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a b s t r a c t

Recommendation has provoked vast amount of attention and research in recent decades. Most previous
works employ matrix factorization techniques to learn the latent factors of users and items. And
many subsequent works consider external information, e.g., social relationships of users and items’
attributions, to improve the recommendation performance under the matrix factorization framework.
However, matrix factorization methods may not make full use of the limited information from rating
or check-in matrices, and achieve unsatisfying results. Recently, deep learning has proven able to learn
good representation in natural language processing, image classification, and so on. Along this line, we
propose a new representation learning framework called Recommendation via Dual-Autoencoder (ReDa).
In this framework, we simultaneously learn the new hidden representations of users and items using
autoencoders, and minimize the deviations of training data by the learnt representations of users and
items. Based on this framework, we develop a gradient descent method to learn hidden representations.
Extensive experiments conducted on several real-world data sets demonstrate the effectiveness of our
proposed method compared with state-of-the-art matrix factorization based methods.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

In order to tackle the information overload problem, recom-
mender systems are proposed to help users to find objects of
interest by utilizing the user–item interaction information and/or
content information associated with users and items. Recom-
mender systems have attracted much attention from multiple
disciplines, and many techniques have been proposed to build
recommender systems (Adomavicius & Tuzhilin, 2005; Bell, 2011).
It is also widely used in many E-commerce companies, such as for
product sale on Amazon and movie rentals from Netflix (Srebro &
Jaakkola, 2003).

Traditional recommender systems normally only utilize
user–item rating feedback information for recommendations.
Moreover, thematrix factorization technique is widely used in rec-
ommender systems, which factorizes a user–item rating matrix
into two low rank user-specific and item-specific matrices, and
then utilizes the factorized matrices to make further predictions
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(Koren, Bell, & Volinsky, 2009; Srebro & Jaakkola, 2003). In order to
comprehensively utilize rich information in recommender system,
there is a surge of hybrid recommendation, such as social recom-
mendation (Ma, Yang, Lyu, & King, 2008; Ma, Zhou, Lyu, & King,
2011), location based recommendation (Lian et al., 2014; Liu, Fu,
Yao, &Xiong, 2013), andheterogeneous network based recommen-
dation (Shi et al., 2015; Yu et al., 2014). Most of these methods are
based on amatrix factorization framework, inwhich the latent fac-
tors of users and items are usually obtained by directly factorizing
the user–item rating matrix and additional information are usu-
ally used as a regularization constraint. Although these methods
pay much attention to exploit additional information, we wonder
they might not make full use of the user–item rating information.
In other words, we might be able to obtain better latent factors of
users and items through extensively exploiting rating information.

On the other hand, deep learning has shown its power in learn-
ing latent feature representation in many domains, such as im-
age/video processing (Alex et al., 2009) and text data (Socher,
Huang, Pennington, Ng, & Manning, 2011). Can we use deep learn-
ing techniques to learn latent representations for recommenda-
tion? Some researchers have pursued this goal. For example, the
latent factor of music is extracted from audio signals with a
deep convolutional neural network (Oord, Dieleman, & Schrauwen,
2013) and the tabular data is modeled through the adaption
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Fig. 1. Recommendation via Dual-Autoencoders (R is a rating matrix or check-in
matrix, R1 = R, R2 = R⊤).

of Restricted Boltzmann Machines (Salakhutdinov, Mnih, & Hin-
ton, 2007). Recently, Wang, Wang, and Yeung (2014) designed a
collaborative deep learning method to utilize item content infor-
mation. In essence, thesemethods utilize the powerful representa-
tion learning of deep learning to analyze the additional information
(e.g., audio signal and text context), not rating information, for bet-
ter recommendations. They did not directly learn the latent factors
of users and itemswith deep learning. Moreover, the additional in-
formation sometimes is not easy to acquire and very sparse.

To the best of our knowledge, there has been little effort
focused on employing deep learning for recommendations only
on user–item rating information. Motivated by the success of the
latent feature representation of deep learning on image and text
data, we design a novel Recommendation framework via Dual-
Autoencoders (ReDa), which is illustrated in Fig. 1. In this figure,
ReDa simultaneously learns the new hidden representations of
users and items using autoencoders, and minimizes the deviations
of training data by the learnt representations of users and items.
Moreover, a gradient descent method is derived to learn the
hidden representations. Experiments on four real-world data sets
demonstrate the effectiveness of our proposed model.

