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Abstract
Understanding molecular structure and related knowledge is crucial
for scientific research. Recent studies integrate molecular graphs
with their textual descriptions to enhance molecular representation
learning. However, they focus on the whole molecular graph and
neglect frequently occurring subgraphs, known as motifs, which
are essential for determining molecular properties. Without such
fine-grained knowledge, these models struggle to generalize to un-
seen molecules and tasks that require motif-level insights. To bridge
this gap, we propose FineMolTex, a novel Fine-grained Molecular
graph-Text pre-training framework to jointly learn coarse-grained
molecule-level knowledge and fine-grained motif-level knowledge.
Specifically, FineMolTex consists of two pre-training tasks: a con-
trastive alignment task for coarse-grained matching and a masked
multi-modal modeling task for fine-grained matching. In particular,
the latter predicts the labels of masked motifs and words, which
are selected based on their importance. By leveraging insights from
both modalities, FineMolTex is able to understand the fine-grained
matching between motifs and words. Finally, we conduct extensive
experiments across three downstream tasks, achieving up to 230%
improvement in the text-based molecule editing task. Additionally,
our case studies reveal that FineMolTex successfully captures fine-
grained knowledge, potentially offering valuable insights for drug
discovery and catalyst design.

CCS Concepts
• Networks → Network algorithms; • Computing methodolo-
gies → Artificial intelligence.
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1 Introduction
Comprehending molecular structure and related knowledge is piv-
otal in scientific investigations spanning diverse fields, including
chemistry, drug discovery, and materials science [9]. Recent ad-
vancements in artificial intelligence have yielded promising out-
comes for molecule-based tasks such as retrosynthesis [33] and
drug discovery [9]. The majority of these studies [1, 6, 13, 17, 27]
concentrate solely on the molecular structure, such as SMILES
strings, molecular graphs, and geometric structures. They learn
molecular representations under supervised signals such as toxicity
level and drug activity. However, this supervised learning requires
extensive and costly labeling of pre-defined categories, limiting the
application of previous methods to unseen categories and tasks.

Fortunately, compared to task-specific labeled data, textual de-
scriptions of molecules are fairly abundant. These descriptions can
be found in chemical database annotations, research papers in chem-
istry and biology, and drug instruction sheets [19], providing gen-
eral information on molecular usage, efficacy, chemical properties,
and even detailed insights into specific functional groups and chem-
ical moieties [12]. Hence, several studies explore molecular struc-
tures along with their corresponding descriptions. MoleculeSTM
[19] and MoMu [25] align the whole molecular graphs with their
textual descriptions employing a contrastive learning approach, as
shown in Figure 1(a). MolCA [20] further utilizes a cross-modal
projector to map the graph embedding space to the input space of
the language model. In this way, these studies reduce the reliance
on task-specific labels.

However, these approaches primarily focus on the overall struc-
ture of the molecule level, failing to capture fine-grained knowledge
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This molecule is aromatic and 
contains a carboxyl group.

(a) Molecule-level learning (b) Motif-level learning
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contains a carboxyl group.
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<MASK>
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Figure 1: Comparison of molecule- and motif-level learning, and illustration of downstream tasks.

of the sub-molecule level, such as functional groups. A natural tool
to model sub-molecular structures is the motif [35], which refers
to frequently recurring, significant subgraphs within molecular
graphs. Motifs often play a key role in determining the properties
of the whole molecular graph [35], and motif-level knowledge is
frequently depicted in textual descriptions. As shown in Figure 1(b),
a benzene ring indicating aromaticity property is reflected by the
mention of “aromatic”, and a carboxyl group is reflected by its name
“carboxyl” in the description, revealing a fine-grained matching be-
tween motifs and texts.

Modeling the fine-grained motif-level knowledge is crucial for
two reasons. First, motif-level knowledge is necessary for the gen-
eralization to unseen molecules, which are still largely composed
of various motifs that have been seen before. For example, consider
the zero-shot graph-text retrieval task shown in Figure 1(c), which
aims to find the molecule most relevant to the given text. Even if
the model has not been trained on the candidate molecules, it has
seen many of the motifs within the unseen molecules such as the
benzene and the ethyl group, corresponding to the words “benzene”
and “carboxylic”, respectively. Thus, the model can easily recognize
the relevant molecule. Second, it bridges the gap for downstream
tasks that require fine-grained knowledge. For example, in the mole-
cule editing task illustrated in Figure 1(c), the model aims to modify
part of the molecular structure based on textual instruction. This
requires the model to understand the names or properties of the
motifs like “chloride”.

Despite the significance of this fine-grained knowledge, it is
challenging to jointly learn both molecule- and motif-level knowl-
edge, and also non-trivial to capture fine-grained matching without
supervised signals. To overcome these issues, in this work, we
propose a novel Fine-grainedMolecular graph-Text framework
(FineMolTex) to learn fine-grained motif-level knowledge, as well
as coarse-grainedmolecule-level knowledge. First, to jointly capture
both molecule- and motif-level knowledge, we use motif and word
tokens to capture fine-grained knowledge, as well as two global
tokens, one for the molecular graph and one for its corresponding
text, to capture coarse-grained knowledge. To align this knowledge,
we introduce two pre-training tasks: contrastive alignment based
on global tokens and masked multi-modal learning based on motif
or word tokens. Second, to capture fine-grained matching without
supervised signals, as illustrated in Figure 1(b), we propose impor-
tance scores to identify important motifs and word tokens that

contain crucial fine-grained knowledge, and then selectively mask
these tokens based on their importance. Finally, we incorporate
a cross-attention transformer layer to integrate the embeddings
of motifs and words. By predicting the labels of masked motifs
and words based on information from each other, the learning of
fine-grained alignment knowledge is enhanced. In summary, we
outline our contributions as follows.
• We reveal that learning fine-grained motif-level knowledge pro-
vides key insight for bridging molecular graphs and text descrip-
tions, further empowering the ability to generalize to unseen
molecules and tasks.

