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Recently, recommender systems have played an important role in improving web user experiences and
increasing pro�ts. Recommender systems exploit users’ behavioral history (i.e., feedback on items) to build
models. The feedback usually includes explicit feedback (e.g., ratings) and implicit feedback (e.g., browsing
history, click logs), which are both useful for improving recommendations. However, as far as we are concerned,
no existing works have integrated both explicit and multiple implicit feedback simultaneously. Therefore,
we propose a uni�ed and �exible model, named MFPR, to make full use of multiple feedback, which uses a
personalized ranking framework. In order to train model MFPR, we design an algorithm to generate ordered
item pairs as labeled data, with consideration of both rating scores and multiple implicit feedback. Extensive
experiments on two real-world datasets validate the e�ectiveness of the MFPR model. With the integration of
multiple feedback, MFPR signi�cantly improves recommendation performance.
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1 INTRODUCTION
In order to alleviate the information overload problem, recommender systems have been proposed
to help users �nd items of interest through utilizing the user-item interaction information and/or
content information associated with users and items. Recommender systems have attracted much
attention from multiple disciplines, and many techniques have been proposed to build recommender
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Fig. 1. A toy example of multiple feedback between users and books in Douban Book

systems. The interaction information (i.e., feedback) between users and items is widely exploited to
build recommendation models.

The feedback data in recommender systems usually come in the form of explicit or implicit
feedback [10]. Explicit feedback is the interaction information that directly expresses user prefer-
ences for items, such as the rating information. Implicit feedback is the interaction information
that indirectly re�ects users’ opinions and can imply user preferences [20]. Fig. 1 shows a toy
example of multiple feedback in Douban Book. The rating (1-5 scores) is the explicit feedback that
directly re�ects user preferences. There are two types of implicit feedback, which also imply user
preference. The term “wish” means that the user wishes to read the book but has not begun yet;
“reading” means reading the book. We can see that explicit feedback (i.e., rating) quanti�es users’
preferences, which is critical for recommendation, while implicit feedback is also an important
complement. We know that in real applications, explicit feedback is usually scarce, but implicit
feedback is usually abundant. Although one kind of implicit feedback may be weak and indirectly
relfect user preferences, the aggregation of this type of feedback provides important hints about
user preferences.

Many methods exploit feedback information to build recommender models. Fig. 2 shows how
these methods utilize this information. As shown in Fig. 2(a), traditional collaborative �ltering
usually utilizes explicit feedback information (i.e., ratings) [11, 14, 26]. Since implicit feedback
information is widely and cheaply available, some studies began to use implicit feedback in recent
years. Some works considered using a single type of implicit feedback [12, 21, 25] (see Fig. 2(b)), and
Fortes and Manzato [5] began to combine several types of implicit feedback with a simple ensemble
approach (see Fig. 2(c)). In addition, SVD++ [14] is designed to combine rating information and only
one type of implicit feedback for improving rating prediction, as shown in Fig. 2(d). Unfortunately,
all these works do not simultaneously utilize comprehensive feedback information in recommender
systems.

In this paper, we propose to solve the personalized ranking problem by integrating multiple
feedback, as shown in Fig. 2(e). For convenience, multiple feedback means one type of explicit
feedback and multiple types of implicit feedback in the following sections. In many review web
sites, such as Yelp and Dianping, users are required to give a rating score (i.e., explicit feedback)
to an object, and they can also have other interactions with objects, such as “checking in” and
“viewing”. Obviously, our problem setting is a general framework for utilizing feedback information,
and existing problems are special cases of our problem setting. In addition, many recommendation
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Fig. 2. The schemas of utilizing feedback information

algorithms predict users’ rating scores of items and then calculate the RMSE criteria between
predicted and true values to evaluate their e�ectiveness (e.g., SVD, SVD++). Actually, the rating is
just one way to express user preferences. Users are usually more concerned with the order than
the rating score of items. Therefore, from the recommendation perspective, predicting the rank
of an item is more straightforward and meaningful than predict rating scores. Thus, in this work,
we focus on developing a personalized ranking model that integrates multiple feedback. Although
many methods have been proposed to utilize feedback, these models are usually designed for special
problem settings, and they cannot be directly applied in a multiple-feedback setting.

Integration of multiple feedback faces two challenges. (1) Design a uni�ed ranking model
integrating multiple feedback. In order to make the best use of this feedback information, we need
to design an e�ective mechanism to handle relations between explicit and implicit feedback as well
as relations among implicit feedback. (2) Generate training samples. As a ranking method, we need
to generate preference pairs or lists for training. However, there are multiple types of feedback. It
is not a trivial task to utilize this feedback to generate the training data.

We �rst study the personalized ranking recommendation problem integrating multiple feedback
and propose a Multiple Feedback based Personalized Ranking recommendation model (called
MFPR). We integrate the explicit feedback with one type of implicit feedback using the Bayesian
Personalized Ranking framework and then extend this model to integrate more implicit feedback.
In addition, a generation algorithm of training samples is proposed, which can e�ectively uncover
the truth ranking information of items contained in feedback information. The major contributions
of our paper are summarized as follows:

• We �rst try to solve the personalized ranking recommendation problem by integrating
multiple feedback. The problem widely exists in a real recommender system, and it is a
general problem setting to encompass existing works.

• We propose a Bayesian Personalized Ranking (BPR) based model MFPR to integrate multiple
feedback. Moreover, as there are no readily available training data of pairwise comparisons
for this problem, an e�ective algorithm is designed to generate the training data that is
more consistent with multiple feedback for the MFPR model.

• We crawl comprehensive Douban Book and Dianping datasets 1 including ratings and
multiple types of implicit feedback. Extensive experiments on these two real datasets
validate the e�ectiveness of the proposed method.

1The datasets are available at https://github.com/7thsword/MFPR-Datasets.
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The preliminary work was published in [17]. However, this paper substantially extends the original
work in the following aspects. First, it introduces in detail one important contribution of this
paper, the training set generation algorithm IPPE, and gives insightful analysis of IPPE in Section 5.
Moreover, we further validate its e�ectiveness in Section 6.5. Second, it adds extensive experiments
to su�ciently validate the traits of the proposed MFPR. This includes the following: “Integrate
Di�erent Implicit Feedback with Rating” in Section 6.6, “Mean weighted SFPR versus MFPR” in
Section 6.7, and “Parameter Study” in Section 6.8. Moreover, it adds another baseline MSVD++
in Section 6.3. These approaches indicate broader use of the proposed method, in addition to its
advantages. Third, it provides a clearer description of the proposed method, including the learning
algorithm, algorithm framework, and complexity analysis of the MFPR in Section 4.3. In addition, it
describes related works in more detail in Section 2 and provides an introduction to the basic model
SVD in Section 3.3.

The remainder of this paper is organized as follows: We describe the related works in Section
2, and Section 3 presents preliminary knowledge and problem formulation. We introduce the
proposed model in Section 4 and then detail the novel training set generation algorithm in Section
5. Experiments and analysis are shown in Section 6. Finally, we conclude the paper in Section 7.