The remainder of this paper is organized as follows. We
introduce the notations and preliminary knowledge in Section 2,
and then propose the representation learning framework based
on autoencoders for recommendation in Section 3. Extensive
experiments conducted on several data sets are shown in Section 4,
followed by the related work in Section 5 and conclusions in
Section 6.

2. Notations and preliminaries

In this section, we first introduce some frequently used nota-
tions as presented in Table 1, and some preliminaries which will
be used in our proposed framework.

2.1. Autoencoders

An autoencoder (Bengio, 2009) first maps an input instance x ∈
Rm×1 to a hidden representation ξ through an encoding mapping:

ξ = h(Wx+ b),

where h is a nonlinear activation function, W ∈ Rk×m is a weight
matrix, and b is a bias. The resulting latent representation ξ is then
Table 1
The notation and denotation.

R The rating matrix or check-in matrix
I The indicator matrix
m The number of users
n The number of items
k The number of hidden factors/features
x An original instance
x̂ The reconstruction of x
ξ An embedded instance
W, b A weight matrix and bias of encoding
W′ , b′ A weight matrix and bias of decoding
⊤ The transposition of a matrix
◦ The element-wise product of vectors or matrices

mapped back to a reconstruction x̂ through a decoding mapping:

x̂ = g(W ′ξ + b′),

where g is a nonlinear activation function, W′ ∈ Rm×k is a weight
matrix, and b′ is a bias vector. Given a set of inputs {xi}ni=1, the
parameters of an autoencoder are optimized by minimizing the
reconstruction error as follows,

min
W,b,W′,b′

=

n
i=1

∥xi − x̂i∥2. (1)

Note that, in this paper we adopt the sigmoid function σ(a) =
1

1+e−a , which is widely used in constructing autoencoders, as the
nonlinear activation functions g and h for encoding and decoding,
respectively. As has been proven previously, autoencoder can find
a powerful feature representation ξ given the input instance x.

Indeed, the essential idea of matrix factorization-based recom-
mendation models is to find good latent factors of users and items.
This insightful observationmotivates us to apply an autoencoder to
achieve better latent representations. Analogically, given the rating
matrix R ∈ Rm×n (or check-in matrix), where m and n are respec-
tively the numbers of users and items, each item can be seen as an
input instance and the users can be regarded as its corresponding
features. We can then use the autoencoder to learn the latent rep-
resentations of items. Similarly, if we take items as the features of
each user, we can also learn the latent representations of users.

3. Representation learning via Dual-Autoencoders

In this section, we first formulate the representation learning
framework via dual-autoencoders for recommendation, and then
derive the model solution using the gradient decent method.

3.1. Problem formalization

The recommendation problem is to predict the rating score (or
check-in interest) of a user on an item (or business) based on the
historical information. Given the ratingmatrix R ∈ Rm×n, wherem
is the number of users and n is the number of items, and I ∈ Rm×n

is the indicator matrix, where Iij = 1 if Rij ≠ 0, or else Iij = 0, then
the objective function to learn the latent representations of items
is formulated as,

Jb = ∥I1 ◦ (R1 − R̂1)∥
2, (2)

where R1 = R and I1 = I . The encoding and decoding processes
are as follows,

Ξ1 = f (W1R1 + e1b⊤1 ),

R̂1 = f (W ′1Ξ1 + e′1b
′⊤

1 ),
(3)

where W1 ∈ Rk×m and W ′1 ∈ Rm×k are the weight matrices, Ξ1 ∈

Rk×n is the latent representation of items, b1 ∈ Rn×1 and b′1 ∈ Rn×1
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are bias vectors, e1 ∈ Rk×1 and e′1 ∈ Rm×1 are two constant vectors
with each entry equal to 1, and f is the sigmoid function.

