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Abstract
Logic synthesis is a key stage in electronic design automation (EDA),
where machine learning (ML) techniques are increasingly applied
to accelerate the process, particularly in predicting the quality of
results (QoR). In the logic synthesis process, each step’s synthesis
result depends on the previous circuit state and the currently applied
synthesis operator. However, existing methods typically encode cir-
cuit structures and synthesis sequences separately and concatenate
them for prediction, overlooking the interaction between these two
modalities. This limitation hinders the model’s understanding of the
synthesis process and degrades prediction performance. Inspired
by this, we propose MILS - a Modality Interaction Driven Learning
approach for Logic Synthesis. Firstly, it employs a modality inter-
action module to capture better and deeper relationships between
circuit structures and synthesis sequences, enhancing the model-
ing capability of the synthesis process. Moreover, MILS designs a
permutation-aware self-supervised task to make better use of limited
data and further enhance the interaction process by cross-modal
contrastive learning. Experimental results on two QoR tasks (i.e.,
area and delay prediction) show MILS outperforms the state-of-the-
art (SOTA) methods, with an improvement of 8.41% and 9.28% in
learning capability on two tasks.
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Figure 1: Illustration of the logic synthesis flow and model
comparisons on the QoR prediction task.

1 Introduction
EDA is the foundation stone for integrated circuit (IC) design, span-
ning various stages such as design, synthesis, and verification. Logic
synthesis is an essential step in the EDA process, consisting of
three main steps: logic optimization, technology mapping, and post-
mapping optimizations. This step applies a sequence of heuristic
operators, known as a recipe, to synthesize circuits into gate-level
netlists. The resulting circuit is evaluated based on key metrics,
named quality of results (QoR), such as area and delay, which must
meet predefined constraints. If any metric fails to satisfy the con-
straints or determined optimization objectives, iterative optimization
is required until a fully compliant circuit is generated, as illustrated
in Figure 1(a).

However, traditional heuristic-based methods struggle with ef-
ficient optimization[4]. In this situation, machine learning offers
faster and potentially more accurate QoR predictions[5], which sig-
nificantly enhances the efficiency of the synthesis process. Moreover,
the search space of the synthesis sequence grows exponentially as
the number of operators and parameter choices increases. By lever-
aging QoR prediction models, designers can efficiently estimate the
impact of different synthesis choices, allowing for intelligent explo-
ration and optimization of operator sequences to achieve superior
chip design [14, 17].

The quality of the circuit after each synthesis step depends on
both the previous circuit state and the current operator. In recent
years, many machine learning-based methods have been applied to
predict circuit quality[2, 3, 13, 16, 19]. However, these works over-
look the interaction between the two modalities. Specifically,
these methods convert circuits into and-inverter graphs (AIGs), en-
code synthesis sequences, and use graph neural networks (GNNs) to
model the circuit while employing sequence models to represent the
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recipe. The final prediction is then made based on the concatenated
representations of both modalities, as illustrated in Figure 1(b). This
paradigm of separate modeling and direct concatenating ignores the
interaction between two modalities and treats a sequence of ordered
operators as a single entity, which hinders the model’s ability to
understand the logic synthesis process. Therefore, capturing the
interaction between these modalities is crucial for understanding
the logic synthesis process and improving model accuracy.

To address these problems, we propose MILS - a Modality Int-
eraction Driven Learning approach for Logic Synthesis, as shown in
Figure 1(c). Firstly, inspired by the logic synthesis process, it employs
a modality interaction module to capture better and deeper relation-
ships between circuit structures and synthesis sequences, enhancing
the modeling capability of the synthesis process. Moreover, based on
the permutation-variant property of synthesis recipes, MILS designs
a permutation-aware self-supervised task to make better use of lim-
ited data and further enhance the interaction process by cross-modal
contrastive learning. This task can effectively supervise intermedi-
ate states between interactions without relying on labeled data. The
main contributions are as follows:

• Study modality interaction in logic synthesis: We first
investigate the role of modality interaction in logic synthesis
process, offering new insights for model design in this field.

• Propose a modality interaction module: We introduce
a modality interaction module that models the interaction
between different modalities at a fine-grained level, enabling
the model to better capture cross-modal relationships and
improve predictive performance.