• We introduce a novel framework named FineMolTex, consisting
of two self-supervised pre-training tasks, to simultaneously learn
coarse- and fine-grained knowledge. In particular, the masked
multimodal learning task enhances the prediction for important
masked tokens leveraging information from the other modality,
promoting the learning of fine-grained alignment information.

• Experimental results across three downstream tasks underscore
the effectiveness of FineMolTex, with a notable improvement
of up to 238% in the text-based molecule editing task. Further-
more, case studies demonstrate that FineMolTex effectively aligns
motifs and words, further facilitating applications such as drug
discovery and catalyst design.

2 Related Work
We provide a brief review on molecular multi-modal learning. Prior
works predominantly concentrate on modeling the chemical struc-
tures such as 1D SMILES [13], 2D molecular graphs [6, 17, 35],
and 3D geometric structures [1, 27, 29]. They utilize supervised
signals on a predetermined set, and thus cannot generalize to un-
seen categories without labeled examples. Recently, KV-PLM [34]
bridges this gap by linking SMILES with biomedical texts through
a unified language modeling framework. Nonetheless, 1D SMILES
may omit certain structural details and fail to identify structural
similarities among molecules due to its non-uniqueness. To address
these limitations, MoleculeSTM [19] and MoMu [25] employ a con-
trastive learning approach to align the molecular graph with its
corresponding text, thus performing well on unseen molecules and
texts. However, these models are less effective on molecule-to-text
generation tasks because language models are not yet well-versed
in interpreting graphs as generative conditions. Therefore, MolCA
[20] introduces a cross-modal projector to align the embedding
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space of the molecular graph with the language model’s input
space, enabling the comprehension of 2D graphs as generative
conditions. This approach has also been extended to 3D graph
structures, where 3D-MoLM [16] uses a cross-modal projector to
synchronize the embedding space of the 3D geometric structure
with that of the language model. Beyond molecular graphs and
textual descriptions, MV-Mol [21] further incorporates knowledge
graphs, expanding the multi-modal framework to include additional
sources. Additionally, various efforts have been devoted to tackling
specific molecular tasks based on textual data, including zero-shot
instruction molecular learning [36], molecular reaction prediction
[24], and molecular relational modeling [8].

More related works on graph-based molecular learning, as well
as more general multi-modal learning, can be found in Appendix
A.

3 The Proposed Approach
We propose FineMolTex, a novel fine-grained molecular graph-text
framework, learning both molecule- and motif-level knowledge.
The model architecture is outlined in Figure 2. This section first in-
troduces the key components in the architecture and then describes
the two pre-training tasks.

3.1 Key Components of FineMolTex
To capture coarse- and fine-grained knowledge, we propose FineMol-
Tex, consisting of five key components: 1) the tokenization compo-
nent to decompose molecular graphs and texts into motif and word
tokens; 2) a graph encoder to capture the structure of molecules
and motifs; 3) a text encoder to extract the knowledge from texts
and words, 4) a cross-attention layer to integrate information from
different modalities; 5) a Transformer layer to generate embed-
dings for each token based on its contextual tokens from the same
modality.
Tokenization. As shown in Figure 2, for fine-grained modeling,
we fragment the molecular graphs and texts into motif tokens and
word tokens. We employ the BRICS [5] algorithm to transform
the molecular graph into a motif tree, and then generate a motif
sequence following a breadth-first search order. Then we utilize the
post-processing procedure [35] to consolidate the motif vocabulary.
We break the textual description into word tokens using the word
tokenizer of SciBERT [3]. For coarse-grained modeling, the global
tokens of molecule and text, <MOL> and <CLS>, are inserted at the
beginning of the motif and word sequences, respectively, resulting
in the sequences𝑚0,𝑚1, . . . ,𝑚 𝐽 and 𝑡0, 𝑡1, . . . , 𝑡𝐷 , where 𝐽 and 𝐷
are the lengths of the sequences.
Graph Encoder. Let G = (V, E,X) represent a molecular graph
with 𝑁 atoms, where V = {𝑣1, 𝑣2, . . . , 𝑣𝑁 } is the set of atoms,
E ⊆ V ×V denotes the bonds, and X = [x1, x2, . . . , xN] ∈ R𝑁×𝜁

is the atom feature matrix. Here, xi is the feature vector of atom
𝑣𝑖 , and 𝜁 is the dimension of atom features. We utilize GraphMVP
[18], a pre-trained Graph Isomorphism Network (GIN), to encode
each motif token. GraphMVP employs multi-view pre-training to
connect 2D topologies and 3D geometries, leveraging the GEOM
dataset [2], which contains 250K molecular conformations. Denot-
ing the GraphMVP encoder as 𝑓GraphMVP, we encode each atom 𝑣

into an embedding as follows:

gv = 𝑓GraphMVP (xv, xu), 𝑢 ∈ N (𝑣), (1)

where N(𝑣) denotes the set of neighboring atoms of 𝑣 . Then we
pool the atom embeddings into a motif-level embedding, gG , as
follows:

gG = READOUT({gv |𝑣 ∈ G}), ∀ G ∈ {𝑚1,𝑚2, . . . ,𝑚 𝐽 }, (2)

where READOUT(·) is permutation invariant, implemented as the
average function in our model.

