
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

A fast multi-objective evolutionary algorithm based on a tree structure

Chuan Shi a,*, Zhenyu Yan b, Zhongzhi Shi c, Lei Zhang a

a Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing University of Posts and Telecommunications, Beijing 100876, China
b Department of Systems and Information Engineering, University of Virginia, 22903, USA
c Institute of Computing Technology, Chinese Academy of Sciences, 100080, China

1. Introduction

Solving multi-objective scientific and engineering problems is,
generally, a very difficult goal. In these multi-objective optimiza-
tion problems (MOPs), the objectives often conflict across a high-
dimensional problem space and the optimization of MOPs may
also require extensive computational resources. Classical opti-
mization methods suggest converting the MOP to a single-
objective optimization problem (SOP), in which many runs are
required to find the multiple solutions. This makes an algorithm
that returns a set of candidate solutions preferable to an algorithm
that returns only one solution based on some weights of the
objectives. For this reason, there has been an increasing interest in
applying evolutionary algorithms (EAs) to MOPs in the past 20
years [1].

Many multi-objective evolutionary algorithms (MOEAs) have
been proposed. These MOEAs use Pareto dominance to guide the
search, and return a set of nondominated solutions as a result.
Unlike in single-objective optimization, where finding the
optimal solution as the ultimate goal, there are two goals in
multi-objective optimization: (1) convergence to the Pareto
optimal set and (2) maintenance of diversity in the Pareto
optimal solutions set [2]. Many strategies and methods have
been introduced to address the two sometime conflicting goals in

MOPs [3]. A common problem with those methods is that they
are often intricate. To achieve better solutions in terms of the two
goals, the complicated strategies are usually used and a number
of parameters need to be adjusted according to the experiences
and prior knowledge of given problems. Besides, many MOEAs
have the high computational complexity with O(GMN2) or more
processing time (G is the number of generations, M is the number
of objectives and N is the population size. These symbols
maintain the same meanings throughout the following sections)
[4].

In this paper, we propose a fast multi-objective evolutionary
algorithm based on a tree structure. This data structure is a binary
tree that preserves the three-valued dominance relations (i.e.,
dominating, dominated and nondominated) among the solutions
of a MOP and thus we name it dominating tree (DT). With some
unique properties, DT is able to contain the density information of
individuals implicitly, and reduce the comparisons among
individuals distinctly. The computational complexity experi-
ments also confirm that DT is an efficient tool to manage the
population. The evolutionary algorithm based on dominating tree

(DTEA) integrates the convergence and diversity strategies,
namely the two goals in a MOEA, into the DT, and as a
consequence, the algorithm is easy to populate with only a few
parameters. In addition, DTEA employs an eliminating strategy
specially designed based on DT. This strategy not only maintains
the diversity of population naturally, but also realizes elitism
without extra costs. Six benchmark test functions and three well-
known MOEAs (i.e., NSGA-II [2], SPEA2 [5], and the improved
version of NSGA-II by Jensen [4]) are used to examine the

Applied Soft Computing 10 (2010) 468–480

A R T I C L E I N F O

Article history:

Received 15 January 2008

Received in revised form 30 June 2009

Accepted 13 August 2009

Available online 21 August 2009

Keywords:

Multi-objective evolutionary algorithm

Pareto dominance

Fitness assignment

Eliminating strategy

A B S T R A C T

This paper proposes a fast evolutionary algorithm based on a tree structure for multi-objective

optimization. The tree structure, named dominating tree (DT), is able to preserve the necessary Pareto

dominance relations among individuals effectively, contains the density information implicitly, and

reduces the number of comparisons among individuals significantly. The evolutionary algorithm based

on dominating tree (DTEA) integrates the convergence strategy and diversity strategy into the DT and

employs a DT-based eliminating strategy that realizes elitism and preserves population diversity

without extra time and space costs. Numerical experiments show that DTEA is much faster than SPEA2,

NSGA-II and an improved version of NSGA-II, while its solution quality is competitive with those of

SPEA2 and NSGA-II.

Crown Copyright � 2009 Published by Elsevier B.V. All rights reserved.

* Corresponding author.

E-mail addresses: shichuan@bupt.edu.cn (C. Shi), yan_zhen_yu@hotmail.com

(Z. Yan), shizz@ics.ict.ac.cn (Z. Shi), zlei@bupt.edu.cn (L. Zhang).

Contents lists available at ScienceDirect

Applied Soft Computing

journa l homepage: www.e lsevier .com/ locate /asoc

1568-4946/$ – see front matter . Crown Copyright � 2009 Published by Elsevier B.V. All rights reserved.

doi:10.1016/j.asoc.2009.08.018



Author's personal copy

efficiency and effectiveness of DTEA. The running time experi-
ments show that DTEA is always much faster than the benchmark
algorithms, especially when the population size is large. On the
other hand, by examining the three criteria for evaluating the
quality of solutions, we find that the solution quality of DTEA in
general is not worse than NSGA-II and SPEA2 in terms of both
converging to the true Pareto optimal front and maintaining the
diversity of the population, although the computing time required
by DTEA is much shorter.

The remainder of this paper is arranged as follows. Section 2
briefly reviews the state-of-the-art of MOEAs. Section 3 describes
DTEA in details. Section 4 presents and discusses the experimental
results. Finally, Section 5 concludes this paper.

2. An overview of MOEAs

This section gives a brief survey on contemporary MOEA
research. The first part will give some notions to be used in the
paper. The second part will briefly analyze the current state-of-the-
art of MOEAs.

2.1. Definitions in MOP

Many researchers have given similar definitions [3,6,7] for
MOP. We introduce the definitions of two important concepts here.
Without loss of generality, we only consider minimization
problems in this paper, and it is easy to convert a maximization
problem into a minimization problem.

Definition 1. General MOP [3]: In general, an MOP minimizes
Fð~xÞ ¼ ð f 1ð~xÞ; . . . ; f mð~xÞÞ subject to gið~xÞ � 0, i = 1, . . . k, ~x2V (V
is the decision variable space). An MOP solution minimizes the
components of an m-dimensional objective vector Fð~xÞ, where~x ¼
ðx1; . . . ; xnÞ is an n-dimensional decision variable vector from some
universe V.

Definition 2. Pareto dominance [3]: A vector ~u ¼ ðu1; . . . ;umÞ is
said to dominate~v ¼ ðv1; � � � ; vmÞ (denoted by~u�~v), if and only if~u
is partially less than ~v, i.e.,8 i2f1; . . . ;mg ui � vi ^ 9 i2f1; . . . ;mg ui < vi (1)

Most contemporary research on MOP is based on Pareto
dominance. (In some literatures, Pareto dominance is also defined
with strict � [7]. Here we do not discuss the difference.) A decision
vector ~x2V is said to be Pareto optimal if and only if there is no
~y2V for which Fð~xÞ� Fð~yÞ. The set of all Pareto optimal decision
vectors is called the Pareto optimal set. The corresponding set of
the objective vectors is called the nondominated set, or Pareto
front [6].

According to the definition of Pareto dominance, we can
discover a distinct difference between MOPs and SOPs in terms of
the relations among solutions. The solutions in the objective space
of SOPs are scalar numbers and their relations have two
possibilities: smaller than and larger than (including ‘‘equal to’’,
for simplicity, it is often simply called larger than). However, the
solutions of MOPs are vectors and their relations have three
possibilities: ~u�~v, ~v�~u and nondominated. This difference
requires that MOEAs have more complicate fitness assignment
rules.