2 RELATED WORK
Rating prediction methods is a popular type of recommendation technique. The task is to predict
the unknown user-item ratings by minimizing the error of predicted ratings and true ratings in
training data. Traditional collaborative �ltering (CF) is one of the most popular techniques for rating
prediction, including user-based CF and item-based CF. Recently, a series of matrix factorization
models [19, 26, 27, 29] showed their power in rating prediction, which mainly factorized a known
but incomplete user-item rating matrix into two low-rank user-speci�c and item-speci�c matrices.
Then, the factorized matrices were used to predict ratings.

For the past number of years, many techniques have been proposed for building recommender
systems. According to the input data, these techniques can be roughly classi�ed into three categories:
explicit feedback based, implicit feedback based and hybrid feedback based. Explicit feedback is
usually considered more reliable and of high quality. A series of matrix factorization models
exploiting explicit feedback show their potential in recommender systems, such as PMF [26], SVD
[14], NMF [11] and Hete-MF [29].

Since implicit feedback is often easily available, many methods using implicit feedback have
been proposed. For example, BPRMF [25] utilized implicit feedback to generate training pairs and
then learned the parameters in the BPR model; Fortes and Manzato [5] ensembled several BPRMF
and each BPRMF instance utilized one type of the multiple implicit feedback; Gurbanov et al. [9]
presented the model MMF that predicted a target user action by leveraging actions of multiple
types. Essentially, it utilized multiple types of implicit feedback to predict a target implicit feedback.

In addition, some researchers began to exploit hybrid feedback. For example, Koren [14] designed
the SVD++ to combine ratings with single implicit feedback (i.e., whether a user rated an item)
for predicting ratings more accurately. Fortes and Manzato [4] developed a hybrid model for
personalized ranking that uses SVD to handle explicit feedback and BPRMF to handle implicit
feedback (i.e., whether a user tagged an item). And Tang et al. [28] conducted a series of experiments
to explore how to reasonably integrate user positive and negative implicit feedback for improving
the CTR of the news feed and email campaign of the Linkedin system. Gurbanov et al. [8] proposed
a recommender system integrating sequence mining and CF models to predict whether a user will
perform an action of a target type on an item. The above methods usually utilized some feedback
information, while our method makes full use of implicit and explicit feedback information.
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Multi-label classi�cation methods have also been applied in recommendation. For example,
Agrawal et al. [1] proposed an algorithm that used multi-label random forests as classi�er and
recommend bid phrases from a given ad landing page. Oliveira et al. [6] used multi-label k-nearset
neighbor as classi�er and recommend programming activities. The “label” in these methods usually
represents characteristics of items or users, while the “feedback” in our work embodies interactions
between users and items. They are two di�erent types of signals in recommender systems and lead
to di�erent analysis methods. So multi-label classi�cation methods cannot be directly applied to
our problem.

Recently, learning to rank (LTR) [16, 18, 25] has attracted increasing attention in the machine
learning community. LTR is the core technology for ranking tasks, such as document ranking in
information retrieval. Such techniques began to be applied to the personalized recommendation
in recent years. There are many LTR methods, and they can be classi�ed into three categories:
pointwise, pairwise and listwise. In pointwise methods, the model learns to output a score or class
label for each input single document. Speci�cally, the rating prediction models can be considered
as a kind of pointwise method. In listwise methods [3, 22], the model learns to output a ranked
document list for the input document collections; in pairwise methods [13], the model focuses on
learning with a preference for each input document pair, where Bayesian Personalized Ranking
[25] is a typical approach.

3 PRELIMINARY
In this section, we introduce some basic concepts, the problem formulation and the base model.

3.1 Explicit and Implicit Feedback
In real recommender systems, feedback information is prevalent between users and items. Feedback
data can be divided into two categories: explicit and implicit. Formally, when feedback data are
in the form of explicit feedback with single implicit feedback, each user u is associated with two
types of item sets: an explicit feedback set E (u) and implicit item set N (u).

Explicit feedback is intentionally provided by users to directly express user preferences (e.g., like
or dislike) for items. For example, user ratings are one of the most popular types of explicit feedback.
For an item i ∈ E (u), user u has given the rating Rui to item i . The rating Rui is usually an integer
between 1 and 5, indicating the preference of user u for item i . Higher ratings indicate a stronger
preference. Explicit feedback is very important for recommender systems. Traditional collaborative
�ltering methods are usually based on explicit feedback. However, this kind of feedback is usually
di�cult to collect since many users are not willing to give ratings to items.

Implicit feedback re�ects user opinions indirectly and can imply user probable preferences [20].
For example, in music recommender systems, users may “collect”, “download”, and “share” songs.
For an item i ∈ N (u), the implicit feedback does not necessarily mean that user u likes the item i . In
turn, for an item i < N (u), the implicit feedback does not mean that a user dislikes item i . Implicit
feedback just provides indication of possible user preferences. For instance, if a user adds a song to
a playlist, she may know it through her friends but not have heard it yet, which only indicates that
she may like it. Implicit feedback widely exists in recommender systems. This type of data is huge
in real systems since there are many ways to interact with items through these systems, and this
interaction with items can be converted into implicit feedback.

When feedback data consist of explicit feedback with multiple types of implicit feedback, each
user is associated with a single explicit feedback and τ types of implicit feedback (τ ≥ 2). For user
u, the explicit item set still denoted as E (u) contains items user u has rated (i.e., a rating), and the
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implicit item sets denoted as N 1 (u),N 2 (u), · · · ,N τ (u), where N t (u), contains items about which
user u has expressed the t-type implicit feedback (t = 1, · · · ,τ ).

3.2 Problem Formulation
LetU and I denote the set of users and items respectively. We de�ne a ranking recommendation
problem on multiple feedback data Rd = {U ,I,Ef , If }. Ef , de�ned as Ef = {E (u) |u ∈ U}, to be
explicit feedback data consisting of all users’ explicit item sets. If , de�ned as If = {N

t (u) |u ∈
U , t = 1, · · · ,τ }, is implicit feedback data consisting of all users’ implicit item sets. Hence, as
shown in Fig. 2(e), our task is to design a model to make full use of the explicit feedback data Ef
and the implicit feedback data If .

It is obvious that existing works usually utilize incomplete feedback data. For example, traditional
collaborative �ltering (e.g., SVD [14]) is based on the data Rd = {U ,I,Ef }, the widely used SVD++
is based on the data Rd = {U ,I,Ef , If } with τ = 1, and the recent work of Fortes and Manzato
[5] only considered data Rd = {U ,I, If }. Thus, our problem setting is a general framework that
includes the existing problem setting as a special case. Our problem setting is very popular in the
real world.

