep node representation learning on het-
erogeneous text-rich networks,” in Proc. of KDD, 2023.

[144] B. Jin, Y. Zhang, Y. Meng, and J. Han, “Edgeformers: Graph-
empowered transformers for representation learning on textual-
edge networks,” in Proc. of ICLR, 2023.

[145] W. Wei, X. Ren, J. Tang et al., “Llmrec: Large language models
with graph augmentation for recommendation,” in Proc. of
WSDM, 2024, pp. 806–815.

[146] Y. Tan, Z. Zhou, H. Lv, W. Liu, and C. Yang, “Walklm: A
uniform language model fine-tuning framework for attributed
graph embedding,” in Proc. of NeurIPS, 2023.

[147] J. Zhu, X. Song, V. Ioannidis, D. Koutra, and C. Faloutsos,
“Touchup-g: Improving feature representation through graph-
centric finetuning,” in Proc. of SIGIR, 2024, pp. 2662–2666.

[148] B. Jin, W. Zhang, Y. Zhang, Y. Meng, H. Zhao, and J. Han,
“Learning multiplex embeddings on text-rich networks with
one text encoder,” in NeurIPS Workshop, 2023.

[149] S. Sun, Y. Ren, C. Ma, and X. Zhang, “Large language models
as topological structure enhancers for text-attributed graphs,”
arXiv preprint arXiv:2311.14324, 2023.

[150] Z. Chen, H. Mao, H. Wen, H. Han, W. Jin, H. Zhang, H. Liu,
and J. Tang, “Label-free node classification on graphs with

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 19

large language models (llms),” in Proc. of ICLR, 2024.
[151] J. Yang, Z. Liu, S. Xiao et al., “Graphformers: Gnn-nested

transformers for representation learning on textual graph,”
Proc. of NeurIPS, 2021.

[152] J. Zhao, M. Qu, C. Li, H. Yan, Q. Liu, R. Li, X. Xie, and
J. Tang, “Learning on large-scale text-attributed graphs via
variational inference,” in Proc. of ICLR, 2023.

[153] Z. Wen and Y. Fang, “Augmenting low-resource text classifica-
tion with graph-grounded pre-training and prompting,” in Proc.
of SIGIR, 2023, pp. 506–516.

[154] X. Huang, K. Han, Y. Yang et al., “Can gnn be good adapter
for llms?” in Proc. of WWW, 2024, pp. 893–904.

[155] Y. Zhu, Y. Wang, H. Shi, and S. Tang, “Efficient tuning and
inference for large language models on textual graphs,” in Proc.
of IJCAI, 2024.

[156] B. Jin, W. Zhang, Y. Zhang, Y. Meng, X. Zhang, Q. Zhu,
and J. Han, “Patton: Language model pretraining on text-rich
networks,” in Proc. of ACL, 2023, pp. 7005–7020.

[157] L. Xia, B. Kao, and C. Huang, “Opengraph: Towards open
graph foundation models,” in Findings of EMNLP, 2024, pp.
2365–2379.

[158] X. Ren, W. Wei, L. Xia et al., “Representation learning with
large language models for recommendation,” in Proc. of WWW.
ACM, 2024, pp. 3464–3475.

[159] C. Edwards, C. Zhai, and H. Ji, “Text2mol: Cross-modal
molecule retrieval with natural language queries,” in Proc. of
EMNLP, 2021.

[160] S. Liu, W. Nie, C. Wang et al., “Multi-modal molecule
structure–text model for text-based retrieval and editing,” NMI,
vol. 5, no. 12, pp. 1447–1457, 2023.

[161] P. Seidl, A. Vall, S. Hochreiter, and G. Klambauer, “Enhancing
activity prediction models in drug discovery with the ability to
understand human language,” in Proc. of ICML, 2023.

[162] Z. Liu, S. Li, Y. Luo et al., “Molca: Molecular graph-language
modeling with cross-modal projector and uni-modal adapter,”
in Proc. of EMNLP, 2023, pp. 15 623–15 638.

[163] P. Liu, Y. Ren, J. Tao, and Z. Ren, “Git-mol: A multi-modal
large language model for molecular science with graph, image,
and text,” Comput. Biol. Medicine, vol. 171, p. 108073, 2024.

[164] M. Zhang, M. Sun, P. Wang et al., “Graphtranslator: Aligning
graph model to large language model for open-ended tasks,” in
Proc. of WWW, 2024, pp. 1003–1014.