Similarly, we can formulate the objective function for learning
the latent factors of users as,

Ja = ∥I2 ◦ (R2 − R̂2)∥
2, (4)

where R2 = R⊤, I2 = I⊤ are the transposition matrices of R, I ,
respectively. The encoding and decoding processes are as follows,

Ξ2 = f (W2R2 + e2b⊤2 ),

R̂2 = f (W ′2Ξ2 + e′2b
′⊤

2 ),
(5)

where W2 ∈ Rk×n and W ′2 ∈ Rn×k are the weight matrices,
Ξ2 ∈ Rk×m is the latent representation of users, b2 ∈ Rm×1 and
b′2 ∈ Rm×1 are bias vectors, e2 ∈ Rk×1 and e′2 ∈ Rn×1 are two
constant vectors with each entry equal to 1.

For the last item, we also require the learnt latent representa-
tions of users and items from autoencoders to be able to minimize
the deviations of training data, which is formulated as,

Jc = ∥I ◦ (R − Ξ⊤2 Ξ1)∥
2. (6)

Finally, the total optimization problem of our proposed framework
is,

J = Jc + α · Jb + β · Ja

+ γ · (∥W1∥
2
+ ∥b1∥

2
+ ∥W ′1∥

2
+ ∥b′1∥

2

+∥W2∥
2
+ ∥b2∥

2
+ ∥W ′2∥

2
+ ∥b′2∥

2). (7)

The fourth item is a regularization on model parameters, and α,
β , γ are trade-off parameters. α and β control the importance of
learning latent factors using autoencoders, and their larger values
mean we pay more attention on the optimization of autoencoders.
In this framework, we simultaneously learn the latent represen-
tations of users and items using the autoencoder, and minimize
the deviations by the learnt representations for recommendation.
Therefore, we call our framework as Recommendation via Dual-
Autoencoders (ReDa for short).

3.2. Model learning

The optimization problem in Eq. (7) is an unconstrained
optimization, and does not have closed form solutions. To derive
the solutions of all variables, we propose to use gradient descent
methods. To simplify the mathematical expressions, we first
introduce the following intermediate variables.

A1 = Ξ1 ◦ (1− Ξ1),
A2 = Ξ2 ◦ (1− Ξ2),

B1 = (R1 − R̂1) ◦ R̂1 ◦ (1− R̂1),

B2 = (R2 − R̂2) ◦ R̂2 ◦ (1− R̂2),

(8)

the partial derivatives of the objectiveJ in Eq. (7) w.r.t.W1, b1,W ′1,
b′1, W2, b2, W ′2, and b′2 can be computed as follows respectively,

∂J

∂W1
= −2(Ξ2(I ◦ (R − Ξ⊤2 Ξ1)) ◦A1)R⊤1

− 2αW ′⊤1 (I1 ◦B1) ◦A1R⊤1 + 2γ ·W1, (9)

∂J

∂b1
= −2[Ξ2(I ◦ (R − Ξ⊤2 Ξ1)) ◦A1]

⊤e1

− 2α[W ′⊤1 (I1 ◦B1) ◦A1]
⊤e1 + 2γ · b1, (10)

∂J

∂W ′1
= −2αI1 ◦B1Ξ

⊤

1 + 2γ ·W ′1, (11)

∂J

∂b′1
= −2[αI1 ◦B1]

⊤e′1 + 2γ · b′1, (12)
∂J

∂W2
= −2(ξ1(I ◦ (R − Ξ⊤2 Ξ1))

⊤
◦A2)R⊤2

− 2βW ′⊤2 (I2 ◦B2) ◦A2R⊤2 + 2γ ·W2, (13)

∂J

∂b2
= −2[Ξ1(I ◦ (R − Ξ⊤2 Ξ1)

⊤) ◦A2]
⊤e2

− 2[βW ′⊤2 (I2 ◦B2) ◦A2]
⊤e2 + 2γ · b2, (14)

∂J

∂W ′2
= −2β(I2 ◦B2)Ξ

⊤

2 + 2γ ·W ′2, (15)

∂J

∂b′2
= −2[βI2 ◦B2]

⊤e′2 + 2γ · b′2. (16)

Based on the above partial derivatives, we develop an alternatively
iterating algorithm to derive the solutions by using the following
rules,

W1 ← W1 − η
∂J

∂W1
, b1 ← b1 − η

∂J

∂b1
,

W ′1 ← W ′1 − η
∂J

∂W ′1
, b′1 ← b′1 − η

∂J

∂b′1
,

W2 ← W2 − η
∂J

∂W2
, b2 ← b2 − η

∂J

∂b2
,

W ′2 ← W ′2 − η
∂J

∂W ′2
, b′2 ← b′2 − η

∂J

∂b′2
,

(17)

Algorithm 1 Recommendation via Dual-Autoencoders (ReDa)
Input: Given the rating or check-in matrix R ∈ Rm×n, trade-off
parameters α, β , γ , the number of latent factors, k.
Output: The prediction matrix R̂ = ξ⊤2 ξ1 for recommendation.

