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Abstract. Recently, recommender system has attracted a lot of atten-
tions, which helps users to find items of interest through utilizing the
user-item interaction information and/or content information associated
with users and items. The interaction information (i.e., feedback) be-
tween users and items are widely exploited to build recommendation
models. The feedback data in recommender systems usually comes in
the form of both explicit feedback (e.g., rating) and implicit feedback
(e.g., browsing histories, click logs). Although existing works have begun
to utilize either explicit or implicit feedback for better recommenda-
tion, they did not make best use of these feedback information together.
In this paper, we first study the personalized ranking recommendation
problem by integrating multiple feedbacks, i.e., one type of explicit feed-
back and multiple types of implicit feedbacks. Then we propose a unified
and flexible personalized ranking framework MFPR to integrate multiple
feedbacks. Moreover, as there are no readily available training data, an
explicit feedback based training data generation algorithm is designed
to generate item pairs with more accurate partial order consistent with
the multiple feedbacks for the proposed ranking model. Extensive ex-
periments on two real-world datasets validate the effectiveness of the
MFPR model, and the integration of multiple feedbacks making up bet-
ter complementary information significantly improves recommendation
performance.

Keywords: Recommender system, multiple feedbacks, explicit feedback, im-
plicit feedback, Bayesian Personalized Ranking

1 Introduction
In recent years, recommender systems have attracted much attention from mul-
tiple disciplines. The interaction information (i.e., feedback) between users and
items are widely exploited to build recommendation models. The feedback data
in recommender systems usually comes in the form of explicit or implicit feed-
back [4]. Explicit feedback is the interaction information that directly expresses
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user preferences to items, such as the rating information of users to items. While
implicit feedback indirectly reflects user opinions and can imply user probable
preferences [9], such as the “collect” and “share” of users to items. Fig. 1 shows
a toy example of multiple feedbacks in Douban Book. The rating (1-5 scales) is
the explicit feedback and there are two types of implicit feedbacks. Thereinto,
the “wish” means the user wishes to read the book but has not begun yet; the
“reading” means the user is currently in reading process. It is obvious that the
explicit feedback (i.e., rating) is critical for recommendation, while the implicit
feedbacks also provide important supplementary information.

Fig. 1. A toy example of multiple feedback between users and books in Douban Book

Many methods exploit the feedbacks to build recommender systems. Fig. 2
shows how those methods utilize these information. Traditional collaborative
filtering usually utilizes explicit feedback information (i.e., ratings) [5, 7, 14](see
Fig. 2 (a)). Since implicit feedback information is widely and cheaply available,
researchers began to exploit the implicit feedback. Some works considered to use
one single type of implicit feedback [6, 10, 13] (see Fig. 2(b)), and Costa Fortes
et al. [2] combined several types of implicit feedbacks using a simple ensemble
approach not long ago (see Fig. 2(c)). In addition, SVD++ [7] was designed to
combine rating information with a single type of implicit feedback for more accu-
rate rating prediction, as shown in Fig. 2(d). Unfortunately, all these works have
not utilized comprehensive feedback information in recommender systems. In

Fig. 2. The schemas of utilizing feedback information

this paper, we propose to solve the personalized ranking problem by integrating
multiple feedbacks, as shown in Fig. 2(e). For convenience, multiple feedbacks
mean one type of explicit feedback and multiple types of implicit feedbacks in
the following sections. In many review web sites, such as Yelp and Dianping,
users are required to give a rating score (i.e., explicit feedback) to a business,
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and they can also have other interactions with businesses, such as “checking in”
and “viewing”. Obviously, our problem setting is a general framework to utilize
feedback information, and existing problems are special cases of our problem set-
ting. In addition, from recommendation perspective, the predicted ranking over
an item is much more meaningful than the predicted rating. Thus in this work,
we focus on developing a personalized ranking model that integrates multiple
feedbacks. Although many methods have been proposed to utilize the feedbacks,
these models are usually designed for special problem settings, and they cannot
be directly applied in multiple-feedback setting.