[165] J. Tang, Y. Yang, W. Wei, L. Shi, L. Su, S. Cheng, D. Yin,
and C. Huang, “Graphgpt: Graph instruction tuning for large
language models,” in Proc. of SIGIR, 2024.

[166] T. Zou, L. Yu, Y. Huang, L. Sun, and B. Du, “Pretraining
language models with text-attributed heterogeneous graphs,” in
Findings of EMNLP, 2023, pp. 10 316–10 333.

[167] Z. Liu, X. He, Y. Tian, and N. V. Chawla, “Can we soft prompt
llms for graph learning tasks?” in Proc. of WWW, 2024.

[168] J. Wang, J. Wu, Y. Wu et al., “Instructgraph: Boosting large
language models via graph-centric instruction tuning and pref-
erence alignment,” in Findings of ACL, 2024.

[169] Y. Shi, A. Zhang, E. Zhang, Z. Liu, and X. Wang, “Relm:
Leveraging language models for enhanced chemical reaction
prediction,” in Findings of EMNLP, 2023, pp. 5506–5520.

[170] D. Wang, Y. Zuo, F. Li, and J. Wu, “Llms as zero-shot graph
learners: Alignment of GNN representations with LLM token
embeddings,” in Proc. of NeurIPS, 2024.

[171] X. He, Y. Tian, Y. Sun et al., “G-retriever: Retrieval-augmented
generation for textual graph understanding and question an-
swering,” in Proc. of NeurIPS, 2024.

[172] J. Tang, Y. Yang, W. Wei, L. Shi, L. Xia, D. Yin, and C. Huang,
“Higpt: Heterogeneous graph language model,” in Proc. of
KDD, 2024, pp. 2842–2853.

[173] H. Gao, C. Zhang, F. Wu, J. Zhao, C. Zheng, and H. Liu,
“Bootstrapping heterogeneous graph representation learning
via large language models: A generalized approach,” in Proc.
of AAAI, 2025.

[174] A. Bazaga, P. Liò, and G. Micklem, “Hyperbert: Mixing
hypergraph-aware layers with language models for node classi-
fication on text-attributed hypergraphs,” in Findings of EMNLP,
2024.

[175] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta,
and J. Leskovec, “Open graph benchmark: Datasets for ma-
chine learning on graphs,” Proc. of NeurIPS, 2020.

[176] A. Khatua, V. S. Mailthody, B. Taleka, T. Ma, X. Song, and

W.-m. Hwu, “Igb: Addressing the gaps in labeling, features,
heterogeneity, and size of public graph datasets for deep learn-
ing research,” in Proc. of KDD, 2023, pp. 4284–4295.

[177] Z. Li, Z. Gou, X. Zhang, Z. Liu, S. Li, Y. Hu, C. Ling, Z. Zhang,
and L. Zhao, “Teg-db: A comprehensive dataset and benchmark
of textual-edge graphs,” in Proc. of NeurIPS, 2024.

[178] X. Li, W. Chen, Q. Chu, H. Li, Z. Sun, R. Li, C. Qian, Y. Wei,
Z. Liu, C. Shi et al., “Can large language models analyze
graphs like professionals? a benchmark, datasets and models,”
in Proc. of NeurIPS, 2024.

[179] Z. Zeng, J. Yu, T. Gao, Y. Meng, T. Goyal, and D. Chen,
“Evaluating large language models at evaluating instruction
following,” in Proc. of ICLR, 2024.

[180] B. Wang, C. Xu, S. Wang et al., “Adversarial glue: A multi-
task benchmark for robustness evaluation of language models,”
in Proc. of NeurIPS, 2021.

[181] B. Wang, W. Chen, H. Pei et al., “Decodingtrust: A compre-
hensive assessment of trustworthiness in gpt models,” in Proc.
of NeurIPS, 2023.

[182] R. Bommasani, P. Liang, and T. Lee, “Holistic evaluation
of language models,” Annals of the New York Academy of
Sciences, 2023.

[183] T. Dao and A. Gu, “Transformers are ssms: Generalized models
and efficient algorithms through structured state space duality,”
in Proc. of ICML, 2024.

[184] Y. Yu, S. Buchanan, D. Pai, T. Chu, Z. Wu, S. Tong, B. Ha-
effele, and Y. Ma, “White-box transformers via sparse rate
reduction,” in Proc. of NeurIPS, vol. 36, 2024.

[185] Z. Wang, Y. Li, B. Ding, Y. Li, and Z. Wei, “Exploring neural
scaling law and data pruning methods for node classification
on large-scale graphs,” in Proc. of WWW, 2024, pp. 780–791.

