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Abstract Recent years have witnessed the boom of het-
erogeneous information network (HIN), which contains
different types of nodes and relations. Complex structure
and rich semantics are unique features of HIN. Meta-path,
the sequence of object types and relations connecting them,
has been widely used to mine this semantic information in
HIN. Link prediction is an important data mining task to
predict the potential links among nodes, which are required
in many applications, e.g., filling missing links. The con-
temporary link prediction is usually based on simple HIN
whose schema is bipartite or star schema. In these works,
the meta-paths should be predefined or enumerated. How-
ever, in many real networked data, it is hard to describe their
network structures with simple schema. For example, the
RDF-formatted Knowledge Graph which includes tens of
thousands types of objects and links is a kind of schema-rich
HIN. In this kind of schema-rich HIN, it is impossible to enu-
merate meta-paths so that the contemporary work is invalid.
In this paper, we study link prediction in schema-rich HIN
and propose a novel method named Link Prediction with
automatic meta Path (LiPaP). The LiPaP designs an algo-
rithm called automaticmeta-path generation to automatically
extract meta-paths from schema-richHIN in the approximate
order of relevance and adopt a supervised method with like-
lihood function to learn the weights of extracted meta-paths.

This paper is an extension version of the PAKDD2016 Long
Presentation paper “Link Prediction in Schema-Rich Heterogeneous
Information Network” [3].
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Extensive experiments on real knowledge database, Yago,
demonstrate that LiPaP is an effective, steady and efficient
approach.
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1 Introduction

Nowadays, the study of heterogeneous information network
(HIN) becomes more and more popular in data mining area
[7], where the network includes different types of nodes and
relations.Many datamining tasks have been exploited on this
kind of network, such as clustering [25], classification [11].
Among those tasks in HIN, link prediction is a fundamental
and important problem that attempts to estimate the existence
probability of a link between two nodes, based on observed
links and attributes of nodes. Researchers would use the link
prediction methods as the basis to solve problems in many
data mining tasks, like data clearness and recommendation.

Some works have been done to predict link existence
in HIN. Because of the unique semantic characteristic and
structural information of HIN, meta-path [25], a sequence of
relations connecting two nodes, is widely used for link pre-
diction. Utilizing meta-path, a lot of works usually employ a
two-step process to solve the link prediction problem in HIN.
The first step is to extract meta-path-based feature vectors,
and the second step is to train a regression or classifica-
tion model to compute the existence probability of a link
[2,22,23,30]. For example, Sun et al. [22] proposed PathPre-
dict to solve the problemof co-author relationship prediction.
But these link prediction works should have a basic assump-
tion: the meta-paths can be predefined or enumerated in a
simple HIN. When the HIN is simple, we can easily and
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Fig. 1 A snapshot of the RDF structure extracted from DBpedia

manually enumerate some meaningful and short meta-paths
[25]. For example, a bibliographic network with star schema
is used in [22,23,30], and only several meta-paths are enu-
merated or predefined.

However, in many real networked data, the network struc-
tures aremore complex, andmeta-paths cannot be predefined
or enumerated manually. Knowledge Graph is the base of the
contemporary search engine [20], where its resource descrip-
tion framework (RDF) [15] < object, relation, object >

naturally constructs an HIN. In such an HIN, the types of
nodes and relations are huge. For example, DBpedia [1], a
kind of Knowledge Graph, has recorded more than 38 mil-
lion entities and 3 billion facts. In this kind of network, every
node may be connected by more than tens of link types, so
it is hard to describe them with simple schema, and we call
them schema-rich HIN. Figure 1 shows a snapshot of the
RDF structure extracted from DBpedia. You can find that
there are many types of objects and links in such a small net-
work, e.g., Person, City, Country. Moreover, there are many
meta-paths connecting two object types. For example, in
Fig. 1, for Person and Country types, there are still twometa-

paths existed: Person
bornin−−−−→ City

located In−−−−−→ Country and

Person
Diedin−−−−→ City

hasCapital−1

−−−−−−−−→ Country. Note that
Fig. 1 shows one extreme little part of the whole DBpe-
dia network, and there will be huge number of meta-paths
connecting Person and Country in a real network, so that
meta-paths in this kind of schema-rich HIN are too many
to enumerate and it is hard to analyze them whether useful
for prediction or not. The present achievements of research
could not handle this situation. It is full of challenges to do
link prediction task in schema-rich HIN.

To be specific, the challenges of link prediction in schema-
rich HIN are mainly from two aspects. (1) The meta-paths
cannot be predefined and enumerated manually. As men-
tioned above, there are tens of thousands of nodes and links
in such schema-rich HIN, and the meta-paths in the network
have the same order of magnitude. It is impossible to enu-
merate all useful meta-paths between two node types. (2)

It is also not easy to effectively integrate these meta-paths.
Even though masses of meta-paths can be found between
target nodes, most of them are meaningless or less impor-
tant for link prediction. Besides, for specific link prediction
problem, a meta-path may have different importance in dif-
ferent prediction tasks, so that we need to learn weight for
each meta-path, where the weight represents the importance
of the path for specific link prediction.