2.2. State-of-the-art of MOEAs

A good MOEA must satisfy the following two aspects: (1) the
resulting nondominated set converges to the true Pareto optimal
front; (2) a uniformly distribution of the solutions is desirable [2,3].
These two goals are often the performance metrics for most MOEAs
[2,5,6]. Many methods are designed to reach these two goals [3]. To

address the first aspect, a Pareto-based fitness assignment method
is usually designed to guide the search toward the true Pareto front
[8]. The basic idea is to rank the solutions according to their
dominance relations. Goldberg first proposed a popular method
that the solution set is divided into different fronts with different
ranks [9]. Fonseca and Fleming proposed a method where the rank
of a solution is assigned the number of solutions associated with
the current population dominating it [10]. One more ranking
method was proposed in SPEA2 [5] where each individual is
assigned a strength value. For the second aspect, some successful
MOEAs provide the density estimation methods to preserve the
population diversity [8]. Pareto niching and fitness sharing were
popularly used in many MOEAs, for example, NSGA [11], NPGA [12]
and MOGA [10]. In SPEA2 [5], a kth nearest neighbor density
estimation method was applied to obtain the density index of each
individual. NSGA-II defined a novel density-estimation metric that
does not require any user-defined parameter [2]. Another popular
tactic divided the objective space into cells using a hyper-grid
[6,13]. Moreover, a new e-eliminating diversity approach was also
proposed [14,15].

Recently, some new evolutionary paradigms have been
successfully applied to MOPs, for example, particle swarm
optimization [16], artificial immune systems [17], estimation of
distribution [18], and scatter search [19]. Zhang and Li also
proposed a new MOEA based on decomposition. This method
decomposes a MOP into a number of scalar optimization sub-
problems and then optimizes them simultaneously [20]. In
addition, several effective techniques have also been adopted to
obtain good solutions. The current research has shown that the
elitism can improve the performance of the MOEAs significantly,
and it helps to prevent the loss of good solutions once they have
been found [2,5,21]. A dynamic population size, adjusted
autonomously by the online characteristics of population tradeoff
and density distribution information, has been found to be more
efficient and effective than a constant population size in terms of
avoiding premature convergence and unnecessary computational
complexity [6,22]. Moreover, using unconstrained elite archives
could avoid the retreating and shrinking estimated Pareto fronts
[23].

Although a number of MOEAs have achieved good perfor-
mances in some benchmark problems with these strategies
and technologies, there are still several disadvantages with
these algorithms. On the one hand, many MOEAs are intricate.
To obtain good solutions, many MOEAs use separate techniques
for convergence and diversity, although these two aspects
are eventually integrated into the fitness evaluation of
the individuals in most MOEAs [2,5,6]. In addition, many
parameters in the MOEAs need to be adjusted according to
the problem domain knowledge and experiences. For example,
six strategies are used and four parameters need to be adjusted
in DMOEA [6].

On the other hand, many MOEAs are time-consuming. The
high computation demand of most published MOEAs is partially
due to the fact that MOP is usually a hard computation problem
(e.g., because of the three-valued relations) as compared to SOP.
Another explanation lies in the fact that the MOEA research has
often neglected the issue of computational complexity [4].
Fortunately, many researchers have begun to pay attention to
this problem. Deb et al. proposed a fast-nondominated sort
algorithm to reduce the computational complexity of the
nondominated sort process from O(MN3) to O(MN2) in NSGA-
II [2]. Jensen has systemically analyzed the computational
complexity of many contemporary MOEAs, and presented some
efficient algorithms for the nondominated sorting process [4].
Moreover, some data structures have been introduced to
alleviate the difficulty. Quad-tree has been examined as an

C. Shi et al. / Applied Soft Computing 10 (2010) 468–480 469



Author's personal copy

elite archive to store nondominated solutions [24]. The
irreducible domination graph (IDG) was proposed to manage
population [25]. Dominated and nondominated tree structures
were introduced to facilitate the nondominated sorting in the
elite archive [23,26]. These new algorithms and data structures
speed up the fitness assignment process to some extent.
However, it is still desirable to further investigate this important
issue and design simple but efficient fitness assignment
approaches.

3. Evolutionary algorithm based on dominating tree

3.1. Dominating tree

3.1.1. Structure of dominating tree

As we know, the fitness assignment is a key component in
MOEAs, which highly impacts the algorithm’s performance; and
it is also a costly matter in terms of the processing time. Most
Pareto-based fitness assignments require that each solution
should be compared with a large number of other solutions,
which imposes most MOEAs with the computational complex-
ities bounded by O(GMN2) [4]. Please note that O(N2) factor
means the complexity grows very fast as the population size
increases. However, in many situations, it is desirable to use large
population sizes for MOEAs, especially when the number of
conflicting objectives is large. Thus, this dilemma needs to be
addressed.

Through analyzing some of the popular fitness assignment
processes, we can find there are many unnecessary comparisons
in the process. The dominance relations among individuals can
be visualized with a graph where each node represents an
individual and each edge represents the relation between the
adjacent nodes. For example, Fig. 1 illustrates the dominance
relations among five nodes with a graph. We intuitively observe
that there might be some redundant relations in Fig. 1(b).
Reducing these redundant relations may be an efficient
strategy to reduce the computational complexity of the fitness
assignment.

Because the relation of Pareto dominance is transitive [7],
some relations can be deduced based on the existing relations.
Taking Fig. 1(b) for example, if we know N4 Pareto dominates N3,
and N3 Pareto dominates N2, then we can deduce N4 Pareto

dominates N2 without any direct comparison. Thus, the compar-
ison between N4 and N2 can be avoided. We also notice another
fact that we only need to achieve the Pareto optimal set of the
population in each generation, although those dominated
solutions are still useful for the evolutionary process. The reason
is that a decision maker often makes decisions based on the
optimal set without paying much attention to the other solutions.
Also due to this reason, many relations among the solutions (e.g.,
the relations among the dominated solutions) are unnecessary to
know, and thus these relations can be reduced. In the example in
Fig. 1(b), it is obvious that N1 and N4 constitute the Pareto optimal
set. We can observe that N4 dominates N3 and N1 dominates N2.
Thus, the relation between N2 and N3 may not be of interests to us
and it may not be worth spending the computing time either
directly comparing or deducing it. Through the analysis above, we
could find two principles to reduce the unnecessary computing
time: (1) avoiding the redundant comparisons (i.e., inferring those
relations by deduction); (2) only preserving the necessary
relations (i.e., ignoring those relations that are not very of
interests).

As we have mentioned, different from the relations of the
solutions in SOPs, those in MOPs are three-valued. It can be
summarized by a Better function:

Definition 3. Better function

Betterð~x1;~x2Þ ¼
1 Fð~x1Þ� Fð~x2Þ
�1 Fð~x2Þ� Fð~x1Þ
0 nondominated

8><
>:

(2)

The Better function is a three-valued function. When the objective
vector of ~x1 dominates that of ~x2, Betterð~x1;~x2Þ ¼ 1; when the
objective vector of~x1 is dominated by that of~x2, Betterð~x1;~x2Þ ¼ �1;
when they are nondominated, Betterð~x1;~x2Þ ¼ 0. As we know, the
binary sort tree (BST) is an effective tool for storing two-valued
relations among scalar numbers [27]. In a BST, a node’s left sub-tree
links to a node whose value is smaller than itself and its right sub-
tree links to a node whose value is larger than itself. We consider the
three-valued relations in MOPs may also be stored in a binary tree
with extensions.

Following the idea of tree structure proposed by the authors’
early work in Ref. [28], we design a special binary tree for this

Fig. 1. (a) Illustration of five nodes in the two-dimensional objective space. (b) Illustration of the relations among five nodes using graph.

C. Shi et al. / Applied Soft Computing 10 (2010) 468–480470



Author's personal copy

purpose. An example that represents the relations among the
nodes in Fig. 1 is shown in Fig. 2. In the figure, where the Pareto
optimal set is {N1, N4}, the major relations are conserved and many
unimportant relations (e.g., the relations among the dominated
nodes) are omitted. As a novel binary tree, we name it dominating

tree.