To preserve the intrinsic connectivity of the motifs in the original
molecule, we generate position embeddings based on the breadth-
first search order and incorporate them into the motif embeddings
gm0 , gm1 , . . . , gmJ , resulting in updated embeddings g′m0 , g

′
m1 , . . . , g

′
mJ .

Text Encoder.We use SciBERT [3], which has been pre-trained on
texts from the chemical and biological domains, as our text encoder,
denoted as 𝑓bert. It can encode a text sequence as:

bt0 , bt1 , . . . , btD = 𝑓bert (𝑡0, 𝑡1, . . . , 𝑡𝐷 ) . (3)

Subsequently, we add the position embeddings to the token
embeddings following previous work [3], yielding b′t0 , b

′
t1 , . . . , b

′
tD .

Transformer Layer. To capture the contextual information for
each token, we use “encoder-style” Transformer layers [28], which
consist of a multi-head self-attention layer and a fully connected
feed-forward network. This enables the tokens to gather informa-
tion from other tokens in the same modality. We utilize 𝑓trm𝑇

and
𝑓trm𝑀

for the text and molecule modality, respectively, as follows.

zt0 , zt1 , . . . , ztD = 𝑓trm𝑇
(b′t0 , b

′
t1 , . . . , b

′
tD ), (4)

zm0 , zm1 , . . . , zmJ = 𝑓trm𝑀
(g′m0 , g

′
m1 , . . . , g

′
mJ ). (5)

Cross-attention Layer.We integrate information from different
modalities via cross-attention layers 𝑓crs𝑀 and 𝑓crs𝑇 for molecular
graph and text, respectively. Consider the cross-attention layer
𝑓crs𝑀 for molecular graph: the queries are from the same modality,
𝑄𝑚 = 𝑍𝑚𝑊

𝑄
𝑚 , while the keys and values are from the text modality,

𝐾𝑡 = 𝑍𝑡𝑊
𝐾
𝑡 and 𝑉𝑡 = 𝑍𝑡𝑊

𝑉
𝑡 . Here𝑊𝑄

𝑚 ,𝑊𝐾
𝑡 ,𝑊𝑉

𝑡 are learnable
weights, 𝑍𝑚 = [zm0 , zm1 , . . . , zmJ ], and 𝑍𝑡 = [zt0 , zt1 , . . . , ztK ]. Sub-
sequently, the output of scaled dot-product attention is computed
as:

Attention(𝑄𝑚, 𝐾𝑡 ,𝑉𝑡 ) = softmax

(
𝑄𝑚𝐾

𝑇
𝑡√︁

𝑑𝑘

)
𝑉𝑡 , (6)

where 𝑑𝑘 is the dimension of queries and keys. The cross-attention
layer for text is designed similarly. Hence, the encoding of each
token accounts for tokens from the other modality, enabling the
learning of fine-grained alignment at the motif level. The outputs
of the cross-attention layer are:

ht0 , ht1 , . . . , htD = 𝑓crs𝑇 (zt0 , zt1 , . . . , ztD ), (7)
hm0 , hm1 , . . . , hmJ = 𝑓crs𝑀 (zm0 , zm1 , . . . , zmJ ) . (8)

3.2 Pre-training Tasks
We propose two pre-training tasks, the contrastive alignment task
for coarse-grained alignment, and the masked multi-modal model-
ing task for fine-grained alignment.



KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Yibo Li∗ , Yuan Fang† , Mengmei Zhang, and Chuan Shi†

Transformer

Align

Graph Encoder

Transformer

Text Encoder

Transformer

Graph Encoder

Transformer

Text Encoder

ammoniumO-
S

O

O

This molecule is an ammonium betaine derivative of propanesulfonic acid. 
O

H N+ S
O-

O

O

Cross-attention Cross-attention

S
O-

O

O
<MOL> ... ... ... <CLS> ...ammonium propane-

sulfonic
... ...

... ......... ... ...

Contrastive Alignment
(Coarse-grained Alignment)

Masked Multimodal Modeling
(Fine-grained Alignment)

Input

Position Embedding Important Token

N+... of ...

...

S
O-

O

O
<MOL> ... ... ... <CLS> ...ammonium propane-

sulfonic
... ...N+... of ...

... ......... ... ......... ...

... ... ...
Selective MaskingSelective Masking

Masked Token

Importance Score

Tokenization Tokenization

Figure 2: Architecture of FineMolTex. The input is a graph-text pair with both a molecular structure and a corresponding
description. The components in the same color share the same weights.