• Introduce a permutation-aware self-supervised task:
Considering the characteristics of recipes, we design a permu-
tation-aware self-supervised task to better utilize limited data
while supervising the hidden states in the interaction.

• Extensive experiments on QoR prediction: We conduct
comprehensive experiments on QoR prediction, demonstrat-
ing that MILS effectively models modality interactions and
significantly improves accuracy and generalization.

2 Preliminaries
In this section, we systematically review related SOTA research
and formally give the problem definition. In Section 2.1, we revisit
prior ML-based approaches for circuit design quality prediction
and analyze their limitations. In Section 2.2, we introduce research
on modality fusion in multimodal learning, exploring how differ-
ent modalities interact. In Section 2.3, we formally characterize the
modality interactions in the logic synthesis process and discuss the
permutation variability of synthesis recipes.

2.1 Logic Synthesis and QoR Prediction
Logic synthesis is a crucial step in the EDA flow, transforming a hard-
ware description language program into a functionally equivalent
gate-level netlist. AIG is a common representation that uses two-
input AND nodes and inverter edges for efficient optimization. The
synthesis process optimizes the circuit through a sequential decision
process applying sub-graph optimization heuristics in a non-trivial
combination. The quality of designs at each step relies on the designs
from the previous step and the heuristics used in the current step.
The goal of logic synthesis is to result in a circuit satisfying QoR

in terms of area, delay, and power consumption after technology
mapping. However, traditional methods are time-consuming and
require intensive manual efforts.

With the advancement of ML, numerous ML-based methods have
been proposed to predict the quality of circuits after logic synthesis.
These methods typically leverage synthesis tools to transform RTL
code into an unoptimized intermediate representation, which is then
used for downstream tasks such as QoR prediction. To effectively
utilize this intermediate representation, various circuit represen-
tation learning techniques [9, 11, 12] are employed to capture the
essential properties of the circuit. For instance, in the context of
these QoR prediction approaches, LOSTIN[16] treats the circuit as
spatial information, using a GNN for modeling, while the synthe-
sis sequence is treated as temporal information, processed with an
LSTM. The two modalities are then concatenated for final prediction.
OpenABC-D[2] employs a GNN for AIG modeling and 1D convo-
lutional networks for sequence processing while also providing an
open-source dataset. LSTP[19] designs a circuit sampling algorithm
and employs a transformer-based sequence model for circuit per-
formance prediction, with a focus on delay estimation. However,
this approach of modeling the two modalities separately fails to
capture their interactions, limiting the model’s comprehension of
the synthesis process and reducing prediction accuracy.

2.2 Modality Fusion
Multimodal learning has achieved remarkable success in various
fields, such as vision-language[7, 8, 15] and graph-language learning
[10, 18]. For example, ALBEF[8] proposes a two-stage framework
that first aligns unimodal representations of vision and language and
then uses the cross-attention mechanism to capture fine-grained in-
formation between different modalities. Building upon this, BLIP[7]
introduced a multimodal mixture of encoder-decoder architecture,
which unifies vision-language understanding and generation tasks.
In another domain, OFA[10] handles graph and text modalities by
representing graph nodes and edges with natural language and then
using language models to create unified feature vectors.

In the multimodal learning process, the fusion strategy plays a
crucial role in capturing cross-modal relationships and extracting
meaningful information[6]. Each approach has distinct advantages:
for instance, late fusion effectively captures comprehensive infor-
mation from different modalities independently, while intermediate
fusion preserves modality-specific features while enabling efficient
cross-modal interactions. Most existing logic synthesis prediction
methods rely on late fusion, which overlooks cross-modal interac-
tions. Unlike conventional vision-language tasks, the interaction
between graph and sequence modalities in logic synthesis follows a
clear relationship, making the direct application of existing fusion
techniques unsuitable.