Definition 4. Dominating tree (DT). A dominating tree is a binary
tree defined below.
1. A dominating tree is either an external node or an internal node

connected to a pair of dominating trees, which are called the left
sub-tree and the right sub-tree of that node.

2. Each node in the dominating tree has four fields: id, count, left-
link, and right-link, where the id field registers which individual
the node represents, the count field registers the size of its left
sub-tree (including itself), the left-link field links to its left sub-
tree whose root node is dominated by that node, and the right-
link filed links to its right sub-tree whose root node is
nondominated by that node.

The definition of a DT is similar to that of a BST. DT and BST
also share some similar properties. For example, in both DT and
BST, a node’s child is the root of its sub-tree; correspondingly, the
node is the parent of its child. DT also has some different features.
A new term ‘‘sibling chain’’ is used in DT. The sibling chain of a DT

is defined as a chain constituted by its root and the root’s right-
link nodes. Since each DT has only one root node, the sibling
chain of a DT sometimes is simply called the sibling chain of the
DT’s root node in the following sections. By tracing down the
right-link filed, one can obtain the sibling chain. Taking Fig. 2 as
an example, N1 and N4 constitute the sibling chain of the DT

whose root node is N4. Moreover, N3 and N5 also constitute a
sibling chain of the DT whose root node is N3. It should be noted
that although with the same names, the left and right sub-trees of

a node in a DT and a traditional BST have different meanings and
thus their properties are also different, which will be further
discussed in Section 3.1.3.

3.1.2. Construction algorithms of dominating tree

If we consider that the dominated relation is comparable to
the smaller than relation in a BST and the nondominated relation
is comparable to the larger than relation in a BST, and then a DT is
very similar to a BST. Thus, the construction of a DT is similar to
that of a BST. However, since we know that the relation among
the nodes in a BST is two-valued, whereas that of a DT is three-
valued, besides the similarities, they do have a number of
different aspects. Unlike in BST, a new node to be inserted into a
DT will face three choices. When the new node is dominated by
the root, it will be inserted into the left sub-tree of the root. This
is similar to the smaller than relation in a BST. When the new
node is nondominated by the root, it will be inserted into the
right sub-tree of the root. This is similar to the larger than
relation in a BST. When the new node dominates the root, the
new node should not only replace the root and let the root insert
into its left sub-tree, but also continue to compare with the other
nodes in its sibling chain. If there are nodes dominated by the
new node, those dominated nodes should be deleted from the
sibling chain and then be inserted into the left sub-tree of the
new node.

Fig. 3 demonstrates the process of creating a DT (the complete
tree is shown in Fig. 2). The input order of these nodes is from N1 to
N5, and the inserting steps are shown in Fig. 3(a)–(e). After the five
nodes have been inserted, the DT with five nodes is shown in
Fig. 3(e). It is obvious that the DT is unbalanced because the count
of N4 (which is 3) is larger than that of N1 (which is 2). To balance
the tree, N4 with its left sub-tree moves along the sibling chain in
the left direction as shown in Fig. 3(f) (i.e., N4 with its left sub-tree
switch the position with N1 with its left sub-tree in this case).
Although the action does not change the relations of the nodes
(note that the nodes in the sibling chain are still nondominated to
each other), it balances the DT, which is now the same as the
complete tree shown in Fig. 2. An additional benefit of the
balancing process is that the nodes in the same sibling chain will
be sorted by their count descending order after the process. With
this property, deleting a node becomes very easy. This will be
further illustrated with the node deleting algorithm (i.e.,
Algorithm 2).

Based on the above examples, we show the dominating tree

construction algorithms in Algorithm 1. ConstructTree is the main
loop of creating a DT. There are three functions in the algorithms.
AddinTree and AddinSibling consist of the necessary actions when
a new node is inserted into a DT. BalanceTree performs the
balancing process described above. More specifically, it sorts the
nodes in the sibling chain in their count descending order by
moving the nodes to the left or right direction along the same
sibling chain.

Fig. 2. Illustration of the relations among nodes in Fig. 1 with dominating tree.

Fig. 3. Illustration of the creating process of the dominating tree in Fig. 2. The left number in the node is its id, and the right number is its count. The sequence is alphabetic.

C. Shi et al. / Applied Soft Computing 10 (2010) 468–480 471



Author's personal copy

Algorithm 1. Pseudocode of dominating tree construction algo-
rithms

3.1.3. Properties of dominating tree

From the construction process, one can derive several
important properties of the DT.

Lemma 1. The sibling chain of a DT consists of and only consists of all

Pareto optimal nodes in the DT.

Rationale. If there is only one node, it is obvious that the
lemma is true. If the lemma is true for N nodes, there are three
possibilities for a new node (pNode) to be inserted according to
the dominating tree construction algorithms. Case one: if pNode is
dominated by the root, it is inserted into the left sub-tree of the
root. Case two: if pNode is nondominated by the root, it should
continue to be compared with the other nodes in the sibling
chain of the DT. For this case, there are also three possibilities for
pNode. If it is dominated by one of them, it should be inserted
into the left sub-tree of the first one; if it dominates a node in the
sibling chain, this dominated node will be deleted from the
sibling chain and pNode will continue the comparison with the
remaining nodes; if it is nondominated by all the others in the
sibling chain, it becomes a member of the sibling chain. Case
three: if pNode dominates the root, the root will be deleted from
the sibling chain; and for the other nodes in the sibling chain, if
they are dominated by pNode, they will also be deleted from the
sibling chain. Therefore, the construction process guarantees that
the sibling chain consists of and only consists of the Pareto
optimal nodes.

Lemma 2. The root of a dominating tree dominates all nodes in its left

sub-tree.

The proof is similar to that of Lemma 1, and thus it is omitted
here.

Lemmas 1 and 2 are the major relations recorded in a DT. It
should be noted that impacted by the BalanceTree operation in
Algorithm 1, the construction algorithms do not promise that a
node is nondominated by all of the nodes in its right sub-tree. (Note
that this is still consistent with the definition of DT, because the
definition only guarantees that a node is nondominated by the root
node of its right sub-tree.) For example in Fig. 3(f), N4 is
nondominated by N1, but not nondominated by N2 which is in
the right sub-tree of N1.

Lemma 3. The root node of a dominating tree has the largest count

value among the nodes (including itself) in its sibling chain.

The proof is omitted here, since it is obvious according to
BalanceTree function in Algorithm 1.

Lemma 3 guarantees that a DT is as balanced as possible. As a
side benefit, we can get better average-case performance when a
node is inserted or deleted (see Section 4.1).

3.2. DT-based eliminating strategy

The fitness assignment process is a crucial component of
MOEAs. Many effective fitness assignment approaches have been
introduced (see Section 2.1). In fact, the DT can be employed as a
fitness assignment approach. Different from partitioning multi-
fronts in NSGA-II and calculating the strength value in SPEA2, the
DT naturally records the dominance relations of solutions in the
tree.

Lemma 1 guarantees that all of the Pareto optimal nodes in the
current population are stored in the sibling chain of the tree, and
Lemma 2 guarantees that a node dominates all of the nodes in its
left sub-tree. With the two properties, in each generation, the DT

can naturally archive the Pareto optimal nodes which usually
should be least likely to be eliminated. According to Lemma 3, the
leftmost node in the DT (e.g., N3 in Fig. 2) is always dominated by a

C. Shi et al. / Applied Soft Computing 10 (2010) 468–480472



Author's personal copy

large number of nodes in the DT unless all nodes are nondominated
and thus it can be regarded as the ‘‘worst’’ node of the DT.

According to the essence of EA, survival of the fittest, this node
should be more likely to be deleted. Therefore, the eliminating
strategy will drop the leftmost node of the DT first in each
generation. For example, in Fig. 2, the node to be deleted is N3.
Algorithm 2 shows the pseudocode of the eliminating strategy. The
eliminating strategy guarantees that the deleted node (i.e., the
leftmost node) is dominated by a large number of the nodes in the
tree and the DT is also as balanced as possible after the elimination.
Please note that when all nodes are nondominated, the DT

degrades into a list with the left-link fields of all nodes being NULL,
and thus the node to be deleted is the first node of the DT’s sibling
chain (i.e., the root node).