3.3 Base Learner Integrating Explicit and Implicit Feedback
Some e�ective learners have been proposed to utilize feedback data. Assume that there arem users
and n items (i.e., |U | = m, |I | = n). Given a rating matrix R = (Rui )

m×n , Rui denotes the score
user u has rated on item i . A classical factorization model [14] is induced by an SVD-like low-rank
matrix factorization. Each user u and item i are represented by latent vectors pu ∈ Rd and qi ∈ R

d

respectively (d �min(m,n)). Rating prediction for item i by user u can be modeled as follows:

R̂ui = puq
T
i . (1)

In [14], Koren et al. proposed a factorization model called SVD++, considering the integration of
explicit and implicit feedback to predict ratings more accurately. The predicted rating R̂ui user u
may give to item i can be modeled as:

R̂ui = (pu + |N (u) |−
1
2
∑

k ∈N (u )

γk )q
T
i , (2)

where γk ∈ Rd is the implicit latent vector of item k and N (u) is the implicit item set as mentioned
above. It is worth noting that Eq. 2 does not contain the bias and average component. As we use
pairwise training data, the user bias and average component are eliminated. The details are described
in Section 4.2. Now, a user u is modeled as pu + |N (u) |−

1
2
∑

k ∈N (u ) γk , and the complemented sum
term |N (u) |−

1
2
∑

k ∈N (u ) γk represents the perspective of implicit feedback. SVD++ models implicit
feedback as a part of the user factor, which is a straightforward but e�ective method. It makes the
best use of explicit feedback and adds implicit feedback as supplements.

Unfortunately, these existing models cannot be directly applied to our problem setting. Although
SVD++ also considers explicit and implicit feedback, it just integrates one type of implicit feedback.
In addition, SVD++ is originally designed for the rating prediction problem. Since predicting exact
ratings is not necessary for many recommendation applications, we propose using a ranking
framework.

4 PERSONALIZED RANKING WITH MULTIPLE FEEDBACK
It is not a trivial task to design a uni�ed ranking model integrating multiple feedback. The explicit
and implicit feedback have di�erent characteristics, and we must therefore treat them di�erently. In
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addition, we also need to integrate multiple implicit feedback. As analyzed above, existing models
cannot be directly applied to this problem. A naive method is to treat all feedback as feature vectors.
However, as shown in Section. 6.3, the FM method[23] does not achieve good performance because
the features of explicit feedback are ignored.

In this paper, we propose a uni�ed Multiple Feedbacks based Personalized Ranking model (called
MFPR). By adapting the SVD++ model with the Bayesian Personalized Ranking, we �rst design a
Personalized Ranking model integrating explicit feedback with one-Single implicit Feedback (called
SFPR). And we then extend the SFPR model by integrating multi-type implicit feedback. In this
section, we �rst present the SFPR model and its learning method and then put out the MFPR model.

4.1 The SFPR Model
First, we design a ranking model to combine explicit feedback with one type of implicit feedback.
Here, we extend the Bayesian Personalized Ranking (BPR) framework [25] originally designed for
handling single implicit feedback to integrate explicit with implicit feedback. Assume that a training
set Tr consists of triples of the form (u, i, j ) with i � j denoting that user u shows more preference
on item i than item j. Note that the generation of training set Tr is an important issue that will
be discussed in Sec. 5. The Bayesian formulation of �nding the correct personalized ranking is to
maximize the following posterior probability:

p (θ |Tr ) ∝ p (Tr |θ )p (θ ), (3)

where θ is the parameter of a certain base learner and p (θ ) is the prior probability of a base learner
parameter.

We use p (i � j;u |θ ) to denote the probability that user u prefers item i over item j. With the
assumption that each triple (u, i, j ) ∈ Tr is independent, the likelihood function can be expanded as
follows:

p (Tr |θ ) =
∏

(u,i, j )∈Tr

p (i � j;u |θ ). (4)

To integrate single explicit feedback with single implicit feedback, we choose SVD++ in Eq. 2 as
our base learner; SVD++ e�ectively di�erentiates explicit and implicit feedback, and it fully utilizes
the explicit feedback. Then the individual probability that a user really prefers item i over item j
can be designed as:

p (i � j;u |θ ) = σ (R̂ui − R̂uj ), (5)

where σ is the logistic sigmoid function σ (x ) = 1
1+e−x .

For convenience, we simplify R̂ui − R̂uj in Eq. 5 as x̂ui j . Note that x̂ui j is a real-valued function of
θ that captures the ranking relation between item i and item j with the given user u. Assume that
p (θ ) is a Gaussian distribution with zero mean and variance-covariance matrix

∑
θ = λθ I . Now, we

can estimate parameter θ of the base learner by maximizing the posterior probability in Eq. 3 as
follows:

max
θ
L = ln p (θ |Tr )

= ln p (Tr |θ )p (θ )

=
∑

(u,i, j )∈Tr

ln p (i � j;u |θ ) − λθ ‖θ ‖2

=
∑

(u,i, j )∈Tr

ln σ (x̂ui j ) − λθ ‖θ ‖
2, (6)
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where λθ ‖θ ‖2 is an L2 regularization term that can be derived from the Gaussian distribution p (θ )
mentioned above.

4.2 Learning Algorithm of SFPR Model
Note that the objective function in Eq. 6 is di�erentiable, and we can employ gradient ascent based
algorithms as the optimizer. The gradient of Eq. 6 with respect to the parameter θ is:

∂L

∂θ
=

∑
(u,i, j )∈Tr

∂

∂θ
lnσ (x̂ui j ) − λθ

∂

∂θ
‖θ ‖2

∝
∑

(u,i, j )∈Tr

1
1 + e x̂ui j

∂

∂θ
x̂ui j − λθθ . (7)

In the paper, we apply stochastic gradient ascent (SGA) to optimize the model SFPR. Then with a
training sample (u, i, j ), the model parameter θ can be updated as:

θ ← θ + η(
1

1 + e x̂ui j
∂

∂θ
x̂ui j − λθθ ), (8)

where η is the given learning rate. The gradient of x̂ui j with respect to each model parameter has to
be known before the gradient ascent process. As de�ned above, we can get the x̂ui j = R̂ui − R̂uj as:

x̂ui j = (pu + |N (u) |−
1
2
∑

k ∈N (u )

γk ) (qi − qj )
T. (9)

The model parameters in Eq. 9 are pu , qi , qj , and |N (u) |, while |N (u) | is the length of the implicit
item set of user u that is �xed, so we can get the derivatives of other parameters as:

∂x̂ui j

∂θ
=




qi − qj if θ = pu ,
pu + |N (u) |−

1
2
∑

k ∈N (u ) γk if θ = qi ,
−(pu + |N (u) |−

1
2
∑

k ∈N (u ) γk ) if θ = qj ,
|N (u) |−

1
2 (qi − qj ) if θ = γk .