However, integration of multiple feedbacks faces two challenges. (1) Design a
unified ranking model integrating multiple feedbacks. In order to make the best
use of these feedback information, we need to design an effective mechanism
to handle relations between explicit and implicit feedbacks as well as relations
among implicit feedbacks. (2) Generate training samples. As a ranking method,
we need to generate preference pairs or lists for training. However, there are
multiple types of feedbacks. What kind of feedbacks could we utilize for better
preference pair or sequence?

The major contributions of our paper are summarized as follows: (1) We first
try to solve the personalized ranking recommendation problem by integrating
multiple feedbacks. The problem widely exists in real recommender system, and
it is a general problem setting to encompass existing works. (2) We propose a
Bayesian Personalized Ranking (BPR) based model MFPR to integrate multiple
feedbacks. Moreover, as there are no readily available training data for this
problem, an effective algorithm is designed to generate the training data that
is more consistent with multiple feedbacks for the MFPR model. (3) We crawl
comprehensive Douban Book and Dianping datasets 1 including ratings and
multiple types of implicit feedbacks.

2 Preliminary
2.1 Explicit & Implicit Feedback and Problem Formulation

Formally, when the data is in the form of explicit feedback with single implicit
feedback, each user u is associated with two types of item sets: implicit item set
N(u) and explicit feedback set E(u). Explicit feedback is intentionally provided
by users to directly express user preferences (e.g., likes or dislikes) to items. For
an item i ∈ E(u), the rating given by user u to item i is denoted as Rui. Implicit
feedback reflects user opinions indirectly and can imply user probable preferences
[9]. For an item i ∈ N(u), the implicit feedback does not necessarily mean that
user u likes the item i.

When data consists of explicit feedback with multiple types of implicit feed-
backs, each user is associated with single explicit feedback and τ types of implicit
feedbacks (τ ≥ 2). For user u, the explicit item set is still denoted as E(u) which
contains items user u has rated (i.e., rating) on, and the implicit item sets are
denoted as N1(u), N2(u), · · · , Nτ (u) where N t(u) contains items user u has ex-
pressed the t-type implicit feedback on (t = 1, · · · , τ).
1 The datasets are available at https://github.com/7thsword/MFPR-Datasets.
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Let U and I denote the set of users and items respectively. We define a
ranking recommendation problem on multiple feedback dataRd = {U , I, Ef , If}.
Ef , defined as Ef = {E(u)|u ∈ U}, denotes the explicit feedback data consisting
of all users’ explicit item sets. If , defined as If = {N t(u)|u ∈ U , t = 1, · · · , τ},
denotes the implicit feedback data consisting of all users’ implicit item sets.
Hence, as shown in Fig. 2(e), our task is to design a model for better personalized
ranking recommendation through making full use of the explicit feedback data
Ef and the implicit feedback data If .

2.2 Base Learner Integrating Explicit and Implicit Feedback

The explicit feedback (i.e. rating) is very important for recommendation but rare,
and the implicit feedback is popular in real systems. Some researchers began to
consider the integration of explicit and implicit feedback for more accurate rating
prediction. Assume that there are m users and n items (i.e., |U| = m, |I| = n).
Given a rating matrix R = (Rui)

m×n, where Rui denotes the score user u has
rated on item i. The predicted rating R̂ui user u may give to item i in SVD++
[7] can be modeled as:

R̂ui = (pu + |N(u)|− 1
2

∑
k∈N(u)

γk)q
T
i , (1)

where pu ∈ Rd is the explicit latent vector of user u, qi ∈ Rd is the explicit
latent vector of item i and d≪ min(m,n). γk ∈ Rd is the implicit latent vector
of item k and N(u) is the implicit item set as mentioned above. Here a user

u is modeled as pu + |N(u)|− 1
2

∑
k∈N(u) γk, and the complemented sum term

|N(u)|− 1
2

∑
k∈N(u) γk represents the perspective of implicit feedback. SVD++

treats the explicit and implicit feedback differently. It makes best use of explicit
feedback and adds implicit feedback as supplements.