This eliminating strategy can also naturally maintain the
diversity of population. A node with a big count means that there
are many nodes dominated by it in the objective space, namely its
Pareto dominated space1 is more ‘‘crowded’’, and thus the nodes in
its Pareto dominated space should be more likely to be eliminated.
The larger a node’s count is, the more ‘‘crowded’’ its Pareto
dominated space is. This eliminating strategy (i.e., dropping the
leftmost node) tends to eliminate the solutions in the ‘‘crowded’’
Pareto dominated space and consequently the solutions will tend
to distribute evenly. As illustrated in Fig. 4, N4’s Pareto dominated
space is more ‘‘crowded’’ than the other nodes, because its count
value is the largest one. Thus, the nodes in the N4’s left sub-tree are
more likely to be eliminated under this strategy. We also notice
that the eliminating strategy may be not functional in the case
when all nodes are nondominated. However, the experiments in
Section 4.2.2 will show that the strategy still can maintain an
acceptable diversity in this situation.

The DT-based eliminating strategy is obviously different from
the methods used in other MOEAs. In NSGA-II, the crowded-
comparison operator is used to guide the selection process [2], in
which, between two solutions with different nondomination
ranks, the solution with the lower rank is preferred. Otherwise,
if both solutions have the same rank, then the solution located in a
less crowded region is preferred. In the selection process of SPEA2,
the nondomination ranks are considered first; when the archive is
too small or too large, the density information is then considered.
Compared to these complicated strategies, the DT-based eliminat-
ing strategy simply eliminates the leftmost node in the DT, because
the node is not only dominated by many nodes, but also located in
the ‘‘crowded’’ region. For the five nodes in Fig. 1, the first node to

be eliminated should be N2 in both SPEA2 and NSGA-II, whereas it
is N3 in the DT-based eliminating strategy.

Algorithm 2. Pseudocode of eliminating strategy.

3.3. Main loop

Based on the DT construction algorithms and the DT-based
eliminating strategy, we propose a new algorithm—evolutionary
algorithm based on dominating tree (DTEA).

Algorithm 3 describes the pseudocode of DTEA. DTEA first
randomly generates an initial population and then create a DT with
the individuals in the population by following the construction
algorithms. In each generation, a new-generated child will be
inserted into the DT and the ‘‘worst’’ individual will be deleted
from the DT by following the elimination strategy. This generating-
eliminating process will be repeated until the stopping criterion is
satisfied. At the beginning of the evolution, the sibling chain of the
DT usually is small. In an extreme situation when there are no
nondominated nodes in the population, each node in the DT only
has its left sub-tree. In the middle stages of the evolution, the DT

becomes more ‘‘balanced’’. At the end of the evolution, more
individuals are nondominated, and thus the sibling chain of the DT

usually becomes larger. In an extreme condition, the DT degrades
to a sibling chain (i.e., a list) when all nodes are nondominated.
However, when a new individual is inserted into the DT and the
new individual is better than at least one of the individuals in the
population, the DT will become ‘‘balanced’’ again. Those changes of
a DT during the evolutionary process are illustrated in Fig. 5. As an
algorithm framework, DTEA in Algorithm 3 does not explicitly give
any specific individual generating methods. In fact, most existing
crossover and mutation operators can be used to generate the
offspring. In addition, the algorithm can also be extended to
generate and delete more than one individual in one generation.

Algorithm 3. Pseudocode of the main loop of DTEA. P stands for
the population, T stands for the dominating tree, c stands for the

Fig. 4. Illustration of eliminating strategy. The shaded space is the Pareto dominated

space of N4.

1 A node’s Pareto dominated space is the space in which a node is dominated by it.

It is similar to the forbidden region concept in Ref. [8].

C. Shi et al. / Applied Soft Computing 10 (2010) 468–480 473



Author's personal copy

new-generated child, w stands for the worst node to be deleted,
and t stands for the running generation.

3.4. Discussion of DTEA

As a novel MOEA based on DT, DTEA has the following original
features.

1. DTEA integrates the convergence and diversity strategy into the
DT. Many MOEAs use separate strategies for guaranteeing the
convergence to the optimal front and maintaining the popula-
tion diversity, which could make MOEAs intricate and time-
consuming. The DT-based eliminating strategy not only
naturally preserves the dominance relations of solutions, but
also contains the density information implicitly. Thus, the DTEA
can satisfy the two goals of MOEAs through an integrated
strategy based on DT.

2. DTEA is a steady-state algorithm (the definition of steady-
state algorithms can be seen in [29,30]). Because only one
individual (or a very small portion of the population) is
generated or eliminated in one generation, the possibility of
an individual being eliminated is small. Once a good solution
is found, it cannot be eliminated until it becomes the ‘‘worst’’
one. As stochastic algorithms, some early developed non-
elitism MOEAs may suffer from losing good solutions during
the evolutionary process [3]. The elite archive employed by
many modern MOEAs maintains all Pareto optimal indivi-
duals (i.e., elites) of the current population, which can
overcome the disadvantage [21,31], but it increases the
time and space complexities. DTEA realizes elitism naturally
with the steady elimination strategy without any extra
expenses.

3. DTEA is simpler to implement than many MOEAs. There are no
explicit diversity strategy and density estimation parameters as
in other MOEAs.

Similar to DTEA, PAES also generates and deletes an individual
in one generation [13]. PAES is identified as a (1 + 1) evolution
strategy [32], using local search from a population to identify the
approximate dominance ranking of the current and candidate
solution vectors. There are several differences between the two
algorithms. First, there is only one archive to store the elites in
PAES. In DTEA, there is more than one archive to store the
nondominated solutions of different layers, because each sibling
chain in a DT can be seen as an elite archive to store the ‘‘local’’
nondominated solutions in different layers. Second, PAES only uses
the mutation operator, since it is based on the evolutionary
strategy. Whereas, many operators, including crossover and
mutation, can be used in DTEA. Last but not least, the hyper-
grid method is used in PAES to maintain the diversity; however,
there is no special diversity strategy in DTEA.

There are some other interesting data structures used in
MOEAs. Mostaghim et al. examined Quad-tree for storing Pareto-
points [24]. Fieldsend et al. introduced the dominated/ nondomi-
nated tree to facilitate the use of an unconstrained elite archive
[23,26]. Although our method has a similar name to Fieldsend’s
method and they both reduce the unnecessary comparisons, they
are completely different in terms of the mechanism. In addition,
they are also designed for addressing different problems. The DT, as
a new data structure, not only can be used for the fitness
assignment but also for the diversity maintenance, and it stores the
dominance information of all individuals. Whereas, the domi-
nated/nondominated tree and Quad-tree are used to store and sort
the individuals only in the elite archive. Although the dominated/
nondominated tree can also be used as the base of MOEA [33], the
DT has the unique property that it contains the density information
implicitly. Another graph structure, IDG, has been proposed by
Alberto et al. [25] to maintain the relations among the individuals
in the whole population, whereas they have different data
structures. Moreover, DT requires less time than IDG when
inserting or deleting a node (see Section 4.1). The tree structure
in Ref. [28] documented some of the authors’ preliminary work on
DT and it can be regarded as a precursor of the DT proposed in this
paper, although it is very rough and contains many unsolved
issues.