(10)

We set regularization parameters λp , λq and λγ for user explicit latent vectors, item explicit latent
vectors and item implicit latent vectors, respectively. Referring to Eq. 8, we de�ne ∆ui j =

1
1+e x̂ui j

and for any sample (u, i, j ) ∈ Tr , parameters of SFPR can be updated using SGA:

pu ← pu + η(∆ui j (qi − qj ) − λppu ), (11)

qi ← qi + η(∆ui j (pu + |N (u) |−
1
2
∑

k ∈N (u )

γk ) − λqqi ), (12)

qj ← qj + η(−∆ui j (pu + |N (u) |−
1
2
∑

k ∈N (u )

γk ) − λqqj ), (13)

f or k ∈ N (u) :

γk ← γk + η( |N (u) |−
1
2∆ui j (qi − qj ) − λγγk ). (14)

It is noteworthy that when using the trained SFPR to do prediction, the R̂ui cannot be regarded as
the predicted rating (i.e., 1 to 5 scores) as usual. Here, we call R̂ui the predicted ranking score, which
implies thr degree that user u prefers to item i . Higher scores indicate a stronger user preference.
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4.3 The MFPR model
The proposed SFPR is designed to integrate single explicit feedback and single implicit feedback.
Then, we extend the SFPR model to integrate more implicit feedback. When considering multiple
feedback, as mentioned in Sec. 3.1, each user u is associated with an explicit item set E (u) and τ
types of implicit item sets N 1 (u),N 2 (u), · · · ,N τ (u). For integrating multiple implicit feedback, our
extended preference predictor can be designed as

R̂ui = (pu +
1
τ

τ∑
t=1
|N t (u) |−

1
2
∑

k ∈N t (u )

γ tk )q
T
i , (15)

where γ tk ∈ R
d represents the implicit latent vector of item k under the t-th implicit feedback. The

model in Eq. 15 can be seen as a more general version of the SFPR model.
Now, we have the x̂ui j = R̂ui − R̂uj as:

x̂ui j = (pu +
1
τ

τ∑
t=1
|N t (u) |−

1
2
∑

k ∈N t (u )

γ tk ) (qi − qj )
T. (16)

With ∆ui j , λp , λq , λγ de�ned as previously, for any sample (u, i, j ) ∈ Tr yielding:

∂

∂θ
x̂ui j =




qi − qj if θ = pu ,
pu +

1
T
∑τ

t=1 |N
t (u) |−

1
2
∑

k ∈N t (u ) γ
t
k if θ = qi ,

−(pu +
1
T
∑τ

t=1 |N
t (u) |−

1
2
∑

k ∈N t (u ) γ
t
k ) if θ = qj ,

|N t (u) |−
1
2 (qi − qj ) if θ = γ tk .

(17)

Similarly, we apply SGA to solve the optimization problem. The whole algorithm framework is
shown in Algorithm 1. The time complexity of MFPR can be analyzed as follows. The computation
of MFPR mainly contains two parts: (1) calculating parameters and gradients (Lines 6, 7 and 13); (2)
updating parameters (Lines 8-10 and 14). The number of latent dimensions is d , and |N t (u) | can be
estimated by a small constant c and c � m, c � n. The complexity in Lines 6, 7 is O (c × τ × d ).
The complexity in Line 13 is O (c × τ × d ). And the complexity in Lines 8-10 and 14 is O (d ). So,
the entire complexity of Lines 11-16 is O (c2 × τ 2 × d ). In summary, the complexity of MFPR is
O (c2 × τ 2 × d × |Tr | × r ), where r is the number of iterations.

5 TRAINING SET GENERATION ALGORITHM
As mentioned above, our MFPR model is fed with training data in the form of (u, i, j ) with i � j
denoting that useru prefers item i over item j . There is an important issue of how we can e�ectively
generate (u, i, j ) from multiple feedback since the preference partial pairs signi�cantly a�ect
performances [2]. For those traditional personalized ranking models utilizing only one or more
types of implicit feedback, such as BPRMF in [25] and the approach in [5], their training set
generation algorithms just take implicit feedback into count. Speci�cally, they draw partially
ordered item pairs from the cartesian product of user’s interacted items (items that belong to a
user’s implicit item set) and a user’s non-interacted items (items that do not belong to a user’s
implicit item set). However, in terms of multiple feedback, such a training set generation algorithm
is inapplicable for MFPR. In addition to implicit feedback, there is quanti�ed rating information in
our problem setting, which can better re�ect preference sequences. Hence, we need to design a
new training set generation algorithm.

Burgess and Shaked et al. [2] have proved that if the ranking probabilities of every adjacent
document pair in a permutation of all documents to be ranked are known, then the ranking
probabilities of any document pair can be derived. Inspired by this conclusion, we design a training
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ALGORITHM 1: Algorithm Framework of MFPR
Input: Tr : the training set of training triples

η: learning rate for gradient ascent
λp , λq , λγ : regularization parameters de�ned above

Output: pu (u = 1 · · ·m): the explicit latent vector of user u
qi (i = 1 · · ·n): the explicit latent vector of item i
γk (k = 1 · · ·n): the implicit latent vector of item k

1 Initialize pu ,qi ,γ tk (t = 1 · · ·n) for all users and all items
2 De�ne x̂ui j = R̂ui − R̂uj with Eq. 16
3 De�ne ∆ui j = 1/(1 + e x̂ui j ) as in Sec. 4.2
4 repeat
5 for (u, i, j ) in Tr do
6 Calculate x̂ui j , ∆ui j
7 Calculate ∂

∂pu
x̂ui j , ∂

∂qi
x̂ui j , ∂

∂qj
x̂ui j

8 Update pu := pu + η(∆ui j ∂
∂pu

x̂ui j − λppu )

9 Update qi := qi + η(∆ui j ∂
∂qi

x̂ui j − λqqi )

10 Update qj := qj + η(∆ui j ∂
∂qj

x̂ui j − λqqj )

11 for t ← 1 to τ do
12 for k ∈ N t (u) do
13 Calculate ∂

∂γ tk
x̂ui j

14 Update γ tk := γ tk + η(∆ui j
∂

∂γ tk
x̂ui j − λγγ

t
k )

15 end
16 end
17 end
18 until convergence;

set generation algorithm that utilizes the most signi�cant preference information in the multiple
feedback: rating information. For each useru, we randomly split his or her explicit item set E (u) into
two subsets Etr (u) and Ete (u) with the given split ratio, where Etr (u) is designed for constructing
the training set Tr and Ete (u) is for the testing set Te . When constructing Tr , we �rst obtain a
random permutation of Etr (u). Then, for every adjacent item pair (i, j ) in the permutation: (1)
if Rui > Ruj , put the triple (u, i, j ) into Tr ; (2) if Rui < Ruj , put the triple (u, j, i ) into Tr ; (3) if
Rui = Ruj , skip and continue to check next adjacent pair. Through the process for every user, we
can eventually get the training set Tr . And a similar process is applied to the testing set Te .