Unfortunately, these existing models cannot be directly applied to our prob-
lem setting. Although SVD++ also considers explicit and implicit feedbacks, it
just integrates one type of implicit feedback. In addition, SVD++ is originally
designed for the rating prediction problem. Since predicting exact ratings is not
necessary for recommendation, we propose to use ranking framework.

3 Personalized Ranking with Multiple Feedbacks
The explicit and implicit feedbacks have different characteristics, we need to
treat them differently. Through adapting the Bayesian Personalized Ranking
framework [13], we first design a Personalized Ranking model which integrates
explicit and one S ingle implicit Feedbacks (called SFPR). Then we extend the
SFPR model to integrate more implicit feedbacks and propose a unified Multiple
Feedbacks based Personalized Ranking model (called MFPR).

3.1 The SFPR Model

Firstly, we design a ranking model to combine explicit feedback and one type of
implicit feedback. Assume that a training set Tr consists of triples of the form
(u, i, j) with i ≻ j denoting that user u prefers item i to item j.Note that the
generation of training set Tr is an important issue and it will be discussed in
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Sec. 4. The Bayesian formulation of finding the correct personalized ranking is
to maximize the following posterior probability:

p(θ|Tr) ∝ p(Tr|θ)p(θ), (2)

where θ is the parameter of a certain base learner and p(θ) is the prior probability
of base leaner parameter. We use p(i ≻ j;u|θ) to denote the probability that
user u prefers item i over item j under the model expressed by θ. With the
assumption that each triple (u, i, j) ∈ Tr is independent, the likelihood function
can be expanded as follows:

p(Tr|θ) =
∏

(u,i,j)∈Tr

p(i ≻ j;u|θ). (3)

Since the SVD++ can effectively differentiates explicit and implicit feedback
and fully utilize the explicit feedback, we utilize the SVD++ as our base learner.
Then the individual probability p(i ≻ j;u|θ) can be modeled as:

p(i ≻ j;u|θ) = σ(R̂ui − R̂uj), (4)

where σ is the logistic sigmoid function σ(x) = 1
1+e−x .

For convenience, we simplify R̂ui − R̂uj in Eq. 4 as x̂uij . Note that x̂uij is
a real-valued function of θ which captures ranking relation between item i and
item j with the given user u. Assume that p(θ) is a Gaussian distribution with
zero mean and variance-covariance matrix

∑
θ = λθI. Now we can estimate

parameter θ of the base learner through maximizing the posterior probability in
Eq. 2 as follows:

max
θ
L = ln p(θ|Tr)

= ln p(Tr|θ)p(θ)
=

∑
(u,i,j)∈Tr

ln p(i ≻ j;u|θ)− λθ∥θ∥2

=
∑

(u,i,j)∈Tr

ln σ(x̂uij)− λθ∥θ∥2, (5)

where λθ∥θ∥2 is a L2 regularization term which can be derived from the Gaussian
distribution p(θ) mentioned above.

3.2 Learning SFPR Model

The objective function Eq. 5 is differentiable, gradient ascent based algorithms
can be employed as optimizer. The gradient of Eq. 5 with respect to the param-
eter θ is:

∂L
∂θ

=
∑

(u,i,j)∈Tr

∂

∂θ
lnσ(x̂uij)− λθ

∂

∂θ
∥θ∥2

∝
∑

(u,i,j)∈Tr

1

1 + ex̂uij

∂

∂θ
x̂uij − λθθ. (6)

We adopt stochastic gradient ascent (SGA) to optimize the model SFPR. Then
with a training sample (u, i, j), the model parameter θ can be updated as:
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θ ← θ + η(
1