[186] H. Mao, Z. Chen, W. Tang et al., “Position: Graph foundation
models are already here,” in Proc. of ICML, 2024.

[187] H. Wang, Z. Jiang, Y. You et al., “Graph mixture of experts:
learning on large-scale graphs with explicit diversity model-
ing,” in Proc. of NeurIPS, 2023, pp. 50 825–50 837.

[188] N. Fei, Z. Lu, Y. Gao et al., “Towards artificial general
intelligence via a multimodal foundation model,” Nature Com-
munications, 2022.

[189] Y. Yuan, “On the power of foundation models,” in Proc. of
ICML. PMLR, 2023, pp. 40 519–40 530.

[190] A. Davies, R. Green, N. Ajmeri, and T. S. Filho, “Its all graph
to me: Single-model graph representation learning on multiple
domains,” in NeurIPS Workshop, 2023.

[191] Y. Zhu, Y. Wang, H. Shi, Z. Zhang, D. Jiao, and S. Tang,
“Graphcontrol: Adding conditional control to universal graph
pre-trained models for graph domain transfer learning,” in Proc.
of WWW, 2024, pp. 539–550.

[192] Y. Jiang, C. Chan, M. Chen, and W. Wang, “Lion: Adversarial
distillation of proprietary large language models,” in Proc. of
EMNLP, 2023, pp. 3134–3154.

[193] Y. Yao, P. Wang, B. Tian, S. Cheng, Z. Li, S. Deng, H. Chen,
and N. Zhang, “Editing large language models: Problems,
methods, and opportunities,” in Proc. of EMNLP, 2023.

[194] A. Hendy, M. Abdelrehim, A. Sharaf et al., “How good are gpt
models at machine translation? a comprehensive evaluation,”
arXiv preprint arXiv:2302.09210, 2023.

[195] H. Zhang, H. Song, S. Li, M. Zhou, and D. Song, “A survey
of controllable text generation using transformer-based pre-
trained language models,” ACM CSUR, 2023.

[196] D. Zhang, X. Huang, Z. Liu et al., “AGL: A scalable system
for industrial-purpose graph machine learning,” Proc. VLDB
Endow., 2020.

[197] J. Wang, S. Zhang, Y. Xiao, and R. Song, “A review on graph
neural network methods in financial applications,” Journal of
Data Science, vol. 20, no. 2, pp. 111–134, 2022.

[198] J. Yu, R. He, and Z. Ying, “Thought propagation: An analogical
approach to complex reasoning with large language models,” in
Proc. of ICLR, 2024.

[199] O. J. Wouters, M. McKee, and J. Luyten, “Estimated research
and development investment needed to bring a new medicine
to market, 2009-2018,” Jama, 2020.

[200] S. Liu, H. Wang, W. Liu et al., “Pre-training molecular graph
representation with 3d geometry,” in Proc. of ICLR, 2022.

[201] J. Xia, Y. Zhu, Y. Du, and S. Z. Li, “A systematic survey of
chemical pre-trained models,” in Proc. of IJCAI, 2023.

[202] D. Zhuang, S. Wang, H. Koutsopoulos et al., “Uncertainty

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 20

quantification of sparse travel demand prediction with spatial-
temporal graph neural networks,” in Proc. of KDD, 2022.

[203] X. Wang, Y. Ma, Y. Wang, W. Jin, X. Wang, J. Tang, C. Jia,
and J. Yu, “Traffic flow prediction via spatial temporal graph
neural network,” in Proc. of WWW, 2020.

[204] X. Wang, D. Wang, L. Chen, F.-Y. Wang, and Y. Lin, “Building
transportation foundation model via generative graph trans-
former,” in Proc. of ITSC. IEEE, 2023, pp. 6042–6047.

[205] T. Sun, Y. Shao, H. Qian et al., “Black-box tuning for language-
model-as-a-service,” in Proc. of ICML, 2022.

[206] Y. Zhang, Y. Li, L. Cui et al., “Siren’s song in the ai ocean:
A survey on hallucination in large language models,” arXiv
preprint arXiv:2309.01219, 2023.

[207] R. Ren, Y. Wang, Y. Qu et al., “Investigating the factual
knowledge boundary of large language models with retrieval
augmentation,” arXiv preprint arXiv:2307.11019, 2023.

[208] S. Li, X. Li, L. Shang et al., “How pre-trained language
models capture factual knowledge? a causal-inspired analysis,”
in Findings of ACL, 2022, pp. 1720–1732.