Recent work has shown that the restricting number of solutions
in the elite front can result in shrinking [5] and oscillating/
retreating estimated Pareto front [26], so some research highlight
the use of an active archive of elite to improve the optimization
speed of these algorithms [6,23]. In DTEA, the archive of elite
remains active until all nodes become nondominated for the first
time; after that, the archive is restricted by the population size. It is
easy to make the elite archive of DTEA unconstrained in the whole
evolutionary process. Yen and Lu have designed the population
growth and decline strategies to determine if an individual will
survive or be eliminated based on some qualitative indicators [6].
The similar strategies can also be used to extend DTEA [34].
Considering the diversity maintenance, we can also add a density
estimation into DTEA [34]. In DTEA, the nodes in the sibling chain

Fig. 5. The changes of dominating tree in the evolutionary process.

C. Shi et al. / Applied Soft Computing 10 (2010) 468–480474



Author's personal copy

are sorted according to their count values. We can evaluate the
density values of the nodes in the same sibling chain, and sort them
according to their count values first and then their density values.

4. Experiments and discussions

In this section, we first observe the computational complexity
of DT through experiments, and then validate the proposed DTEA
and compare its effectiveness and efficiency with other benchmark
MOEAs (i.e., NSGA-II and SPEA2). NSGA-II and SPEA2 are
implemented in C according to their description in the literatures
[2,5] and PISA [35]. We also implement the improved version of
NSGA-II by Jensen [4], which is called NSGA-QS in the paper. The
experiments are carried out on a 3 GHz and 512 M RAM Pentium IV
computer running Windows 2000.

4.1. Computational complexity experiments

In this section, two groups of experiments are done to observe
the computational complexity of DT. When a node is inserted into a
DT, we calculate the number of steps that the node compares with
other nodes. On the other hand, when the worst node is deleted, we
calculate the number of steps that the algorithm spends on
searching for the node. The experiments have the following two
steps. First, we randomly generate some individuals whose
objective values range from �100 to 100; and create a DT with
these individuals. Second, we insert a random individual whose
objective values also randomly range from �100 and 100 into the
DT, and calculate the number of comparisons. At the same time, we
delete the worst node, and calculate the number of searches. The
second step (i.e., inserting and deleting) is repeated for 50 times,
and then we calculate the average number of comparisons and
searches. In order to further eliminate the randomness, we repeat
the above process (including steps 1 and 2) 50 times.

Fig. 6(a) illustrates the relation between the number of
comparisons and the population size for different number of
objectives when a node is inserted into a DT. With the increase of
the population size, an inserted node is expected to be compared
with more nodes and thus the number of comparisons increases.
When the number of objectives is 1 (i.e., M = 1, a single-objective
problem), the objective vector becomes a scalar. In this situation,
the comparison result of two solutions is either 1 or �1 (i.e.,
dominating or dominated) without considering the situation that
the two vectors are identical. As a consequence, the DT degrades to
a list with the right-link field being NULL, and inserting a new node
is a straight insertion sort [27] with computational complexity

O(N) (N is the population size). The experiments also discover that
the number of comparisons approximates N/2. As the number of
objectives changes from 2 to 8, the number of comparisons
increases and the increase rate is also growing. We consider the
reason is that with the increase of the number of objectives, the
size of nondominated solutions increases, so the inserted node is
expected to be compared with more nondominated nodes. We also
observe that the number of comparisons is larger than the straight
insertion sort of a list (i.e., when M = 1) when the number of
objectives is 8 and the population size is smaller than 400. It may
indicate that the DT could be similar to the method proposed by
Jensen [4] in the aspect that the algorithm has an inferior efficiency
when the number of objectives is large and the population size is
small. Since the plots in Fig. 6(a) all seem linear and these plots are
in log-scales, we can empirically say that the expected processing
time T follows T = bN

a
, where b and a are two constants and can be

estimated by linear regression. We fit a linear regression model
with the data and the results show the parameter a is 0.985, 0.339,
0.365, and 0.567 for M being 1, 2, 5 and 8, respectively.

Fig. 6(b) illustrates that the relation between the number of
searches and the population size in terms of the different numbers
of objectives when deleting the worst node. With the increase of
the population size, the DT also requires more searches to find the
worst node (i.e., the leftmost node). When the number of
objectives increases, the number of nondominated nodes becomes
large rapidly, and thus the left sub-tree of a DT becomes small, so it
is easier to find the worst node. That is the reason why the number
of searches decreases with the increase of the number of
objectives. Especially when the number of objectives is larger
than 5, the number of searches is very small, which indicates the DT

is degenerating to a list with the left-link field being NULL. When
the number of objectives is 1, we find the number of searches
approximates N. The reason is same to that in Fig. 6(a). In this
situation, the DT degrades to a list with the right-link field being
NULL. Thus, the worst node is at the bottom of the list, so the
algorithm needs to search all N nodes in order to find the target
node. We also estimate the parameter a with linear regression for
the four plots here. Parameters a are 0.986, 0.498, 0.237 and 0.218
when M are 1, 2, 5, and 8, respectively. This further confirms that
the time consumed in the eliminating strategy becomes less when
the number of objectives becomes larger.

From the experiments, we can find an interesting fact that the
list is a special case of DT with the right-link field being NULL when
M = 1 and the DT construction algorithms become a classical
straight inserting sort algorithm of the list in this situation. We also
find that the number of comparisons for inserting becomes larger

Fig. 6. (a) The relation between the number of comparisons and the population size when inserting a node. (b) The relation between the number of searches and the

population size when deleting the worst node. M represents the number of objectives.

C. Shi et al. / Applied Soft Computing 10 (2010) 468–480 475



Author's personal copy

and the number of searches for deleting becomes smaller as the
number of objectives increases. We will further investigate the
impacts of the number of objectives in the experiments in Section
4.3.

Considering some popular fitness assignment processes in
which each individual should be compared with all the other
individuals with the complexity O(N), we find that DT reduces the
unnecessary comparisons significantly, and thus its complexity is
much less than that of other methods. Compared to the
experimental results of IDG proposed by Alberto and Mateo
[25], DT is also more efficient when inserting or deleting a node.
Jensen has systemically analyzed the computational complexity of
some contemporary MOEAs [4]. Two classical MOEAs—SPEA2 and
NSGA-II both have the complexity O(MN) for the individual-based
fitness assignment. And the complexities of the diversity strategy
in SPEA2 and NSGA-II are O(MN) and O(M ln N), respectively.
Observing the experiments above, we can find that the computa-
tional complexities of DTEA are smaller than that of SPEA2 and
NSGA-II. Even compared to the fast algorithms proposed by Jensen
whose complexities are O(logM�1 N) in the fitness assignment and
O(M ln N)in the diversity strategy [4], DTEA is also competitive. We
will further compare the efficiency of these algorithms in Section
4.3.

4.2. Comparison of effectiveness

In this study, six popular test functions are included, and these
algorithms will be compared in three aspects: convergence to the
Pareto front, maintenance of diversity and running time. NSGA-QS
will not be included in these tests, since it only speeds up NSGA-II.

4.2.1. Test functions and performance assessment

The first two popular test functions QV [5] and KUR [2,5] have
two objectives. The other test functions DTLZ1-DTLZ4 have three
objectives, and they are widely used as the test functions with
three objectives by many researchers [4,6,36].

To fairly compare these three algorithms, they all use the
simulated binary crossover (SBX) and polynomial mutation [37].
The population size is 100; the archive size is 100; the distribution
indexes for crossover and mutation operators are hc = 20 and
hm = 20, respectively; the crossover probability is 1; and the
mutation probability is 1/n for all test functions, where n is the
number of variables. The numbers of the evaluated individuals are
set as follows: 15,000 for QV and KUR; 30,000 for DTLZ1 and
DTLZ2; 50,000 for DTLZ3; and 20,000 for DTLZ4. The number of
generations of SPEA2 and NSGA-II is equal to the number of the
total evaluated individuals divided by the population size. The
number of generations of DTEA is equal to the number of the
evaluated individuals divided by two, since the SBX only generates
two offspring and DTEA deletes the two worst individuals in one
generation. In DTEA, two parent individuals are randomly selected
from the current population for crossover. The experimental
results are the average results in 30 runs.