1 + ex̂uij

∂

∂θ
x̂uij − λθθ), (7)

where η is the given learning rate and generally tuned via cross validation. The
gradient of x̂uij with respect to each model parameter has to be known before

gradient ascent process. x̂uij = R̂ui − R̂uj is defined above and we can get the
derivatives:

∂x̂uij

∂θ
=


qi − qj if θ = pu,

pu + |N(u)|−
1
2
∑

k∈N(u) γk if θ = qi,

−(pu + |N(u)|−
1
2
∑

k∈N(u) γk) if θ = qj ,

|N(u)|−
1
2 (qi − qj) if θ = γk.

The predicted R̂ui in SFPR model cannot be regarded as the usual predicted
rating (i.e. 1 to 5 scales). Here, we call R̂ui the predicted ranking score, which
implies that degree of user u prefers item i. The larger the ranking score is, the
higher preference it implies.

3.3 The MFPR model

The proposed SFPR is designed to integrate single explicit feedback and single
implicit feedback. Here we extend the SFPR model to integrate more implicit
feedbacks. When considering multiple feedbacks, as mentioned in Sec. 2.1, each
user u is associated with an explicit item set E(u) and τ types of implicit item
sets N1(u), N2(u), · · · , Nτ (u). For integrating multiple implicit feedbacks, our
extended preference predictor can be designed as

R̂ui = (pu +
1

τ

τ∑
t=1

|N t(u)|− 1
2

∑
k∈Nt(u)

γt
k)q

T
i , (8)

where γt
k ∈ Rd represents the implicit latent vector of item k under the t-th

implicit feedback. The model in Eq. 8 can be seen as a more general version of
the SFPR model. Now we have the x̂uij = R̂ui − R̂uj as:

x̂uij = (pu +
1

τ

τ∑
t=1

|N t(u)|− 1
2

∑
k∈Nt(u)

γt
k)(qi − qj)

T. (9)

Similarly, we apply SGA to solve the optimization problem.

4 Training Set Generation Algorithm
The MFPR model is fed with training data in the form of (u, i, j) with i ≻ j
denoting that user u prefers item i over item j. Since the preference partial pairs
significantly affect performances [1], it is an important issue that how we can
effectively generate (u, i, j) from multiple feedbacks. For those traditional per-
sonalized ranking models utilizing only one or more types of implicit feedbacks,
such as BPR-MF in [13] and the approach in [2], their training set generation
algorithms just take implicit feedbacks into account. Specifically, they draw par-
tially ordered item pairs from the cartesian product of user’s interacted items
(items belong to user’s implicit item set) and user’s non-interacted items (items
do not belong to user’s implicit item set). However, in terms of multiple feed-
backs, such training set generation algorithm is inapplicable for MFPR. Besides
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implicit feedbacks, there are quality rating information in our problem setting,
which can better reflect user preference. Hence, we need to design a new training
data generation algorithm.

Burgess and Shaked et al. [1] have proved that if the ranking probabilities of
every adjacent document pair in a permutation of all documents to be ranked
are known, then the ranking probabilities of any document pair can be derived.
Inspired by this conclusion, we design the training set generation algorithm which
utilizes the most significant preference information in the multiple feedbacks:
rating information. For each user u, we randomly split his or her explicit item
set E(u) into two subsets Etr(u) and Ete(u) with the given split ratio, where
Etr(u) is designed for constructing training set Tr and Ete(u) is for test set Te.
When constructing Tr, we first get a random permutation of Etr(u). Then, for
every adjacent item pair (i, j) in the permutation: (1) if Rui > Ruj , put the
triple (u, i, j) into Tr; (2) if Rui < Ruj , put the triple (u, j, i) into Tr; (3) if
Rui = Ruj , skip and continue to check next adjacent pair. Through the process
for every user, we can get the training set Tr eventually. And the similar process
is done for the test set Te.