2.3 Problem Formulation
Given an AIG 𝐺 = {𝑉 , 𝐸} ∈ G, where 𝑣𝑖 ∈ 𝑉 represents the circuit
gate node, and 𝑒𝑖 𝑗 ∈ 𝐸 represents the directed edge from gate node
𝑣𝑖 to 𝑣 𝑗 . For a 𝐾-length sequence 𝑟 = (ℎ1, ℎ2, . . . , ℎ𝐾 ) ∈ R, logic
synthesis can be described as the sequential process:

𝑠0
ℎ1→ 𝑠1

ℎ2→ 𝑠2
ℎ3→ · · · ℎ𝐾−→ 𝑠𝐾 , (1)
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Figure 2: Overview of MILS: (a) Modality Encoder. Encode circuit structures and synthesis recipes. (b) Modality Interaction
Module. Model the sequential interaction between circuit states and synthesis steps. (c) Permutation-aware Self-supervised
Task. Leverage the permutation-aware property of recipes to supervise intermediate states.

where each recipe ℎ𝑖 ∈ 𝑟 is chosen from a set T = {𝑡1, 𝑡2, . . . , 𝑡𝐶 } of
𝐶 operators, and {𝑠𝑖 }𝐾𝑖=0 represents the evolving circuit states after
each operator. This process demonstrates that the result of each
step relies on the previous circuit state and the currently applied
synthesis operator.

Additionally, the synthesis sequence is ordered and permutation-
variant, which means that different operator orders produce different
synthesis results. Formally, for a permutation 𝜖 (·), the permuted
recipe is 𝜖 (𝑟 ) = (ℎ𝜖 (1) , ℎ𝜖 (2) , . . . , ℎ𝜖 (𝐾 ) ), and the synthesis results
mostly satisfy:

𝑓 (𝐺, 𝑟 ) ≠ 𝑓 (𝐺, 𝜖 (𝑟 )), (2)

where 𝑓 denotes the mapping function. Also, there’s often an im-
plicit dependency, which highlights that the effect of each operator
is critically conditioned by the sequence of preceding operators
and the specific circuit state they establish. This property drives
our approach to improving existing models by better capturing the
modality interactions in logic synthesis.

In summary, logic synthesis prediction aims to learn the function:

𝑓 : G × R → R, (3)

where G is the set of AIGs and R is the set of synthesis recipes.

3 Methodology
Inspired by the interaction process and permutation-aware char-
acteristics, we propose a novel logic synthesis prediction frame-
work called MILS. As shown in Figure 2, MILS consists of three
components: modality encoder, modality interaction module, and
permutation-aware self-supervised task. Specifically, MILS first en-
codes the circuit and synthesis sequence separately to obtain two
distinct representations in Figure 2(a). These representations are
then fed into the modality interaction module in Figure 2(b), where
the information from both modalities interacts extensively. Finally,

MILS uses the permutation-aware self-supervised task without the
need for additional labels in Figure 2(c). The final representations
obtained from MILS can then be used to predict the synthesis quality
metrics of the circuit, such as area and delay.

3.1 Modality Encoder
3.1.1 Graph Encoder. Graph neural networks are powerful tools
for processing graph-structured data, effectively capturing complex
relationships and dependencies between nodes. By iteratively aggre-
gating information from neighboring nodes, GNNs learn both local
connectivity patterns and global structural properties. Generally, a
GNN layer typically consists of two stages: aggregation and combi-
nation. For a node 𝑣 with hidden embedding 𝑥 (𝑙−1)

𝑣 at layer 𝑙 , this
process is formalized as:

𝑚
(𝑙 )
𝑣 = 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸 (𝑙 ) ({𝑥 (𝑙−1)

𝑢 : 𝑢 ∈ N(𝑣)}),

𝑥
(𝑙 )
𝑣 = 𝐶𝑂𝑀𝐵𝐼𝑁𝐸 (𝑙 ) (𝑥 (𝑙−1)

𝑣 ,𝑚
(𝑙 )
𝑣 ),

(4)

where N(𝑣) denotes the neighbors of 𝑣 . This process ensures per-
mutation invariance in aggregation and effective fusion of local and
global circuit properties. Since circuits are naturally graph struc-
tures, GNNs can learn both local connectivity patterns and global
structural properties essential for QoR prediction in logic synthesis.