Contrastive Alignment. For coarse-grained alignment at the mol-
ecule level, we align the graph-text pairs from the same molecules
and contrast the pairs from different molecules, which can be
achieved by optimizing the following loss:

𝐿con = − 1
2
E𝑚0,𝑡0

[
log

exp(cos(zm0 , zt0 )/𝜏)
exp(cos(zm0 , zt0 )/𝜏) +

∑
𝑡 ′0
exp(cos(zm0 , zt′0 )/𝜏)

+ log
exp(cos(zt0 , zm0 )/𝜏)

exp(cos(zt0 , zm0 )/𝜏) +
∑
𝑚′

0
exp(cos(zt0 , zm′

0
)/𝜏)

]
,

(9)

where zm0 , zm′
0
, zt0 , and zt′0 denote the output embeddings from the

Transformer layer, 𝑡 ′0 and𝑚
′
0 are the negative instances sampled

from the same batch of graph-text pairs, and cos(·, ·)/𝜏 is the cosine
similarity scaled by the temperature hyperparameter 𝜏 . In this way,
we capture the molecule-level knowledge, aligning the embedding
space of molecular graphs and texts holistically.
Masked Multi-modal Modeling. For fine-grained alignment at
the motif level, we selectively mask the important tokens and pre-
dict their labels. The token embeddings of the motifs and words
are updated using ℓtrm𝑀

and ℓtrm𝑇
transformer layers, respectively.

Subsequently, information from the two modalities is integrated
via our cross-attention layer. This entire process is iterated for ℓ
times.

Based on the output embeddings of fine-grained tokens from
the cross-attention layer ht1 , . . . , htD and hm0 , hm1 , . . . , hmJ , we uti-
lize two classifiers 𝜌𝑚 and 𝜌𝑡 to predict the labels of the masked
motifs and words: 𝑦𝑚𝑖

= 𝜌𝑚 (hmi ), 𝑦𝑡 𝑗 = 𝜌𝑡 (htj ), where 𝑦𝑚𝑖
is the

predicted label of motif𝑚𝑖 , and 𝑦𝑡 𝑗 is the predicted label of word
𝑡 𝑗 . Given the ground truth labels 𝑦𝑚𝑖

and 𝑦𝑡 𝑗 , the model is trained

by reconstructing the masked tokens as:

𝐿pre = 𝛽
∑︁
𝑖

CE(𝑦𝑚𝑖
, 𝑦𝑚𝑖

) + 𝛼
∑︁
𝑗

CE(𝑦𝑡 𝑗 , 𝑦𝑡 𝑗 ), (10)

where 𝛼 , 𝛽 are hyperparameters, and CE(·, ·) is the cross-entropy
loss. The key to achieving fine-grained alignment lies in the cross-
attention layer, which enables the model to predict the labels of
masked tokens based on tokens from the other modality. For in-
stance, as illustrated in Figure 2, predicting the label of SO−

3 solely
based on the unmasked motif tokens is challenging. However, by
leveraging the embeddings of word tokens, particularly “propane-
sulfonic” which includes the SO−

3 group, we can gain relevant infor-
mation about the masked token. Consequently, the model implicitly
learns fine-grained alignment knowledge, thereby augmenting its
motif-level knowledge.
Overall Loss. FinMolTex is optimized by the overall loss 𝐿 = 𝐿con+
𝐿pre. Thus, FineMolTex is able to jointly learn the molecule- and
motif-level knowledge.

3.3 Importance-based Masking
There is a large proportion of noisy tokens that lack fine-grained
knowledge. For example, motif tokens such as “C”, and word tokens
like “an” and “this” fail to provide meaningful information. If they
are used for capturing fine-grained alignment knowledge, they may
negatively impact the training process.

To address this issue, we propose the importance score to identify
and mask tokens that contain fine-grained alignment knowledge.
Specifically, as shown in Figure 2, we observe that important motif
tokens, such as𝑚5, tend to contribute more to the global molecule
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token 𝑧𝑚0 , meaning they have a larger weight during aggrega-
tion. The same applies to the global text token 𝑧𝑡0 . Intuitively, the
contrastive alignment task encourages the global token to focus
more on tokens containing fine-grained knowledge, enabling better
coarse-grained alignment. Thus we define the importance score as:

𝜔𝑡𝑖 =
exp(cos(𝑧𝑡𝑖 , 𝑧𝑡0 ))∑𝑁
𝑗=1 exp(cos(𝑧𝑡 𝑗 , 𝑧𝑡0 ))

, (11)

𝜔𝑚𝑖
=

exp(cos(𝑧𝑚𝑖
, 𝑧𝑚0 ))∑𝑁

𝑗=1 exp(cos(𝑧𝑚 𝑗
, 𝑧𝑚0 ))

. (12)

where 𝜔𝑡𝑖 is the importance score of word token 𝑡𝑖 , 𝜔𝑚𝑖
is the

importance score of motif𝑚𝑖 . A higher importance score indicates
a greater contribution to the global token.

We begin by only pre-training the contrastive alignment task
for a few warm-up epochs to ensure valid importance scores. To
demonstrate the empirical validity of the importance scores, we
summarize the 10 most important and least important tokens in
each modality in Tables 1 and Table 2. We observe that the top 10
word tokens are closely associated with specific motifs, indicating
their relevance to fine-grained knowledge. In contrast, the bottom
10 word tokens have few associations. Similarly, the top 10 motif
tokens often exhibit distinct chemical properties, making them
highly meaningful, while the bottom 10 motif tokens are often less
meaningful.

Then we jointly pre-train on the contrastive alignment task and
masked multimodal modeling task. We mask 15% word tokens and
20% motif tokens based on their importance scores. The probability
of masking each token is proportional to its score. As training pro-
gresses, the importance scores are dynamically updated, allowing
the model to iteratively refine its focus on fine-grained alignment
knowledge and improving overall training performance. After pre-
training, the final importance scores are shown in Appendix D.