Fig. 3 gives a toy example for user u. We have explicit item set Etr(u) =
{6, 8, 9, 11, 17} and the corresponding ratings are Ru,6 = 4, Ru,8 = 3, Ru,9 =
2, Ru,11 = 5 and Ru,17 = 4. Assume that a random permutation of Etr is
Ptr = {11, 8, 17, 6, 9}, then we in turn check every adjacent item pairs (11, 8),
(8, 17), (17, 6), (6, 9) of the permutation. Finally, the triples (u, 11, 8), (u, 17, 8)
and (u, 6, 9) are selected and put into the training set Tr.

Fig. 3. The toy example of generating training data for user u

We name this algorithm as IPPE which means that I tem Pairs with partial
order are obtained from checking adjacent items in a Permutation of Explicit
item set. The IPPE method considers every adjacent item pair, rather than any
item pair. This strategy significantly reduces the size of training samples without
much sacrifice in recommendation performance.

5 Experiment
5.1 Datasets

In this paper, we focus on exploiting multiple feedbacks. As far as we know,
it is difficult to obtain such public datasets. Hence, we crawled two real-world
datasets for the experiments.

The Douban Book dataset 2 contains 190,590 ratings (1-5 scales) involving
12,850 users and 22,040 books. The ratings to books are considered as explicit

2 http://book.douban.com
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Table 1. Statistics of Datasets

Dataset Type Feedbacks(A-B) No. of A No. of B No. of (A-B)

explicit user-rating 12850 22040 190590
user-wish 11107 16406 162565

user-reading 9776 12787 71662
Douban implicit user-read 12029 20014 174726
Book user-tag 8487 19942 162070

user-comment 8776 18888 151758
user-rated 12850 22040 190590

Dianping

explicit user-rating 10549 17707 188813
user-good taste 10473 14043 122060

implicit user-good env. 10293 12135 90350
user-good service 10354 13271 105846
user-good overall 10425 14283 125173

feedback. There are 6 types of implicit feedbacks: “wish”, “reading”, “read”,
“tag”, “comment” and “rated”. All these implicit feedbacks are recorded using
a binary matrix (“1” for done and “0” for not). Note that the “rated” implicit
feedback comes from rating information through degrading the rating matrix
into a binary matrix (“1” means “rated” and “0” for “not rated”).

The Dianping dataset 3 contains 188,813 ratings (1-5 scales) involving 10,549
users and 17,707 restaurants. There are four types of ratings in Dianping, in-
cluding overall rating (1-5 scales) and ratings (1-5 scales) on taste, environment
and service. We use the overall ratings as explicit feedback and degrade overall,
taste, environment and service ratings into “1” if rating ≥ 3 otherwise “0”. Then
four types of implicit feedbacks are obtained: “good taste”, “good environment”,
“good service” and “good overall”. The details can be seen in Table 1.

5.2 Comparison Methods and Evaluation Metrics

We compare the performance of the proposed SFPR and MFPR with five rep-
resentative methods:
•Most Popular(MP). This baseline ranks items according to their popularity

and is non-personalized.
• SVD[7]. This method is a typical matrix factorization based model. It is a

rating prediction model and the input data needs only the rating information.
We rank items using the predicted ratings in our experiments.
• BPR-MF[13]. This pairwise ranking method was introduced by Rendle et

al. and is a state-of-the-art personalized ranking model using only one type of
implicit feedback.
•Ensemble of BPRMF (EN-BPRMF)[2]. This method is an ensemble ap-

proach to unify different types of implicit feedbacks based on BPR-MF. In ex-
periments, we ensemble all types of implicit feedbacks using this approach.
• SVD++[7]. This method is also a matrix factorization based rating predic-

tion model and the first to integrate rating information with one type of implicit
feedback. We rank items using the predicted ratings.
• Factorization Machine (FM)[11]. This method is a general predictor which

works with any real valued feature vector and combines the advantages of sup-
port vector machines with factorization models. We integrate rating information
and all types of implicit feedbacks into the feature vector. It is a rating prediction
model and we rank items using the predicted rating.