In this paper, we study the link prediction in schema-
rich HIN, and based on meta-path we propose the Link
Prediction with automatic meta Path (LiPaP) method. The
LiPaP designs a novel algorithm, called automatic meta-path
generation (AMPG), to automatically extract useful meta-
paths from schema-rich HIN in the order according to the
relevance of meta-paths. And then we design a supervised
methodwith likelihood function to learn theweights ofmeta-
paths. On a real Knowledge Graph Yago, we do extensive
experiments to validate the performance of LiPaP. Extensive
experiments show that LiPaP can effectively solve link pre-
diction in schema-rich HIN through automatically extracting
important meta-paths and learning the weights of paths.

The rest of this paper is organized as follows. Section 2
summarizes the relatedwork of our study.Andbasic concepts
and the problem definition are given in Sect. 3. The pro-
posed algorithm and its descriptions are outlined in Sect. 4.
And Sect. 5 discusses the experimental results. Concluding
remarks are made in Sect. 6.

2 Related work

In this section, we review the related work on machine
learning with Knowledge Graph, heterogeneous information
networks and link prediction in HIN.

Knowledge Graph

KnowledgeGraph [20], developed byGoogle to optimize the
search results, is a knowledge-based system with semantic
properties.AndKnowledgeGraph is derived from text data of
knowledge sources. For example, DBpedia [1] is constructed
by extracting entities and relations from Wikipedia. Nowa-
days, there are thousands of Knowledge Graph for study or
application, such as DBpedia, Freebase, Yago. The hottest
task of Knowledge Graph is Q/A (natural language ques-
tion and answering) system [27,28,35]. For example, Zou et
al. [35] proposed a whole graph data-driven framework to
answer natural language questions over Knowledge Graph.
The basic requirement of Q/A system is the correctness of
Knowledge Graph. But the relations in Knowledge Graph
cannot bemade sure that the links are totally correct and com-
plete, so that link prediction is essential forKnowledgeGraph
to check the correctness of links and find out missing links.
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Heterogeneous Information Network

Heterogeneous information network (HIN), with different
types of nodes and relations, has richer semantic informa-
tion than general network with single type. Therefore, HIN
provides a new orientation to manage networked data. And
kinds of data mining tasks for HIN are realized recently.
These research developments include similarity measure
[12,24], clustering [25,26], classification [9,11], link pre-
diction [2,22], ranking [14,34], recommendation [8,18],
information fusion [10,19]. But these tasks just work on sim-
ple HINs with simple schema. The data mining tasks for
schema-rich HIN are few to be done, and the existing meth-
ods for simple HIN are not appropriate to the situation of
schema-rich HIN. We could take more attention to the study
of schema-rich HIN.

Link Prediction in HIN

With the prevalence of HIN, link prediction in HIN has
attracted many researchers. Using the meta-path feature,
some works have been done [2,22,23,30] in simple HIN.
Sun et al. [22] proposed PathPredict to solve the problem of
co-author relationship prediction by extracting meta-path-
based feature and building logistic regression-based model.
Cao et al. [2] designed an iterative framework to predict mul-
tiple types of links collectively in HIN. Zhang et al. [33]
utilized meta-paths to predict organization chart or manage-
ment hierarchy. And Sun et al. [23] modeled the distribution
of relationship building time to predict when a certain rela-
tionship will be formed.

Some researchers also utilize probabilistic models to do
link prediction tasks in HIN. For example, Yang et al. [29]
developed a probabilistic method MRIP to predict links in
multi-relational heterogeneous networks. Dong et al. [5]
proposed a transfer-based ranking factor graph model that
combines several social patterns with network structure
information for link prediction and recommendation. Huang
et al. [6] designed the joint manifold factorization (JMF)
method to do trust prediction with the ancillary rating matrix
via aggregating HINs.

The methods mentioned above mostly focus on link pre-
diction in one single HIN. Recently, some works study the
problems of link prediction across multiple aligned HINs
[13,32]. Zhang et al. [32] proposed SCAN-PS method to
solve the social link prediction problem for new users using
the “anchors.” Liu et al. [13] designed the aligned factor
graph model for user–user link prediction problem by utiliz-
ing information from another similar social network.

However, the research developments of link prediction
are all developed for simple HIN. When the HIN becomes
bigger andmore complicated, we should design different link
prediction methods for it.

3 Preliminary and problem definition

In this section, we introduce some basic concepts used in this
paper and give the problem definition.

Heterogeneous information network (HIN) [7] is a kind
of information network defined as a directed network graph
G = (V, E), which consists of either different types of nodes
V or different types of edges E . Specifically, an information
network can be abstracted to a network schema M = (R, L)

where R is the set of the node types and L is the set of
the edge types, and there is a node-type mapping function
θ : V → R and an edge-type mapping function ϕ : E → L .
When the number of node types |R| > 1 or the number of
edge types |L| > 1, the network is a heterogeneous infor-
mation network. For example, in bibliographic database, like
DBLP [4], papers are connected together via authors, venues
and terms, and they can be organized as a star schema HIN.
Another example is the users and items in e-commerce web-
site which constitutes a bipartite HIN [8].

