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ABSTRACT

Recently, Transfer Collaborative Filtering (TCF) method-
s across multiple source domains, which employ knowledge
from different source domains to improve the recommenda-
tion performance in the target domain, have been applied in
recommender systems. The existing multi-source TCF meth-
ods either require overlapping objects in different domains or
simply re-weight domains to merge them together. In this pa-
per, we propose a novel LOcal EN semble framework across
multiple source domains for collaborative filtering (called
LOEN for short), where weights of multiple sources for each
missing rating in the target domain are determined accord-
ing to their corresponding local structures. Compared with
the previous TCF methods, LOEN does not require overlap-
ping data and considers the divergence of sources through
exploiting the local structures of ratings, which allows LOEN
to be more general and effective. Experiments conducted on
real datasets validate the effectiveness of LOEN, especially
for knowledge transfer across unrelated source domains.
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1 INTRODUCTION

Recommender system has attracted amounts of interest [3,
10]. Recently, Transfer Collaborative Filtering (TCF), which
transfers knowledge from source domains to the target do-
main for collaborative filtering, has been applied to alleviate
the data sparsity problem in recommender systems [1, 5, 8].
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Most previous TCF methods only focus on transferring
knowledge from one single source domain to one target do-
main [5], which might not fully make use of the abundan-
t information from multiple sources. Recently, some efforts
have been made to learn knowledge from multiple sources
to improve the recommendation performance [6, 7]. In gen-
eral, there are two strategies to exploit the knowledge from
multiple sources. The first one is to joint multiple sources ac-
cording to the overlapping users or items [6]. This strategy
may limit the applicability of the proposed method. Data of
overlapping users or items in different applications are few
and hard to be collected in real world. The second one is
to re-weight different sources to boost the recommendation
performance [7]. For example, considering the relationship
of source domains and the target domain, TALMUD [7] as-
signs weights to different sources in a global manner. For
each source domain, TALMUD assigns the same weight for
all missing ratings in the target domain while ignoring the
difference of their local structures. Indeed, the same source
domain may contribute totally different affect to different
missing ratings in the target domain.
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Figure 1: Difference of TALMED and LOEN

In order to address the limitations of the existing multi-
source TCF methods, we propose a novel LOcal EN semble
method across multiple source domains for collaborative fil-
tering (called LOEN). LOEN focuses on each missing rat-
ing and re-weights the source domains according to their
local structures. Figure 1 illustrates the difference of LOEN
and TALMUD.When transferring knowledge from source do-
mains of Music and Movie to the target domain Book, TAL-
MUD simply assigns weights to these two source domains to
integrate knowledge together, while LOEN re-weights these
two domains for each missing rating. LOEN takes measures
to obtain the top-k similar observed ratings of each miss-
ing ratings to capture its local structure first. Then, LOEN
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assigns different weights to domains for each missing rat-
ing according to the similarity of their local structures. Ex-
periments on two real datasets illustrate the superiority of
LOEN compared with the-state-of-art methods. Particular-
ly, LOEN shows its superiority in utilizing unrelated sources
and robustness for more domains.

2 PRELIMINARY

2.1 Problem Definition

In this section, we introduce the notations and definition-
s used in this paper. Suppose there are n rating matrices
from source domains (denoted as Rs = {R(1), R(2), ..., R(n)})
and a rating matrix Rt from target domain. Rt includes t-
wo parts: the observed ratings Ro and the missing ratings

Rp = {Rp
1 , R

p
2..., R

p
c}

⊤ (p denotes the value to be predicted
in Rt, and c is the number of Rp). That is, Rt = Ro ∪ Rp.
Our goal is to obtain different prediction results from multi-
ple sources and integrate them for the prediction of Rp.

2.2 Transfer Knowledge From Single

Domain

We firstly introduce the basic TCF framework CBT [5], which
transfers knowledge from one domain to the target domain.

Given a target domain with a rating matrix Rt and a
source domain with a rating matrix R(1). CBT firstly learns
the shared cluster-level rating pattern from R(1) as follows,

min
U(1)≥0,V (1)≥0,S≥0

‖R(1) − U
(1)

SV
(1)⊤‖

2

s.t. U
(1)⊤

U
(1) = I, V

(1)⊤
V

(1) = I,

(1)

where U (1), V (1) are the indictor matrices of users and items,
respectively. Each row of U (1) (or V (1)) indicates the cluster
for this user (or item) so that each row should have only one
nonnegative entry. ‖ · ‖ denotes the Frobenius norm. Next,

we can obtain the rating pattern B of R(1) as follows,

B = [U (1)⊤
R

(1)
V

(1)]⊘ [U (1)⊤
11

⊤
V

(1)], (2)

where ⊘ denotes element-wise division and 1 denotes all-one
matrix. Then, CBT transfers B to the target domain, and
the optimization process is as follows,

min
Ut≥0,Vt≥0

‖Rt − UtBV
⊤
t ‖

2

s.t. U
⊤
t Ut = I, V

⊤
t Vt = I,

(3)

where Ut, Vt are the indicator matrices of users and items
in the target domain. The rating pattern construction and
transferring process are detailed in [5]. Thus, we can con-

struct the prediction matrix X(1) as follows,

X
(1) = UtBVt. (4)