3 http://www.dianping.com
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Since BPR-MF, SVD++ and SFPR need one type of implicit feedback, we
choose the “read” feedback in Douban Book and the “good overall” feedback in
Dianping for them. The reason is that the best performance is achieved in these
conditions. In addition, some baselines are obtained from open resources. FM is
from libFM [12], while MP and BPR-MF are from MyMediaLite [3].

We use two evaluation metrics, which are widely used to evaluate ranking
performance. Zero-One Error [8] is the average ratio of correctly ordered item
pairs of triples (u, i, j) in test set Te:

ε0/1 =
1

|Te|
∑

(u,i,j)∈Te

[x̂uij(Rui −Ruj) > 0], (10)

where x̂uij is the difference between predicted ranking score R̂ui and R̂uj as
defined above. And [c] denotes a condition indicator that return 1 iff c is true
otherwise 0.

NDCG@k [8] is designed to take into count the order of items in the recom-

mendation list. To define NDCGu@k for a user u, DCGu@k =
∑k

i=1
2Rui−1
log2(i+1)

should be given formally first, thereinto i ranges over positions in the recom-
mended list of user u, and we use the observed rating Rui to weigh the degree
user u prefers item i. NDCGu@k is the ratio of DCGu@k to ideal DCG for
that user:

NDCGu@k =
DCGu@k

IDCGu@k
, (11)

where IDCGu@k is the maximum possible DCG when the recommended items
are just in descending order by user u preference. NDCG@k is the mean value
of NDCGu@k over all users, reflecting model performance of recommended list
at the top k ranking.

5.3 Effectiveness

This section will validate the effectiveness of the proposed SFPR and MFPR
compared to those baselines. For Douban Book and Dianping datasets, we gen-
erate training set Tr and test set Te using different split ratios 30%, 50%, 70%,
respectively. The random split was carried out 5 times independently in all ex-
periments and we report the mean values of ε0/1 and NDCG.

Parameters of all methods are tuned to the optimal values through cross val-
idation on the datasets. For fair comparison, we set the same number of latent
dimension d = 10 for all matrix factorization based methods. We select ε0/1,
NDCG@5 and NDCG@10 as evaluation metrics. We also record the improve-
ment ratio on these evaluation metrics of all methods compared to the SVD.
Moreover, we also conduct the t-test experiments with 95% confidence, which
shows that the ε0/1 and the NDCG improvements is statistically stable and
non-contingent.

The experimental results are shown in Table 2, the main findings from the
experimental comparisons are summarized as follows: (1) MFPR achieves the
best performance in all conditions, which validates the significant benefits of
integrating both explicit feedback and multiple implicit feedbacks. The experi-
ments also confirm that better performance will be achieved through integrating
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Table 2. Performance Comparisons on Douban Book and Dianping (d=10, the baseline
of improvement ratio is SVD)