In an HIN, there can be different paths connecting two
entity nodes, and these paths are called as meta-path [25].

A meta-path
∏

that is defined as
∏R1,··· ,Rl+1 = R1

L1−→
R2

L2−→ · · · Ll−→ Rl+1, which describes a path between two
node types R1 and Rl+1, going through a series of node types
R1, · · · , Rl+1 and a series of link types L1, · · · , Ll . Tak-
ing the knowledge graph in Fig. 1 as an example, we can
consider this Knowledge Graph as an HIN, which includes
many different node types (e.g., person, city, country) and
link types (e.g., bornIn and locatedIn). Every two node
types can be connected by multiple meta-paths. For exam-
ple, there are twometa-paths connecting Person and Country

in Fig. 1: Person
bornin−−−−→ City

located In−−−−−→ Country and

Person
Diedin−−−−→ City

hasCapital−1

−−−−−−−−→ Country. Obviously,
different meta-paths show different semantic meanings, so
that nodes connected by different meta-paths have different
similarity. Thus,we can calculate the similarity of entity node
pairs based on differentmeta-paths,which represent different
features.

To use meta-path feature properly, meta-path-based sim-
ilarity measures are proposed to make meta-path feature
quantization and quantify the similarity of nodes [12,16,24]
in HIN. Most of the studies or applications of HIN are based
on these similarity measures to be performed. Sun et al. [24]
proposed PathSim to calculate the similarity of the same-
typed entity nodes based on symmetric paths. Lao et al. [12]
designed a path-constrained randomwalk (PCRW) algorithm
to measure the entity relativity in a labeled directed graph.
Shi et al. [16] proposed HeteSim to measure relevance of any
entity pair under arbitrary meta-path. Although all of these
measures can do similarity calculation, not every measure
could be used for fast calculation in the process of finding
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important meta-paths which are symmetric or asymmetric.
PathSim could only compute the relevance based on sym-
metric paths, and it is not suitable for arbitrary meta-path.
HeteSimcouldmeasure the relevance of anyobject pair under
arbitrary meta-path, but it is complicated when the length
of the relevance path is even. PCRW utilizes the transition
probability to estimate the similarity iteratively based on any
meta-path, and it can roughly distinguish the importance of
meta-paths by the reachable probability. Therefore, PCRW
is suitable for our method to find meta-paths iteratively, and
then we choose it as basic similarity measure in our study.
Besides, there may be other similarity measures which are
also suitable for our method, and we would do further explo-
ration of choosing similaritymeasures in experiment section.
The definition of PCRW [12] is as follows:

For two given entities node a and b, having a meta-path
∏ = V1

R1−→ V2
R2−→ · · · Rl−→ Vn , the similarity value of

two nodes is defined by the random walk beginning at a and
ending at b along this path

∏
, as follows:

firstly,

σ

(

a, a|
1...1∏

)

= 1, (1)

if
∏1...i = V1

R1−→ V2
R2−→ · · · Ri−1−−→ Vi , then

σ

(

a, ti |
1...i∏

)

= R(x, ti )

|R(x, .)|
∑

x∈I (Vi−1)

σ

(

a, x |
∏1...i−1

)

,

(2)

where I (Vi−1) is the set of the entities which can be arrived
by randomwalking across path

∏1...i−1 from node a and x is
a entity node of I (Vi−1). R(x, ti ) shows that x can pass the
link Ri−1 to ti or not, being 1 if can, otherwise 0. |R(x, .)| is
the number of nodes which x can reach passing by Ri−1.

Traditional HIN usually has a simple network schema,
such as bipartite [31] and star schema [17]. In those simple
HIN, the meta-paths for similarity calculation can be easily
enumerated.But in reality, there are a series of complexHINs,
which have so many node types or link types that it is hard to
describe their network schema. We call the HIN with many
types of nodes and links as schema-rich HIN. In this type of
HIN, it is difficult to enumerate or predefine meta-paths and
current studies hardly work. Thus, data mining in schema-
rich HIN will face new challenges. Specifically, we define a
new task as follows:

Link prediction in schema-rich HIN Given a schema-
rich HIN G and a training set of k entity pairs φ =
{(si , ti )|1 ≤ i ≤ k}, search a set of e meta-paths Υ =
{∏i |1 ≤ i ≤ e} which can exactly describe the pairs. With
these meta-paths, we design a model η(s, t |Υ ) to do

link prediction on the test set of r entity pairs ψ =
{(ui , vi )|1 ≤ i ≤ r}.

4 The method description

In order to solve the link prediction problem defined above,
we propose a novel link prediction method named Link
Predictionwith automatic metaPaths (LiPaPs). This method
includes two steps: firstly, we design an algorithm called
automatic meta-path generation (AMPG) to automatically
discover useful meta-paths which can indicate the latent
relation features of the training pairs. Secondly, we use a
supervised method to integrate meta-paths to form a model
for further specific prediction.