Logic-level designs are converted into AIGs, where nodes repre-
sent logic gates and edges denote signal propagation[2]. For a circuit
graph 𝐺 = {𝑉 , 𝐸}, the initial node features 𝑋 ∈ R |𝑉 |×𝐷0 typically
encode gate types, node degrees, and other circuit characteristics.
After processing through an 𝐿-layer GNN, the updated node features
𝑋𝐿 ∈ R |𝑉 |×𝐷 are obtained as:

𝑋𝐿 = 𝐺𝑁𝑁 (𝐺,𝑋 ) . (5)

To obtain a global circuit representation, graph pooling tech-
niques aggregate node embeddings into a fixed-dimensional vector,
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balancing local details and global circuit behavior. Different pooling
strategies emphasize different aspects of the circuit:

𝐻𝑚𝑎𝑥𝐺 = 𝑀𝐴𝑋_𝑃𝑜𝑜𝑙 (𝑋𝐿) → Capture dominant features,

𝐻𝑚𝑒𝑎𝑛𝐺 = 𝑀𝐸𝐴𝑁_𝑃𝑜𝑜𝑙 (𝑋𝐿) → Preserve average behavior,

𝐻𝑠𝑢𝑚𝐺 = 𝑆𝑈𝑀_𝑃𝑜𝑜𝑙 (𝑋𝐿) → Reflect total activity,

(6)

where 𝐻𝑚𝑎𝑥
𝐺

, 𝐻𝑚𝑒𝑎𝑛
𝐺

, 𝐻𝑠𝑢𝑚
𝐺

∈ R1×𝐷 . This approach effectively cap-
tures overall circuit characteristics.

3.1.2 Recipe Encoder. Each logic synthesis sequence consists of
a series of operators arranged in a specific order. For a 𝐾-length
recipe 𝑟 = (ℎ1, ℎ2, . . . , ℎ𝐾 ) ∈ R, we employ learnable embeddings
to capture the characteristics of each operator within the sequence.
These embeddings allow the model to learn a dense representation
of the operators and their interactions within the sequence:

𝐻𝑅 = 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑟 ), (7)

where 𝐻𝑅 ∈ R𝐾×𝐹 represents the embedding matrix, with each
row corresponding to the learnable feature representation of an
individual operator in the sequence. This approach enables the model
to effectively capture both the inherent properties of the operators
and their sequential relationships.

3.2 Modality Interaction Module
In the logic synthesis process, each step’s synthesis result depends
on the previous circuit state and the currently applied synthesis
operator, forming a sequential dependency. To effectively model
this progress while maintaining computational efficiency, we em-
ploy the Gated Recurrent Unit (GRU) [1]. Specifically, MILS learns
interactions through four steps as follows.

3.2.1 Circuit State Initialization. To establish an initial circuit repre-
sentation, MILS employs sum-pooling over the graph representation:

𝑠0 ≜ 𝐻
𝑠𝑢𝑚
𝐺 ∈ R1×𝐷 . (8)

This initialization captures the overall structural information of the
circuit before any synthesis operation is applied.

3.2.2 Selective Filtering of Previous Circuit Information. Since differ-
ent synthesis operators influence the circuit differently, it is essential
to selectively filter relevant features from the previous state. For-
mally, at the 𝑘-th synthesis step, this is achieved through a gating
mechanism:

𝑟𝑘 = 𝜎 (𝐻𝑘𝑅𝑊ℎ𝑟 + 𝑠𝑘−1𝑊𝑠𝑟 + 𝑏𝑟 ), (9)
where𝑊ℎ𝑟 ∈ R𝐹×𝐷 and𝑊𝑠𝑟 ∈ R𝐷×𝐷 are transformation matrices,
𝑏𝑟 ∈ R1×𝐷 is a bias term, and 𝜎 (·) is an activation function (e.g.,
sigmoid). A lower value of 𝑟𝑘 indicates that more irrelevant circuit
features are filtered out, preserving only useful information for the
current synthesis operator and making modality interaction more
expressive.

3.2.3 Candidate Circuit State Generation. Once relevant features
are selected, MILS updates the candidate circuit state 𝑠𝑘 ∈ R1×𝐷 :

𝑠𝑘 = tanh(𝐻𝑘𝑅𝑊ℎ𝑠 + (𝑟𝑘 ⊙ 𝑠𝑘−1)𝑊𝑠𝑠 + 𝑏𝑠 ), (10)

where𝑊ℎ𝑠 ∈ R𝐹×𝐷 and𝑊𝑠𝑠 ∈ R𝐷×𝐷 are transformation matrices,
𝑏𝑠 ∈ R1×𝐷 is a bias term, and ⊙ represents the Hadamard product.
This step ensures that the new candidate state effectively incorpo-
rates both the filtered circuit features 𝑟𝑘 ⊙ 𝑠𝑘−1 and the synthesis

operator 𝐻𝑘
𝑅
, enhancing the interaction between modality represen-

tations.