Datasets Training Metric MP SVD BPR-MF EN-BPRMF SVD++ FM SFPR MFPR

Douban Book

ε0/1
0.5210 0.5251 0.5314 0.5372 0.6089 0.6145 0.6270 0.6307

Improve -0.66% 1.20% 2.30% 15.96% 17.03% 19.41% 20.11%
30%

NDCG@5
0.7831 0.7879 0.7845 0.7861 0.8291 0.8288 0.8371 0.8399

Improve -0.78% -0.43% -0.23% 5.23% 5.19% 6.24% 6.60%

NDCG@10
0.8301 0.8332 0.8318 0.8323 0.8656 0.8691 0.8706 0.8726

Improve -0.37% -0.17% -0.11% 3.89% 4.31% 4.49% 4.73%

ε0/1
0.5225 0.5909 0.5299 0.5374 0.6396 0.6399 0.6605 0.6636

Improve -11.58% -10.32% -9.05% 8.24% 8.29% 11.78% 12.30%
50%

NDCG@5
0.7969 0.8347 0.7989 0.7994 0.8516 0.8500 0.8564 0.8611

Improve -4.53% -4.29% -4.23% 2.02% 1.83% 2.60% 3.16%

NDCG@10
0.8478 0.8747 0.8493 0.8494 0.8887 0.8864 0.8927 0.8959

Improve -3.08% -2.90% -2.89% 1.60% 1.34% 2.06% 2.42%

ε0/1
0.5239 0.6242 0.5312 0.5397 0.6558 0.6582 0.6676 0.6756

Improve -16.07% -14.90% -13.54% 5.06% 5.45% 6.95% 8.23%
70%

NDCG@5
0.8338 0.8791 0.8403 0.8409 0.8874 0.8875 0.8895 0.8932

Improve -5.15% -4.41% -4.35% 0.94% 0.96% 1.18% 1.60%

NDCG@10
0.8814 0.9110 0.8821 0.8824 0.9172 0.9164 0.9196 0.9220

Improve -3.25% -3.17% -3.14% 0.68% 0.59% 0.94% 1.21%

Dianping

ε0/1
0.5967 0.5922 0.5999 0.6072 0.6118 0.6220 0.6248 0.6253

Improve 0.59% 1.30% 2.53% 3.31% 5.03% 5.50% 5.59%
30%

NDCG@5
0.8214 0.8178 0.8225 0.8261 0.8293 0.8365 0.8377 0.8387

Improve 0.44% 0.57% 1.01% 1.41% 2.29% 2.43% 2.56%

NDCG@10
0.8619 0.8594 0.8630 0.8658 0.8692 0.8689 0.8721 0.8752

Improve 0.29% 0.42% 0.74% 1.14% 1.11% 1.48% 1.84%

ε0/1
0.5965 0.6191 0.6009 0.6062 0.6304 0.6307 0.6345 0.6367

Improve -3.65% -2.94% -2.08% 1.83% 1.87% 2.49% 2.84%
50%

NDCG@5
0.8628 0.8727 0.8643 0.8674 0.8774 0.8778 0.8801 0.8815

Improve -1.13% -0.96% -0.61% 0.54% 0.58% 0.85% 1.01%

NDCG@10
0.8924 0.8999 0.8940 0.8961 0.9044 0.9040 0.9056 0.9076

Improve -0.83% -0.66% -0.42% 0.50% 0.46% 0.63% 0.86%

ε0/1
0.5987 0.6348 0.6006 0.6103 0.6411 0.6437 0.6468 0.6498

Improve -5.69% -5.39% -3.86% 0.99% 1.40% 1.89% 2.36%
70%

NDCG@5
0.8858 0.8982 0.8875 0.8891 0.9012 0.8996 0.9015 0.9029

Improve -1.38% -1.19% -1.01% 0.33% 0.16% 0.37% 0.50%

NDCG@10
0.9099 0.9196 0.9110 0.9126 0.9217 0.9209 0.9219 0.9234

Improve -1.05% -0.94% -0.76% 0.23% 0.14% 0.25% 0.41%

more feedback information. For example, SFPR outperforms BPR-MF due to
integration of ratings, SVD++ outperforms SVD because of implicit feedback,
and the superiority of MFPR to SFPR comes from more implicit feedbacks.
Note that MFPR and FM both utilize all feedback information, while MFPR
always has better performance. The reason lies in that MFPR designs an ef-
fective mechanism treating explicit and implicit feedbacks differently, while FM
handles all feedbacks equally. In all, exploiting and integrating multiple feed-
backs is really helpful to improve the performance in the personalized ranking
recommendation task. (2) When considering different training data ratios, we
can find that the improvements of those models integrating explicit feedback
with implicit feedbacks (i.e., SVD++, FM, SFPR and MFPR) are more signifi-
cant for less training data. This indicates that integrating implicit feedbacks into
models can effectively alleviate data sparsity of rating information. Specifically,
FM outperforms SVD++ and MFPR outperforms SFPR because of integrating
more implicit feedbacks. More combined implicit feedbacks mean more supple-
mentary information for ratings. Thus, it is desirable to achieve much better
recommendation performance through integrating comprehensive multiple feed-
backs, particularly when rating information is insufficient. (3) From the results,
we can also note that pairwise methods are more suitable for personalized rank-
ing recommendation. Specifically, SVD, SVD++ and FM are rating prediction