The measure criteria of solutions are an important matter in
multi-objective optimization. Because of its complication, there
are no consensus measure criteria accepted by all researchers [38].
Two popular measure criteria are used in this paper.

Let X,Y � V be two sets of objective vectors, the function C maps
the ordered pair (X, Y) to the interval [0,1]:

CðX;YÞ ¼ jfb2Y ; a2X : a� bgj
jY j (3)

C(X,Y) is used to compare the convergence of two Pareto optimal
sets [6,21]. The value C(X,Y) = 1 means that all solutions in Y are
Pareto dominated by solutions in X. The opposite, C(X,Y) = 0

represents the situation when none of the solutions in Y are
covered by the set X. Note that both C(X,Y) and C(Y,X) have to be
considered, since C(Y,X) is not necessarily equal to 1 � C(X,Y).

Let S be the Pareto optimal solutions in the final population; di is
the Euclidean distance between two consecutive solutions in S in
the objective space; the parameter d̄ is the average of these
distances. The diversity is computed as follows:

D ¼
XSj j

i¼1

di � d̄
�� ��

Sj j (4)

D measures the extent of spread achieved among the obtained
solutions [39]. A good distribution would make all distance di equal
to d̄ and thus make D equal to 0.

4.2.2. Results and discussions

Table 1 shows the comparison of the three MOEAs in terms of
the convergence metric C. DTEA performs better in QV and KUR
obviously, whereas it performs slightly worse in DTLZ1. For other
functions, they have close performance. Table 2 shows the results
in terms of the distribution metric D. These three algorithms have
very close diversity. The diversity of DTEA is not worse than other
two algorithms except for KUR. All the results are close to 0, which
means all the three algorithms obtain good diversities. Table 3
shows the running time of these three MOEAs. The running time of
DTEA is significantly less than that of the other two algorithms for
all test functions. Between the two benchmark algorithms, since
the efficient density estimation algorithm and fast-nondominated

Table 2
Distribution comparison of different algorithms using D. For each result, the first

row is the average value, and the second row is the variance.

QV KUR DTLZ1 DTLZ2 DTLZ3 DTLZ4

DTEA 0.004 0.042 0.137 0.235 0.249 0.287

0.004 0.003 0.444 0.032 0.354 0.023

SPEA2 0.004 0.015 0.116 0.246 0.268 0.253

0.001 0.001 1.463 0.015 1.196 0.117

NSGA-II 0.004 0.016 0.130 0.233 0.253 0.284

0.001 0.001 0.817 0.019 0.301 0.105

Table 1
Convergence comparison of different algorithms using C. D is DTEA; S is SPEA2; and

N is NSGA-II. For each result, the first row is the average value, and the second row is

the variance.

QV KUR DTLZ1 DTLZ2 DTLZ3 DTLZ4

C (D, S) 1 0.594 0.017 0.089 0.019 0.168

0 0.002 0.597 0.112 0.210 0.310

C (D, N) 1 0.554 0.007 0.119 0.021 0.079

0 0.003 0.607 0.212 0.185 0.124

C (S, D) 0 0.004 0.718 0.103 0.061 0.182

0 0.001 0.567 0.135 0.223 0.296

C (N, D) 0 0.004 0.562 0.082 0.058 0.195

0 0.001 0.590 0.311 0.199 0.154

Table 3
Compare running time of different algorithms. The time unit is millisecond. For each

result, the first row is the average value, and the second row is the variance.

QV KUR DTLZ1 DTLZ2 DTLZ3 DTLZ4

DTEA 657 239 621 1084 909 725

0.022 0.015 0.012 0.011 0.018 0.004

SPEA2 7247 3099 10342 10638 17619 8332

0.124 0.151 0.005 0.015 0.025 0.092

NSGA-II 1651 773 2042 2554 3511 1759

0.112 0.092 0.008 0.009 0.021 0.052

C. Shi et al. / Applied Soft Computing 10 (2010) 468–480476



Author's personal copy

sort algorithm are used in NSGA-II, NSGA-II is obviously faster than
SPEA2.

In order to further demonstrate the results obtained by these
algorithms, 100 individuals are randomly selected from the final
result Pareto optimal sets and are visualized in Fig. 7. The final
result sets are constructed through following steps: the
solutions of 30 runs are combined to form a new set; and then
the Pareto optimal set in the new set is calculated. We can
observe that the optimal solutions found by DTEA dominate
those found by NSGA-II and SPEA2 in QV and KUR. However,
DTEA could not find one discontinuous front in KUR. In addition,
DTEA shows better diversity in QV. As for the four three-
objective test functions, generally speaking, the three algorithms
all converge to the true Pareto optimal front and maintain good
diversities.

The performance experiments demonstrate the effectiveness of
DTEA. DTEA is not only able to find the true (or approximate)
Pareto optimal front, but also maintain a good distribution of
solutions without any special diversity strategy. Moreover, it is
much faster than the other two algorithms. Please note that we do
not use any specially designed operators, diversity maintenance
strategy, and specially tuned parameters settings for DTEA in the
experiments. Whereas, compared to the two well-known MOEAs:
SPEA2 and NSGA-II, DTEA obtains the competitive solutions with
much less time. As mentioned in Section 3.2, the eliminating

strategy in DTEA may not be functional in maintaining the
diversity when all nodes are nondominated. However, the
experimental results show that DTEA maintains good diversities
in most testing problems. We consider there may be two reasons.
In the situation when the DT degrades into a list, once a new-
generated node dominates one of the nodes in the sibling chain, the
list changes back into a balanced DT, in which case the eliminating
strategy becomes functional again in maintaining the diversity. In
addition, DTEA is a steady-state algorithm that only deletes very
limited number of individuals (e.g., two in this experiment) in one
generation. We consider the steady-state strategy may be
beneficial for maintaining the diversity.

4.3. Comparison of efficiency

In this section, we further compare the running time of different
algorithms including NSGA-II, NSGA-QS, SPEA2, and DTEA. The
experiments include three aspects: the running time in the
evolutionary process, the running time for different population
sizes and the running time for different number of objectives.

The test function is the problem SPH-m defined in Eq. (5) [40].
SPH-m is a scalable function and it is easy to extend the number of
objectives. The results shown here are the average results in 30
runs. There are some common parameters settings for the three
experiments: hc = 20; hm = 20; the crossover probability is 1; and

Fig. 7. Visualization of the Pareto optimal set of the test functions.

C. Shi et al. / Applied Soft Computing 10 (2010) 468–480 477



Author's personal copy

the mutation probability is 1/n.

f jðxÞ ¼
X

1�i�n;i 6¼ j
ðxiÞ2 þ ðx j � 1Þ2

1 � j � M

xi 2 ½�10;10�n
(5)

4.3.1. Running time in evolutionary process

The first experiment is to observe the running time in the
evolutionary process. The parameters are set as follows: the
population size is 200; the number of variables is 10; the number of
objectives is 2. The number of total evaluated individuals is 40,000.
We calculate the average running time of every 2000 individuals
evaluated. Fig. 8 shows the relation of the running time and the
generations. For a fair comparison, the number of the evaluated
individuals (instead of the generations) is shown in the x-axis.

It is obvious that DTEA is the fastest one and it is even faster
than NSGA-QS. SPEA2 is the slowest one. NSGA-QS speeds up
NSGA-II indeed. As the number of evaluated individual increases,
the differences of the four algorithms become more and more
significant. Fig. 8(b) further investigates the trend of the running
time of DTEA as the number of evaluated individual increases. We
can observe a turning point in the curve in Fig. 8(b) and the running
time of DTEA has different growing ratios before and after the
turning point. We also find that the turning point is the generation
at which all individuals in the DT are nondominated for the first
time. We name this generation the balancing generation and define
it as following:

Definition 5. Balancing generation. The Balancing generation is the
generation at which all individuals in the dominating tree are
nondominated for the first time.