3.2.4 Balancing Historical and Current Circuit Information. How-
ever, considering only the current operation may cause the model
to forget important historical optimization states. To address this,
MILS balances the previous state and the candidate state using a
weighted sum:

𝑧𝑘 = 𝜎 (𝐻𝑘𝑅𝑊ℎ𝑧 + 𝑠𝑘−1𝑊𝑠𝑧 + 𝑏𝑧),
𝑠𝑘 = 𝑧𝑘 ⊙ 𝑠𝑘−1 + (1 − 𝑧𝑘 ) ⊙ 𝑠𝑘 .

(11)

Here,𝑊ℎ𝑧 ∈ R𝐹×𝐷 and𝑊𝑠𝑧 ∈ R𝐷×𝐷 are transformation matrices,
and 𝑏𝑧 ∈ R1×𝐷 is a bias term. The dynamic weight mechanism
adjusts how much the candidate state 𝑠𝑘 affects the final circuit state
𝑠𝑘 , ensuring essential past information is preserved while allowing
for important updates.

After processing all 𝐾 synthesis steps, we apply a multi-layer
perceptron (MLP) to map the final hidden state to predicted QoR:

𝑦 = 𝑀𝐿𝑃 (𝐶𝑜𝑛𝑐𝑎𝑡 (𝑠𝐾 , 𝐻𝑚𝑎𝑥𝐺 , 𝐻𝑚𝑒𝑎𝑛𝐺 )) . (12)

This design ensures that both sequential synthesis effects and struc-
tural circuit characteristics contribute to accurate QoR estimation.

The modality interaction module (MIM) offers several advantages.
First, it explicitly captures the interaction between circuit structure
and synthesis sequences, ensuring that the evolution of circuit states
is effectively modeled. Second, by maintaining a dynamically up-
dated representation, MIM integrates sequential synthesis steps with
structural information, allowing the model to learn how different
operations collectively impact the circuit. Lastly, its design aligns
well with the progressive nature of logic synthesis, enabling a more
informed and adaptive prediction of circuit performance.

3.3 Permutation-aware Self-supervised Task
Although the modality interaction module enhances the model’s
ability to capture interactions between the circuit and synthesis
recipe, the hidden circuit state 𝑠𝑖 is only conditioned on the previous
circuit state 𝑠𝑖−1 and the current synthesis operator ℎ𝑖 . Without
explicit intermediate supervision, this representation may lack suffi-
cient guidance towards configurations that are not only optimal so
far, but also amenable to subsequent effective synthesis operations.
This could lead to a suboptimal understanding and modeling of the
multi-stage synthesis process.

A key characteristic of effective logic synthesis recipes is that
operators are not arbitrarily ordered; rather, there’s often an implicit
dependency or suitability between a circuit state and the subsequent
operations. An operator ℎ𝑖+1 is typically chosen or is effective be-
cause the circuit, after transformation by ℎ1, . . . , ℎ𝑖 (resulting in state
𝑠𝑖 ), is in a condition that makesℎ𝑖+1 a pertinent next step. Inspired by
this, we introduce a permutation-aware auxiliary loss that leverages
the next synthesis operator to supervise the learning of the previous
circuit state.

Specifically, for each 𝑟 ∈ R, we randomly generate negative recipe
𝑟 = (ℎ̄1, ℎ̄2, . . . , ℎ̄𝐾 ). We then obtain its corresponding embedding
𝐻𝑅 . Given a sequence of hidden circuit states {𝑠𝑖 }𝐾−1

𝑖=1 and original
recipe embedding 𝐻𝑅 , auxiliary loss is formulated as:

L𝑎𝑢𝑥 = −(
𝐾−1∑︁
𝑖=1

log𝛾 (𝑠𝑖 , 𝐻 𝑖+1
𝑅 ) + log(1 − 𝛾 (𝑠𝑖 , 𝐻 𝑖+1

𝑅 ))), (13)
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where 𝛾 (𝑥1, 𝑥2) = 1
1+exp(−[𝑥1,𝑥2 ] ) is sigmoid activation function.

This contrastive formulation provides two key benefits.Enhanced
State Representation for Sequential Decision Making. It en-
courages alignment between hidden states and the correct synthesis
progression while discouraging alignment with incorrect operator
sequences, improving representation learning of states that are good
precursors for subsequent steps. Intermediate Supervision with-
out Explicit Labels. It leverages the sequential property of synthesis
recipes to provide supervision without requiring intermediate-step
labels, effectively alleviating data limitation issues.