2.3 Transfer Learning for Multiple Source

Domains

In this section, we introduce the TALMUD, which is one
of the most representative multi-source TCF methods. TAL-
MUD employs CBT in different source domains to obtain

multiple prediction results for the target domain and merge
the results together by re-weighting them as follows,

min
Ut≥0,Vt≥0,B≥0

‖Rt −
n∑

i=1

αiU
(i)
t B

(i)
V

(i)⊤
t ‖

2

, (5)

where B(i) is the rating pattern of R(i) and αi is the weight
for the prediction results generated from the ith domain.

U
(i)
t , V

(i)
t are the indictor matrices of users and items for

Rt with B(i), respectively.
TALMUD simply re-weights the prediction results from

different sources on the basis that the data distribution in
various sources are independent. However, the data in real
world are always non-i.i.d. In order to avoid the problems
discussed above, we proposed the LOEN method.

3 LOCAL ENSEMBLE ACROSS

MULTIPLE SOURCES

In this section, we introduce the LOEN, which utilizes the
local structure of ratings to improve the recommendation
performance. We first calculate the top-k similarity ratings
of each missing rating. Then, we employ CBT to transfer
knowledge from multiple sources for prediction in the target
domain. Finally, we assign weights to each predicted rating
according to its distance from the corresponding missing rat-
ing in the target domain, which can be obtained indirectly
by measuring the similarity of their local structures.

3.1 Rating Similarity

In this section, we introduce the method to measure the
similarity of Rp and Ro in the target domain.

First, we get the latent feature vectors of users P and
items Q in the target domain by employing the low-rank
matrix factorization method [9]. Next, we can calculate the
similarity of users SP and items SQ via cosine similarity,

S
P (Pi, Pj) =

Pi · P
⊤
j

|Pi| × |Pj |
,

S
Q(Qi, Qj) =

Qi ·Q
⊤
j

|Qi| × |Qj |
.

(6)

Then, we can measure the rating similarity SPQ between
two ratings (Rij and Rab) as follows,

S
PQ(Rij , Rab) = S

P (Pi, Pa) · S
Q(Qj , Qb). (7)

For each missing rating, we record the index of its top-k sim-
ilar observed ratings (denoted as Ii ∈ R

1×k(i = 1, 2, ..., c)).
Thus, for all missing ratings in the target domain, we can
construct the index matrix I ∈ R

c×k of their top-k similar
observed ratings.

3.2 Integrating Prediction Results

Through employing CBT to transfer knowledge from n sources
individually, we can get n predicted rating matrices X =
{X(1), X(2), ..., X(n)} and the predicted rating vectorX(j)p ∈
R

c×1 in the jth source corresponding to Rp. Then, we inte-
grate predicted ratings learnt from different source domains
for each missing rating in the target domain.
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With the similarity index matrix I of Rp, we can measure
the similarity of the predicted ratings in different prediction
results and the corresponding missing rating. The weights
W (j) ∈ R

c×1 of X(j)p can be obtained,

W
(j)
i =

Sim(RIi , X(j)Ii)
∑n

j=1 Sim(RIi , X(j)Ii)
, (8)

where W
(j)
i denotes the weight of predicted rating X(j)p

i . Ii
denotes the index vector corresponding to the top-k simi-
lar ratings of Rp

i . R
Ii is the top-k similar ratings of Rp

i in

Rt. X(j)Ii is the vector corresponding to RIi in jth domain.

Sim(RIi , X(j)Ii) denotes the similarity of RIi and X(j)Ii

measured via cosine similarity. The integrated prediction re-
sults Xtgt for Rp can be constructed as follows,

Xtgt =
n∑

i=1

W
(i) ⊙X

(i)p
, (9)

where ⊙ denotes the dot product and the complete rating
matrix can be composed of Xtgt and Ro.

4 EXPERIMENTS

4.1 Datasets

We crawl the datasets from two well-known websites Douban1

and Dianping2 in China. The Douban dataset contains data
of three domains while the Dianping dataset is collected from
five cities in China. The rating range of these two datasets
are both from 1 to 5. The datasets are detailed in Table 1.
For each dataset, we randomly select one domain as the tar-
get domain and the rest as the sources. Thus, we construct
eight TCF problems from these two datasets.