1. Initialize W1, b1, W ′1, b′1 and W2, b2, W ′2, b′2 by Stacked
Autoencoders performed on R1 and R2, respectively;

2. Compute the partial derivatives of all variables according to Eqs.
(9)–(16);

3. Iteratively update the variables using Eq. (17);
4. Continue Step 2 and Step 3 until the algorithm converges;
5. Perform recommendation by the output R̂.

where η is the step size, which determines the speed of
convergence. The pseudo codes of the proposed algorithm are
summarized in Algorithm 1. Note that the proposed optimization
problem is not convex, and thus there is no guarantee of obtaining
an optimal global solution. To achieve a better local optimal
solution of the proposed gradient descent approach, we first run
Stacked Autoencoders (SAE) on R1 and R2 respectively, and then
use their outputs to initialize the corresponding encoding and
decoding weights. Also, it is worth mentioning that the rating
matrix is normalized as R = R

rmax
, where rmax is themaximal rating

score in R, since the input value range of autoencoder should be
[0, 1]. After Algorithm 1 is finished, R̂ is recovered to the original
rating value range, i.e., R̂ = R̂× rmax for computing the evaluation
measures Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE).

4. Experiments

In this section, we conduct experiments on four real-world data
sets to systemically evaluate the effectiveness of our proposed
framework for recommendation.

4.1. Data sets

Four data sets are used in the experiments for performance
comparison among all the methods. Two of them are the famous
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Table 2
Statistics of four data sets.

Dataset No. of users No. of items No. of ratings Rating density Avg. ratings per user Avg. ratings per item

MovieLens-100K 943 1682 100000 6.3% 106.04 59.45
MovieLens-1M 6040 3706 1000209 4.47% 165.59 269.89
Douban Book 3399 2394 334788 4.11% 98.50 139.84
Douban Movie 7292 6060 1027070 2.32% 140.85 169.48
recommendation data sets MovieLens 100K1 and MovieLens 1M,2
the former one contains 943 users and 1682 movies with 100000
ratings, while the latter one contains 6040 users and 3706 movies
with 1000209 ratings. The other two data sets are crawled from
Douban, awell known socialmedia network in China.3 TheDouban
Book data set contains 3399 users and 2394 books with 334788
ratings. The Douban Movie data set contains 7292 users and 6060
movieswith 1027070 ratings. Ratings in these data sets scale from
1 to 5 stars. The detailed characteristics of these four data sets are
summarized in Table 2. We can find that MovieLens has the most
dense rating relation, while Douban Movie is the most sparse one.

4.2. Baselines and implementation details

Baseline methods Unlike most matrix factorization based recom-
mendation methods, this work focuses on proposing a new latent
factormodel based on an autoencoder. Therefore, we first compare
ReDa with several basic baselines, and then various kinds of state-
of-the-art matrix factorization based methods, including

– UserMean: each rating is predicted by the average of the target
user’s available ratings on every item;

– ItemMean: each rating is predicted by the average of the target
item’s available ratings by all users;

– NMF (Lee & Seung, 2001): the basic Non-negative Matrix
Factorization for recommendation;

– PMF (Mnih & Salakhutdinov, 2007): Probabilistic Matrix
Factorization for recommendation;

– BPMF (Salakhutdinov & Mnih, 2008): Bayesian Probabilistic
Matrix Factorization (BPMF) for recommendation;

– SVD++ (Koren, 2008)4: Merging the latent factor model and
neighborhood model for recommendation;

– PRA (Liang&Baldwin, 2015): Probabilistic RatingAuto-encoder,
which uses autoencoder to generate latent user feature profiles.