In summary, our primary regression loss for QoR prediction is:

L𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝐿𝑜𝑠𝑠 (𝑦,𝑦), (14)

where𝑦 represents the ground-truth QoRmetric, and𝑦 is the model’s
predicted value. Then, the total loss function is as follows:

L = L𝑡𝑎𝑟𝑔𝑒𝑡 + 𝛼L𝑎𝑢𝑥 , (15)

where 𝛼 is the hyper-parameter controlling the contribution of the
auxiliary supervision.

By incorporating this permutation-aware auxiliary loss, our frame-
work cultivates more informative intermediate circuit state represen-
tations. These representations are better attuned to the sequential
nature of the synthesis process, leading to a more nuanced under-
standing of how operator sequences transform circuits and ulti-
mately improving the accuracy of final QoR prediction.

4 Evaluation
We conduct a comprehensive experimental evaluation to demon-
strate the effectiveness of MILS in QoR prediction. Our study is
guided by the following key research questions:

(1) Does MILS effectively capture the interaction between circuit
structure and synthesis recipes, leading to improved QoR
prediction performance?

(2) How does MILS perform on circuits with varying functionali-
ties and scales?

(3) How do different hyperparameter settings affect MILS’s per-
formance?

(4) Does each component of MILS contribute positively to the
final prediction results?

We first introduce the experimental setup in Section 4.1, and then
sequentially address the aforementioned questions. To answer the
first question, we test MILS on circuit area and delay prediction in
Section 4.2, demonstrating its ability to leverage multimodal infor-
mation. To respond to the second question, we present a case study
in Section 4.3 to examine MILS’s performance on circuits with di-
verse functionalities and scales. We address the third question with
hyper-parameter experiments in Section 4.4. Finally, in Section 4.5,
we perform an ablation study on MILS.

4.1 Experimental Setup
We implemented extensive experiments to assess the performance
of MILS. These We conduct extensive experiments to evaluate the
effectiveness of MILS. All experiments are performed on an NVIDIA
GeForce RTX 3090 GPU. The software environment includes CUDA
Driver 12.7, PyTorch v1.12.0, and PyG v1.7.0.

Table 1: The Statistics of Datasets.

Circuit Name #Node #Level #Area #Delay

spi 4219 35 [1925.57-2409.43] [1470.34-3201.25]
i2c 1169 15 [618.72-712.88] [433.81-961.11]
ss_pcm 462 10 [259.62-310.95] [380.97-880.00]
usb_phy 487 10 [308.56-340.75] [208.32-358.25]
sasc 613 9 [411.50-525.08] [335.05-732.60]
wb_dma 4587 29 [2351.17-2792.73] [1379.07-3803.23]
simple_spi 930 12 [536.26-676.44] [333.82-665.83]
pci 19547 29 [11656.39-14313.99] [4814.33-14264.05]
wb_conmax 47840 24 [24817.80-26912.82] [2114.13-4581.00]
ethernet 67164 34 [40771.95-49102.80] [6639.66-22833.54]
dynamic_node 18094 33 [10902.81-13353.73] [1390.67-7659.31]

ac97_ctrl 11464 11 [7363.41-9028.04] [632.47-2155.95]
mem_ctrl 16307 36 [5854.13-8081.88] [2261.74-5168.72]
bp_be 82514 86 [47169.78-56543.09] [11195.65-85487.38]
vga_lcd 105334 23 [63257.20-82467.98] [9684.69-66028.22]

des3_area 4971 30 [3544.98-3673.99] [2972.50-3215.63]
aes 28925 27 [16997.40-20432.26] [868.44-3697.58]
sha256 15816 76 [9400.97-10321.33] [10138.81-154699.81]
aes_xcrypt 45840 43 [30371.61-33248.94] [18903.64-199815.28]
aes_secworks 40778 42 [21339.85-25411.25] [7874.45-25751.47]

fir 4558 47 [3475.56-3680.38] [1019.26-1220.51]
iir 6978 73 [4713.25-5039.90] [1678.86-1955.74]
jpeg 114771 40 [86808.57-92175.91] [13358.58-19807.41]

tv80 11328 54 [5954.14-6568.87] [2329.29-3313.84]
tinyRocket 52315 80 [27132.27-30245.53] [9535.28-50530.97]
fpu 29623 819 [19132.58-20029.80] [29484.68-33453.33]
picosoc 82945 43 [46504.25-56754.56] [6778.78-65097.03]