Fig. 3 gives a toy example for user u. We have Etr (u) = {6, 8, 9, 11, 17} and the corresponding
ratings are Ru,6 = 4, Ru,8 = 3, Ru,9 = 2, Ru,11 = 5 and Ru,17 = 4. Assume that a random permutation
of Etr is Ptr = {11, 8, 17, 6, 9}, and then we in turn check every adjacent item pair (11, 8), (8, 17),
(17, 6), (6, 9) of the permutation. Finally, the triples (u, 11, 8), (u, 17, 8) and (u, 6, 9) are selected and
put into the training set Tr . Algorithm 2 shows the whole algorithm framework, and we refer to
this algorithm as IPPE, which means that I tem Pairs with partial order are obtained from checking
adjacent items in a Permutation of an Explicit item set.

Please note that we only use explicit feedback (i.e., rating information), without implicit feedback,
to generate training data. Why not add implicit feedback as a supplement? There are two reasons.
(1) Explicit feedback signi�cantly re�ects user preferences, while implicit feedback implies user
preferences with uncertainty. It will add much noise to the training data when considering implicit
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Fig. 3. The toy example of generating training data for user u

feedback. (2) Referring to the update process in Algorithm 1, we can note that the implicit feedback
data have been utilized implicitly in the model when we use rating-related training data. So, it is
not necessary to adopt implicit feedback in generating training data. In addition, the IPPE method
considers every adjacent item pair rather than any item pair. This strategy signi�cantly reduces
the size of training samples without much sacri�ce in recommendation performance.

ALGORITHM 2: The Training Set Generation Algorithm IPPE
Input: ϵ : split ratio

E (1),E (2), · · · ,E (m): user rated item sets
Output: Tr , Te : training and testing set

1 Initialize Tr = ∅, Te = ∅
2 for u ← 1 tom do
3 Randomly split E (u) into Etr (u) and Ete (u) using ϵ
4 Get random permutation Ptr (u), Pte (u) of Etr (u), Ete (u)
5 for adjacent item i , j in Ptr (u) do
6 if Rui > Ruj then
7 Put (u, i, j ) into Tr
8 else
9 if Rui < Ruj then

10 Put (u, j, i ) into Tr
11 end
12 end
13 end
14 for adjacent item i ,j in Pte (u) do
15 if Rui > Ruj then
16 Put (u, i, j ) into Te
17 else
18 if Rui < Ruj then
19 Put (u, j, i ) into Te
20 end
21 end
22 end
23 end

ACM Transactions on Social Computing, Vol. 1, No. 1, Article 1. Publication date: March 2017.



1:12 C. Shi et al.

Table 1. Statistics of Datasets

Dataset Type A-B #A #B #A-B
explicit rating 12850 22040 190590

wish 11107 16406 162565
reading 9776 12787 71662

Douban implicit read 12029 20014 174726
Book tag 8487 19942 162070

comment 8776 18888 151758
rated 12850 22040 190590

explicit rating 10549 17707 188813
good taste 10473 14043 122060

Dianping implicit good environment 10293 12135 90350
good service 10354 13271 105846
good overall 10425 14283 125173

6 EXPERIMENT
In this section, we conduct a series of experiments on two real-world datasets and verify the
superiority of the proposed models compared to state-of-the-art baselines.

6.1 Datasets
In this paper, we focus on exploiting user multiple feedback, including explicit feedback and multiple
types of implicit feedback. As far as we know, it is di�cult to obtain such public datasets. Hence,
we crawled two real-world datasets for the experiments.

The Douban Book dataset is crawled from Douban 2, which is a well-known social media network
in China. When crawling data, we �rst select some active users in an interest group as seed users,
and then crawl other users followed by the seed users in the next iteration. We crawl users iteratively
in the above way. At the same time, we crawl the books that the crawled users gave feedback on.
Finally, a sub-network of the Douban social network is obtained for our experiments. The dataset
contains 190,590 ratings (1-5 scores) from 12,850 users and 22,040 books. The ratings of users to
books are considered explicit feedback. There are 6 types of implicit feedback: “wish”, “reading”,
“read”, “tag”, “comment” and “rated”. This implicit feedback is represented by a binary matrix (“1”
for done and “0” for not). Note that the “rated” implicit feedback is from rating information that
has been degraded into a binary matrix (“1” means “rated” and “0” for “not rated”).

The Dianping dataset is crawled from the Dianping website 3, which is a well-known life-service
social platform providing reviews of users on businesses in China. This dataset contains 188,813
ratings (1-5 scores) from 10,549 users and 17,707 restaurants. There are four types of ratings in
Dianping, including overall rating (1-5 scores) and ratings (1-5 scores) on taste, environment and
service. We use the overall ratings as explicit feedback and degrade overall, taste, environment
and service ratings into “1” if rating ≥ 3 and otherwise “0”. Then four types of implicit feedback
(0/1) are obtained: “good taste”, “good environment”, “good service” and “good overall”. A detailed
description of the two datasets can be seen in Table 1.

2http://book.douban.com
3http://www.dianping.com
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6.2 Evaluation Metrics
We use two evaluation metrics, which are widely used to evaluate ranking performance. Zero-One
Error [15] is the average ratio of correctly ordered item pairs of triples (u, i, j ) in testing set Te :

ε0/1 =
1
|Te |

∑
(u,i, j )∈Te

1[x̂ui j (Rui − Ruj ) > 0], (18)

where x̂ui j is the di�erence between predicted ranking score R̂ui and R̂uj as de�ned above. And
[c] denotes a condition indicator that returns 1 i� c is true and otherwise 0. We can note that, the
metric Zero-One Error is similar to AUC (Area Under the ROC Curve).

NDCG@k [15] is designed to take into count the order of items in the recommendation list. To
de�ne NDCGu@k for a user u, DCGu@k should be given formally �rst:

DCGu@k =
k∑
i=1

2Rui − 1
loд2 (i + 1)

, (19)

where i ranges over positions in the recommended list of user u, we use the observed rating Rui to
weigh the degree user u prefers item i . NDCGu@k is the ratio of DCGu@k to ideal DCG for that
user:

NDCGu@k =
DCGu@k

IDCGu@k
, (20)

where IDCGu@k is the maximum possible DCG when the recommended items are just in descend-
ing order by user u preference. NDCG@k is the mean value of NDCGu@k over all users, re�ecting
the model performance of the recommended list at the top k ranking.

6.3 Comparison Methods
We compare the performance of the proposed SFPR and MFPR with �ve representative methods.
According to di�erent problem settings, the methods can be classi�ed into three categories: explicit
feedback based (i.e., SVD), implicit feedback based (i.e., BPRMF, EN-BPRMF), hybrid feedback based
(i.e., MP, SVD++ and FM). These baselines are summarized as follows.

• Most Popular (MP). This baseline ranks items according to their popularity and is non-
personalized.

• SVD [14]. This method is a typical matrix factorization based model. It is a rating prediction
model and the input data need only rating information. We rank items using the predicted ratings
in our experiments.

• BPRMF [25]. This pairwise ranking method introduced by Rendle et al. is a personalized ranking
model using only one type of implicit feedback.

• Ensemble of BPRMF (EN-BPRMF) [5]. This method is an ensemble approach to unify di�erent
types of implicit feedback based on BPRMF. In the experiments, we ensemble all types of implicit
feedback using this approach.