Table 1: Top 10 and bottom 10 word tokens by average im-
portance score.

Top 10 Bottom 10
Token Score Token Score

triglyceride 0.1419 little 0.002
peptide 0.1290 vegetables 0.002

polysaccharide 0.1284 fruits 0.002
oligo 0.1269 highest 0.002

oligomer 0.1173 game 0.002
anthocyan 0.1053 wild 0.002

diary 0.0998 meat 0.002
isofl 0.0972 chicken 0.002

cannab 0.0953 cheese 0.002
sulfide 0.093 thirty 0.002

4 Experiments
In this section, we conduct extensive experiments to demonstrate
the effectiveness of FineMolTex. Before evaluating, we first con-
duct the two pre-training tasks on the PubChemSTM dataset [19],
which includes 281K graph-text pairs from PubChem [12]. Each
molecular graph is paired with a textual description that elaborates

Table 2: Top 10 and bottom 10 motif tokens by average im-
portance score.

Top 10 Bottom 10
Token Score Token Score
[NH4+] 0.1766 S 0.0661
[OH-] 0.1588 C 0.0564

C1=CN=CN=C1 0.1285 CCC 0.0521
[NH3+] 0.1252 O 0.0503

Cl 0.123 N 0.0472
O=S 0.119 CCCC(C)OC 0.0407
F 0.112 CCOC(C)O 0.0369

C1=CC=CC=C1 0.108 CCOCC 0.0361
Br 0.1027 C1CCOCC1 0.0299

C1=CNC=C1 0.1016 CCNC(C)=O 0.0231

on its chemical and physical properties or highlights its high-level
bioactivities. Details of the pre-training data and process can be
found in Appendix C.1.1 and C.4.

The goal of our experiments is to answer the following research
questions (RQs).
RQ1. Can FineMolTex better generalize to unseen molecules?
RQ2. Can FineMolTex bridge the gap to tasks centered on motif-
level knowledge?
RQ3. Can FineMolTex perform better on single-modality tasks?
RQ4. Has FineMolTex learned fine-grained knowledge?
RQ5. Are the token masking and cross-attention layers beneficial?

4.1 Generalization to Unseen Molecules (RQ1)
To answer RQ1, we conduct a zero-shot graph-text retrieval task
to examine the generalizability of FineMolTex on unseen molecules
and texts. Given a molecular graph and𝑇 candidate textual descrip-
tions, the goal is to identify the textual description that best aligns
with the molecular graph. Conversely, given a textual description
and 𝑇 candidate molecular graphs, identify the molecular graph
that best matches the text. This task can be addressed by calculat-
ing the similarity of the molecular graphs and texts in the joint
embedding space, thus allowing zero-shot inference.
Datasets andBaselines.Weutilize DrugBank-Pharmacodynamics,
molecule-ATC, and DrugBank-Description [19] extracted from the
DrugBank database [31] for evaluation. These datasets include
molecular graphs and their chemical descriptions. Details of the
datasets can be found in Appendix C.1.2. We compare with five
multimodal molecular models: KV-PLM [34], MolCA [20], MoMu-S
[25],MoMu-K [25],MoleculeSTM [19], 3D-MoLM [16], andMV-Mol
[21]. Specifically, KV-PLM uses SMILES to represent the structure
of the molecule, while others use graph structures.
Results.We report the results on the first two datasets in Tables 3, 4,
and 5. We make the following observations. 1) Across different val-
ues of 𝑇 , FineMolTex consistently outperforms the baselines that
neglect motif-level knowledge. The superior performance demon-
strates that fine-grained motif-level knowledge facilitates general-
ization to unseen molecules, which likely contain seen motifs. 2)
FineMolTex maintains strong performance in both directions (given
graph, and given text). The symmetry further indicates that the
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Table 3: Accuracy (%±𝜎) of graph-text retrieval task on DrugBank-Pharmacodynamics.

Given Molecular Graph Given Text
𝑇 4 10 20 4 10 20

KV-PLM 68.38±0.03 47.59±0.03 36.54±0.03 67.68±0.03 48.00±0.02 34.66±0.02
MolCA 83.75±0.54 74.25±0.26 66.14±0.21 81.27±0.33 69.46±0.17 62.13±0.16
MoMu-S 70.51±0.04 55.20±0.15 43.78±0.10 70.71±0.22 54.70±0.31 44.25±0.43
MoMu-K 69.40±0.11 53.14±0.26 42.32±0.28 68.71±0.03 53.29±0.05 43.83±0.12
3D-MoLM 81.35±0.14 73.65±0.13 64.79±0.15 79.78±0.22 62.38±0.16 53.43±0.11
MV-Mol 92.24±0.26 85.38±0.19 79.41±0.43 91.28±0.13 85.32±0.15 80.37±0.22

MoleculeSTM 92.14±0.02 86.27±0.02 81.08±0.05 91.44±0.02 86.76±0.03 81.68±0.03
FineMolTex 96.78±0.05 92.48±0.02 87.94±0.14 96.29±0.12 91.65±0.15 85.07±0.11

Table 4: Accuracy (%±𝜎) of graph-text retrieval task on molecule-ATC.