Total [462-114771][9-819] [259.62-92175.91] [208.32-199815.28]

4.1.1 Evaluation Tasks and Metrics. To comprehensively evaluate
the performance of MILS, we focus on two key QoR prediction tasks:
area and delay, which are critical metrics in logic synthesis[2, 16]. For
evaluation, we use Mean Absolute Error (MAE) and Mean Squared
Error (MSE), which are commonly used metrics in regression tasks.
MAE measures the average absolute difference and provides an
intuitive measure of overall prediction accuracy. MSE, by penalizing
larger errors more heavily, captures variance and aligns with the
optimization objective.

Specifically, for all labels {𝑦𝑖 }𝑁𝑖=1 and prediction results {𝑦𝑖 }𝑁𝑖=1,
MAE and MSE are defined as:

𝑀𝐴𝐸 =
1
𝑁

𝑁∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 |,

𝑀𝑆𝐸 =
1
𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2 .

(16)

4.1.2 Datasets and Baselines. We use the OpenABC-D dataset[2]
for training and evaluation. It aggregates IP designs from MIT LL
Labs CSP, OpenCores, and IWLS, optimized with Yosys and ABC.
The statistics of the dataset are presented in Table 1. As indicated in
Table 1, the circuit dataset has a wide range of circuit sizes, varying
from hundreds to thousands of nodes with different logic levels. The
dataset shows significant variability in both area and delay, which
provides rich scenarios for evaluating a model’s generalization under
various logic recipes. Compared to ISCAS and EPFL, OpenABC-D
features more complex and diverse circuits, providing a more rigor-
ous benchmark for model generalization. Our experiments involve
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Figure 3: Case Study: compare MAE and MSE of area prediction across baselines.

Table 2: Accuracy results on area and delay tasks.

Method Area Delay
MAE MSE MAE MSE

OpenABC [2] 0.3783 0.3467 0.9597 3.2339
LOSTIN [16] 0.4467 0.2916 0.9756 3.8302

MILS (Ours) 0.3465 0.2856 0.8706 3.1576

27 circuits and 1,500 synthesis sequences, using a 4/1/95 data split: 5%
of the synthesis sequences serve as the training set, further divided
into training and validation sets at an 8:2 ratio. This setup enables a
robust evaluation of the model’s performance under limited training
data and its generalization ability.

We select OpenABC [2] and LOSTIN [16] as baselines for area
and delay prediction due to their strong performance, open-source
availability, and widespread use in comparative studies. For a fair
comparison, the hyperparameter settings are kept consistent with
their original papers. Our graph encoder uses ten layers of GIN with
a hidden embedding size of 32. The recipe encoder’s embedding is
set to 20. Moreover, the hyperparameter 𝛼 is set to 0.5.

4.2 Accuracy Evaluations
We focus on predicting a circuit’s area and delay under unseen syn-
thesis recipes. Notably, our training set is significantly smaller than
the test set, which strongly indicates the model’s generalization
ability. As shown in Table 2, MILS consistently outperforms SOTA
methods across all evaluation metrics, achieving the lowest MAE and
MSE for both tasks. These improvements demonstrate the model’s
capability to effectively capture the interaction between circuit struc-
ture and synthesis recipes, leading to more accurate and reliable QoR
predictions.

Specifically, MILS achieves an MAE of 0.3465 and MSE of 0.2856
for the area task, improving upon the SOTA model by 8.41% and
2.06%, respectively. Similarly, for the delay task, MILS attains an
MAE of 0.8706 and MSE of 3.1576, reducing errors by 9.28% and
2.36%. These results suggest that MILS effectively learns cross-modal
representations, making it a more robust and adaptable model for
logic synthesis QoR prediction.
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Figure 4: Performance with different hyperparameter weight.