Implementation details The baselines NMF, PMF and BPMF are
implemented by the Toolkit PREA.5 After some preliminary test,
the trade-off parameters α, β and γ are set as 0.5, 0.5 and 1 respec-
tively. The number of latent factors k is set as 50 for all baselines.
Evaluation metrics We use Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE) to evaluate the prediction performance
of all algorithms.

MAE =


(u,i)∈R

|Ru,i − R̂u,i|

|R|
, (18)

RMSE =

 
(u,i)∈R

(Ru,i − R̂u,i)2

|R|
, (19)

1 http://files.grouplens.org/datasets/movielens/ml-100k.zip.
2 http://files.grouplens.org/datasets/movielens/ml-1m.zip.
3 http://www.douban.com.
4 The code of SVD++ is downloaded from http://www.librec.net/download.html.
5 Personalized Recommendation Algorithms Toolkit (PREA) http://prea.gatech.

edu/index.html.
where R denotes the whole rating matrix, Ru,i denotes the rating
user u gives to item i, and R̂u,i denotes the rating user u gives to
item i as prediction. Smaller values of MAE and RMSE mean better
performance.

4.3. Experimental results

For each data set, 60%, 70%, 80%, 90% data are randomly sampled
for training respectively, and the rest are used for test. We conduct
five independent trials for each sampling setting, and their average
values and standard deviation are both reported. All the results of
four data sets on MAE and RMSE are listed in Tables 3 and 4. From
these results, we have the following insightful observations,

– Generally, the performance of all algorithms becomes better
when the sampling ratio of training data increases. The
matrix factorization based methods PMF, BPMF and SVD++ are
significantly affected by the sampling ratios of training data.

– ReDa is significantly better than the basic algorithms UserMean
and ItemMean, which shows the effectiveness of the proposed
model.

– Overall, ReDa outperforms all the matrix factorization based
recommendation models NMF, PMF, BPMF and SVD++ (except
in two cases, SVD++ is better than ReDa), which indicates
that ReDa can find better latent factors using autoencoder
technique. Only when the sampling ratios for training data
are higher than 70%, NMF and PMF can perform better than
UserMean and ItemMean. While the performance of ReDa is
better than all the baselines even when sampling ratio for
training data is only 60%.

– ReDa and PRA are both better than other approaches except
SVD++, which shows the effectiveness of applying autoencoder
technique. ReDa also outperforms PRA, which may indicate
the superiority of simultaneously learning the users’ and
items’ latent factors and minimizing reconstruction errors over
training data. SVD++ is better than PRA, which may due to the
consideration of neighborhood model.

– From the overview of these results, all the approaches can
achieve better performance when the ratings become denser. It
also seems that ReDa achieves larger improvement compared
with NMFwhen the rating density becomes larger. On themost
parse data set DoubanMovie, SVD++ is better than ReDa, which
may indicate that ReDa is more suitable for more dense data.

4.4. Parameter sensitivity

In this section, we investigate the influence of the parameters
α, β and γ in the objective Eq. (7) on the Movielens data set
with sampling 80% data for training. ReDa can perform stable
when k is not too small or too large, e.g., k ∈ [30, 100], thus
we simply set k = 50 for all algorithms. In this experiment,
when tuning one parameter, the values of the other two are fixed.
Specifically, all three parameters α, β and γ are sampled from
{0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10}, and we report all the
results in Fig. 2. From Fig. 2, we set α = 0.5, β = 0.5 and γ = 1 as
the default values for all four data sets.

http://files.grouplens.org/datasets/movielens/ml-100k.zip
http://files.grouplens.org/datasets/movielens/ml-1m.zip
http://www.douban.com
http://www.librec.net/download.html
http://prea.gatech.edu/index.html
http://prea.gatech.edu/index.html
http://prea.gatech.edu/index.html
http://prea.gatech.edu/index.html
http://prea.gatech.edu/index.html
http://prea.gatech.edu/index.html
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Table 3
The performance comparison among UserMean, ItemMean, NMF, PMF, BPMF, SVD++, PRA and ReDa on MovieLens-100K and MovieLens-1M.
Data set Setting Metric UserMean ItemMean NMF PMF BPMF SVD++ PRA ReDa