Given Molecular Graph Given Text
𝑇 4 10 20 4 10 20

KV-PLM 60.94±0.00 42.35±0.00 30.32±0.00 60.67 ±0.00 40.19±0.00 29.02±0.00
MolCA 67.34±0.05 53.51±0.12 44.10±0.03 65.18±0.34 51.01±0.26 41.30±0.51
MoMu-S 64.72±0.04 48.72±0.03 37.64±0.02 64.98±0.13 49.58±0.05 39.04±0.16
MoMu-K 61.79±0.14 45.69±0.22 34.55±0.09 63.32±0.15 47.55±0.06 37.68±0.18
3D-MoLM 65.72±0.08 50.48±0.14 38.31±0.06 63.10±0.06 44.17±0.11 34.56±0.15
MV-Mol 70.29±0.06 54.93±0.14 45.64±0.37 72.08±0.15 59.34±0.22 48.56±0.36

MoleculeSTM 69.33±0.03 54.83±0.04 44.13±0.05 71.81±0.05 58.34±0.07 47.58±0.05
FineMolTex 76.52±0.10 62.75±0.06 51.84±0.16 76.38±0.18 61.72±0.09 50.88±0.13

Table 5: Accuracy (%±𝜎) of graph-text retrieval task on DrugBank-Description.

Given Molecular Graph Given Text
T 4 10 20 4 10 20

KV-PLM 73.80±0.00 53.96±0.29 40.07±0.38 72.86 ±0.00 52.55±0.29 40.33±0.00
MolCA 93.75±0.09 87.25±0.06 82.77±0.12 90.71±0.04 84.97±0.16 77.53±0.15
MoMu-S 76.52±0.12 61.66±0.25 50.00±0.08 77.62±0.06 61.49±0.15 52.20±0.13
MoMu-K 74.15±0.08 57.18±0.16 47.97±0.14 77.79±0.12 62.33±0.18 47.97±0.06
3D-MoLM 92.81±0.23 85.71±0.19 80.20±0.33 88.31±0.32 81.23±0.07 74.40±0.39
MV-Mol 95.13±0.16 90.28±0.21 84.83±0.34 93.54±0.32 86.58±0.52 80.75±0.43

MoleculeSTM 99.15±0.00 97.19±0.00 95.66±0.00 99.05±0.37 97.50±0.46 95.71±0.46
FineMolTex 99.60±0.06 97.96±0.04 96.70±0.14 99.62±0.02 97.96±0.09 96.34±0.07

embedding spaces of both modalities are well-aligned and similarly
well-learned. 3) We observe that KV-PLM, which utilizes SMILES
to capture molecular structures, is less effective than other models
employing graphs, consistent with previous findings [19] that 2D
graph structure is more expressive than 1D SMILES.

4.2 Application to Motif-Centered Tasks (RQ2)
To answer RQ2, we employ a zero-shot text-based molecule edit-
ing task, which is highly relevant to practical applications includ-
ing catalyst design and targeted drug discovery. Specifically, we
utilize FineMolTex to collaborate with a molecule generation mod-
ule, following the design in [19], to modify a specified molecule

according to a text prompt. Hence, motif-level knowledge is essen-
tial for this task, as the model needs to replace certain motifs with
others that are related to specific properties and names as indicated
in the text prompt. We defer the technical details to Appendix B. We
randomly sample 200 molecules from ZINC [11], and select 12 text
prompts, including 8 prompts pertaining to physical properties [19],
and 4 based on the names of the motifs. We utilize MoleculeSTM,
MoMu, and MolCA as baselines.
Evaluation.We employ different methods to assess whether the
generated molecules satisfy the two types of prompts. For the 8
prompts on physical properties, we employ three measures: LogP,
QED, and tPSA, which measures solubility [15], drug-likeness [4],
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Figure 3: Hit ratios of 12 text-based molecule editing tasks.

Prompt: This molecule is chloride.

Input Mol           MoleculeSTM        FineMolTex

Prompt: This molecule contains hydroxyl groups.

Input Mol           MoleculeSTM        FineMolTex

Prompt: This molecule is soluble in water. (LogP    )  

Input Mol           MoleculeSTM        FineMolTex

LogP: 3.50          LogP:4.22             LogP:3.05 

LogP: 3.41          LogP: 4.01            LogP: 2.17 

Prompt: This molecule is insoluble in water. (LogP   )

Input Mol           MoleculeSTM        FineMolTex

LogP: 2.99          LogP:2.76            LogP:3.27 

LogP: 2.74          LogP: 1.55           LogP:3.20 

Figure 4: Visual analysis of the output molecules of MoleculeSTM and Motif-MolTex on 4 text-based molecule editing tasks.
Differences between the input and output molecule of FineMolTex are highlighted in red and green circles. Lower LogP indicates
higher water solubility.

and permeability [7], respectively. We consider the editing to be
successful if the difference in measurements between the input
and output molecules exceeds a specified threshold Δ, which we
have set to 0 following one of the settings in literature [19]. For
the 4 prompts based on motif names, we use RDKit [14] to verify
the presence of the indicated motifs. For all 12 prompts, we report
the hit ratio: the proportion of generated molecules that meet our
expectations.
Results. As shown in Figure 3, FineMolTex shows superior perfor-
mance on these prompts, especially on the 4 prompts with motif
names. Notably, we achieve a relative gain of up to 230% over the

best-performing baseline, demonstrating that FineMolTex has an
advanced understanding of motif-level knowledge. We also visu-
alize the output molecules of MoleculeSTM and FineMolTex in
Figure 4. It can be observed that while MoleculeSTM produces in-
correct molecules, FineMolTex accurately generates the intended
molecules. Specifically, when prompted to generate molecules that
are soluble inwater, FineMolTex successfully createsmoleculeswith
lower LogP than the input molecule, as lower LogP indicates higher
water solubility. Similarly, when prompted to generate molecules
with hydroxyl groups or chlorine atoms, FineMolTex correctly does
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so. These results confirm that FineMolTex possesses a deeper un-
derstanding of motif-level knowledge, thereby enhancing the gen-
erative capabilities.