[209] Z. Zhang, M. Zhang, Y. Yu, C. Yang, J. Liu, and C. Shi,
“Endowing pre-trained graph models with provable fairness,”
in Proc. of WWW, 2024, pp. 1045–1056.

[210] Z. Zhang, M. Chen, M. Backes, Y. Shen, and Y. Zhang,
“Inference attacks against graph neural networks,” in USENIX
Security, 2022, pp. 4543–4560.

[211] Z. Zhang, X. Wang, H. Zhou, Y. Yu, M. Zhang, C. Yang, and
C. Shi, “Can large language models improve the adversarial
robustness of graph neural networks?” in Proc. of KDD, 2025.

[212] X. Wang, H. Liu, C. Shi, and C. Yang, “Be confident! towards
trustworthy graph neural networks via confidence calibration,”
Proc. of NeurIPS, 2021.

[213] J. Tan, S. Geng, Z. Fu et al., “Learning and evaluating graph
neural network explanations based on counterfactual and fac-
tual reasoning,” in Proc. of WWW, 2022.

[214] C. Wu, F. Wu, L. Lyu, T. Qi, Y. Huang, and X. Xie, “A fed-
erated graph neural network framework for privacy-preserving
personalization,” Nature Communications, 2022.

[215] B. Yan, Y. Cao, H. Wang, W. Yang, J. Du, and C. Shi,
“Federated heterogeneous graph neural network for privacy-
preserving recommendation,” in Proc. of WWW, 2024.

[216] R. Staab, M. Vero, M. Balunovic, and M. Vechev, “Beyond
memorization: Violating privacy via inference with large lan-
guage models,” in Proc. of ICLR, 2024.

[217] H. Chen, T. Zhu, T. Zhang, W. Zhou, and P. S. Yu, “Privacy and
fairness in federated learning: on the perspective of trade-off,”
ACM CSUR, 2023.

[218] Z. Shi, Y. Wang, F. Yin, X. Chen, K.-W. Chang, and C.-J.
Hsieh, “Red teaming language model detectors with language
models,” TACL, vol. 12, pp. 174–189, 2024.

[219] B. Fatemi, L. El Asri, and S. M. Kazemi, “Slaps: Self-
supervision improves structure learning for graph neural net-
works,” in Proc. of NeurIPS, vol. 34, 2021, pp. 22 667–22 681.

[220] L. Zeng, L. Li, Z. Gao, P. Zhao, and J. Li, “Imgcl: Revisiting
graph contrastive learning on imbalanced node classification,”
in Proc. of AAAI, vol. 37, no. 9, 2023, pp. 11 138–11 146.

[221] W. Tu, B. Xiao, X. Liu, S. Zhou, Z. Cai, and J. Cheng, “Re-
visiting initializing then refining: an incomplete and missing
graph imputation network,” IEEE TNNLS, 2024.

[222] Z. Lian, L. Chen, L. Sun, B. Liu, and J. Tao, “Gcnet: Graph
completion network for incomplete multimodal learning in
conversation,” IEEE TPAMI, vol. 45, no. 7, pp. 8419–8432,
2023.

[223] X. Wang, H. Ji, C. Shi et al., “Heterogeneous graph attention
network,” in Proc. of WWW, 2019.

[224] J. M. Thomas, A. Moallemy-Oureh, S. Beddar-Wiesing, and
C. Holzhüter, “Graph neural networks designed for different
graph types: A survey,” TMLR, 2023.

[225] H. Yang, “Aligraph: A comprehensive graph neural network
platform,” in Proc. of KDD, 2019.

[226] V. P. Dwivedi, L. Rampášek, M. Galkin et al., “Long range
graph benchmark,” in Proc. of NeurIPS, 2022.

[227] R. Zhu, X. Jiang, J. Lu, and S. Li, “Cross-domain graph
convolutions for adversarial unsupervised domain adaptation,”
IEEE TNNLS, 2021.

[228] J. You, Z. Ying, and J. Leskovec, “Design space for graph
neural networks,” Proc. of NeurIPS, 2020.

[229] P. Li, Y. Wang, H. Wang, and J. Leskovec, “Distance encoding:

Design provably more powerful neural networks for graph
representation learning,” Proc. of NeurIPS, 2020.

[230] X. Zou, X. Zhao, P. Liò, and Y. Zhao, “Will more expressive
graph neural networks do better on generative tasks?” in Proc.
of LoG. PMLR, 2024, pp. 21–1.

Jiawei Liu received the B.S. degree in computer science and technol-
ogy from Beijing University of Posts and Telecommunications, Beijing,
China, in 2020. He is currently pursuing the Ph.D. degree in computer
science and technology from Beijing University of Posts and Telecom-
munications, Beijing, China. His research interests include graph data
mining and machine learning.