The DT degrades into a list at the point of balancing generation.
The balancing generation is 10,613 in this example (the number of
evaluated individuals is 21,226, since 2 for each generation). We
show the balancing generations of all those test functions in Section
4.2 in Table 4. From Tables 3 and 4, we can find that the balancing

generation affects the DT’s efficiency. Fig. 9 illustrates the effects
more clearly. We can observe a trend that when the ratio of the
balancing generation vs. the total generations is larger, the speedup
of DTEA vs. both NSGA-II and SPEA2 are also larger. We consider
the reason is that after the balancing generation, there are more
nondominated individuals in the DT and based on the DT

construction algorithms, the number of comparisons increases
when a new individual is inserted. Thus, the DT shows better
efficiency when the balancing generation is larger. On the other
hand, we also may say that DT is more efficient before the balancing

generation than after it.

4.3.2. Running time for different population sizes

The second experiment is to observe the running time for
different population sizes. The parameters in the experiment are
set as follows: the number of variables is 10; and the number of
objectives is 2. There are 11 different settings of population sizes
ranging from 50 to 1000. The generation setting is 50 for SPEA2,
NSGA-QS and NSGA-II. For a fair comparison, the generation of
DTEA is calculated as 50 � N/2, where N is the population size. The
result is demonstrated in Fig. 10(a), where the plot is in a
logarithmic scale and the average computing time is a function of
the population size.

It is easy to observe from Fig. 10(a) that DTEA is the fastest one
in all cases; and SPEA2 is the slowest one. NSGA-QS is faster than
NSGA-II. As the population size increases, DTEA is much faster than
the other algorithms. The lines in Fig. 10(a) all seem linear, which
also indicates that the processing time follows a T = bN

a
relation.

We estimate parameters a with linear regression. For NSGA-II and
SPEA2, a is 1.97, which confirms the O(N2) processing time of these
algorithms. For NSGA-QS, a is 1.22 and for DTEA, a is 1.07, which is
close to O(N). When the population size becomes larger, the

Table 4
The balancing generation of each test function for DTEA.

QV KUR DTLZ1 DTLZ2 DTLZ3 DTLZ4

Total generations 7500 7500 15,000 15,000 25,000 10,000

Balancing generation 1052 1269 3179 625 6451 1016

Fig. 8. (a) The relation of running time and generations. (b) The relation of running time and generations in DTEA.

Fig. 9. The relation of DTEA’s speedup and the balancing generation. From left to

right, the six ‘‘+’’ (or ‘‘*’’) represents the relation of DTLZ2, DTLZ4, QV, KUR, DTLZ1

and DTLZ3, respectively.

C. Shi et al. / Applied Soft Computing 10 (2010) 468–480478



Author's personal copy

balancing generation also becomes larger, so the increase of the
running time of DTEA is slower than the other methods with the
increase of the population size.

4.3.3. Running time with different number of objectives

The third experiment is to observe the running time with
different number of objectives. The experiment parameters are set
as follows: the population size is 200; and the number of variables
is 20. The number of objectives ranges from 2 to 10. The generation
is 300 for SPEA2, NSGA-QS and NSGA-II, and 30000 for DTEA.

The experimental result is demonstrated in Fig. 10(b). For each
case, DTEA is still the fastest one, and SPEA2 is the slowest one. With
the increase of the number of objectives, the increase rate of running
time is relatively slow for NSGA-II and DTEA, and fast for SPEA2 and
NSGA-QS. The running time of NSGA-QS becomes larger than NSGA-
II when the number of objectives is 10. Generally speaking, with the
increase of the number of objectives, the solutions become
nondominated rapidly and the balancing generation becomes small,
so the time of inserting a node into DT increases quickly. However, in
this situation, the left sub-tree of the DT become smaller; so it costs
less time to delete the worst node. This is the reason why the running
time of DTEA increases slowly. We also observe that NSGA-QS has
the inferior performance when the number of objectives is large,
which is consistent with Jensen’s report [4]. As we know, many data
structures and approaches have an inferior performance when a
large number of solutions become nondominated, such as IDG [25],
Quad-tree [24] and Jensen’s fast algorithms [4]. Whereas, the
experiments show that DTEA has the advantage of maintaining high
efficiency in this situation because the time for deleting the worst
node could be saved.

4.3.4. Discussion of running time

Through the three experiments above, we find that DTEA is
always much faster than NSGA-QS, SPEA2 and NSGA-II. SPEA2 is
always the slowest one. NSGA-QS speeds up NSGA-II.

The balancing generation affects the efficiency of the dominating

tree. The larger the balancing generation is, the less time-consuming
it is to construct a DT. In fact, the balancing generation reflects the
selection pressure: the population is under more selection
pressure before the balancing generation and less pressure after
that. When the population size is large, the balancing generation

will also be large and thus the increase rate of the running time of
the DT-based algorithms is significantly lower than that of the
other algorithms as shown in the experiments. As a consequence,
DTEA demonstrates more significant advantages in computing
time when the population size is large.

5. Conclusions

In this paper, a fast multi-objective evolutionary algorithm
based on dominating tree, named DTEA, is proposed. The
dominating tree is a binary tree that can store the three-valued
relation existing in MOPs, namely, dominating, dominated, and
nondominated. The construction algorithms guarantee that the
dominating tree is able to effectively handle the whole population
of MOEA. DTEA integrates the convergence strategy and diversity
strategy into the dominating tree. The eliminating strategy in
DTEA based on the dominating tree can maintain the diversity
without extra expenses. The experiments show that DTEA can
produce statistically competitive results compared to SPEA2 and
NSGA-II on six popular multi-objective optimization benchmark
problems. Moreover, DTEA is much faster than the other three
benchmark MOEAs, and this advantage becomes more significant
when the population size is large. As we know, the large
population is desirable for MOEAs to avoid premature conver-
gence. However, because of the huge time complexity of the
current fitness assignment methods in MOEAs, the large
population size is usually unfeasible in real world applications.
As a consequence, we consider that DTEA may have advantages
in both requiring less time complexity and obtaining better
solution quality because we can increase the population size of
DTEA with much less increase rate of computing time than the
other MOEAs.

There are still many interesting researches to be done to exploit
DTEA further. We have illustrated the effect of the balancing

generation on the efficiency of DTEA. The balancing generation may
also affect the performance and the speed of convergence. Future
research may explore this relation and the factors that affect the
balancing generation.

Acknowledgements

The authors are grateful to the editors and referees for their
comments, which have greatly improved the presentation of this
paper. This work is supported by the National Science Foundation of
China (Nos. 60905025, 60775035, 60805041), 863 National High-
Tech Program (No. 2007AA01Z132) and National Basic Research
Priorities Programme (Nos. 2003CB317004, 2007CB311004).

References

[1] C.A.C. Coello, Evolutionary multiobjective optimization: a historical view of the
field, IEEE Computational Intelligence Magazine 1 (1) (2006) 28–36.

Fig. 10. (a) The relation of running time and the population size. (b) The relation of running time and the number of objectives.

C. Shi et al. / Applied Soft Computing 10 (2010) 468–480 479



Author's personal copy

[2] K. Deb, A. Pratab, S. Agarwal, T. MeyArivan, A fast and elitist multiobjective genetic
algorithm: NSGA-II, IEEE Transaction on Evolutionary Computation 6 (2002) 182–
197.

[3] D.A.V. Veldhuizen, G.B. Lamont, Multiobjective evolutionary algorithms: analyz-
ing the state-of-the-art, Evolutionary Computation 18 (2) (2000) 125–147.

[4] M.T. Jensen, Reducing the run-time complexity of multiobjective EAs: the NSGA-II
and other algorithms, IEEE Transaction on Evolutionary Computation 7 (5) (2003)
503–515.