4.3 Application to Single-Modality Task (RQ3)
While FineMolTex can simultaneously utilize pre-trained knowl-
edge from both graphs and texts, we also verify its effectiveness
on single-modality tasks, namely, molecular property predic-
tion tasks. We use MoleculeNet [32] as the dataset, which only
provides molecular graphs as input without texts. More specifically,
there are eight binary classification tasks, and we report ROC-AUC
for evaluation. More detailed dataset descriptions are provided in
Appendix C.1.3.
Baselines. We compare FineMolTex against nine baselines, includ-
ing 1) five pre-trained GNNmodels: AttrMasking [10], ContextPred
[10], InfoGraph [26], MolCLR [30], and GraphMVP [18]; 2) three
graph-text multimodal models: MoMu-S [25], MoMu-K [25], and
MoleculeSTM [19], and 3) one SMILES-text multimodal model: KV-
PLM [34].
Results. As shown in Table 6, FineMolTex consistently outper-
forms all baselines, achieving relative gains of 3.2%, 2.4%, and 4.7%
on SIDER, MUV, and BACE, respectively, compared to the best
baseline. The promising performance of FineMolTex indicates that
it implicitly utilizes pre-trained knowledge from the text modality
even when the input consists solely of graphs. Additionally, KV-
PLM exhibits a notable performance gap from other models, due to
its use of 1D SMILES strings for molecular structure and a smaller
pre-training dataset.

4.4 Analysis of Learned Fine-grained
Knowledge (RQ4)

We evaluate whether FineMolTex captures fine-grained alignment
information in the joint embedding space, and assess if it can predict
the labels of masked motifs based on fine-grained knowledge.

Visualization of Motif and Word Embeddings. To evaluate
whether FineMolTex captures fine-grained alignment knowledge,
we select motif and word tokens from 1,500 graph-text pairs in the
PubChemSTM dataset, excluding meaningless words such as “this”
and “a”. In total, we visualize 3,469 motif tokens and 6,914 text to-
kens with 𝑡-SNE [22] in Figure 5, where triangles denote text tokens,
and circles denote motif tokens, with different colors indicating
various labels. To examine the details of the tokens, we zoom into
several regions in the figure, retaining only the colors and legends
of the tokens we are interested in. For brevity, we utilize SMILES
to represent the motif structures. We observe that text and motif
tokens corresponding to each other are also close in the embedding
space. For instance, in the pink frame, the word “ammonium” is
close to the motif tokens “[NH2+]=O”, “C=[NH2+]”, and “[NH3+]O”,
which are related to “ammonium.” In the blue frame, the word “poi-
son” is adjacent to the motifs “[AsH3]” and “O[AsH2]”, which are
poisonous. In the orange frame, the word “sulf” is close to the motif
tokens “OS”, “CCSSCC”, and “CC1=CSC(C)=N1”, all of which rep-
resent sulfides. These results demonstrate that FineMolTex learns
the connections between motifs and their chemical names and
properties, thereby significantly enhancing its expressiveness.

Figure 5: Visualization ofmotif tokens andword tokens using
𝑡-SNE. Triangles denote word tokens; circles denote motif
tokens.

This molecule is a polycyclic heteroarene 
and an organonitrogen heterocyclic 
compound

heteroarene

This molecule is a molecule whose structure 
comprises two phenyl rings linked by a N=N 
double bond; the parent compound of the 
azobenzene class of compounds.

phenyl

This molecule is a member of the class of 
benzyl bromides that is toluene substituted on 
the alpha-carbon with bromine. It has a role 
as a lachrymator.

bromides

This molecule is a tetrazocane that is 1,3,5,7-
tetrazocane in which the hydrogen atom 
attached to each of the nitrogens is replaced 
by a nitro group.

tetrazocane
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& fine-grained knowledge

(a)

(b)

(c)

(d)

-

-

-

-

-

-

-

Figure 6: Explaination of the prediction of certain masked
motifs based on text tokens utilizing LIME.

Predictions Based on Fine-grained knowledge. To further
verify that FineMolTex can utilize the learned fine-grained align-
ment knowledge for predictions, we utilize Local Interpretable
Model-Agnostic Explanation (LIME) [23], a well-established tool
that can explain the predictions of certain masked motifs based on
text tokens. By perturbing the input text, LIME observes how the
model’s predictions change with variations in the input text. Then,
LIME fits these perturbed texts and the prediction results to an
interpretable model such as a linear model. This approach allows
us to quantify the significance of each text token in predicting the
motifs, thereby revealing the fine-grained knowledge learned by
FineMolTex. The results are shown in Figure 6, where text tokens
with higher interpretive weights are more crucial for predictions,
and thus more relevant to the masked motifs. Specifically, the word
with the highest interpretive weights in (1) is “heteroarene”, which
directly refers to the name of the masked motif. In (2), the word
“phenyl” refers to the masked motif. In (3), the masked motif makes
the molecule “bromide”. These findings demonstrate that FineMol-
Tex has effectively acquired motif-level knowledge.
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Table 6: Downstream results (%±𝜎) on eight binary classification datasets from MoleculeNet.