• SVD++ [14]. This method is also a matrix factorization based rating prediction model and it
integrates rating information with one type of implicit feedback. We rank items using the predicted
ratings.

• MSVD++. This method is adapted from SVD++. It integrates rating information with multi
types of implicit feedback using Eq. 15 to predict ratings. Similarly, we rank items by predicted
ratings.

• Factorization Machine (FM) [23]. This method is a general predictor working with any real
valued feature vector and combines the advantages of support vector machines with factorization
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Table 2. Performance Comparisons on Douban Book (d=10, the baseline of improvement ratio is SVD)

Training Metric MP SVD BPRMF EN-BPRMF SVD++ MSVD++ FM SFPR MFPR
ε0/1 0.5210 0.5251 0.5314 0.5372 0.6089 0.6260 0.6145 0.6270 0.6307

Improve -0.66% 1.20% 2.30% 15.96% 19.22% 17.03% 19.41% 20.11%
NDCG@5 0.7831 0.7879 0.7845 0.7861 0.8291 0.8371 0.8288 0.8371 0.8399

30% Improve -0.78% -0.43% -0.23% 5.23% 6.24% 5.19% 6.24% 6.60%
NDCG@10 0.8301 0.8332 0.8318 0.8323 0.8656 0.8718 0.8691 0.8706 0.8726

Improve -0.37% -0.17% -0.11% 3.89% 4.63% 4.31% 4.49% 4.73%
NDCG@15 0.8559 0.8576 0.8567 0.8575 0.8852 0.8905 0.8885 0.8897 0.8917

Improve -0.20% -0.10% -0.01% 3.22% 3.84% 3.60% 3.74% 3.98%
ε0/1 0.5225 0.5909 0.5299 0.5374 0.6396 0.6511 0.6399 0.6605 0.6636

Improve -11.58% -10.32% -9.05% 8.24% 10.19% 8.29% 11.78% 12.30%
NDCG@5 0.7969 0.8347 0.7989 0.7994 0.8516 0.8576 0.8500 0.8564 0.8611

50% Improve -4.53% -4.29% -4.23% 2.02% 2.74% 1.83% 2.60% 3.16%
NDCG@10 0.8478 0.8747 0.8493 0.8494 0.8887 0.8927 0.8864 0.8927 0.8959

Improve -3.08% -2.90% -2.89% 1.60% 2.06% 1.34% 2.06% 2.42%
NDCG@15 0.8705 0.8933 0.8714 0.8719 0.9052 0.9086 0.9035 0.9088 0.9118

Improve -2.55% -2.45% -2.40% 1.33% 1.71% 1.14% 1.74% 2.07%
ε0/1 0.5239 0.6242 0.5312 0.5397 0.6558 0.6639 0.6582 0.6676 0.6756

Improve -16.07% -14.90% -13.54% 5.06% 6.36% 5.45% 6.95% 8.23%
NDCG@5 0.8338 0.8791 0.8403 0.8409 0.8874 0.8899 0.8875 0.8895 0.8932

70% Improve -5.15% -4.41% -4.35% 0.94% 1.22% 0.96% 1.18% 1.60%
NDCG@10 0.8814 0.9110 0.8821 0.8824 0.9172 0.9189 0.9164 0.9196 0.9220

Improve -3.25% -3.17% -3.14% 0.68% 0.88% 0.59% 0.94% 1.21%
NDCG@15 0.8953 0.9212 0.8957 0.8959 0.9270 0.9282 0.9273 0.9286 0.9309

Improve -2.81% -2.27% -2.75% 0.63% 0.76% 0.66% 0.80% 1.05%

models. We integrate rating information and all types of implicit feedback into the feature vector.
It is a rating prediction model and, we rank items using the predicted rating.

Since BPRMF, SVD++ and the proposed SFPR need one type of implicit feedback, we choose the
“read” feedback in Douban Book and the “good overall” feedback in Dianping for them; the reason
is that the best performances are achieved in these conditions, and the details are explained in Sec.
6.6. In addition, some baselines are obtained from open resources. FM is from libFM [24], and MP
and BPRMF are from MyMediaLite [7]. Moreover, these methods are set to optimal parameters on
these datasets.

6.4 E�ectiveness
This section validates the e�ectiveness of the proposed SFPR and MFPR compared to those baselines.
For Douban Book and Dianping datasets, we generate training set Tr and testing set Te using
di�erent split ratios 30%, 50%, 70%. The random split was carried out 5 times independently in all
experiments, and we report the mean values of ε0/1 and NDCG.

For fair comparison, we set the same number of latent dimensiond = 10 for all matrix factorization
based methods. Parameters of all methods are tuned to the optimal values through cross validation.
We select ε0/1, NDCG@5, NDCG@10 and NDCG@15 as evaluation metrics. We also record the
improvement ratio on these evaluation metrics of all methods compared to the SVD. Moreover, we
also conduct the t-test experiments with 95% con�dence, which shows that the ε0/1 and the NDCG
improvement di�erence is statistically stable and non-contingent. The experimental results are
shown in Tables 2 and 3. The main �ndings from the experimental comparisons are summarized as
follows:

• MFPR achieves the best performance in all conditions, which validates the signi�cant
bene�ts of integrating both explicit feedback and multiple implicit feedback. The experi-
ments also con�rm that better performance can be achieved by integrating more feedback
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information. For example, for those ranking methods, SFPR outperforms BPRMF due to the
integration of ratings, and the superiority of MFPR to SFPR is from more implicit feedback.
For those rating prediction methods, SVD++ outperforms SVD because of implicit feedback.
MSVD++ outperforms SVD++ because it integrates multiple implicit feedback. MSVD++
is not inferior to SFPR because MSVD++ integrates multiple implicit feedback. Note that
MSVD++, FM, and MFPR utilize all feedback information, while MFPR always has better
performance; MFPR not noly designs an e�ective mechanism treating explicit and implicit
feedback di�erently but also uses an e�ective rank model, while FM handles all feedback
equally. In all, exploiting and integrating multiple feedback is really helpful to improve the
performance in the personalized ranking recommendation task.

• When considering di�erent training data ratios, we can �nd that the improvements of those
models integrating explicit feedback with implicit feedback (i.e., SVD++, MSVD++, FM,
SFPR and MFPR) over the SVD are more signi�cant for less training data. This indicates
that integrating implicit feedback into models can e�ectively alleviate data sparsity of
rating information. Speci�cally, MSVD++, FM outperforms SVD++ and MFPR outperforms
SFPR because of more implicit feedback is integrated. More combined implicit feedback
means more supplementary information for ratings. Thus, it is needed to achieve much
better recommendation performance by integrating comprehensive multiple feedback,
particularly when rating information is insu�cient.