MovieLens-100K

60%

MAE 0.8384 0.8209 0.7655 0.8395 0.9650 0.7522 0.7656 0.7332
±0.0017 ±0.0016 ±0.0014 ±0.0822 ±0.0157 0.0006 ±0.0031 ±0.0047

RMSE 1.0465 1.0293 0.9702 1.0253 1.2319 0.9652 0.9753 0.9329
±0.0021 ±0.0008 ±0.0023 ±0.0780 ±0.0220 ±0.0001 ±0.0039 ±0.0053

70%

MAE 0.8342 0.8162 0.7599 0.7919 0.9040 0.7400 0.7632 0.7248
±0.0031 ±0.0034 ±0.0039 ±0.0407 ±0.0048 ±0.0005 ±0.0027 ±0.0067

RMSE 1.0401 1.0236 0.9620 0.9787 1.1532 0.9502 0.9710 0.9231
±0.0028 ±0.0042 ±0.0043 ±0.0403 ±0.0068 ±0.0006 ±0.0058 ±0.0081

80%

MAE 0.8344 0.8163 0.7582 0.7823 0.8810 0.7260 0.7594 0.7203
±0.0043 ±0.0041 ±0.0054 ±0.0228 ±0.0094 ±0.0005 ±0.0041 ±0.0043

RMSE 1.0408 1.0243 0.9615 0.9701 1.1274 0.9318 0.9657 0.9190
±0.0046 ±0.0050 ±0.0075 ±0.0266 ±0.0118 ±0.0009 ±0.0042 ±0.0056

90%

MAE 0.8370 0.8179 0.7659 0.7882 0.8626 0.7222 0.7595 0.7153
±0.0083 ±0.0093 ±0.0077 ±0.0280 ±0.0129 ±0.0021 ±0.0040 ±0.0094

RMSE 1.0425 1.0232 0.9665 0.9750 1.1032 0.9240 0.9649 0.9114
±0.0081 ±0.0122 ±0.0093 ±0.0304 ±0.0162 ±0.0005 ±0.0052 ±0.0093

MovieLens-1M

60%

MAE 0.7822 0.7827 0.7372 0.7055 0.6962 0.6782 0.7108 0.6789
±0.0033 ±0.0008 ±0.0001 ±0.0035 ±0.0001 ±0.0001 ±0.0010 ±0.0040

RMSE 0.9791 0.9803 0.9438 0.8998 0.8946 0.8656 0.9002 0.8659
±0.0044 ±0.0013 ±0.0001 ±0.0038 ±0.0003 ±0.0003 ±0.0010 ±0.0042

70%

MAE 0.7820 0.7828 0.7282 0.6971 0.6882 0.6736 0.7122 0.6731
±0.0031 ±0.0009 ±0.0001 ±0.0020 ±0.0001 ±0.0003 ±0.0005 ±0.0029

RMSE 0.9795 0.9805 0.9314 0.8891 0.8832 0.8586 0.9026 0.8573
±0.0043 ±0.0016 ±0.0002 ±0.0028 ±0.0001 ±0.0003 ±0.0005 ±0.0033

80%

MAE 0.7809 0.7825 0.7214 0.6900 0.6802 0.6680 0.7142 0.6646
±0.0021 ±0.0018 ±0.0008 ±0.0019 ±0.0001 ±0.0005 ±0.0001 ±0.0029

RMSE 0.9777 0.9799 0.9214 0.8805 0.8738 0.8508 0.9053 0.8485
±0.0028 ±0.0014 ±0.0013 ±0.0027 ±0.0001 ±0.0004 ±0.0002 ±0.0024

90%

MAE 0.7825 0.7810 0.7180 0.6849 0.6758 0.6656 0.7155 0.6647
±0.0021 ±0.0022 ±0.0015 ±0.0031 ±0.0009 ±0.0008 ±0.0001 ±0.0051

RMSE 0.9794 0.9782 0.9164 0.8748 0.8688 0.8478 0.9071 0.8474
±0.0026 ±0.0025 ±0.0012 ±0.0061 ±0.0003 ±0.0019 ±0.0001 ±0.0046
Table 4
The performance comparison among UserMean, ItemMean, NMF, PMF, BPMF, SVD++, PRA and ReDa on Douban Book and Douban Movie.
Data set Setting Metric UserMean ItemMean NMF PMF BPMF SVD++ PRA ReDa