4.1 Automatic meta-path generation

In order to extract the appropriate and relevant meta-paths as
model features for link prediction, we develop the automatic
meta-path generation (AMPG) algorithm, which can gener-
ate useful meta-paths smartly in schema-rich HIN. In order
to explain algorithm clearly, we would illustrate the process
of AMPG through a toy example in Fig. 2, where the training
pairs are {(1,8), (2,8), (3,9), (4,9)}.

The main goal of AMPG is, given the training set of entity
pairs, to find all the useful and relevantmeta-paths connecting
them by the descending order of relevance approximatively.
These paths to be found would not only connect more train-
ing pairs, but also show much closer relationship to present

implicit features of the training set. For example,
isCiti zenO f−−−−−−−→

is the meta-path initially found by our method in Fig. 3, and
it is not only the shortest relation but also the one connecting
most training pairs. Besides, the meta-paths to be found are
still most relevant in the candidate paths. Basically, we start
to search from the source nodes step by step to find out the
useful meta-paths greedily. At each step, we select the meta-
path that is most relevant and maybe reaching more target
nodes. Then we check whether the path connects the training
pairs or not. If so, we pick out the meta-path, otherwise make
amove forward until the uncheckedmeta-paths are irrelevant

Fig. 2 Subgraph example of schema-rich HIN
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Fig. 3 An example of meta-path automatic generation

enough. It guarantees that the generated meta-paths all well
described the relationship between each training pair and the
selected paths are not too many to add noisy paths.

The AMPG method is a greedy algorithm that heuristi-
cally chooses the optimal paths at each step. For judging the
priority of meta-paths for selection, AMPG utilizes a prefer-
ence score S as a selection criterion. The higher preference
score S is more likely the meta-path to be chosen. The S is
based on a similarity measure path-constrained randomwalk
(PCRW) [12], which has been introduced above. Choosing
PCRW as basic similarity measure is because that its com-
puting process is iterative and suitable for our method to find
meta-path iteratively.

Specifically, in AMPG, we use a data structure to record
the situation of each step. The structure records a meta-path
passed by, a set of entity pairs of source nodes and their
reaching nodes, and their PCRW values and the preference
score S of the current structure, as Fig. 3 shown. Besides, we
create a candidate set to record the structure to be handled.

The preference score S of the structure mentioned above
is for judging the priority of structure handled. S measures
the similarity of the whole arrival pairs in the structure. The
highest S means the most relevant relationship and the most
promisingmeta-paths, soweget the structurewith the highest
S at each step. The definition of preference score S is as
follows:

S =
∑

s

1

T

∑

t

[
σ

(
s, t |

∏)
• r(s)

]
, (3)

where s and t are source and reaching entity node, respec-
tively, on meta-path

∏
, T is the number of reaching entity

nodes, and σ(s, t |∏) is the PCRW value. r(s) = 1− α • N
is the contribution of s to the current structure for training
pairs selection balance, where α is the decreasing coefficient
of the contribution as 0.1 because of the good performance
on it, and N is the number of the target nodes that s has
reached through other meta-paths which are found already. It
means if one of the source nodes in

∑
s hasmore target nodes

matched before, N will be larger and S will be reduced due to
the smaller r(s), so that the structure with other source nodes
which have no or fewer matches will get high priority to be
traversed greedily and has as many opportunities as possible
to find a meta-path connecting them. Thus, the found meta-
paths would describe the relationships of the whole training
pairs comprehensively.

In order to get rid of unimportant or low pair-matched
meta-paths, we set a threshold value l to judge the structures
whether being put to the candidate set or not.

l = ε • |A|, (4)
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where ε is a limited coefficient, |A| is the number of entity
pairs in the input set. If S is no less than l, add this structure
into the candidate set, otherwise delete it. The purpose of l
is to let AMPG only further search the structures with high
enough similarity and probability to match. Because |A| is
the size of training pairs, l also could be regarded as the
minimum S to be handled, and ε can be seen as the minimum
averages of similarity values of training pairs. In a structure,
a large number of source nodes implies a high possibility of
matching training pairs, and a high average similarity value
of the source nodes signifies the close relation about themeta-
path. Only when the two factors big enough to make S larger
than the limitation l, the structure can be further handled.
That is, the irrelevant or lowpossibility of pair-matchedmeta-
paths could be abandoned.