• From the results, we can also note that pairwise methods are more suitable for personalized
ranking recommendations. Speci�cally, SVD, SVD++, MSVD++ and FM are rating prediction
models, also known as pointwise methods, while SFPR and MFPR are pairwise ranking
models. Particularly, SFPR uses the same base learner as SVD++, while MFPR uses the
same base learner as MSVD++. We can see that SFPR and MFPR outperform SVD++ and
MSVD++, respectively, which demonstrates the e�ectiveness of the pairwise method. Note
that the other two pairwise ranking models (i.e., BPRMF and EN-BPRMF) fail to defeat
those pointwise models. We think the reason lies in the fact that BPRMF and EN-BPRMF
only utilize implicit feedback, so they fail to generate accurate partial order item pairs as
a training set. In contrast, our SFPR and MFPR generate item pairs with a more accurate
ranking order as a training set from explicit feedback.

6.5 Impact of Di�erent Training Set Generation Algorithms
Next, we verify the e�ectiveness of the designed training set generation method IPPE. As shown in
Algorithm 2, the method IPPE is designed to make full use of the high-quality explicit feedback
(i.e., rating), and thus, the proposed training set generation approach mainly focuses on the ratings
of users. In order to validate the superiority of the IPPE, we compare it with the following two
baseline methods. Following the idea of BPRMF in [25], for user u, we make a cartesian product
of Etr (u) with a user’s unknown items to construct a training set. We name this approach IPUC,
which means I tem Pairs of partial order are obtained from an Unknown item related Cartesian
product. We also consider a variation of the IPPE method. For Etr (u) of each user u, we sample two
items each time randomly and generate the item pair with partial order according to their observed
ratings. In order to produce a similar training data size as Algorithm 2, the random process for each
user u was conducted |Etr (u) | times. We refer to this approach as IPRE, which means I tem Pairs of
partial order are obtained from checking Random pairs in an Explicit item set. And we retain the
same generation strategy for the testing set as in Algorithm 2 for these two approaches.

In order to validate the e�ectiveness of IPPE, we �rst apply the IPUC, IPRE and IPPE algorithms
to the BPRMF model [25] and refer to them as IPUC-BPRMF, IPRE-BPRMF and IPPE-BPRMF
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Table 3. Performance Comparisons on Dianping (d=10, the baseline of improvement ratio is SVD)

Training Metric MP SVD BPRMF EN-BPRMF SVD++ MSVD++ FM SFPR MFPR
ε0/1 0.5957 0.5922 0.5999 0.6072 0.6118 0.6148 0.6220 0.6248 0.6253

Improve 0.59% 1.30% 2.53% 3.31% 3.82% 5.03% 5.50% 5.59%
NDCG@5 0.8214 0.8178 0.8225 0.8261 0.8293 0.8314 0.8365 0.8377 0.8387

30% Improve 0.44% 0.57% 1.01% 1.41% 1.67% 2.29% 2.43% 2.56%
NDCG@10 0.8619 0.8594 0.8630 0.8658 0.8692 0.8704 0.8689 0.8721 0.8752

Improve 0.29% 0.42% 0.74% 1.14% 1.28% 1.11% 1.48% 1.84%
NDCG@15 0.8776 0.8750 0.8789 0.8814 0.8843 0.8852 0.8843 0.8861 0.8896

Improve 0.30% 0.45% 0.73% 1.06% 1.17% 1.06% 1.27% 1.67%
ε0/1 0.5965 0.6191 0.6009 0.6062 0.6304 0.6330 0.6307 0.6345 0.6367

Improve -3.65% -2.94% -2.08% 1.83% 2.25% 1.87% 2.49% 2.84%
NDCG@5 0.8628 0.8727 0.8643 0.8674 0.8774 0.8792 0.8778 0.8801 0.8815

50% Improve -1.13% -0.96% -0.61% 0.54% 0.74% 0.58% 0.85% 1.01%
NDCG@10 0.8924 0.8999 0.8940 0.8961 0.9044 0.9053 0.9040 0.9056 0.9076

Improve -0.83% -0.66% -0.42% 0.50% 0.59% 0.46% 0.63% 0.86%
NDCG@15 0.9030 0.9097 0.9045 0.9066 0.9141 0.9149 0.9136 0.9145 0.9165

Improve -0.74% -0.57% -0.34% 0.48% 0.57% 0.43% 0.53% 0.75%
ε0/1 0.5987 0.6348 0.6006 0.6103 0.6411 0.6439 0.6437 0.6468 0.6498

Improve -5.69% -5.39% -3.86% 0.99% 1.43% 1.40% 1.89% 2.36%
NDCG@5 0.8858 0.8982 0.8875 0.8891 0.9012 0.9015 0.8996 0.9015 0.9029

70% Improve -1.38% -1.19% -1.01% 0.33% 0.37% 0.16% 0.37% 0.50%
NDCG@10 0.9099 0.9196 0.9110 0.9126 0.9217 0.9222 0.9209 0.9219 0.9234

Improve -1.05% -0.94% -0.76% 0.23% 0.28% 0.14% 0.25% 0.41%
NDCG@15 0.9172 0.9259 0.9183 0.9197 0.9276 0.9284 0.9272 0.9280 0.9297

Improve -0.94% -0.82% -0.67% 0.18% 0.27% 0.14% 0.23% 0.41%

respectively. For fair comparison, we use three algorithms to generate partial pairs from the
Douban Book and Dianping datasets with same training set size. Here, we use three di�erent
split ratios: 30%, 50% and 70%, and we report the performance of these three methods on ε0/1 and
NDCG@5 in Fig. 4(a) and Fig. 4(b). On both datasets, the IPPE-BPRMF is superior to IPUC-BPRMF
and IPRE-BPRMF; the algorithm IPPE makes full use of the rating data, and the generated training
pairs have a more accurate partial order.

Furthermore, we apply these three di�erent training set generation algorithms in SFPR and
MFPR. As shown in Fig. 5, SFPR based on the methods IPUC, IPRE and IPPE are referred to as
SFPRUC , SFPRRE , and SFPRPE , respecitvely. This is similar for MFPR. We conduct experiments
on both the Douban Book and Dianping datasets, and the “read” feedback and the “good overall”
feedback are still chosen for the SFPR. The performance on Zero-One Error and NDCG@5 with the
70% training set are reported in Fig. 5(a) and Fig. 5(b). We can observe that IPPE-based models show
much better performance than IPUC-based models. Speci�cally, SFPRUC and MFPRUC exhibit very
bad performance, such as BPRMF in Tables 2 and 3. Since the method IPPE makes full use of the
rating information, the corresponding training set Tr consists of item pairs with more accurate
partial order. On the contrary, the approach IPUC simply discards the item orders implied by
rating information and handles the rating as ordinary implicit feedback. Moreover, we observe that
SFPRPE and MFPRPE outperform SFPRRE and MFPRRE , respectively, slightly but stably. This shows
that sampling adjacent item pairs from random permutations is a better strategy than sampling
item pairs randomly. In summary, for multiple feedback data, the proposed IPPE method is more
e�ective at generating training sets for the personalized ranking models.