Douban Book

60%

MAE 0.6182 0.5999 0.5713 0.5938 0.6609 0.5590 0.5580 0.5548
±0.0015 ±0.0004 ±0.0014 ±0.0143 ±0.0014 ±0.0005 ±0.0011 ±0.0008

RMSE 0.7726 0.7410 0.7171 0.7651 0.8326 0.7082 0.7011 0.6979
±0.0021 ±0.0010 ±0.0020 ±0.0338 ±0.0021 ±0.0001 ±0.0012 ±0.0014

70%

MAE 0.6169 0.6001 0.5701 0.5968 0.6401 0.5522 0.5557 0.5500
±0.0012 ±0.0006 ±0.0008 ±0.0173 ±0.0010 ±0.0009 ±0.0011 ±0.0021

RMSE 0.7717 0.7408 0.7159 0.7712 0.8073 0.6982 0.6983 0.6906
±0.0012 ±0.0008 ±0.0010 ±0.0367 ±0.0017 ±0.0009 ±0.0016 ±0.0018

80%

MAE 0.6158 0.5988 0.5686 0.5860 0.6433 0.5468 0.5553 0.5485
±0.0010 ±0.0012 ±0.0017 ±0.0096 ±0.0008 ±0.0004 ±0.0018 ±0.0046

RMSE 0.7704 0.7395 0.7142 0.7489 0.8121 0.6916 0.6974 0.6888
±0.0015 ±0.0018 ±0.0021 ±0.0227 ±0.0017 ±0.0003 ±0.0029 ±0.0039

90%

MAE 0.6167 0.5992 0.5680 0.5842 0.6287 0.5430 0.5550 0.5415
±0.0027 ±0.0018 ±0.0025 ±0.0033 ±0.0013 ±0.0010 ±0.0037 ±0.0043

RMSE 0.7721 0.7402 0.7145 0.7431 0.7941 0.6868 0.6967 0.6813
±0.0029 ±0.0024 ±0.0029 ±0.0059 ±0.0013 ±0.0006 ±0.0039 ±0.0031

Douban Movie

60%

MAE 0.6809 0.6116 0.5739 0.6428 0.6396 0.5588 0.5677 0.5537
±0.0008 ±0.0010 ±0.0006 ±0.0497 ±0.0066 ±0.0004 ±0.0004 ±0.0048

RMSE 0.8521 0.7635 0.7261 0.8015 0.8157 0.7082 0.7189 0.7018
±0.0012 ±0.0010 ±0.0008 ±0.0620 ±0.0092 ±0.0001 ±0.0007 ±0.0049

70%

MAE 0.6799 0.6109 0.5730 0.6365 0.6274 0.5548 0.5672 0.5513
±0.0007 ±0.0007 ±0.0008 ±0.0314 ±0.0052 ±0.0001 ±0.0004 ±0.0031

RMSE 0.8511 0.7628 0.7249 0.7938 0.8003 0.7012 0.7181 0.6984
±0.0007 ±0.0008 ±0.0011 ±0.0394 ±0.0074 ±0.0001 ±0.0005 ±0.0026

80%

MAE 0.6802 0.6110 0.5721 0.6414 0.6181 0.5486 0.5662 0.5513
±0.0008 ±0.0005 ±0.0012 ±0.0481 ±0.0020 ±0.0002 ±0.0007 ±0.0029

RMSE 0.8510 0.7627 0.7239 0.7996 0.7886 0.6940 0.7164 0.6981
±0.0012 ±0.0006 ±0.0011 ±0.0596 ±0.0027 ±0.0005 ±0.0009 ±0.0030

90%

MAE 0.6798 0.6095 0.5705 0.6423 0.6064 0.5452 0.5654 0.5545
±0.0021 ±0.0016 ±0.0013 ±0.0503 ±0.0044 ±0.0000 ±0.0013 ±0.0045

RMSE 0.8506 0.7605 0.7220 0.8008 0.7734 0.6925 0.7155 0.7011
±0.0025 ±0.0018 ±0.0017 ±0.0633 ±0.0056 ±0.0002 ±0.0022 ±0.0043
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(a) The parameter influence of α.