Furthermore, we explain AMPG with a case study shown
in Fig. 3. The training pairs are (1, 8), (2, 8), (3, 9), (4, 9),
and sources nodes are 1, 2, 3, 4. The case starts with creating
an initial structure No.1 and inserting it into the candidate
set as Fig. 3a shows. The entity pair in No.1 is composed of
the source node and itself, and no meta-path is generated at
initial step. Our algorithm will read candidate set iteratively
and take out the structure with the highest S at each step.
For each selected structure, it will be checked firstly if any
entity pairs in structure match training pairs. If not, we move
outward one hop in HIN, as Fig. 3b shows. We can pass by

three edge types
isCiti zenO f−−−−−−−→,

wasBornIn−−−−−−−→ and
WorkAt−−−−→. For

each passed edge type, we create new structures like No.2
to No.4 which are constructed by the way introduced above.
Then, we check the new structures whether fit the conditions
of expanding further which are presented above, and insert
them into the candidate set. Remove the used structure and
read next structure. Otherwise, as Fig. 3c shows, four pairs of

No.2 are matched, so a new relevant meta-path
isCiti zenO f−−−−−−−→

of No.2 is selected and its similarity value vector is recorded.
Remove the used structure No.2 and continue to handle the
next structure with the highest S cyclically. The algorithm
would terminate when the candidate set is empty.

The process of AMPG is described in Algorithm 1 in
detail. Steps 1–2 are the variable initialization step. Steps 3–
26 show the main process of searching meta-paths by greedy
S in a loop. In every searching movement, we pop the struc-
ture with the largest S to handle until the candidate set is
empty. Finally, the algorithm will generate a set of meta-
paths with the related similarity matrix of training pairs.

4.2 Integration of meta-path

Each meta-path found by AMPG is important but has dif-
ferent importance for further link prediction. For example,
< BarackObama, America > can be used as training

pair in both
isLeaderO f−−−−−−−→ and

I sCiti zenO f−−−−−−−→ tasks and path

Algorithm 1: AMPG(G, φ )
Input: G: schema-rich HIN; φ: set of entity training pairs;
Output: Υ : set of selected meta-paths; M : similarity matrix of φ

corresponding to Υ .
1 N ⇐ {0,0,…,0}; //length: |φ|; element is times of each training
pair matched to calculate S

2 Create the starting structure and insert to candidate set T
3 while T is not empty do
4 m ⇐ {0,0,…,0}; //length: |φ|; record if meta-path has pairs

matched in this expanding
5 W ⇐ popping the structure with the largest score S from T .
6 for each pair (q, p) ∈ W do
7 if (q, p) ∈ φ then
8 m(q, p) ⇐ σ(q, p| ∏);
9 N (q, p) ⇐ N (q, p) + 1;

10 if m has nonzero element then
11 add the meta-path

∏
of W into Υ ;

12 M ⇐ M
⋃

m;
13 break;

14 else
15 create a empty temp Map E inserted with (next passed

link, related structure);
16 for each pair (q, p) ∈ W do
17 for each neighbor s without passed in HIN G do
18 ud ⇐ edge type u with direct d from p to s

//forward: d=1; reverse:d=-1
19 if E does not have the key ud or the related

structure then
20 create a new structure N from W adding into

E .
21

∏ ⇐ the meta-path of N
22 insert the tuple((q, s), σ (q, s| ∏)) to N

23 for each structure K ∈ E do
24 K .S ⇐ calculated by Equation (3)
25 if K .S > threshold value l then
26 add K into T

27 return Υ , M

Pl : Person
livein−−−→ Country could be found in both tasks

with the same similarity value. Actually, Pl well describes

the meaning of
I sCiti zenO f−−−−−−−→, but it is not useful for the

task
isLeaderO f−−−−−−−→. Therefore, the same path feature in dif-

ferent tasks may have different weights, and it is necessary
to develop a solution of measuring the importance of each
meta-path and integrating them properly into a particular link
prediction model.

The link prediction can be considered as a classification
problem. Besides, there also may be a few nonsignificant
meta-paths which may connect any pair. So we need to use
the positive and negative samples to train a model to predict
whether the link exists between the givenpairs or not. Positive
samples are the training pairs, while negative samples are
generated by replacing the target nodes of the training pairs
with the same-typed nodes without the same relations. Thus,
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positive value is the similarity value vector of each positive
pair on all selected meta-paths, while negative value is the
vector of negative pair.

For training model, we assume that the weight of each
meta-path

∏
i is�i (i = 1, · · · , N ),�i ≥ 0, and

∑N
i=1 �i =

1. In order to train the appropriate path weights, we use the
log-likelihood function to build our model. Using this clas-
sical function, we could let the weights of important paths
large and the weights of nonsignificant paths small, so that
the model would distinguish the positive and negative pairs
well. The specific formula is as follows:

max h =
∑

x+∈q+

ln(t (�, x+))

|q+| +
∑

x−∈q−

ln(1 − t (�, x−))

|q−|

−||� ||2
2

, (5)

where t (�, x) is the sigmoid function (i.e., t (�, x) =
e� T x

e� T x + 1
). x is similarity value vector of sample pair in

all selected paths, x+ positive sample and x− the negative.
q+ is similarity matrix of positive pairs made of x+. And q−

is similarity matrix of negative pairs made of x−.
||� ||2

2
is

the regularizer to avoid overfitting.
After learning weights of relevant meta-paths Υ , we use

a logistic regression model to integrate meta-paths for link
prediction.