For convenience, we randomly select the same number of
users and items from the five cities on Dianping dataset.
Note that users and items in different domains are indepen-
dent with each other. LOEN does not require the same num-
ber or overlapping of users or items in different domains.

Table 1: Details of Douban & Dianping Datasets

Datasets Domains # of users/items/ratings Density

Douban
Movie 3022/6971/195493 0.93%
Music 5672/6850/550469 1.42%
Book 9224/9968/699038 0.76%

Dianping

Shanghai 5000/5000/952225 3.81%
Shenzhen 5000/5000/264721 1.06%
Hangzhou 5000/5000/605607 2.42%
Suzhou 5000/5000/492753 1.97%
Beijing 5000/5000/577665 2.31%

4.2 Experimental Setting

We compare LOEN with the following representative meth-
ods.

• NMF [4]: a non-negative matrix factorization algorithm.
• PMF [9]: a probabilistic matrix factorization algorithm.
• CBT [5]: a TCF algorithm transferring the rating pattern

from a single source to the target domain.

1https://www.douban.com/
2https://www.dianping.com/

• CLFM [2]: a TCF method learning the common rating
pattern shared across sources and the domain-specific
rating patterns in each domain.

• TALMUD [7]: a multi-source TCFmethod assigning weig-
hts dynamically to the prediction rating matrices learnt

from different sources.

For each problem, we randomly sample 80%, 60%, 40% and
20% of data in the target domain for training. The random
selection is carried out 10 times independently. For single-
source TCF methods (i.e., CBT and CLFM), the best re-
sults are selected as the final results. Optimal parameters
are set for all baselines. We employ widely used Mean Ab-
solute Error (MAE) and Root Mean Square Error (RMSE)
to evaluate the prediction performance of all algorithms. S-
maller values of MAE and RMSE mean better performance.

4.3 Effectiveness Experiments

Due to space limitations, we only illustrate the MAE results
in Figure 2. From the results, we observe the followings.

LOEN outperforms all baselines which validates the ef-
fectiveness of LOEN. It is reasonable since LOEN utilizes
knowledge from multiple domains and integrates the predic-
tion results for each missing rating personally.

The single-source TCF methods (i.e., CBT and CLFM)
perform worse than NMF and PMF when data in the source
domain is more sparse than that in the target domain (e.g.,
Dianping-Shanghai). Compared with single-source TCF meth-
ods, two multi-source TCF methods (i.e., TALMUD and
LOEN) achieve good performances in most cases, since they
exploit more information from multiple domains.

TALMUD performs worse than CBT and CLFM on Douban-
Movie and Douban-Music. Douban datasets are from three
quite different domains. We think the bad performances of
TALMUD on Douban datasets are caused by the divergence
of sources, since TALMUD simply re-weights source domains
without considering the diversity of data. The good perfor-
mances of LOEN on Douban datasets verify the benefits of
assigning personalized weight to each predicted rating.

4.4 Knowledge Transfer across Unrelated

Sources

To validate the superiority of LOEN when transferring knowl-
edge across unrelated sources, we employ TALMUD and
LOEN on Dianping-Shenzhen dataset with 40% training ra-
tio. We first record their performances on all four source
domains (denoted as None in Figure 3), and then we suc-
cessively replace one of the domains with Douban-Music,
Douban-Book and Douban-Movie datasets (denoted as 1src,
2src, and 3src in Figure 3, respectively). As results shown
in Figure 3, although these two methods generally perfor-
m worse with the increase of the replaced sources, LOEN
always performs better than TALMUD. It further confirms
the superiority of LOEN to transfer knowledge from diverse
sources, since it assigns personalized weight to each predict-
ed rating according to the similarity of their local structures.
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Figure 2: The Results on Douban & Dianping

4.5 Impact of Transfer from Multiple

Sources

Further, we explore the impact of transferring knowledge
from multiple sources on Dianping datasets. We take one of
the five cities in Dianping as the target domain by turns to
construct 5 groups of experiments. In each group, we succes-
sively add a source domain until all four sources are added.
The average results of LOEN on 80% training data are shown
in Figure 4. The performance of LOEN improves steadily as
more sources are added, which indicates the robustness of
LOEN and the effectiveness of utilizing data from multiple
domains for improving the experimental performance. More-
over, the overall performance in Shanghai are better than
that in Shenzhen, which indicates the importance of data
density in the target domain for experimental performance.
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Figure 3: Knowledge Transfer from Unrelated

Sources

5 CONCLUSIONS

In this paper, considering the divergence of sources, we pro-
pose a local ensemble method across multiple sources for
collaborative filtering (LOEN), where weights of multiple
sources for each missing rating are determined according
to their corresponding local structures. Experiments on real
datasets validate the effectiveness of the LOEN method.
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