4.3 Case Study
To further analyze the performance of models, we conduct a case
study on 10 representative circuits, as shown in Figure 3. The selec-
tion follows three key principles: 1) Functional diversity: cover five
core categories (crypto, communication/bus protocol, etc.); 2) Scale
coverage: ensuring a wide range of node counts (613–52,315) and
depths (9–80); 3) Industrial relevance: prioritize widely used designs
(e.g., tinyRocket processor, ac97_ctrl controller). Due to space limi-
tations, we focus on the area prediction task, comparing MAE and
MSE across OpenABC, LOSTIN, and MILS.

Experimental results show that MILS consistently outperforms
OpenABC and LOSTIN across circuits of different functions and
scales. Functionally, MILS achieves the lowest MAE and MSE across
all circuit categories, particularly excelling in processor and con-
troller circuits. For instance, in tinyRocket, MILS significantly outper-
forms both baselines, highlighting its advantage in handling complex
designs. In terms of scale, MILS maintains stable performance across
both small circuits (sasc, 613 nodes) and large circuits (tinyRocket,
52K nodes), with MAE variations kept below 0.3. This highlights
MILS’s ability to handle both high-complexity and low-resource
designs effectively. Overall, MILS effectively learns the interaction
between circuit structure and synthesis recipes, achieving strong
generalization across different functionalities and scales.

4.4 Impact of Hyper-parameter
Figure 4 illustrates the impact of different hyperparameter weights
on MILS’s performance for area and delay prediction tasks, where
the x-axis represents the weight values and the y-axis shows the
corresponding MAE (red) and MSE (green).
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Table 3: Ablation results on area and delay tasks.

MIM SSL Area Delay
MAE MSE MAE MSE

✗ ✗ 0.7218 0.9189 1.0464 3.5914
✔ ✗ 0.3293 0.3485 1.1979 3.6275
✔ ✔ 0.3465 0.2856 0.8706 3.1576

On the one hand, for area, both MAE and MSE show a decreasing
trend from 0.1 to 0.3, indicating an improvement in prediction accu-
racy. However, beyond 0.3, the values remain stable or even increase
slightly, suggesting that excessive emphasis on the auxiliary loss
might lead to over-regularization or the loss of useful information.
On the other hand, for delay, MAE remains stable across all weight
values, while MSE decreases from 0.3 to 0.6, indicating that the auxil-
iary loss contributes more to variance reduction rather than absolute
error minimization. Compared to the area task, the improvements
for delay are less significant, suggesting that further refinements in
model design may be necessary to enhance performance. Overall,
these observations highlight the need for task-specific hyperpa-
rameter tuning, as different tasks benefit from different weighting
strategies, emphasizing the importance of selecting appropriate pa-
rameters for each prediction objective.

4.5 Ablation Study
To verify the effectiveness of each module in MILS, we present the
results of the ablation study in Table 3, evaluating the impact of
the modality interaction module (MIM) and self-supervised learning
(SSL). To understand the contribution of each module, we conduct
experiments by selectively removing them. Removing MIM means
that the synthesis sequence is directly fed into the GRU, and its final
representation is concatenated with the graph representation for
prediction. Removing SSL indicates that no auxiliary self-supervised
loss is applied during training, meaning the model relies solely on
the primary regression loss for optimization.

From the results, several key observations can be made. First,
removing both MIM and SSL results in the worst performance across
all metrics, indicating that both components play essential roles in
enhancing the model’s predictive capabilities. Second, when MIM
is included but SSL is removed, the model achieves a significant
improvement in area prediction, reducing MAE to 0.3293 and MSE
to 0.3485. However, for delay prediction, performance deteriorates,
suggesting that MIM alone is insufficient for optimizing all tasks, par-
ticularly delay estimation. Finally, incorporating both MIM and SSL
leads to the best overall performance, which confirms that the com-
bination of both components provides the most robust and balanced
performance, underscoring the necessity of integrating structural
information and self-supervised learning into MILS.

5 Conclusion
In this work, we analyze the logic synthesis process and identify
that existing models overlook the interaction between circuits and
synthesis sequences. Inspired by this, we propose MILS, a modality
interaction driven learning framework that introduces a modality
interaction module and a permutation-aware self-supervised task
tailored to synthesis sequences. MILS employs a GRU to iteratively
update circuit states, capturing the dynamic interaction between

synthesis operators and circuit representations, while a permutation-
aware self-supervised task supervises circuit states without requiring
step-wise labels. Experimental results demonstrate the effectiveness
of our approach across circuits of varying functionalities and scales.
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