Cheng Yang is an Associate Professor of Computer Science at Beijing
University of Posts and Telecommunications (BUPT). He received his
Bachelor and Ph.D. degrees from Tsinghua University in 2014 and 2019,
respectively. Cheng’s research interests include data mining, natural lan-
guage processing and social computing. He has published 60+ papers
in top journals and conferences, such as NeurIPS, ICLR, KDD and ACL.

Zhiyuan Lu received the BS degree in communication engineering from
Beijing University of Posts and Telecommunications, Beijing, China, in
2022. He is currently pursuing the PhD degree in computer science and
technology from Beijing University of Posts and Telecommunications,
Beijing, China. His current research interests are in graph neural net-
works, data mining and machine learning.

Junze Chen is a master’s student at the School of Computer Science,
Beijing University of Posts and Telecommunications (BUPT). He ob-
tained his Bachelor’s degree in Computer Science and Technology from
BUPT in 2022. His primary research interests are in data mining, graph
neural networks, and natural language processing.

Yibo Li received the B.S. degree from the Beijing University of Posts and
Telecommunications, China, in 2022. She is currently working toward
the master’s degree with the Beijing University of Posts and Communica-
tions, China. Her current research interests are in graph neural networks
and large language models.

Mengmei Zhang received her Ph.D. degree in computer science and
technology from Beijing University of Posts and Telecommunications in
2023. She is currently a senior researcher at China Telecom Bestpay.
Her research interests include graph mining, large language models,
and risk control.

Ting Bai received her Ph.D. degree from Renmin University of China in
2019. She currently is an associate professor in the School of Computer
Science, Beijing University of Posts and Telecommunications. Her major
research interests are in recommender systems and Human behavior
analysis. She has published several papers on SIGIR, WWW, KDD,
CIKM, WSDM, TKDE, and so on.

Yuan Fang received the Ph.D. degree in computer science from the
University of Illinois at Urbana-Champaign in 2014. He is currently an
assistant professor with the School of Computing and Information Sys-
tems, Singapore Management University. His current research focuses
on graph data mining, machine learning and their applications.

Lichao Sun is an Assistant Professor in Computer Science and Engi-
neering at Lehigh University. He obtained his Ph.D. degree in Computer
Science at University of Illinois Chicago in 2020. His research interests
are Trustworthy AI and Medical AI in various applications. He have
published more than 90 papers in top-tier journals and conferences,
such as Nature Medicine, NeurIPS, ICML, ICLR, AAAI and IJCAI.

Philip S. Yu is a Distinguished Professor at the University of Illinois
Chicago, holding the Wexler Chair in information and Technology. He
is a Fellow of the ACM and IEEE. He has published over 2,000 papers
and holds or has applied for over 300 US patents. His main research
interests include big data, data mining, privacy preserving publishing
and mining, data streams, database systems, Internet applications and
technologies.

Chuan Shi received the Ph.D. degree from the lCT of Chinese Aca-
demic of Sciences in 2007. He joined the Beijing University of Posts
and Telecommunications in 2007 and is a professor and deputy director
of Beijing Key Lab of Intelligent Telecommunications Software and Multi-
media at present. His research interests are in data mining and machine
learning. He has published more than 100 papers in refereed journals
and conferences, such as TPAMI, TKDE, KDD, WWW and NeurIPS.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Supplemental Materials:

A. Impact of Graph Data on GFMs
The success of foundation models depends on high-quality train-
ing data, and foundation models exhibit significantly different
performance on various types of test data. In this section, we
discuss the impact of graph data on graph foundation models from
three aspects: graph type, graph scale and graph diversity.

Graph Type. Based on the number of categories of nodes and
edges in a graph, we can categorize graphs into homogeneous
graphs and heterogeneous graphs. In homogeneous graphs, all
nodes and edges belong to the same category. For example, in a
social graph where nodes represent individuals (users) and edges
represent friendship relationships, it is a homogeneous graph
because all nodes are individuals and all edges represent friendship
relationships. Heterogeneous graphs, on the other hand, have more
than one type of nodes or edges, representing different types of
entities and relationships [33]. For instance, an e-commerce graph
may include nodes for users, products, and purchase relationships,
forming a heterogeneous graph. For GFMs, handling heteroge-
neous graphs poses greater challenges and typically requires the
design of specific backbone architectures and optimization objec-
tives. Nonetheless, utilizing the meta-path based approach [223],
a heterogeneous graph can be mapped into multiple homogeneous
graphs, one for each meta-path. For example, one can apply the
GFM trained on homogeneous graphs to each of these meta-path
induced homogeneous graphs, separately, to get node embedding.
Then, these embeddings on homogeneous graphs under different
meta-paths can be fused together. However, beyond homogeneous
graphs and heterogeneous graphs, there are some more complex
types of graphs in the real world, such as dynamic graphs and
hypergraphs [224], which poses additional challenges for GFM.