6.6 Integrate Di�erent Implicit Feedback with Rating
Here, we explore the impacts of integrating di�erent types of implicit feedback with rating infor-
mation. Here, we apply SVD++ and SFPR to integrate di�erent implicit feedback with ratings. That
is, we employ 6 di�erent types of implicit feedback (wish, reading, read, tag, comment and rated)

ACM Transactions on Social Computing, Vol. 1, No. 1, Article 1. Publication date: March 2017.



A Personalized Ranking Recommendation with Multiple Feedbacks 1:17

(a) Douban Book (b) Dianping

Fig. 4. The comparison of the algorithms IPUC, IPRE, IPPE
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Fig. 5. Performance of the models with di�erent training set generation algorithms on Douban Book and
Dianping

in Douban Book and 4 di�erent types of implicit feedback (good taste, good environment, good
service and good overall) in Dianping. In addition, we also run MFPR to integrate all feedback. The
split ratio is set to 50%, and the average results are shown in Fig. 6 and Fig. 7.

We observe that various implicit feedback makes substantially di�erent contributions to improve-
ment in personalized ranking performance. In Douban Book, among 6 di�erent types of implicit
feedback, the “read” feedback achieves the best performance while the “tag” performs the worst. We
think the reason may lie in that the “read” feedback has a stronger indication of user preferences
than other implicit feedback. In Dianping, “good overall” has the best performance, while “good
environment” and “good service” perform relatively poorly. We think that there is a similar reason
for this phenomenon. That is, “good overall” shows a stronger indication of user preferences since
it is derived from the overall ratings. In general, the better performance is achieved by integrating
implicit feedback with stronger indications of user preferences. Additionally, the “read” feedback
in Douban Book and the “good overall” feedback in Dianping perform the best, so we choose the
two implicit feedback for those models in the above e�ectiveness experiments.
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Fig. 6. Integration with di�erent implicit feedback in Douban Book
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Fig. 7. Integration with di�erent implicit feedback in Dianping

Moreover, MFPR, which integrates all types of implicit feedback, always has better performance
than SVD++ and SFPR, which can integrate only one type of implicit feedback with ratings. On
both datasets, SFPR outperforms SVD++ in most cases. This veri�es again that the pairwise method
is more powerful than the pointwise method for this ranking task.

6.7 Mean-weighted SFPR versus MFPR
As mentioned previously, explicit and implicit feedback have di�erent characteristics; thus, the
relations between the explicit feedback and the implicit feedback and the relations among di�erent
forms of implicit feedback are key points to be considered when designing the personalized ranking
model. We verify this claim in this section.

A simple and intuitive way to integrate user multiple feedback is to conduct linear blending
of SFPR models with the average weight. Since there are 6 di�erent types of implicit feedback in
the Douban Book dataset and 4 di�erent types of implicit feedback in the Dianping dataset, the
EN-SFPR in Fig. 8(a) represents the linear blending of 6 various SFPR based on 6 di�erent types of
implicit feedback using the average weight 1

6 , and the EN-SFPR in Fig. 8(b) represents the linear
blending of 4 various SFPR using the average weight 1

4 . Meanwhile, other models (i.e., SFPR and
MFPR) in Fig. 8 are the same model as those in Table 2 and Table 3. Here, we use 3 di�erent split
ratios: 30%, 50%, 70%, and the performance of these models on ε0/1 and NDCG@5 are shown in Fig.
8(a) and Fig. 8(b).

Consistent with previous experimental results, MFPR shows better performance than the SFPR.
We also observe that the MFPR is superior to the EN-SFPR, and this indicates that simple mean-
weighted linear blending of SFPR does address the relations among di�erent forms of implicit
feedback well. However, it is not the case for MFPR; the learning process of MFPR handles the
relations among various forms of implicit feedback well by delicately modeling those relations

ACM Transactions on Social Computing, Vol. 1, No. 1, Article 1. Publication date: March 2017.



A Personalized Ranking Recommendation with Multiple Feedbacks 1:19

in the MFPR. Moreover, we note that the EN-SFRP is even inferior to the SFPR. As concluded in
Sec. 6.6, each type of implicit feedback contributes signi�cantly di�erently in promoting model
recommendation performance. The EN-SFPR, simple blending of the SFPR, cannot tap the potential
of integrating user multiple feedback and even lowers the importance of the most important implicit
feedback (e.g., the “read” in Douban Book and the “good overall” in Dianping).

(a) Douban Book (b) Dianping

Fig. 8. Performance of mean-weighted blending of SFPR and MFPR on Douban Book and Dianping

6.8 Parameter Study
Finally, we explore how the training ratio ϵ and the number of latent dimensions d a�ect the
performance of MFPR. Due to the similarity of the experimental results to those of Dianping, here
we only show the experimental results of Douban Book.

The training ratio ϵ controls the ratio of explicit feedback data to be trained. In the experiments,
we set ϵ with 30%, 40%, 50%, 60%, 70%, 80%, and Fig. 9(a) shows the corresponding results. The
performance of MFPR improves as training ratio ϵ increases. It is reasonable that more training
data are helpful to enhance the recommendation performance.

The number of latent dimensions d is an important parameter for matrix factorization-based mod-
els. Generally, performance of matrix factorization-based models improves as the latent dimension
d increases. However, considering the time complexity of MFPR (see Sec. 4.3), a larger d indicates a
longer training time and lower prediction e�ciency. Thus, the proper d is set to balance accuracy
and e�ciency. In the experiments, we set d with 2, 4, 6, 10, 20, 50, 100, and the corresponding
results are shown in Fig. 9(b). We observe that when d grows from 2 to 10, the performance of
MFPR improves signi�cantly. However, when d grows from 10 to 100, the performance of MFPR
for the most part remains steady. Hence, to balance the model’s accuracy and e�ciency, d = 10 is
set for all matrix factorization-based methods in our experiments, as mentioned before.

7 CONCLUSION AND FUTURE WORK
In this paper, we conjecture that integrating explicit feedback (i.e. ratings) and multiple implicit
feedback can e�ectively improve personalized recommendation performance. Hence, we study
the personalized ranking recommendation problem integrating multiple feedback, and a uni�ed
multiple feedback based personalized ranking framework MFPR. Extensive experiments on two
real-world datasets show that MFPR outperforms state-of-the-art models that use rating or implicit
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Fig. 9. Performance of MFPR with various training ratio ϵ and the latent dimension d on Douban Book

feedback or hybrid feedback. Moreover, we have also designed a delicate algorithm IPPE to generate
training data with a more accurate partial order for the proposed ranking model. The empirical
evaluation results also show that IPPE is a good training data generation strategy.

The implicit feedback exploited in this paper all indicate positive user preferences. In the future,
we will further exploit implicit feedback with negative user preferences (e.g., “dislike” and “skip”)
and other types of explicit feedback. In addition, other LTR models (e.g., the listwise rank model)
can be applied to better integrate multiple feedback information. Since the proposed method is an
o�ine algorithm, an online version would be useful to extend its applicability.
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