[5] E. Zitzler, M. Laumanns, L. Thiele, SPEA2: improving the strength Pareto evolu-
tionary algorithm, TIK-Report 103, ETH Zentrum, Gloriastrasse 35, CH-8092
Zurich, Switzerland, 2001.

[6] G. Yen, H. Lu, Dynamic multiobjective evolutionary algorithm: adaptive cell-
based rank and density estimation, IEEE Transaction on Evolutionary Computa-
tion 7 (3) (2003) 253–274.

[7] S.Y. Zeng, L.S. Kang, L.X. Ding, An orthogonal multi-objective evolutionary algo-
rithm for multi-objective optimization problem with constraints, Evolutionary
Computation 12 (1) (2004) 77–98.

[8] C.M. Fonseca, P.J. Fleming, An overview of evolutionary algorithms in multi-
objective optimization, Evolutionary Computation 3 (1995) 1–16.

[9] D.E. Goldberg, Generic Algorithms in Search Optimization and Machine Learning,
Addison Wesley, Massachusetts, 1989.

[10] C.M. Fonseca, P.J. Fleming, Multiobjective optimization and multiple constraint
handling with evolutionary algorithms. Part I: a unified formulation, IEEE Trans-
action on Systems, Man and Cybernetics. Part A: Systems and Humans 28 (1)
(1998) 26–37.

[11] N. Srinivas, K. Deb, Multiobjective optimization using nondominated sorting in
genetic algorithms, Evolutionary Computation 2 (3) (1995) 221–248.

[12] J. Horn, N. Nafpliotis, D.E. Goldberg, A niched Pareto genetic algorithm for
multiobjective optimization, in: Proceedings of the First IEEE Conference on
Evolutionary Computation, IEEE Press, 1994, pp. 82–87.

[13] J.D. Knowles, D.W. Corne, Approximating the nondominated front using the
Pareto archived evolution strategy, Evolutionary Computation 8 (2000) 149–172.

[14] K. Atashkari, N. Nariman-Zadeh, A. Pilechi, A. Jamali, X. Yao, Thermodynamic
Pareto optimization of turbojet engines using multiobjective genetic algorithm,
International Journal of Thermal Sciences 2338 (2005) 1–11.

[15] Y. Xin, Y. Xu, Recent advances in evolutionary computation, Journal of Computer
Science & Technology 21 (1) (2006) 1–18.

[16] S. Agrawal, B.K. Panigrahi, M.K. Tiwari, Multiobjective particle swarm algorithm
with fuzzy clustering for electrical power dispatch, IEEE Transactions on Evolu-
tionary Computation 12 (5) (2008) 529–541.

[17] M.G. Gong, L.C. Jiao, H.F. Du, L.F. Bo, Multiobjective immune algorithm with
nondominated neighbor-based selection, Evolutionary Computation 16 (2)
(2008) 225–255.

[18] Q.F. Zhang, A.M. Zhou, Y. Jin, RM-MEDA: a regularity model-based multiobjective
estimation of distribution algorithm, IEEE Transactions on Evolutionary Compu-
tation 12 (1) (2008) 41–63.

[19] A.J. Nebro, F. Luna, E. Alba, B. Dorronsoro, J.J. Durillo, A. Beham, AbYSS: adapting
scatter search to multiobjective optimization, IEEE Transactions on Evolutionary
Computation 12 (4) (2008) 439–457.

[20] Q. Zhang, H. Li, MOEA/D: a multi-objective evolutionary algorithm based on
decomposition, IEEE Transaction on Evolutionary Computation 11 (6) (2007)
712–731.

[21] E. Zitzler, K. Deb, L. Thiele, Comparison of multiobjective evolutionary algorithms:
empirical results, Evolutionary Computation 18 (2) (2000) 173–195.

[22] K.C. Tan, T. Lee, E. Khor, Evolutionary algorithms with dynamic population size
and local exploration for multiobjective optimization, IEEE Transaction on Evolu-
tionary Computation 5 (2001) 565–588.

[23] J.E. Fieldsend, R.M. Everson, S. Singh, Using unconstrained elite archives for
multiobjective optimization, IEEE Transaction on Evolutionary Computation 7
(2003) 305–323.

[24] S. Mostaghim, J. Teich, A. Tyagi, Comparison of data structures for storing Pareto-
sets in MOEAs, in: Proceedings of World Congress on Computational Intelligence,
2002, pp. 843–849.

[25] I. Alberto, P.M. Mateo, Representation and management of MOEA populations
based on graphs, European Journal of Operational Research 159 (1) (2004) 52–65.

[26] R.M. Everson, J.E. Fieldsend, S. Singh, Full elite sets for multi-objective optimiza-
tion, in: Proceedings of 5th International Conference on Adaptive Computing in
Design and Manufacture (ADCM 2002), 2002, pp. p343–354.

[27] Robert Sedgewick, Algorithms in C++, Parts 1–4-Fundamentals, Data Structures,
Sorting, and Searching, in: Person Education, third edition, 2002, pp. 515–521.

[28] C. Shi, Y. Li, L.S. Kang, A new simple and highly efficient multiobjective optimal
evolutionary algorithm, in: Proceedings of 2003 IEEE Conference on Evolutionary
Computation, Australia, (2003), pp. 1536–1542.

[29] Z. Yan, L.S. Kang, R. Mckay, SEEA for multi-objective optimization: reinforcing
elitist MOEA through multi-parent crossover, steady elimination and swarm hill
climbing, in: Proceedings of the 4th Asia-Pacific Conference on Simulated Evolu-
tion and Learning, 2002, pp. 21–26.

[30] K. Rajeev, R. Peter, Improved sampling of the Pareto-front in multiobjective
genetic optimizations by steady-state evolution: a Pareto converging genetic
algorithm, Evolutionary Computation 10 (3) (2002) 283–314.

[31] E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: a comparative case
study and the strength Pareto approach, IEEE Transaction on Evolutionary Com-
putation 3 (4) (1999) 257–271.

[32] T. Baeck, Evolutionary Algorithms in Theory and Practice, Oxford University
Press, 1996.

[33] J.E. Fieldsend, S. Singh, A multi-objective algorithm based upon particle swarm
optimization, an efficient data structure and turbulence, in: Proceedings of 2002
Workshop on Computational Intelligence, UK, (2002), pp. 37–44.

[34] C. Shi, Q.Y. Li, Z.Y. Zhang, Z.Z. Shi, An improved multiobjective evolutionary
algorithm based on dominating tree, in: PRICAI 2006, 2006, 691–700.

[35] S. Bleuler, M. Laumanns, L. Thiele, E. Zitzler, PISA—a platform and programming
language independent interface for search algorithms, in: Conference on Evolu-
tionary Multi-Criterion Optimization (EMO 2003), 2003, 494–508.

[36] M. Farina, K. Deb, P. Amato, Dynamic multiobjective optimization problems: test
cases, approximations, and applications, IEEE Transaction on Evolutionary Com-
putation 8 (5) (2004) 425–442.

[37] K. Deb, R.B. Agrawal, Simulated binary crossover for continuous search space,
Complex Systems 9 (1995) 115–148.

[38] K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable multi-objective optimization
test problems, in: Proceedings of 2002 Congress on Evolutionary Computation,
2002, pp. 825–830.

[39] K. Deb, A. Samir, et al., A fast elitist nondominated sorting genetic algorithm for
multi-objective optimization: NSGA-II, KanGAL Report No. 200001, Kanpur, PIN
208 016, India.

[40] M. Laumanns, G. Rudolph, H.P. Schwefel, Mutation control and convergence in
evolutionary multiobjective optimization, in: Proceedings of the 7th International
Mendel Conference on Soft Computing (MENDEL 2001), Brno, Czech Republic,
June, 2001.

C. Shi et al. / Applied Soft Computing 10 (2010) 468–480480