η(s, t |Υ ) = (1 + e−(
∑

x∈Υ �x•σ(s,t | ∏x )+�0))−1, (6)

where (s, t) is the pair we should do link prediction, x is each
selected meta-path feature, and σ(s, t |∏x ) is the similarity
value between s and t based on the path x , while �x is the
weight of x we learned above. And Υ is the set of selected
meta-paths. If η(s, t |Υ ) is larger than a specific value, we
judge that they would be connected by the link predicted.

5 Experiment

In order to verify the superiority of our designed method of
link prediction in schema-rich HIN, we conduct a series of
relevant experiments and validate the effectiveness of LiPaP
from four aspects.

5.1 Dataset

In our experiments, we use Yago to conduct relevant exper-
iments, and it is a large-scale Knowledge Graph, which
derived from Wikipedia, WordNet and GeoNames [21].
The dataset includes more than ten million entities and

120 million facts made from these entities. We only adopt
“COREFact ′′ of this dataset,which contains 4484914 facts,
35 relationships and 1369931 entities of 3455 types. A
fact is a triple: < enti t y, relationship, enti t y >, e.g.,<
NewYork, locatedin,UnitedStates >.

5.2 Criteria

Weuse receiver operating characteristic curve known asROC
curve to evaluate the performance of different methods. ROC
curve is defined as a plot of true positive rate (TPR) as the y
coordinate versus false positive rate (FPR) as the x coordi-
nate. TPR is the ratio of the number of true positive decisions
and actually positive cases, while FPR is the ratio of the num-
ber of false positive decisions and actually negative cases.
The area under the curve is referred to as the AUC. The
larger the area is, the larger the accuracy in prediction is.

5.3 Effectiveness experiments

This section will validate the effectiveness of our predic-
tion method LiPaP on accurately predicting links existing
in entity pairs. Since there are no existing solutions for this
problem, as a baseline (called PCRW [12]), we enumerate
all meta-paths, and the same weight learning method with
LiPaP employed. Because meta-paths with length more than
4 are most irrelevant, the PCRW enumerates the meta-paths
with the length no more than 1, 2, 3 and 4, and the corre-
sponding methods are called PCRW-1, PCRW-2, PCRW-3
and PCRW-4, respectively. Besides, we use PathSim method
as another baseline [24] tomeasure the symmetric paths. And
we limit the length no more than 2 and 4, called PathSim-2
and PathSim-4, respectively. Based on Yago dataset, we ran-
domly and respectively select 200 entity pairs from three

relations
isLocated In−−−−−−−→,

isCiti zenO f−−−−−−−→ and
isLeaderO f−−−−−−−→. Note

that, we assume that these three types of links are not avail-
able in the prediction task. In this experiment, 100 entity
pairs of them are used as training set, and the others are used
as test set. In LiPaP, we set ε in Equation (4) in the range
between 0.005 and 0.01 and set optimal values. And the max
path length is also limited to 4.

Firstly, we show that the meta-paths generated by AMPG
are effective and the generated order is corresponding to rel-
evance by case studies. In order to intuitively observe the
effectiveness of meta-paths generated, Table 1 shows the
top four generated meta-paths, the corresponding training

weights, and the order of them for the
isCiti zenO f−−−−−−−→ task. And

Table 2 shows the results for
isLocatedO f−−−−−−−−→ task.

In Table 1, we list top four
isCiti zenO f−−−−−−−→ related meta-paths

generated by AMPG. In our general understanding, the cit-
izen relationship means that a person is born in or lives in
a country. The top three paths we found in the list exactly
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Table 1 Most relevant four meta-paths for isCiti zenO f

Meta-path Weight Order

Person
wasBornIn−−−−−−−→ City

islocated In−−−−−−−→ Country 0.1425 2

Person
lives I n−−−−→ Country 0.0819 1

Person
lives I n−−−−→ City

islocated In−−−−−−−→ Country 0.0744 3

Person
wasBornIn−−−−−−−→ City

isLeaderO f←−−−−−−−Person
graduatedFrom−−−−−−−−−→ University

islocated In−−−−−−−→ Country 0.0609 10

Table 2 Most relevant four
meta-paths for isLocated In

Meta-path Weight Order

City
lives I n←−−−− Person

liveIn−−−→ Country 0.2009 2

City
hasCapital←−−−−−− County 0.1506 1

City
happened In←−−−−−−− Event

happenIn−−−−−→ County 0.0900 3

City
liveIn←−−− Person

bornIn−−−−→ City
hasCapital−−−−−−→ County 0.0460 4

(a) (b) (c)

Fig. 4 Prediction accuracy of different methods on three link prediction tasks. a IsCitizenOf. b IsLocatedIn. c IsLeaderOf

describe the same meaning, while the last one with length 4
seems not so related to it, but actually it has certain logistic
relation to the target link. However, these long and important
meta-paths will be missed if the maximum length of meta-
path was limited too short, as PCRWdoes.While our method
can automatically find these paths. Besides, the top three
paths in the list are the first three ones generated by AMPG
in order. Although the 4th path is the 10th generated, the
weights of 4th–9th generated paths are close to its. Namely,
AMPG is able to find relevant meta-paths in order approxi-
matively. Although it may not enable the order of generating
paths to be the totally importance order, it can achieve an
approximate effect. That’s because AMPG chooses the most
possible relevant paths to expand. So we need further inte-
gration method to assign appropriate importance to them.