models, also known as pointwise methods, while SFPR and MFPR are pairwise
ranking models. It is obvious that SFPR and MFPR outperform those three
pointwise models. Specially, SFPR uses the same base learner as SVD++. Note
that the other two pairwise ranking models (i.e. BPR-MF and EN-BPRMF)
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fail to defeat those pointwise models. We think the reason lies in that BPR-MF
and EN-BPRMF utilize only implicit feedback, so they fail to generate accurate
partial order item pairs as training set. In contrast, the proposed SFPR and MF-
PR generate item pairs with more accurate ranking order as training set from
explicit feedback.

5.4 Impact of Different Training Set Generation Algorithms

In this section, we verify the effectiveness of the designed training set generation
algorithm IPPE. In order to validate the superiority of the IPPE, we compare it
with the following two baseline methods. Following the idea of BPR-MF in [13],
for user u, we make cartesian product of Etr(u) with user’s unknown items to
construct training set. We name this approach as IPUC which means I tem Pairs
of partial order are obtained from Unknown item related Cartesian product. We
also consider a variation of the IPPE method. From Etr(u) of each user u, we
randomly sample two items each time and generate the item pair with partial
order according to their observed ratings. In order to produce the similar training
data size as the IPPE, the random process for each user u was conducted |Etr(u)|
times. We name this approach as IPRE which means I tem Pairs of partial order
are obtained from checking Random pairs in Explicit item set. And we retain
the same generation strategy for test set as the IPPE for these two approaches.

We apply these three different training set generation algorithms in SFPR
and MFPR. As shown in Fig. 4, SFPR based on the methods IPUC, IPRE and
IPPE are named as SFPRUC , SFPRRE , SFPRPE respecitvely. It is similar for
MFPR. We conduct experiments on both Douban Book and Dianping dataset-
s, where the “read” feedback and the “good overall” feedback are still chosen
for the SFPR. We can observe that models with IPPE have much better perfor-
mance than those with IPUC. Specifically, SFPRUC and MFPRUC have very bad
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Fig. 4. Performance under different training set generation algorithms on Douban Book
and Dianping

performance, which degrades as BPR-MF in Table 2. Since the method IPPE
makes full use of the rating information and thus the corresponding training set
Tr consists of item pairs with more accurate partial order. On the contrary, the
approach IPUC just discards the item orders implied by rating information and
deals with the rating as ordinary implicit feedback. Moreover, we observe that
SFPRPE and MFPRPE outperform SFPRRE and MFPRRE slightly but sta-
bly. This shows that sampling adjacent items pairs from random permutations
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outperforms that sampling item pairs randomly. In summary, for such multiple-
feedback data, the proposed IPPE method is more effective to generate training
set for the personalized ranking models.

6 Conclusion
In this paper, we study the personalized ranking recommendation by integrat-
ing multiple feedbacks, and propose a unified multiple feedbacks personalized
ranking framework MFPR. Extensive experiments on two real-world datasets
conform the superiority of MFPR. Moreover, we also have designed a delicate
algorithm IPPE to generate training data with more accurate partial order for
the proposed ranking model. The empirical evaluation results suggest that IPPE
through checking adjacent items in a permutation is superior to IPUC and IPRE.
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