Model BBBP Tox21 ToxCast Sider ClinTox MUV HIV Bace Avg

AttrMask 67.8±2.6 75.0±0.2 63.6±0.8 58.1±1.2 75.4±8.8 73.8±1.2 75.4±0.5 80.3±0.0 71.2
ContextPred 63.1±3.5 74.3±0.2 61.6±0.5 60.3±0.8 80.3±3.8 71.4±1.4 70.7±3.6 78.8±0.4 70.1
InfoGraph 64.8±0.6 76.2±0.4 62.7±0.7 59.1±0.6 76.5±7.8 73.0±3.6 70.2±2.4 77.6±2.0 70.0
MolCLR 67.8±0.5 67.8±0.5 64.6±0.1 58.7±0.1 84.2±1.5 72.8±0.7 75.9±0.2 71.1±1.2 71.3

GraphMVP 68.1±1.4 77.1±0.4 65.1±0.3 60.6±0.1 84.7±3.1 74.4±2.0 77.7±2.5 80.5±2.7 73.5
GraphCL 69.7±0.7 73.9±0.7 62.4±0.6 60.5±0.9 76.0±2.7 69.8±2.7 78.5±1.2 75.4±1.4 70.8
KV-PLM 70.5±0.5 72.1±1.0 55.0±1.7 59.8±0.6 89.2±2.7 54.6±4.8 65.4±1.7 78.5±2.7 68.2
MoMu-S 70.5±2.0 75.6±0.3 63.4±0.5 60.5±0.9 79.9±4.1 70.5±1.4 75.9±0.8 76.7±2.1 71.6
MoMu-K 70.1±1.4 75.6±0.5 63.0±0.4 60.4±0.8 77.4±4.1 71.1±2.7 76.2±0.9 77.1±1.4 71.4
MolCA 70.0±0.5 77.2±0.5 64.5±0.8 63.0±1.7 89.5±0.7 72.1±1.3 77.2±0.6 79.8±0.5 74.2

MoleculeSTM 70.0±0.5 76.9±0.5 65.1±0.4 61.0±1.1 92.5±1.1 73.4±2.9 77.0±1.8 80.8±1.3 74.6
FineMolTex 73.5±1.6 77.1±1.2 68.6±0.9 64.8±1.4 92.5±0.8 76.3±1.2 79.0±1.4 84.0±1.5 76.9

Table 7: Ablation study (%±𝜎) on molecule-ATC and DrugBank-Pharmacodynamics.

molecule-ATC DrugBank-Pharmacodynamics
Given Molecular Graph Given Text Given Molecular Graph Given Text

w/o mmm 68.85±0.32 69.34±0.14 90.18±0.08 90.52±0.14
motif mask only 72.64±0.05 70.96±0.20 92.24±0.12 92.06±0.31
word mask only 73.68±0.11 72.47±0.09 93.28±0.26 92.97±0.17

w/o cross-attention 69.92±0.25 69.35±0.22 92.66±0.08 92.85±0.24
random mask only 73.95±0.15 73.34±0.19 93.57±0.32 93.25±0.18

FineMolTex 76.52±0.10 76.38±0.18 96.78±0.05 96.29±0.12

Additional analysis such as fine-grained alignment information
in the joint embedding space can be found in Appendix D.3.

4.5 Ablation Study for Masking and
Cross-Attention Layers (RQ5)

To thoroughly explore the impact of the key components in FineMol-
Tex, we compare to several variants, including w/o mmm, which
drops the masked multimodal modeling task altogether; motif
mask only, which only mask motif tokens; word mask only,
which only mask word tokens; w/o cross-attention, which ex-
cludes cross-attention layers. random mask only, which masks
motif or word tokens randomly rather than based on importance.
We evaluate these variants on the graph-text retrieval task used in
RQ1, on two datasets with 𝑇 = 4. As reported in Table 7, FineMol-
Tex consistently surpasses the other variants. Specifically, without
the masked multimodal modeling task, “w/o mmm” fails to capture
fine-grained knowledge at all, resulting in the poorest performance.
“motif mask only” and “word mask only” outperform “w/o mmm,”
because they still enable some level of fine-grained knowledge
learning by either predicting motifs based on word tokens or pre-
dicting word tokens based on motif tokens. However, they are less
effective than FineMolTex, which masks both words and motifs
for mutual alignment. Lastly, without the cross-attention layers,
“w/o cross-attention” cannot integrate token embeddings from dif-
ferent modalities, without importance-based masking, “random
mask only” cannot effectively focus on the tokens that contain fine-
grained knowledge, thereby hampering their ability to effectively

learn fine-grained knowledge. These observations demonstrate the
effectiveness of each component.

Additional experimental results, including further ablation stud-
ies and a comparison of pre-training and inference times, are pro-
vided in Appendix D.

5 Conclusions
In this paper, we reveal that fine-grained motif-level knowledge is
crucial for molecular representation learning. We propose FineMol-
Tex to jointly learn both coarse- and fine-grained knowledge through
a contrastive alignment task and a masked multimodal learning
task, respectively. By selectively masking the important motif/word
tokens and predicting their labels using tokens from the other
modality, we can effectively learn fine-grained alignment between
motifs and words. Experimental results on three downstream tasks
and two case studies demonstrate the effectiveness of FineMolTex.
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