Table 2 also shows the top four important meta-paths

on
isLocated In−−−−−−−→, which perfectly describe “isLocatedIn.” We

take the first meta-path for example; it shows that a per-
son lives in a city and a country at the same time which
indicates the city must be located in the country. And the
order of weight is also corresponding to the generating order.

What is more, we find out some missing facts on “isLocate-

dIn,” for instance, “Jerusalem
happened In←−−−−−−−State of Palestine.”

Because of this, our algorithmwould be useful to predict and
complement the missing links in Yago.

Secondly, we entirely display the effectiveness results of
the three link prediction tasks, as shown in Fig. 4. It is clear
that LiPaP has much higher accuracy than all the PCRW and
PathSim methods in every tasks, which implies that LiPaP
can not only effectively generate useful meta-paths but also
make a good model to perform excellently in link predic-
tion. Moreover, the PCRW generally has better performance
when the path length is longer, since it can exploit more use-
ful meta-paths. However, it will cost more to search more
meta-paths, most of which are irrelevant. And these irrele-
vant paths are noisy which may make the model worse. For
example, PCRW-3 generates more than 80, 70 and 40 paths,
and PCRW-4 finds more than 600, 290 and 190 paths with

lots of irrelevant paths for the
isCiti zenO f−−−−−−−→,

isLocated In−−−−−−−→ and
isLeaderO f−−−−−−−→ tasks, respectively. On the contrary, LiPaP only
generates 30, 24 and 30 meta-paths in these tasks and has
better accuracy. In addition, PathSim can only get not-bad

123



Int J Data Sci Anal

results in the
isLocated In−−−−−−−→ task, but in other tasks PathSim

has the worst performance. PathSim only exploits symmet-
ric paths to calculate the similarity of two entities so that it is
effective for same-typed entity nodes,while it can not find out
asymmetricmeta-paths to represent relationbetween entities;

thus, it may lose many important features. In the
isLocated In−−−−−−−→

task, the classes of entity pairs are City and Country which
could be seen as the same type of location, so PathsSimwould
get a good result. However, in other two tasks, the important
meta-path features are all asymmetric so that PathSim per-
forms badly while LiPaP has better results. Thus, LiPaP not
only effectively utilizes a few meta-paths to construct a good
link prediction model but also works well on the tasks with
different types of entities.

5.4 Influence of the size of training set

In this section, we evaluate and study the influence of
the size of training set on the prediction performance.

We do these relevant experiments on the
isLocated In−−−−−−−→ and

I sCiti zenO f−−−−−−−→ tasks. The sizes of training set are set as
{2,6, 10, 20, 40, 60, 80, 100}. Besides our LiPaP, we choose
PCRW-2 as baseline, since most of its generated paths are
relevant to get achieve a not-bad result compared to other
PCRW methods, and the cost of space and time is not too
much to waste. As illustrated in Fig. 5, when the number
of training pairs is smaller than 10, the performance of both
methods improves rapidly with the size of pairs growing.
However, when the size is more than 10, the size of train-
ing set has little effect on the performance of both methods.
We think the reason lies in that too small training set is not
various enough to discover all useful meta-paths, while too
large training set may introduce much noise. In a conclusion,
when the size of training set is from 10 to 20 in this dataset,
it is good enough to discover all useful meta-paths and avoid
much noise. Furthermore, it could also save space and time to
learn model and make the performance of our method better.

Fig. 5 Influence of different sizes of training set

(a)

(b)

Fig. 6 Effectiveness of weight learning. a IsCitizenOf. b IsLeaderOf

5.5 Impact of weight learning

To illustrate the benefit of weight learning, we redone the

experiments on the
isCiti zenO f−−−−−−−→ and

isLeaderO f−−−−−−−→ tasks men-
tioned in Sect. 5.3. We run LiPaP with the weight learning,
random weights and average weights. Figure 6 shows the
performance of these methods. It is obvious that the weight
learning can make prediction performance best in both tasks.
The models with random weight perform worst, owing to
giving the more relevant paths low weights and irrelevant
paths high weights. The models with weight learning just
have a little better performance than the models with average
weight, because the meta-path features generated by AMPG
are all relevant and important, and the most important feature
also has not got a very low weight in the models with aver-
age weight. So the performance of the models with average
weight is also not poor in spite of being inferior to themodels
with weight. Therefore, the weight learning can adjust the
importance of different meta-paths so as to integrate them
well and make the model better.