Graph Scale. Based on the number of nodes and edges in
a graph, we can categorize graphs into relatively small graphs
and large graphs. Small graphs are of smaller scale, typically
containing dozens to hundreds of nodes and edges. For exam-
ple, chemical molecular graphs represent the structure of small
molecules and typically consist of dozens to hundreds of atoms.
Large graphs, on the other hand, refer to graphs with a significant
number of nodes and edges, often encompassing millions or even
billions of nodes and edges. For instance, e-commerce graph
in Alibaba includes billons of nodes and hundreds of billion
edges [196]. For graph foundation models, large graphs impose
higher demands on the capacities of graph foundation models.
Firstly, large graphs, due to their numerous nodes and typically
sparser edges, introduce more noise and pose greater challenges
in terms of storage and computation [225]. Additionally, large
graphs often exhibit long-range dependency relationships [226],
requiring more neural network layers and a higher number of
parameters, which exacerbates the over-smoothing [39] and over-
squashing [18] problem of GNN-based models.

Graph Diversity. Based on whether a graph dataset originates
from the same domain, we can categorize graphs into same-
domain graphs and cross-domain graphs. Same-domain graphs
refer to graph data from similar or related domains, typically con-
taining nodes and edges of similar types. For example, the social
graphs of Facebook and WeChat come from similar domains.
Cross-domain graphs [227], on the other hand, involve graph
data from different domains or data sources, often comprising
nodes and edges of different types, aimed at addressing multi-
domain problems or cross-domain tasks. For example, academic
networks and molecular graphs come from different domains.
For graph foundation models, supporting cross-domain graphs
presents greater challenges because graphs from different domains
lack a unified underlying semantics. This can result in weak trans-
fer performance or even negative transfer when applying the model
to a new dataset [78]. Therefore, addressing the heterogeneity of

different domains and enabling the same GFM to be applied to
graphs from different domains is a significant challenge for GFMs.

B. Impact of Graph Tasks on GFMs
Language foundation models can be widely applied to various
NLP tasks, while for graph foundation models, the formats of
graph tasks are also quite diverse and can be categorized into three
classes: node-level tasks, edge-level tasks, and graph-level tasks.

Node-level Tasks. Node-level tasks refer to the classifica-
tion, regression, or prediction performed on each node. Common
node-level tasks include node classification, node regression, and
clustering coefficient prediction. For example, in social networks,
graph nodes can represent users, and node classification can be
used to identify users from different social circles.

Edge-level Tasks. Edge-level tasks involve the classification,
regression, or prediction performed on each individual edge. Com-
mon edge-level tasks include edge classification, link prediction,
shortest path prediction, connectivity prediction, and maximum
flow prediction. For example, in e-commerce, link prediction can
be used to predict products that users may be interested in.

Graph-level Tasks. Graph-level tasks focus on the entire
graph. Common graph-level tasks include graph classification,
graph regression, graph generation, graph clustering, graph con-
densation and average clustering coefficient prediction. For exam-
ple, in bioinformatics, graph property prediction can be used to
predict the biological activity or toxicity of molecular compounds,
thereby accelerating the drug discovery process.

In summary, the format of tasks in graphs are highly diverse
and can be categorized into three types: node-level, edge-level,
and graph-level, each of which has wide-ranging applications. This
undoubtedly increases the challenge of homogenization for GFMs.
For example, in graph classification and node classification tasks
on synthetic datasets, modeling structural information is often
more crucial [228]. On the other hand, when dealing with node
classification tasks on graphs with rich node features, modeling
feature information becomes more important [228]. Furthermore,
tasks that are more similar to each other will also have a lower
transfer difficulty, implying that these tasks are more likely to
be addressed using the same GFM. While increasing expressive
power holds promise for improving the performance of many
node-level, edge-level, and graph-level tasks [229], there is also
some work suggesting that overly strong expressive power may
not be necessary for graph generation tasks [230].