(b) The parameter influence of β . (c) The parameter influence of γ .

Fig. 2. The study of parameter influence on ReDa.
5. Related work

Recent years have witnessed a boom of research work in rec-
ommendation systems. A number of techniques are employed for
recommendations and many sources of data are fused to im-
prove recommendation performances. Traditional recommender
systems normally only utilize user–item rating feedback infor-
mation for recommendation. Collaborative filtering is one of the
most popular techniques, whose basic idea is to find similar ob-
jects for recommendation through interactive records. Recently,
matrix factorization has shown its effectiveness and efficiency in
recommender systems, which factorizes user–item rating matrix
into two low rank user-specific and item-specific matrices, and
then utilizes the factorized matrices to make further predictions
(Srebro & Jaakkola, 2003). Assuming that the rating matrix is low-
rankwithin certain neighborhoods of themetric space, Lee, Bengio,
Kim, Lebanon, and Singer (2014) combined a recent approach for
local low-rank approximation based on the Frobenius norm with
a general empirical risk minimization for ranking losses. Actually,
this method is an ensemble of basic matrix factorization, and of
course we can use it to further improve our model. In this work,
we aim to propose a new latent factor framework based on deep
learning.

With the prevalence of social media, more and more informa-
tion is fused for better recommendation. Many researchers study
social recommender systems which utilize social relations among
users. Ma et al. (2008) fused user–item matrix with users’ social
trust network by sharing a common latent low-dimensional user
feature matrix. Furthermore, authors in Ma, King, and Lyu (2009)
coined the social trust ensemble to represent the formulation of the
social trust restrictions. Some researchers have begun to use friend
relation among users. For example, Yang, Steck, and Liu (2012)
inferred category-specific social trust circles from available rat-
ing data combined with friend relations. With the surge of het-
erogeneous information network, some researchers have noticed
the importance of heterogeneous information for recommenda-
tion. Yu et al. (2014) proposed an implicit feedback recommen-
dation model with systematically extracted latent features from
heterogeneous network. More recently, Shi et al. (2015) utilized
heterogeneous network to integrate all kinds of information, and
adopt a meta path based similarity measure for semantic recom-
mendation. Most of these methods integrate additional informa-
tion under the matrix factorization framework, in which the latent
factors of users and items are usually obtained by directly factor-
izing the rating matrix. However, in ReDa, we try to propose that
the latent factors of users and items can be derived by the autoen-
coders from the rating matrix.

Recently, deep learning has shown its great success in image
and text processing. Some researchers have noticed the potential
of deep learning for recommendation. In order to alleviate the
cold start problem, Oord et al. (2013) extracted latent factors
of music from audio signals with deep convolutional neural
network, instead of traditional bag-of-words representation. To
address the sparsity problem, Wang et al. (2014) employed
the collaborative topic regression model to utilize item content
information. In the model, they designed a collaborative deep
learning method to couple a Bayesian formulation of the stacked
denoising autoencoder and probabilistic matrix factorization. In
essence, these methods utilize deep learning to extract latent
features from additional information, e.g., music audio and text
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content. Unlike these methods, the proposed ReDa employs the
deep learning directly on the rating information. The most related
work is Liang and Baldwin (2015), in which they proposed a
probabilistic rating autoencoder to generate latent user feature
profiles, then the neighborhood based collaborative filtering
approach is used to make predictions. However, they did not
consider the reconstruction error over latent factors, which may
further improve the performance.

6. Conclusion and future work

To make full use of the user–item rating information and
learn better latent representations, different from previous matrix
factorization methods we aim to propose a new representation
learningmodel based on autoencoders for recommendation in this
paper. In our proposed framework, we simultaneously learn the
latent factors of users and items, and minimize the derivations of
training data using the learnt latent factors. Experiments on four
data sets validate the superiority of our proposed framework.

Though our proposed recommendation framework ReDa can
achieve promising performance, for each iteration in Algorithm
1, the time complexity is O(kmn), where k is the number of
latent factors, m is the number of users and n is the number of
items. So we will focus on developing an efficient algorithm to
derive the solutions in the future. Moreover, it is easy to integrate
external information by introducing some regularization items for
our model, which will also be our future work.
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