5.6 Efficiency

In this section, we choose five different sizes of training set,
i.e., {20, 40, 60, 80, 100}, to validate the efficiency of finding
meta-paths of different methods. Figure 7 demonstrates the
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Fig. 7 Running times of different methods

running time on different models for the
isLocated In−−−−−−−→ task. It

is obvious that the running times of these models approxi-
mate linearly increaseswith the increase in the size of training
set. In spite of the small running time, the short meta-paths
found by PCRW-1 and PCRW-2 restrict their prediction per-
formance. Our LiPaP has smaller running time than PCRW-3
and PCRW-4, since it only finds a small number of impor-
tant meta-paths. In this way, LiPaP has a better balance on
effectiveness and efficiency.

5.7 Study on parameter ε

In this section,wewould like to illustrate the influence of lim-
ited coefficient εwith different values (Equation(4)) inLiPaP.
We also randomly and respectively select 200 entity pairs

from the relations
isLocated In−−−−−−−→,

isCiti zenO f−−−−−−−→ and
isLeaderO f−−−−−−−→,

in which 100 pairs are for training set, and the others are for
test set. For these link prediction tasks, given a value of ε,
we record the number of generated meta-paths and calculate
the AUC value to figure out the power in prediction result as
shown in Fig. 8.

In overall view from Fig. 8, it is obvious that the num-
ber of generated meta-paths grows exponentially with the ε

descending in (a). And we can see that the lower ε is, the
higher accuracy is in (b). That is because that the lower ε

value implies the less strict limitation of handling structures,
so that it has more probability to find more paths. Besides, it
has shown above that LiPaP finds meta-paths in descending
order of relevance approximately. Though the newly gener-
ated path by decreasing ε value is less importance than others,
whichmakes features rich and varied; thus, it makes theAUC
value higher. However, when ε value is low to some extend,
the accuracy will not increase with the number of meta-paths
growing. The reason why it occurs is that the newly gener-
ated paths become too unimportant and noisy for prediction
model. Thus, we need to try out a suitable value of ε to make
the model work best, and it may be in the range between
0.001 and 0.01 according to the results.

(a)

(b)

Fig. 8 Influence of various ε for link prediction. a Impact on the num-
ber of meta-path. b Impact on accuracy

5.8 Study on choices of similarity measure

In this section, we would figure out whether there are other
similarity measures suitable for LiPaP. Considering the pro-
cess in an iterative way and the similarity calculation in every
expansion step, we want to find another iterative and easy-
to-compute similarity measure for HIN to replace the PCRW
method. The widely used similarity measures are PathCount
[22], PathSim, PCRW, HeteSim, and so on. However, Path-
Sim and HeteSim are not so suitable for our method, and the
reasons have been explained above. PathCount is to count the
number of relevance path which could be used simply and
iteratively. So we only choose PathCount to do this experi-
ment. We also use the same data set to redo the three tasks
and set the size of selected meta-paths to be the same shown
in Sect. 5.3 in order to compare the result of LiPaP with
PCRW. From Fig. 9, we know that the performance of LiPaP
with PathCount is not better than that of LiPaP with PCRW.
The reason why LiPaP with PathCount does not have a good
performance is that the meta-paths which are chosen prefer-
entially are usually with a large number of path instances and
with long length, but not in the order of relevance. The S con-
structed based on PathCount could not imply the importance
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(a) (b) (c)

Fig. 9 Prediction accuracy with different similarity measure. a IsCitizenOf. b IsLocatedIn. c IsLeaderOf

of meta-paths so that it does not select meta-paths based on
its importance for task. That is to say, PathCount could not
distinguish the importance of different paths. For the same
path, the bigger PathCount value would mean the closer rela-
tion based on the same semantics. However, for two different

paths, like the P1: Person
bornin−−−−→ City and P2: Person

workwi th−−−−−→ Person
livein−−−→ City, we would think P1 is closer

than P2 in semantics, but the PathCount value of P1 is less
than P2. Nevertheless, PCRW can describe the relevance of
meta-path by arriving probability, and PCRWwouldmeasure
that the relation of P1 is closer than P2. The higher value is,
the closer relation will be. So a high value of S constructed
based on PCRW may mean a big change to find a signifi-
cant meta-path. Thus, PCRW is more suitable for LiPaP than
PathCount.

6 Conclusion and discussion

In this paper, we introduce a novel link prediction method
in schema-rich HIN named Link Prediction with automatic
meta Paths (LiPaPs), which proposes an algorithm called
AMPG to automatically extract meta-paths based on given
training pairs and designs a supervised method to learn
weights of the extracted meta-paths to form a link predic-
tion model. Experiments on real knowledge database, Yago,
validate the effectiveness, efficiency and feasibility of LiPaP.
And we also find some missing facts in Yago using LiPaP,
which indicates the method would be useful to solve a prob-
lem of link completion. Besides, AMPG is useful for many
other applications in schema-rich HIN, such as entity simi-
larity search, node clustering and classification. For example,
in entity similarity search task, we could use AMPG to find
meta-paths to represent the similarity of entities, and utilize
those meta-paths to construct similarity search model to find
other similar entities.
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