C. Details of approaches involved as GNN-based models
We categorize the GNN-based methods in Table 1.

D. Details of approaches involved as LLM-based models
We categorize the LLM-based methods in Table 2.

E. Details of approaches involved as GNN+LLM-based
models
We categorize the GNN+LLM-based methods in Table 3.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

TABLE 1: Details of approaches involved as GNN-based models.

Model Backbone Architecture Pre-training Adaptation

All In One [56] GCN, GAT, Graph Transformer Same-Scale CL Prompt Tuning
PRODIGY [59] GCN, GAT Graph Reconstruction, Supervised Prompt Tuning
DGI [80] GCN Cross-Scale CL Parameter-Efficient FT
GRACE [62] GCN Same-Scale CL Vanilla FT
FUG [99] GCN Same-Scale CL Vanilla FT
VGAE [81] GCN Graph Reconstruction, Property Prediction Vanilla FT
MA-GCL [82] GCN Same-Scale CL Vanilla FT
MultiGPrompt [110] GCN Cross-Scale CL, Graph Reconstruction Prompt Tuning
IGAP [104] GCN, GAT, GraphSAGE Same-Scale CL, Cross-Scale CL, Graph Reconstruction Prompt Tuning
HGPROMPT [111] GCN, GAT, SimpleHGN Graph Reconstruction Prompt Tuning
GraphMAE [64] GAT Graph Reconstruction Parameter-Efficient FT
GraphMAE2 [65] GAT Graph Reconstruction Parameter-Efficient FT
GPPT [68] GraphSAGE Graph Reconstruction, Cross-Scale CL Prompt Tuning
VPGNN [83] GraphSAGE Cross-Scale CL Prompt Tuning
GPT-GNN [100] HGT Graph Reconstruction Vanilla FT
PT-HGNN [109] HGT Same-Scale CL Vanilla FT
CPT-HG [108] HGT Same-Scale CL Vanilla FT
GraphPrompt [55] GIN Graph Reconstruction Prompt Tuning
IHP [113] PHC Graph Reconstruction Prompt Tuning
GraphPrompt+ [106] GIN Graph Reconstruction, Cross-Scale CL, Same-Scale CL Prompt Tuning
ProNoG+ [107] FAGCN Same-Scale CL Prompt Tuning
GCC [84] GIN Same-Scale CL Vanilla FT
GraphCL [85] GIN Same-Scale CL Parameter-Efficient FT
AdapterGNN [66] GIN Cross-Scale CL, Graph Reconstruction, Same-Scale CL Parameter-Efficient FT
PhyGCN [112] HyperGCN Graph Reconstruction Parameter-Efficient FT
GPT-ST [115] GPT-ST Graph Reconstruction Parameter-Efficient FT
GraphST [114] GraphST Same-Scale CL Parameter-Efficient FT
AAGOD [86] GIN Same-Scale CL, Supervised Prompt Tuning
GPF [87] GIN Cross-Scale CL, Graph Reconstruction Prompt Tuning
GCOPE [98] FAGCN Same-Scale CL Prompt Tuning
FOTOM [190] GIN Same-Scale CL Parameter-Efficient FT
TPP [105] SGC Same-Scale CL Prompt Tuning
GraphControl [191] GIN Same-Scale CL Parameter-Efficient FT
G-TUNING [101] GIN Same-Scale CL, Graph Reconstruction Customized FT
Graph-BERT [95] Graph Transformer Graph Reconstruction, Supervised Vanilla FT
GROVER [96] Graph Transformer Property Prediction Vanilla FT
G-Adapter [67] Graph Transformer Supervised, Graph Reconstruction, Property Prediction Parameter-Efficient FT

TABLE 2: Details of approaches involved as LLM-based models.

Model Backbone Architecture Pre-training Adaptation

GIMLET [119] Graph-to-token + Transformer - -
InstructGLM[116] Graph-to-token + Flan-T5/LLaMA MLM,LM Manual Prompt Tuning
NLGraph[60] Graph-to-text + GPTs LM Manual Prompt Tuning
TextForGraph [124] Graph-to-text + GPTs LM Manual Prompt Tuning
When&Why [125] Graph-to-text + GPTs LM Maunal Prompt Tuning
GraphWiz [126] Graph-to-text + LLaMA, Mistral LM Maunal Prompt Tuning
CGForLLM [128] Graph-to-text + GPT4 LM Maunal Prompt Tuning
LLM4DYG [137] Graph-to-text + LLaMA, Vicuna, GPT-3.5 LM Manual Prompt Tuning
GPT4Graph[117] Graph-to-text + GPT-3 LM Manual Prompt Tuning + Automatic Prompt Tuning

Graph-LLM[118] Graph-to-text + BERT, DeBERTa, Sentence-BERT,
GPTs, LLaMA MLM,LM Manual Prompt Tuning + Automatic Prompt Tuning

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

TABLE 3: Details of approaches involved as GNN+LLM-based models.

Model Backbone Architecture Pre-training Adaptation

TAPE [76] GNN-centric LM Tuning-free Prompting + Parameter-Efficient FT
GIANT [139] GNN-centric MLM Vanilla FT
GraD [138] GNN-centric MLM Parameter-Efficient FT
GALM [141] GNN-centric Graph Reconstruction Vanilla FT
OFA [142] GNN-centric MLM Tuning-free Prompting
Heterformer [143] GNN-centric LM Vanilla FT
edgeformers [144] GNN-centric LM Vanilla FT
LLMRec [145] GNN-centric LM Tuning-free Prompting + Parameter-Efficient FT
WalkLM [146] GNN-centric MLM Vanilla FT
METERN [148] GNN-centric MLM Parameter-Efficient FT
LLM-GNN [150] GNN-centric LM Parameter-Efficient FT
WTGIA [140] GNN-centric LM Parameter-Efficient FT
GHGRL [173] GNN-centric LM Vanilla FT
GLEM [152] Symmetric MLM Vanilla FT
GraphFormer [151] Symmetric MLM Vanilla FT
G2P2 [153] Symmetric GTCL Prompt Tuning
Text2Mol [159] Symmetric MLM + GTCL Parameter-Efficient FT
MoleculeSTM [160] Symmetric MLM + GTCL Parameter-Efficient FT
MolCA [162] Symmetric LM Parameter-Efficient FT
CLAMP [161] Symmetric MLM + GTCL Parameter-Efficient FT
GIT-Mol[163] Symmetric LM Prompt Tuning
PATTON [156] Symmetric MLM Parameter-Efficient FT
ENGINE [155] Symmetric LM Parameter-Efficient FT
OpenGraph [157] Symmetric LM Vanilla FT
RLMRec [158] Symmetric LM Parameter-Efficient FT
GraphTranslator [164] LLM-centric LM Parameter-Efficient FT
THLM [166] LLM-centric MLM Parameter-Efficient FT
GraphGPT [165] LLM-centric MLM Prompt Tuning
InstructGraph[168] LLM-centric LM Prompt Tuning
RELM [169] LLM-centric LM Tuning-Free Prompting
GraphPrompter [167] LLM-centric LM Parameter-Efficient FT
HiGPT [172] LLM-centric LM Parameter-Efficient FT
G-Retriever[171] LLM-centric LM Prompt-Tuning
TEA-GLM[170] LLM-centric LM Parameter-Efficient FT
HyperBERT[174] LLM-centric LM Parameter-Efficient FT

	Introduction
	Background
	Deep Graph Learning
	Graph Data
	Backbone Architectures
	Learning Paradigms

	Language Foundation Models
	Language Data
	Backbone Architectures
	Learning Paradigms

	Graph foundation models
	Definition and Key Characteristics
	Key Technologies
	Comparison between GFMs and LLMs
	Similarities
	Intrinsic Differences
	Extrinsic Differences

	Summary

	GNN-based Models
	Backbone Architectures
	Message Passing-Based Methods
	Graph Transformer-Based Methods

	Pre-training
	Contrastive Methods
	Generative Methods

	Adaptation
	Fine-Tuning
	Prompt Tuning

	Discussion

	LLM-based Models
	Backbone Architectures
	Graph-to-token
	Graph-to-text

	Pre-Training
	Language Modeling (LM)
	Masked Language Modeling (MLM)

	Adaptation
	Manual Prompting
	Automatic Prompting

	Discussion

	GNN+LLM-based Models
	Backbone Architectures
	GNN-centric Methods
	Symmetric Methods
	LLM-centric Methods

	Pre-training
	GNN or LLM-based
	Alignment-based

	Adaptation
	Fine-tuning
	Prompt-Tuning

	Discussion

	Challenges and Future Directions
	Challenges about Data and Evaluation
	Data Quantity and Quality
	Evaluation

	Challenges about Models
	Model Architectures
	Model Training

	Challenges about Applications
	Killer Applications
	Trustworthiness

	Conclusions
	Biographies
	Jiawei Liu
	Cheng Yang
	Zhiyuan Lu
	Junze Chen
	Yibo Li
	Mengmei Zhang
	Ting Bai
	Yuan Fang
	Lichao Sun
	Philip S. Yu
	Chuan Shi

